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Two questions concerning the reliability of dispersion-theoretic treatments of the effect of perturbing
forces on binding energy are investigated. First, the change in binding energy caused by variation of the
mass of the exchanged particle responsible for the binding is considered. It is shown that the surprising sign
of the Dashen-Frautschi result for this change is not physically absurd. Moreover, the methods used by
Dashen and Frautschi generally give correct signs in potential-theory tests. Secondly, the special problems
encountered in treating long-range or infinite-range (1/r) perturbations are dealt with in detail. It is em-
phasized that the basic Dashen-Frautschi mass-shift formula tends to yield incorrect signs when applied
to a long-range perturbation, even when no infrared divergences are involved. A modified technique, which
is proved to be accurate in both sign and magnitude in s-wave potential theory, even for 1/r forces, is used
to mme a fully relativistic calculation of the electromagnetic driving term for the n-p mass di6'erence. In
agreement with physical expectations, the driving term turns out to be a negative contribution to M„—M~,
suggesting that the experimental sign must be ascribed to other effects.

particle e whose exchange is providing the binding, has
a sign which seems physically very strange. If this sign
is indeed wrong, then the bootstrap explanation of
octet mass-splitting enhancement, as well as the calcula-
tion of the neutron-proton mass diGerence, become
suspect. In Sec. II, we show that the sign DF obtain for
A&,~~, though indeed surprising at first, is not physi-
cally nonsensical. We go on to show that in potential
theory, where the true response of binding energy to
perturbations on the binding forces is known, EjD
techniques of the sort used by DF generally give the
correct sign for this response.

Turning to the neutron-proton mass difference,
M —M„=Mls —Nlf~, we focus on the driving term
D „, de6ned by D „=—D„~—D~~. Apart from small
feedback corrections, Dashen's result 3f„M„=+1.4—
MeU, which is in remarkable agreement with the ob-
served value of +13 MeV, is equal to his calculated
D ~. We ponder the fact that D ~ turned out to be
positive. In the DF model, the nucleon is taken to be a
~N bound state, so that, with the appropriate Clebsch-
Gordan coefficients,

I. INTRODUCTION
' ~DISPERSION relations have been used by Dashen

and Frautschi (DF) to treat perturbations on

hadron masses and coupling constants with great
success. ' ' The hadrons are assumed to be bootstrapped
bound states. In any given calculation, the mass and
coupling shifts Elf and Sg depend on driving terms, and
also on themselves through self-consistency or "feed-
back" terms. For example, the mass shift of the ith
particle is given to first order by a relation of the form

8M;=Q 2; ~~83E+Q A ~'bg +D,M, (1.1)

D~~ is simply —, times the change in binding of m to p
due to photon exchange between them; similarly, D„~
and ~+e.' Now the electric force between m and p is
obviously attractive. As Barton has pointed out, so is
the magnetic force (in the state with the spin parity of
e, namely, pt ~&). By comparison, 7r+ and e have no elec-
trical interaction, and the magnetic force between them
in the p~~2 state also happens to be attractive. However,
the proton's (total) magnetic moment is larger than the
neutron's, so the magnetic attraction between 7r and p
dominates over that between ~+ and N. The n p state
has the electric attraction in addition, so one expects
photon exchange to tend to make the neutron lighter"
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where D;~ is the relevant driving term, and the 3's
are the feedback coeScients. Physically, the driving

term represents the change in binding energy due to the
new forces introduced when the perturbing interaction is
turned on. The feedback terms give the change in binding

energy caused by modidcations in the forces originally

present, resulting from the changes in all the masses and

coupling constants. In addition, the sum on 535; includes

the contribution to 83f; of the change in the constituent
particle masses.

In his calculation of the neutron-proton mass dif-

ference, ' ' Dashen explicitly calculated the electro-

magnetic driving term, besides evaluating feedback
coe6icients, but most of Dashen and Frautschi's work

depends only on the computation of the A;; themselves.

Sawyer has noted' that, as calculated by DF, the
coeKcient Aq, ~~, which describes the response of the

binding energy of particle b to a shift in the mass of the
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II. RESPONSE OF BINDING ENERGY TO SHIFT
IN EXCHANGED PARTICLE MASS

We consider, with Sawyer, 7 a static model of a meson-
baryon bound state b of mass S &. Denote the meson
energy by e, the external baryon mass by M, and sup-
pose that in the partial wave where the bound state
occurs, the input force cut is a single pole

Rv/((a —
&ov) (2.1)

"B. Kayser (unpublished}.
"This generalizes what DF find in Ref. I for a specific choice

of perturbing potential 5V(~}.

than the proton. The question, then, is whether Dashen's
positive D „rejects quantum-relativistic sects ne-
glected in the above argument, or is a spurious result.

The calculation of a photon-exchange driving term
involves two diKculties. The first is the fact that the
N/D method, with the Born approximation to the left
cut, yields bound states whose binding energy tends to
depend in the wrong sense on any long-range input
forces present. "Here, "long range" simply means long
by comparison with the separation between the bound
particles. This problem is present even where no in-
frared divergences are involved, and would still exist
if the photon had a mass of, say, 1 keV. In Sec. III, we
demonstrate the incorrect dependence, and discuss how
it can be overcome in perturbation calculations by using
a modified technique originally proposed by DF' as a
solution to the infrared diKculties. For the case of
s-wave potential scattering, we prove that if the perturb-
ing potential is nonsingular at short distances, then the
modi6ed method not only leads to correct signs, but
results in a mass shift which agrees precisely with the
correct 6rst-order expression J'b" dr 8V(r) ~f(r) ~

2 in the
limit of a very short-range unperturbed potential. "

The second, not unrelated, diKculty is the spurious
infrared divergence which appears in an approximate
calculation of the driving term with the unmodifie
DF mass-shift expression. This is brieAy discussed in
Sec. IV. We recall that in calculating D„„Dashen
actually used the divergent unmodified formula, sub-

tracting an inhnity at the end according to a prescrip-
tion which DF present. "Barton has shown' that in

potential theory this procedure can easily lead to a
driving term of incorrect sign.

We argue that since in potential theory the modified

formula treats the signs of long-range perturbations
correctly, and is free of infrared divergences, this is
the method which should be applied to the evaluation of
the neutron-proton driving term. In Sec. V we calculate
D „with this approach using fully relativistic kine-
matics. Our result is

D ~= —57 MeV,

whose sign agrees with the physical expectation, and
contradicts the original calculation based on the un-

modified formula. Speculations are made in Sec. VI.

representing I-channel exchange of a particle e of mass
M.. Since (2.1) is assumed to produce a bound state,
R„must be attractive (i.e., positive).

Central to the DF mass-splitting calculations is the
evaluation of the response coeKcient 2 b, =dWb/dM,
in such a model. Sawyer argues~ that A&,™must be
positive, since an increase in M, with all couplings held
6xed would seem to be a decrease in the range of the
input force, with the over-all strength held constant.
Since the input force is attractive, this is a repulsive
perturbation, so b is expected to become less tightly
bound. In terms of the mathematics, an increase in M,
with fixed couplings corresponds to a change in the pole
position co„, at 6xed E.„.Sawyer notes that since the
input pole is moving to the left, the attractive ampli-
tude (2.1) is becoming numerically smaller at each
energy co above physical threshold. Thus, he reasons,
the change in the input force is repulsive, so that again
lV& is expected to increase. However, applying the DF
mass-shif t formula

1 1

RbLD'((ob)]' s.

D'((a') Imb f((a')
d(u', (2.2)

and assuming a linear D function, Sawyer obtains the
result dWb/dM, (0 LIn (2. .2), &ob and Rb are the posi-
tion and residue of the bound-state pole in the au plane;
Wb &ob+M——D(or) a.nd D'(co) are the unperturbed D
function and its derivative. f(s&) is the partial wave of
interest, and. Imbf(&o) the change in the left cut cor-
responding to the perturbation. Jl, denotes an integral
over left cuts.] A negative dWb/dM, also results from
writing the unperturbed f(&o) as E/D and di6erentiat-

ing directly, provided. that the unperturbed b. is not too
lightly bound. '

One is tempted to conclude that a calculation of
dWb/dM, by the Ã/D method, or by the DF formula

which is equivalent to it to Grst order, is simply wrong.
However, we note that the contradiction between in-

tuition and the S/D result also occurs in ordinary
s-wave potential scattering. Consider a potential-
theoretic s-wave amplitude f whose left cut is a single

pole
(2.1')

as before, and which has a bound state at v=vb. (For
nonrelativistic scattering we replace the energy variable
&o by v, the square of the center-of-mass momentum q.)
Apply the same perturbation as before; namely, move
the input pole to the left without changing the residue.
Sawyer's argument can be made just as before, with the
conclusion that this perturbation is repulsive. But again
the DF formula (2.2) (&u replaced by v), with the un-

perturbed D function taken to be a straight line, gives

8vb(0 (see Fig. 1).Of course, the equivalent differentia-

tion in an explicit E/D representation for f(v) also

gives Sg&0, provided as before that the unperturbed
binding is not too small.
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R„of the input pole of f(v) = (S—1)/2iq at vv is

xv+xs
R~= 2x„

Xy XQ

Solving for xq, we have

R~—2x~
XQ —Xy

Rv+2x„

(2.4)

(2.5)

Motion of the pole (2.1') to the left amounts to increas-
ing xv at fixed Rv (see Fig. 1).From (2.5) and (2.4), this
will cause xy to change by

Pert Urbotion; ( jx
p

ovt, ,,
b Sawyer

q Plone

QXb xs +2xvxs xv
8X„~

2xp'
(2 6)

tbj

Fn. j Motion of the input and bound state poles of f(v) in the v
plane (a) and the q plane (b). v&, &= -x„,&'. The "Sawyer" arrow
indicates the change in binding expected from Sawyer's argument,
and the "DF" arrow the change given by the DF formula if a
linear 0 is assumed.

q+sxv q+sxs
S(iI)=

g
—2X& g

—2Xg
(2.3)

Here xv. s= lqv, sl = Iv'vv sI. From (2.3), the residue

Now in potential theory one knows that an N/D cal-
culation with the exact left cut as input yields the same
partial-wave amplitude as would be found by solving
Schrodinger's equation. Hence, results obtained from
the N/D representation, or the first-order DF formula

(2.2), are necessarily correct. This means that the
intuitive argument which seems to show that movement
of the input pole to the left at 6xed residue is a repulsive
perturbation must be invalid. The left cut corresponding
to some potential (or relativistic interaction) is not the

potential itself, and what we learn here is that the often
made identification between these two things cannot be
pushed too far.

To 6nd out what kind of a perturbation motion of the

input pole to the left really is, one must find the poten-
tial V(r) whose s-wave left cut is a single pole, and see

what change in V corresponds to moving the pole. But
before doing this, we determine the precise conditions
under which 3vs/3vv has the "counter-intuitive" positive

sign. From the knowledge that the only singularities of

f(v) on the left are the poles at vv and vs, and from the
requirement that the S matrix S(q)=—e"& have the usual

analyticity and unitarity properties and approach
unity as q

—+ (x), we know immediately that

As is well known, the bound state is constrained to lie
to the right of the input pole in the v plane, so that xq
is restricted to the interval 0&xs& xv. From (2.6),

r)vb/BvvI tr ls negative for 0&as&(V2—1)x„,
is positive for (42—1)x„&xs&xv.

Lightly bound states act as though the perturbation
were repulsive, and deeply bound ones act as though it
were attractive.

To understand why this is so, one can find the poten-
tial which produces the S matrix (2.3), using the
Gel'fand-Levitan-Marchenko equations. "" Written
in terms of the input pole parameters, this potential is

—4R~~e 2~v"

V()=
L(Rv/2xv)e-'* "+1j' (2.S)

"V. Marchenko, Dokl. Akad. Nauk SSSR 104, 433 (1955)."There is actually a one-parameter infinity of potentials which
all produce the same s-wave S(q), (2.3) LV. Bargmann, Rev. Mod.
Phys. 21, 488 (1949)j. Any of them will lead to (2.7), which
follows from S(q) alone. We shall consider the particular one ob-
tained from the Gel'fand-I evitan-Marchenko equations only to
show in familiar terms how {2.7) can come about.

V(r) is nonsingular and attractive at all r. But note the
involved way in which it depends on the pole position
and residue. An increase in x„at fixed R„ is evidently
not a simple decrease in range at 6xed strength. Rather,
this increase corresponds to a change in the potential
given by

c) V(r) 4Rve "v"
3V(r) = hx„=

axv, ~,
"

L(R„/2X,)e-s*"pl]s
—R~

X (2x„r+3)e s*v' 1+2xvr-8xv. (2.9)—
2x.

8V(r) is seen to be attractive near the origin, and re-
pulsive at large distances. A graph is given in Fig. 2
for the case Rv=6xv (or xs/xv=-', ).

Whether the perturbation (2.9) will increase or de-
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FrG. 2. Graph of 8 V{r), in
arbitrary units, for the case
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crease the binding obviously depends on how tightly
the particle is bound to begin with. The wave function
of a deeply bound state will be concentrated near the
origin, so that the attractive well of 8V will be more
strongly felt than the repulsive hump, and the binding
will increase; similarly for the lightly bound state,
whose wave function has a long tail. This explains the
behavior summarized by (2.'I).'4

From this potential-theory discussion it is clear that
the sign obtained for A &,

~~ by the DF formula in the
static model is Not physically absurd, but one may still
ask whether it is correct. One source of error is the fact
that in any realistic situation the left cut is not a single
pole, even though it is taken to be one by way of ap-
proximation. So let us see how the N/D result compares
with the correct answer when a particle is bound by the
potential

V(r) = —ge ~", (2.10)

but the s-wave left cut is approximated by the single
pole which happens to be the Born amplitude of this V.
In the notation of (2.1'),"

v~= —(2p), R„=g/2p. (2.11)

5V(r) = bx„=4R~ "~"(2x„r—1). (2.12)
(AX& g&

'4 The conclusion hvar/bv„&0 from the DF formula {2.2}depends
on the assumption that D is linear in the interval from v& to vf,.
The closer vb is to threshold, the larger this interval is, and from
(2.7}the linear approximation is seen to become totally inadequate
for vf,){'v2—1}'v„.

"The external reduced mass m is normalized to 2m=1.

The perturbation of interest is still de6ned as a leftward
shift of i „at constant R„, and an E/D solution for f(v)
leads to (2.'/) as before. But now the 8V one has in mind
when shifting v~ (increasing x~) is

BV

(Notice that here again motion of the input pole at
6xed residue does not correspond to a change in the
range of V at fixed strength. ) The 8 V (2.12) is repulsive
at large r and attractive at small, so the behavior (2.7)
is qualitatively correct. For the true s-wave bourid state
produced by V,

Bvy Bvg

Bvp gy 8( g /4) ogpu

changes from negative to positive when (gg)/p ex-
ceeds 2.6."By comparison, from (2.7), (2.5), and (2.11),
Bv&/Bv„~s„ for the bound state computed by X/D
changes sign when vq/vi, = (V2 —1)'=0.2, corresponding
to (V'g)/p= 2.2.

In the relativistic problem, one is interested in the re-
sponse to variation of an exchanged particle's mass, and
it may be that the potential-theory perturbation which
most closely parallels this is a variation of a range
parameter at fixed potential strength, rather than the
motion of an input pole at 6xed residue. Suppose, then,
that in the exponential potential (2.10) we let p —+ p+8p,
without changing g. This perturbation being unambig-
uously repulsive, the true bound state in f(i) must
move to the right. From (2.5) and (2.11), the bound
state computed by X/D from the Born pole input
occurs at

Hence X/D gives

g—2y'
$&= gp

8+2~
(2.13)

»~/~~ I.= Ld gal" 4I '—j/L2(g—+2m')'j (2 14)

"This may be found by taking the appropriate derivative
in a linear approximation to the s-wave bound state condition
J2,&/„(2{kg/p, ')j=o for an exponential potential. J is the Bessel
function.
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This derivative has the correct negative sign for
g/Q/4&2. 9, but for larger values is positive. g/Q/4&2. 9
corresponds, from (2.13), to an E/D bound state with
vb/vv&0 38. S.tates more deeply bound than this move
in the wrong direction.

As a 6nal test, we consider the same perturbation
/4 ~ /4+ bp, at constant g for the Yukawa potential

(2.1S)

In Born approximation, the s-wave amplitude is now

g ( 4v
fn. , (v)= —

1n~ 1+—
4v k /4'

(2.16)

which has a cut running from v= —ao to v= —~~@'. We
imagine that an E/D computation of f(v) has been
made with this cut as input, and has yielded a bound
state at v= v~. Ke shall suppose that g and p are such
that —-'p'(v~(0.

If now /4-+ p,+b/4 at 6xed g, the true bound state
must move to the right. The behavior of the X/D bound
state may be found from the DF formula (2.2) (with
44 —+ v), which from its derivation' may be seen to give
the shift in the bound-state pole resulting from a given
change in the left cut, correct to first order in this
change. In the present case, the perturbation of the left
cut is

~' All of our poteutial-theory tests used the actual D function
corresponding to the unperturbed left cut.

g ( 4v ) ( 4v —
mg

Im—ln( 1+
~

—
1n~ 1+—

(/+S/)') 4 p,
' 4v

—-'(/+b/)'&v& —4/' (2 1&)
Then —1 -&"4 D'(v') g

ivy= dv'. (2.18)
~bLD ("b)j —(v+bv)'/4 (" vb)4"

The residue Eq of an s-wave bound state must be
negative, so that for —x4/4'&vb, the N/D bound state
responds correctly.

The potential-theory tests we have applied show that,
in general, the /4//D bound state based on an approxi-
mate left cut moves in the proper direction when the
input pole is shifted and when the range of the potential
is changed, at least if the unperturbed binding is not too
great. This gives one hope that the reliability of rela-
tivistic calculations of A &,

MM is not compromised by the
use of crude left cuts. However, the relativistic applica-
tion of the DF formula (2.2) involves a second source of
error, namely, one's ignorance of the actual unperturbed
D function. ' Dashen and Frautschi always use a
straight line, or else the Balazs-type D function

8'y —3f'
D(W) = (W—Wb) —, (2.19)5'—ll'

with the parameter M' restricted to the range M'= 2'~
to M'= ~.' ' We note that in the static model, where
the left cut is a single pole, the choice of a straight-line D
function or of (2.19) with M' in the indicated range
immediately commits one to a negative A&,MM. This
follows from (2.2) (&o —+ W), according to which the
sign of dWb/dM. depends on the choice of D through the
factor

d D'(W) —
'

g„
(2.20)

The denominator functions which DF use- have
been criticized by Shaw and Wong, " who give the
result of calculating the derivative (2.20) from a number
of more elaborate forms appropriate to the p)~ m Xstate.
Although there are wide numerical differences, we ob-
serve that the sign never differs from that obtained
from a straight line. This lends at least some support
to the view that, so far as sign is concerned, the linear
or Balazs-type D is adequate for the computation
of A MM

V(r) = Vs(r)+Vr, (r), (31)
which has an attractive, unspecified short-range part
Vs(r), and a long-range part which for simplicity we
take to be

Vr, (r) = —ge-v", (3.2)

with g&0 and p, small. Suppose further that V is strong
enough to produce an s-wave bound state. We know
that if g is increased the binding energy will increase.

Now imagine solving the problem by the E/D
method, taking the input left cut from the s-wave Born
amplitude. Vg being short range, its Born amplitude
will only be singular well to the left of threshold. The
Born term coming from Vz, is just a single pole, located
at a point v =vg quite near threshold if Vg is long range.
By adjusting the strength of V~, we can arrange that
J)//D have a bound-state pole between the Vs cut and
the Vr, pole (Fig. 3).

The residue Rg of the V~ pole must be positive, since

18 G. Shaw. . azd. D. Wong, Phys. Rev. 147, 1028 (1966).

III. TREATMENT OF LONG-RANGE FORCES

We turn now to a discussion of the electromagnetic
driving term on which the bootstrap explanation of
M„—3f~ is based. As mentioned in the Introduction,
a major obstacle to the evaluation of this term is that
E/D calculations based on the Born approximation to
the left cut produce bound states whose binding energy
tends to depend in the wrong sense on any long-range
input forces. To exhibit this improper dependence, we
give here a modified version of the simple potential-
theory example originally presented in a previous
paper. "

Suppose a pair of particles interact via the potential
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Fre. 3. The v=q' plane, with a bound-state pole at v=vf, between
the Born cut of V8 and the Born pole of VJ..

the Born amplitude corresponding to an attractive po-
tential is positive in the physical region (v)0). If g
(hence Rz) is increased slightly, the position vq of the
bound-state pole will be shifted by an amount

1 1 ' D'(v') 1mb f(v')
de', (3.3)

Rg[D'(vg) j2 s „v'—vs

with Imbf(r), the change in the left cut, given by

( S'IL,
Imbf(v) = Im~ = n8Rzh(v—vz) . —(3.4)

Ep—vz

Since vz —vq is positive (and the residue Rb of an s-wave
bound state is negative), hvq is positive, which is the
wrong sign. By imagining that g is gradually increased
from zero to the value of interest, we can see from (3.3)
and (3.4) that the entire effect of the attractive poten-
tial (3.2) on the binding energy is repulsive. "

In relativistic bootstrap models, the left cut is

usually based on single-particle exchange diagrams, the
higher-order contributions being neglected just as they
were above. There can be little doubt that if the E/D
method, with the Born approximation to the left cut,
sometimes leads to completely incorrect dependence of
binding energy on input parameters in potential theory,
the same will happen in relativistic applications. 20 This
suggests that when there is a bound state in the problem,
especially a relatively deeply bound one whose pole lies

near or atop the left cuts, an effort should be made to
supply a better approximation to these cuts, or perhaps
some technique other than the E/D method should

be used.
The computation of the electromagnetic driving term

corresponds, in the potential model, to the case where

Vl, is initially absent. One may imagine that the un-

perturbed problem has been solved with the exact left
cut produced by Vq as input. Perturbation of the po-
tential by the introduction of VI„with a small value of

g, will then result in a mass shift bvq which is given to
6rst order in g by (3.3), provided that one supplies the
change in the left cut to equal accuracy. Note that to
6rst order in g (and, all orders in Vs), the change in the

'9 From (3.3) it follows that if vq is to the left of vg for g=.o, it
will remain to the left for all values of g.

~e A repulsive e8ect was noticed where an attractive one was ex-
pected in B.Kayser, Phys. Rev. 138, B1244 (1965).

FIG. 4. Diagrams contributing to the first-order (in g) change in
the s-wave amplitude. A wiggly line represents Vz,~acting once;
a solid line, Vg acting once.

left cut receives contributions from all the diagrams in
Fig. 4.

Let us write the first-order change in the s-wave
amplitude as 8f=8fs„,+bf', where 5fs» is the Born
amplitude for Vz„and 5f' is the sum of the remaining
diagrams. In practice, the strong binding potential Va
is unknown, so the only part of 8f which can be com-
puted explicitly is bfs„Thus. , a reliable approxi-
mate formula for the Grst order 8v& that requires only a
knowledge of 5f s„would be desirable. Unfortunately,
if vz, is to the right of vt„ then (3.3) yields a mass shift
of incorrect sign if one substitutes Imps„, Eq. (3.4),
for Imlf mz "

%ith VB of short range, the neglected singularities
Imb f' are far to the left. Hence a dispersion integral for
8v~ with faster convergence than that of (3.3) might
help. Such an expression is the formula introduced by
DF as a way of handling infrared divergences":

1
Beg=

Ry[D'(ug) j' s

' D'(v') 1m[Sf(v') —bfs„„(v')S(p')j
du'. (3.5)

—00 V —Py

Here S=e"& is the unperturbed S matrix. Like (3.3),
(3.5) gives the mass shift to 6rst order in the perturba-
tion, if the full 6rst-order change in the left 'cut, Imbf,
is supplied.

Consider an arbitrary long-range perturbing potential
8V(r) which, however, has no important short-range
effects, so that one may assume that the cuts of the cor-
responding 5f&.„extend only a 6nite distance into the
left half-plane. Then (still assuming the unperturbed
potential Ve to be short range) the cuts of 8fs„and
S do not overlap, so that

Im(8f—mfa„S)
=(2g/D)(XIm5fa»~+mfa» ImN)+Imgf'. (3.6)

Here we have used (S 1)/2iq=X/D—, and written x

~' That (3.3), with the approximation Imb f= Imb fg„, leads to
a sign error when applied to a long-range perturbation has also
been noted by Barton (Ref. 9).' When Imb f is approximated by Imb fB,my (3 3) can also yield
an incorrect sign when the perturbirig potential is not long range
and all its Born cuts lie to the left of vq. Explicit examples can
easily be constructed,

~3 We thank S. Frautschi for suggesting the application of this
formula to long-range, nondivergent perturbations.



~OR(S KAYS

is not singula
~

h the idea th
llstic represen-

Consisten "
f

'
sta,nce, if &~ is

g t small rtation of Photo
~e that at large vb'yf. , f"t ")

(3.»)(p) ~ bA/v

Then F(v) ~;th bA possibly se
e cs,n write

y166

(3 5) npw b ecpiliefo. I~t E'1""""
v')iD( )AT (p ) ImbfBo

LDi(v 1)7 bv 5
v —»

Xo 2x'D(')~fB" "
dv'

p') Im&(v )

Imbfs--( ')'"'

~ (Qv')&fBo'n "
d„i (3.14)+

v —
V

v —v&
/

sslon both rePres
'

te rais in this e P
integral is not

The la't two g
s. But the lasleft" contributio

hat was neglect
"far e

~ '
precisely w a .

t batjon with
small, sine

h exponentia p '
that lf

e lt is
erturiedtot e

t ho
(3 3) was app

In turns pu,
, h twp far

error ln Sign
hortr~nge, t e

a resu ting e
~ 1's of very sho«b

proving
the prigina p

l ch other. We .
(3 7) leads

f integrals can
h first integralthat und« t '

hift by itself.
'

ate the
tp the corr

hort rang~ pne m y
a regio»n

~1th Vsve y .
de near thresho

f ) bya,
zero-eBective-range o

e 3.9)3.14 ena es3. bl us to rewrit ( .Since vqF ) vanishes, (3.
as

I

d '. (3.15)Bvy= —4xyW. —
X O

o r the s-wave Born amplitudeIn terms of bV(r), the s-wave orn
bfBorn is

v

dr bV(r) sin'qr.bfBorn (V) (3.16)

p —Vb

1 o x'(x —x1)3.7) F( ) = —bA+

into the integral inin 3.15)of this relation intoSubstitution o i
yields

I4v1 "(Qv')bfB. , v

(3.8)

v

2XQ dr bV(r)(1 —s '*o") . (3.17)

As for 8A, (3.16) gives

f(v)=
Zgy

—
Zg

3.8), %=1, D=x x1, —
Th s keeping

wllel'e x1= = v1

f( .7), hccnearby» integral o

X (X XS) lmbfaorn VXg
8vy=—

V Vg

of the cuts1 a knowledge o
'f tested on a lo g r n
'll obviously yie

thh pole ofifB.,nsign w
(...- ...because theVg~

li ft b (3.9)
sign at the sam

show that the
the exact 6rst-order expractually agrees with the exac

dry V(r)8fB„=——

X-'(1—cos2qr) = drb V(r), (3.18)

hat the integralooth in r so t a
Th

assuming t a
over the rapidly osci a in

Ik () I'&V()d,

Oval=

(3.10) bA =2x1 dr 8V(r),—4xgbA= xg (3.19)

(3.12b)

unction. "To this-state wave function.

F(v) = (v'—V)L(V'—v-
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for all r, so that (3.20) and the exact erst-order formula
(3.10) are identical. '4 "

This result suggests that the relativistic photon-
exchange driving term could be calculated. with fair
accuracy using the first integral of (3.7), with some
simple parametrization for the unperturbed X and D,
and with x' replaced by the relativistically appropriate
kinematical factor. Of course, the E* exchange force
which binds x and X together to make the unperturbed
nucleon is not of very short range; its left cuts are not
extremely far to the left of the nucleon bound-state
pole. Furthermore, in potential theory the p-wave
analog of (3.9), obtained by making the zero-range ap-
proximation to the unperturbed amplitude,

S(p—wave) —1 Ã 1

~ 7

2lg3 D $g b
—$g

(3.22)

does not yield a bv& which agrees exactly with J'~Ps(r)
~

'
XIV(r) dr, even when the unperturbed potential is of
very short range, ' However, the use of the erst term of
(3.7) will, at least, not lead to the sign error encountered
when applying (3.3) to a long-range perturbation and
keeping only the bfn„„cuts. This is because the
integrand of this term involves only one power of D,
which changes sign at v'=vb, counteracting the sign
change of 1/(v' —vs).

not only gives wrong-sign contributions from the long-
range parts of the potential, but leads to a spurious in-
frared divergence when }—+ 0. (The correct 6rst-order
shift, J'

~ fs ~

'e "'/rd'r, is finite in this limit. ) DF suggest
that (3.3') can nevertheless be used to calculate elec-
tromagnetic mass shifts, provided that one drops an
infinity at the end of the calculation according to the
following prescription' ' (in potential-theory language):

'4 The assumptions made about the perturbation in demonstrat-
ing this equivalence are all satisfied by a finite linear superposi-
tion of Yukawas and exponentials, if the coupling constants of the
Yukawa terms add up to zero so that the 1/r singularity at the
origin is removed. The left cuts of 8f&„n will then extend only a
finite distance into the left half-plane, and bf~„will behave as
1/v asymptotically. A potential of this type has been given as a
model of photon exchange with form factors at the vertices by
DF I see (4.2)j.

"The cancellation between the two "far left" integrals of (3.l)
which this implies can be seen explicitly in the model of J. Paton
LOxford report (unpublished}j, who considers the perturbation
Sac ~' on the binding potential ae &". S has a sequence of poles
at I = —$(ep)', and bf' a sequence of poles at v„'= —g(ep+E)~;
e= j., 2, ~ ~ . From Paton's Eq. (A2.6), the contribution of the ~

pole to the ImS integral cancels that of the v~' pole to the Imb f'
integral in the limit E/p —+ 0.

IV. INFRARED DIVERGENCE

For the perturbation e ""/r, the use of the bfn„, cut
approximation to (3.3),

1 1 ' D'(v') Im8fn, »(v')

RsLD'(vs)]s s v' —vs

whose Born amplitude,

nz' 1 m'

2m
e mr (4.2)

where f is the (momentum transfer)', is appropriate to
exchange of a photon of mass ) with a form factor
dominated by a particle of mass m at each vertex. He
obtains'

gxss (4exsf

4Rs ~, ms &

(4.3)

where e =2.718 . Noting that (4.2) is attractive at all

r, we see that for the physically interesting case
its') 4exss, (4.3) has the wrong sign.

In applying (3.3'), Barton took D(v)—v —vs, which

parallels Dashen's relativistic procedure, but results in
serious overweighting of bfn„, singularities far from
vb. In order to assess the efFect of improving the D
function, we have repeated the calculation using the
zero-effective-range expressiots D(v) =x xs. We Gnd—

(xs+x )' 1x —xs
bvb= —xbg ln

xsxm 2 xm+xs
(4.4)

where x =Q(rste') O—ne may r.eadily verify that this
mass-shift has the correct negative sign for all x /xs.

For an unperturbed potential of very short range,
the actual first-order shift due to (4.2) is (as X —v 0)

Bvb= 2Xb e szsrg y(r)dr—
xtz+xs 1 x~= —2xbg ln—

xs 2 xtz+xs

(1) Express the partial-wave Born amplitude 8fcout
produced by the perturbation e ""/r in the form

8fc,„i F(——v) ln
G'(v)

+terms which vanish as X —v 0. (4.1)

(2) Compute 8vs by (3.3'), with bf n„c orresp onding

to a potential representing exchange of a photon of mass
X. (Since this potential should include e8ects of form
factors, it will be more complicated than e "'/r. )

(3) In the result of (2), drop the term diverging as
in+, s/

~
G(vs)

~ ], and take the limit X -+ 0.
Of course, the result obtained by subtracting the

ln(Xs/~G~) term could be of correct sign, even though
the 8vs given by (3.3') before subtraction is not. How-
ever, Barton has tested this subtraction procedure in an
s-wave potential-theory model in which photon ex-
change is represented. by the potential'

—) r e—nor ~2 y2
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If after letting P —+0 one lets m —+0, bV vanishes, and
(4.5) goes to zero as it should, but (4.4) diverges. This,
of course, is just the spurious infrared divergence in-
herent in (3.3'), which appears here because the DF
subtraction process a6ects only the contribution from
thee ""/r term, not that from e ""/r. Thus (4.4) is poor
for small values of ns. At the opposite extreme, m —&~,
(4.4) and (4.5) differ by a factor of —,'. For the nucleon
bound state in the 7' system, xb=(pion mass), so
that if one takes m=(p mass), x„/xq ——7.2 and bvq

(4.4)/br y (4.5) =0.56.
The results (4.3) and (4.4) show that the ln(X'/G)

subtraction procedure is not very accurate in any case.
Whether Dashen's calculation of the neutron-proton
driving term with this technique has at least correctly
determined the sign obviously depends on the details
of the relativistic problem. We note again that Dashen
used a linear D function )or a D of the form (2.19)
which leads to an almost identical answer], and that
his result convicts with the sign expected on simple
physical grounds.

By contrast, a calculation of D„„based on the first
integral I, of (3.7) would seem to be more trustworthy.
Considering potentials which do not involve a 1/r
divergence at large distances, we have shown that for
the s wave this approach leads to the formula (3.9),
which is accurate in magnitude as well as sign. But now
observe that if bV does contain a term e ""/r, the
X -+ 0 limit of bv& as given by (3.9) must exist and equal
the correct value,

lim 2x~ e '*"bV(r)dr
X~0

S
h(W) =

q(E M)/W —D
(5.2)

where 8' is the total center-of-mass energy, and q and E
are the corresponding momentum and nucleon total
energy. M is the nucleon. mass. h(W) has the nucleon

pole at W&=M, unitarity cuts for W)M+p and
W( —(M+y), and the well-known dynamical singulari-

ties discussed in Ref. 28.
The diKerences between the relativistic situation

and potential theory should not be minimized. The
nucleon pole is at Wq ——6.7 (in pion mass units), while

the important E* exchange cut lies between 8"=3.8
and 8'=5.0, not too far to the left. If we write
bh=bhs„+bh', where bhs„ is the photon-exchange
Born diagram, and 5k is the sum of all diagrams in-

volving one photon line which would contribute to the
driving term in an exact first-order calculation, then the
relativistic version of (3.6) is

Imt bh —She„S]
= (1/D) Im[bhn„( —2ip)1Vj+Imbh'. (5.3)

exchange force are x p and m+ts. Since the anomalous
magnetic moments of p and e are nea, rly equal and

opposite, their contributions to M —M„cancel. Hence
only photon exchange between n and p, with Dirac
coupling to the proton, need be considered. If this
produces a mass shift M -„, the driving term D„„for
M„—M~ will be Lcf. (1.2)g

(5 1)

The pq~2 mS amplitude which is free of kinematical
singularities is"

since (3.9) gives precisely

e 2~&"$V(r)dr

for any value of X greater than zero."For the p wave,
I~ [with bfs„~—=sing"s„exp(ig&s„„)/q', and x'~
—x"j does not lead to a numerically precise mass
shift, but one can have confidence in the sign for reasons
already given. These reasons remain valid if 8V con-
tains an e "'/r term with small X, and one may easily
show that I~ develops no infrared divergence as X —+ 0."

V. DRIVING TERM FOR M„—M~

Assuming that the m' does not emit photons, the only
mX states in (1.2) which contribute to the photon-

"As 'A —+ 0, the two "far left" integrals in (3.7), which evi-
dently continue to cancel each other, are separately divergent.
The first of them diverges because 6fg„does. The second must
be divergent because we know (3.3') is, while (3.3), which is the
sum of (3.3') and the integral in question, equals the nondivergent
ag f,Rf,fD (r g,)j~."The nondivergent behavior of Ii as ) -+ 0 is a consequence of
the phase-space factor x' {or x"), which vanishes at threshold to
soften the divergent behavior of Imb fg„near that point.

In (5.3), 2ip= —2iq—(Z M)/W—has a—left-hand cut,
with an endpoint at W=M —p (p being the n. mass),
as well as a pole at 8'=0. As X~ 0, these kinematical
singularities are infrared divergent because of the
She„multiplying (—2ip). In addition, even if one
assumes the cuts of S to have been produced by S~
exchange alone, these cuts do overlap with those of
Ng. . . since both functions are singular on the imagin-

ary lV axis for ) /0.
This last diKculty is not serious, since the singularity

of bh&„on the imaginary TV axis comes from a term
proportional to (X'/4q') ln(1+4q'/X'). q' is not small

anywhere on the imaginary axis, so this term vanishes
there when X —+ 0. The contribution of the p singularities
might not be negligible. The fact that they are infrared
divergent is not alarming, however, since the far left
integrals of (3.7), which cancel, are also infrared
divergent.

Whereas ip, E, and 8k' all become singular at or not
far to the left of TV=M —p, the only consistent way to
approximate the relativistic analog of (3.5) is to neglect
all contributions to (53) coming from the left of this

"S.I"rautschi and J. Walecka, Phys. Rev. 120, 1486 (1960).
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»»

% Plane smooth and nonzero for tVg between M+p, so that the
calculated mass shift does have a pole."

A much better choice for X and D is simply D(W)
=W—Ws, X=Rs. The contour integral of (5.4) is
then easily performed, and yields

Fre. 5. The contour C around the p-wave cuts of Bhp„~.

M
bM.-„=—-s'an 2+

[Ms—(-srm)s]»s
' (5.5)

point. We hope that the sigo of D „will be correctly
determined by the resulting relation:

831 -~—
&s[D'(Wb)]s 2rri

D(W)[—2ip(W) ]N(W) 8hn„(W)
X

~

~~W, (5.4)
0 W—5'y

where the contour C (Fig. 5) is around the (p-wavers)
cuts of the s p photon-exchange amplitude bhn„, .
As does the integral It of (3.7), (5.4) involves only one
power of D(W), so that 5hn„cuts to the right of Ws
contribute with the proper sign. Furthermore, because
of the factor p in the integrand, (5.4) is not infrared
divergent in the zero photon mass limit, as may be
veri6ed by explicit calculation.

In calculating 8hz„„(W,X), we take both the rr and p
form factors to have the form mrs'/(rls —t), with a com-
mon value of rw. (This is motivated by the near equality
of mrs„and m, .) For the unperturbed E and D functions,
the zero-effective-range parametrization corresponding
to that based on (3.8) would be %=1, D=ip(Ws)
—ip(W). This would be a poor choice, because ip is
singular ( [W—(M—p)]'~s) at W=M —p, , where the
true D is quite regular. What is worse, the vanishing of
ip at both W=M+p and W=M —p implies that the
approximate D'(W) would have a zero somewhere be-
tween these two points. If for a moment we regard the
unperturbed nucleon bound. -state position lV~ as a
variable, we see that for some value of 8 ~ between
M+p, &s[D'(Ws)]'= [(X/D')D"]~ s,——D'(Ws) would
vanish. Unless the integral in (5.4) vanishes at the same
point, the mass shift, as a function of 8"~, will have a
pole.

With E= 1,D=ip(Ws) —ip(W), (5 4) can be evaluated
in closed form. We shall not quote the complicated
result. The salient feature is that the integral itself is

"Consistent with the neglect of all cuts to the left of 8'= M —p,
we do not include the s-wave cuts of She„ in the left-half W plane.

where rr = 1/137 is the fine-structure constant. "
This mass shift, and the corresponding driving term
D „=~~8M -~, have the sign expected from the simple
physical argument. For es=rn, =760 MeV, (5.5) gives
D„„=—5.7 MeV.

VI. SPECULATIONS

If one accepts the result D „(0,then the fact that
the neutron is heavier than the proton must be due to
eBects other than the electromagnetic forces between
the x and E which make up the nucleon bound state.
Perhaps the electromagnetic corrections to the strong
forces such as Ã* exchange play a major role. Estimates
of these eGects depend sensitively on strong-interaction
approximations such as the choice of D function. With
the elaborate D functions of Shaw and Kong, "the S*
mass splittings make a much larger contribution to
M —M„ than that originally estimated by Dashen. ' 4

Another possibility is that channels other than xX
which can couple to the nucleon are important. With
very reasonable assumptions about the magnetic mo-
ments of the various charge states of the E*, both the
electric and magnetic forces in the xS* channel make
positive contributions to M —M„.'~ "
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"Barton (Ref. 9) has done the corresponding static-model cal-
culation, choosing p =q'= (co'—p~}'", where co=—8'—M, and
taking /=1, D=iq&' —iq'. Curiously, D'(co&) and the integral
analogous to that of (5.4) vanish together at coh, =o, so that the
mass shift is well behaved.

"In the limit M -+~, this result reduces to that obtained by
Barton (Ref. 9) using the static model and a linear D."D. S. Seder, Lawrence Radiation Laboratory report (un-
published).

"In two recent approaches to the e—P mass di6'erence not
based on the composite nucleon picture [H. Pageis, Phys. Rev.
144, 1261 (1966);H. Fried and T. Truong, Phys. Rev. Letters 16,
559 (1966)j, the role of driving term is played by the yN inter-
mediate-state contribution to the process (nucleon) -+ (nucleon
+graviton), or to the nucleon self-energy. In both cases it is
found that the driving term by itself leads to 3f„&M~, but that
the inclusion of feedback e6'ects can reverse the sign.


