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Two questions concerning the reliability of dispersion-theoretic treatments of the effect of perturbing
forces on binding energy are investigated. First, the change in binding energy caused by variation of the
mass of the exchanged particle responsible for the binding is considered. It is shown that the surprising sign
of the Dashen-Frautschi result for this change is not physically absurd. Moreover, the methods used by
Dashen and Frautschi generally give correct signs in potential-theory tests. Secondly, the special problems
encountered in treating long-range or infinite-range (1/7) perturbations are dealt with in detail. It is em-
phasized that the basic Dashen-Frautschi mass-shift formula tends to yield incorrect signs when applied
to a long-range perturbation, even when no infrared divergences are involved. A modified technique, which
is proved to be accurate in both sign and magnitude in s-wave potential theory, even for 1/7 forces, is used
to make a fully relativistic calculation of the electromagnetic driving term for the #-p mass difference. In
agreement with physical expectations, the driving term turns out to be a negative contribution to M,—Mp,
suggesting that the experimental sign must be ascribed to other effects.

1. INTRODUCTION

ISPERSION relations have been used by Dashen

and Frautschi (DF) to treat perturbations on
hadron masses and coupling constants with great
success.’~6 The hadrons are assumed to be bootstrapped
bound states. In any given calculation, the mass and
coupling shifts 8/ and &g depend on driving terms, and
also on themselves through self-consistency or “feed-
back” terms. For example, the mass shift of the ith
particle is given to first order by a relation of the form

M=% A MMM+ AMosgi+DM, (1.1)
j J

where D;M is the relevant driving term, and the 4’s
are the feedback coefficients. Physically, the driving
term represents the change in binding energy due to the
new forces introduced when the perturbing interaction is
turned on. The feedback terms give the change in binding
energy caused by modifications in the forces originally
present, resulting from the changes in all the masses and
coupling constants. In addition, the sum on 8/ includes
the contribution to 8M; of the change in the constituent
particle masses.

In his calculation of the neutron-proton mass dif-
ference,* Dashen explicitly calculated the electro-
magnetic driving term, besides evaluating feedback
coefficients, but most of Dashen and Frautschi’s work
depends only on the computation of the 4; themselves.

Sawyer has noted” that, as calculated by DF, the
coefficient A4 .M, which describes the response of the
binding energy of particle b to a shift in the mass of the
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particle e whose exchange is providing the binding, has
a sign which seems physically very strange. If this sign
is indeed wrong, then the bootstrap explanation of
octet mass-splitting enhancement, as well as the calcula-
tion of the neutron-proton mass difference, become
suspect. In Sec. II, we show that the sign DF obtain for
A, though indeed surprising at first, is not physi-
cally nonsensical. We go on to show that in potential
theory, where the true response of binding energy to
perturbations on the binding forces is known, N/D
techniques of the sort used by DF generally give the
correct sign for this response.

Turning to the neutron-proton mass difference,
M.—M ,=0M,—0M,, we focus on the driving term
D,_,, defined by D,_,=D,M—D, M, Apart from small
feedback corrections, Dashen’s result M,—M ,=-41.4
MeV, which is in remarkable agreement with the ob-
served value of +1.3 MeV, is equal to his calculated
D,_, We ponder the fact that D,_, turned out to be
positive. In the DF model, the nucleon is taken to be a
wN bound state, so that, with the appropriate Clebsch-
Gordan coefficients,

|n)y=—WB|rp)+ 0B |7),
|p)= (B |mtn)—(V/3) 7).

D, is simply 2 times the change in binding of 7~ to p
due to photon exchange between them; similarly, D,
and m*n.8 Now the electric force between =— and p is
obviously attractive. As Barton has pointed out,? so is
the magnetic force (in the state with the spin parity of
n, namely, p1,2). By comparison, 7t and #» have no elec-
trical interaction, and the magnetic force between them
in the py2 state also happens to be attractive. However,
the proton’s (total) magnetic moment is larger than the
neutron’s, so the magnetic attraction between =~ and p
dominates over that between =+ and #. The =—p state
has the electric attraction in addition, so one expects
photon exchange to tend to make the neutron lighter

1.2)

8 One assumes, of course, that the #° does not emit photons.
9 G. Barton, Phys. Rev. 146, 1149 (1966).
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than the proton. The question, then, is whether Dashen’s
positive D,_, reflects quantum-relativistic effects ne-
glected in the above argument, or is a spurious result.

The calculation of a photon-exchange driving term
involves two difficulties. The first is the fact that the
N/D method, with the Born approximation to the left
cut, yields bound states whose binding energy tends to
depend in the wrong sense on any long-range input
forces present.l® Here, ‘“long range’ simply means long
by comparison with the separation between the bound
particles. This problem is present even where no in-
frared divergences are involved, and would still exist
if the photon had a mass of, say, 1 keV. In Sec. III, we
demonstrate the incorrect dependence, and discuss how
it can be overcome in perturbation calculations by using
a modified technique originally proposed by DF! as a
solution to the infrared difficulties. For the case of
s-wave potential scattering, we prove that if the perturb-
ing potential is nonsingular at short distances, then the
modified method not only leads to correct signs, but
results in a mass shift which agrees precisely with the
correct first-order expression S '¢® dr 8V (r)|¢(r)| % in the
limit of a very short-range unperturbed potential.!!

The second, not unrelated, difficulty is the spurious
infrared divergence which appears in an approximate
calculation of the driving term with the wunmodified
DF mass-shift expression. This is briefly discussed in
Sec. IV. We recall that in calculating D,—, Dashen
actually used the divergent unmodified formula, sub-
tracting an infinity at the end according to a prescrip-
tion which DF present.!:? Barton has shown® that in
potential theory this procedure can easily lead to a
driving term of incorrect sign.

We argue that since in potential theory the modified
formula treats the signs of long-range perturbations
correctly, and is free of infrared divergences, this is
the method which should be applied to the evaluation of
the neutron-proton driving term. In Sec. V we calculate
D,_, with this approach using fully relativistic kine-
matics. Our result is

Du_p=—5.7T MeV, 1.3)

whose sign agrees with the physical expectation, and
contradicts the original calculation based on the un-
modified formula. Speculations are made in Sec. VI.

II. RESPONSE OF BINDING ENERGY TO SHIFT
IN EXCHANGED PARTICLE MASS

We consider, with Sawyer,” a static model of a meson-
baryon bound state & of mass W3. Denote the meson
energy by w, the external baryon mass by M, and sup-
pose that in the partial wave where the bound state
occurs, the input force cut is a single pole

R,/ (w—wy)

10 B. Kayser (unpublished).
11 This generalizes what DF find in Ref. 1 for a specific choice
of perturbing potential 6V (r).

(2.1)
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representing #-channel exchange of a particle e of mass
M.. Since (2.1) is assumed to produce a bound state,
R, must be attractive (i.e., positive).

Central to the DF mass-splitting calculations is the
evaluation of the response coefficient 4 pcM¥ =dW 3/dM ,
in such a model. Sawyer argues’ that 4,4 must be
positive, since an increase in M, with all couplings held
fixed would seem to be a decrease in the range of the
input force, with the over-all strength held constant.
Since the input force is attractive, this is a repulsive
perturbation, so b is expected to become less tightly
bound. In terms of the mathematics, an increase in M,
with fixed couplings corresponds to a change in the pole
position w,, at fixed R,. Sawyer notes that since the
input pole is moving to the left, the attractive ampli-
tude (2.1) is becoming numerically smaller at each
energy w above physical threshold. Thus, he reasons,
the change in the input force is repulsive, so that again
W is expected to increase. However, applying the DF
mass-shift formula

] D) @)
Ro[D' @) F / '

and assuming a linear D function, Sawyer obtains the
result dW4/dM .<0. [In (2.2), wp and R are the posi-
tion and residue of the bound-state pole in the w plane;
Wy=wpy+M. D(w) and D'(w) are the unperturbed D
function and its derivative. f(w) is the partial wave of
interest, and Imdf(w) the change in the left cut cor-
responding to the perturbation. /7 denotes an integral
over left cuts.] A negative dW,/dM . also results from
writing the unperturbed f(w) as N/D and differentiat-
ing directly, provided that the unperturbed &.is not too
lightly bound.”

One is tempted to conclude that a calculatlon of
dW/dM , by the N/D method, or by the DF formula
which is equivalent to it to first order, is simply wrong.
However, we note that the contradiction between in-
tuition and the N/D result also occurs in ordinary
s-wave potential scattering. Consider a potential-
theoretic s-wave amplitude f whose left cut is a single

pole
Ry/(v—75) (2.1)

as before, and which has a bound state at y=w;. (For
nonrelativistic scattering we replace the energy variable
w by », the square of the center-of-mass momentum g.)
Apply the same perturbation as before; namely, move
the input pole to the left without changing the residue.
Sawyer’s argument can be made just as before, with the
conclusion that this perturbation is repulsive. But again
the DF formula (2.2) (v replaced by »), with the un-
perturbed D function taken to be a straight line, gives
8v,<0 (see Fig. 1). Of course, the equivalent differentia-
tion in an explicit N/D representation for f(v) also
gives &v3<0, provided as before that the unperturbed
binding is not too small.

2.2)

50)1,
4 —Wp
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F16. 1. Motion of the input and bound state poles of f(») in the »
plane (a) and the ¢ plane (b). »p, 5= —xp,»% The “Sawyer” arrow
indicates the change in binding expected from Sawyer’s argument,
and the “DF” arrow the change given by the DF formula if a
linear D is assumed.

Now in potential theory one knows that an N/D cal-
culation with the exact left cut as input yields the same
partial-wave amplitude as would be found by solving
Schrodinger’s equation. Hence, results obtained from
the N/D representation, or the first-order DF formula
(2.2), are necessarily correct. This means that the
intuitive argument which seems to show that movement
of the input pole to the left at fixed residue is a repulsive
perturbation must be invalid. The left cut corresponding
to some potential (or relativistic interaction) is not the
potential itself, and what we learn here is that the often
made identification between these two things cannot be
pushed too far.

To find out what kind of a perturbation motion of the
input pole to the left really is, one must find the poten-
tial V(r) whose s-wave left cut is a single pole, and see
what change in ¥ corresponds to moving the pole. But
before doing this, we determine the precise conditions
under which &v;/dv, has the “counter-intuitive” positive
sign. From the knowledge that the only singularities of
f() on the left are the poles at v, and s, and from the
requirement that the S matrix S(g)=e* have the usual
analyticity and unitarity properties and approach
unity as ¢ —, we know immediately that

g gt (2.3)

Slg=

g—ixp g—1ixp

Here %p,6=|qp,5|=|V75.3]. From (2.3), the residue
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R; of the input pole of f(v)=(S—1)/2iq at v, is

xp+xb
Rp=2xy (2.4)
Xp—Xp
Solving for x5, we have
R,—2x
Xp= x,,l————f . (2.5)
Rpt2x,

Motion of the pole (2.1’) to the left amounts to increas-
ing %, at fixed R, (see Fig. 1). From (2.5) and (2.4), this
will cause x; to change by

dxp X220 pxp— 22
dwp=—"| Oxp=—"—0x,. (2.6)
0xpl &, 2x5°

As is well known, the bound state is constrained to lie
to the right of the input pole in the v plane, so that %,
is restricted to the interval 0<x,<x,. From (2.6),

v/ p| &, is negative for 0<xp< (VZ2—1)%,,

is positive for (V2—1)x,<x3<%p. @7)

Lightly bound states act as though the perturbation
were repulsive, and deeply bound ones act as though it
were attractive.

To understand why this is so, one can find the poten-
tial which produces the S matrix (2.3), using the
Gel’fand-Levitan-Marchenko equations.!*!* Written
in terms of the input pole parameters, this potential is

— 4R px e 250"
[(Ry/2x,)e 2172

V(r) is nonsingular and attractive at all . But note the
involved way in which it depends on the pole position
and residue. An increase in %, at fixed R, is evidently
not a simple decrease in range at fixed strength. Rather,
this increase corresponds to a change in the potential
given by

avV(r)

(2.8)

V(r)

4Rpe_21:p7'
0xp=
Bp [(Rp/2xp)e 2717
—R,

oF

8V (r) is seen to be attractive near the origin, and re-
pulsive at large distances. A graph is given in Fig. 2
for the case R,=6x, (or ¥3/%,=1).

Whether the perturbation (2.9) will increase or de-

V(r)=

0xp

(2 7+ 3)e—2eor— 1+2x,,r] 31p. (2.9)

Yp

12V, Marchenko, Dokl. Akad. Nauk SSSR 104, 433 (1955).

13 There is actually a one-parameter infinity of potentials which
all produce the same s-wave S(g), (2.3) [V. Bargmann, Rev. Mod.
Phys. 21, 488 (1949)]. Any of them will lead to (2.7), which
follows from S(g) alone. We shall consider the particular one ob-
tained from the Gel’fand-Levitan-Marchenko equations only to
show in familiar terms how (2.7) can come about.
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crease the binding obviously depends on how tightly
the particle is bound to begin with. The wave function
of a deeply bound state will be concentrated near the
origin, so that the attractive well of 6V will be more
strongly felt than the repulsive hump, and the binding
will increase; similarly for the lightly bound state,
whose wave function has a long tail. This explains the
behavior summarized by (2.7).14

From this potential-theory discussion it is clear that
the sign obtained for 4. by the DF formula in the
static model is not physically absurd, but one may still
ask whether it is correct. One source of error is the fact
that in any realistic situation the left cut is not a single
pole, even though it is taken to be one by way of ap-
proximation. So let us see how the N/D result compares
with the correct answer when a particle is bound by the
potential

V(r)=—ge*r, (2.10)

but the s-wave left cut is approximated by the single
pole which happens to be the Born amplitude of this V.
In the notation of (2.17),15

vp=—(3u)?, Ry=g/2u. (2.11)

The perturbation of interest is still defined as a leftward
shift of », at constant R,, and an N/D solution for f(»)
leads to (2.7) as before. But now the 6V one has in mind
when shifting », (increasing x,) is

)%
V(ir)=—

0251 R,

0xp=4Rpe 272" (2xr—1). (2.12)

14 The conclusion 8v3/8»,>0 from the DF formula (2.2) depends
on the assumption that D is linear in the interval from v, to vs.
The closer »3 1s to threshold, the larger this interval is, and from
(2.7) the linear approximation is seen to become totally inadequate
for »y> (V2—1)%,.

18 The external reduced mass m is normalized to 2m=1.

(Notice that here again motion of the input pole at
fixed residue does not correspond to a change in the
range of V at fixed strength.) The 8V (2.12) is repulsive
at large » and attractive at small, so the behavior (2.7)
is qualitatively correct. For the true s-wave bound state
produced by V,

vy dvy

Oy Rp 6(—-;1,2/4) 0/2u

changes from negative to positive when (\/g)/u ex-
ceeds 2.6.16 By comparison, from (2.7), (2.5), and (2.11),
dvs/0v,| r, for the bound state computed by N/D
changes sign when v;/v,= (V2—1)2=0.2, corresponding
to (v/g)/u=2.2.

In therelativistic problem, one is interested in the re-
sponse to variation of an exchanged particle’s mass, and
it may be that the potential-theory perturbation which
most closely parallels this is a variation of a range
parameter at fixed potential strength, rather than the
motion of an input pole at fixed residue. Suppose, then,
thatin the exponential potential (2.10) we let u— u+ oy,
without changing g. This perturbation being unambig-
uously repulsive, the true bound state in f(») must
move to the right. From (2.5) and (2.11), the bound
state computed by N/D from the Born pole input
occurs at

g§—2u?
Xp= %,u . (2 .13)
g+2u?
Hence N/D gives
0xy/0p| o=[g*—8gu?—4u*]/[2(g+2u0)%]. (2.14)

16 This may be found by taking the appropriate derivative
in a linear approximation to the s-wave bound state condition
_fl syl 2(7/g/u?)]=0 for an exponential potential. J is the Bessel
unction.
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This derivative has the correct negative sign for
2/+/1n<2.9, but for larger values is positive. g/+/u<2.9
corresponds, from (2.13), to an N/D bound state with
vy/v,<0.38. States more deeply bound than this move
in the wrong direction.

As a final test, we consider the same perturbation
u— p+0u at constant g for the Yukawa potential

—Ur

Vir)=—g—.
r

(2.15)

In Born approximation, the s-wave amplitude is now

g 4y
fBorn(V)=‘— 111(1""—) , (2.16)
4y u?

which has a cut running from y=— to r=—%u2 We
imagine that an N/D computation of f(») has been
made with this cut as input, and has yielded a bound
state at v=v;. We shall suppose that g and u are such
that —3u2<»;<0.

If now p— u+0u at fixed g, the true bound state
must move to the right. The behavior of the N/D bound
state may be found from the DF formula (2.2) (with
»— ), which from its derivation! may be seen to give
the shift in the bound-state pole resulting from a given
change in the left cut, correct to first order in this
change. In the present case, the perturbation of the left
cut is

4 4y 4y g
Im{ln<1+ )_ 1n<1+_>]= _n
4y (ut0p)? u? 4y

—i(utou) 2 <p<—gu?. (2.17)
Then e D)
— ,

§ 4. (2.18)

p=—--—"— / -
Ro[D'(vs) I J —uramrra (' —vo)&’

The residue R, of an s-wave bound state must be
negative, so that for —u2<ws, the N/D bound state
responds correctly.

The potential-theory tests we have applied show that,
in general, the /D bound state based on an approxi-
mate left cut moves in the proper direction when the
input pole is shifted and when the range of the potential
is changed, at least if the unperturbed binding is not too
great. This gives one hope that the reliability of rela-
tivistic calculations of 4 . is not compromised by the
use of crude left cuts. However, the relativistic applica-
tion of the DF formula (2.2) involves a second source of
error, namely, one’s ignorance of the actual unperturbed
D function.”” Dashen and Frautschi always use a
straight line, or else the Baldzs-type D function

4

DW)=(W—Wp)—,
W—M

(2.19)

17 All of our potential-theory tests used the actual D function
corresponding to the unperturbed left cut.
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with the parameter M’ restricted to the range M'=2W,
to M’= .24 We note that in the static model, where
the left cut is a single pole, the choice of a straight-line D
function or of (2.19) with M’ in the indicated range
immediately commits one to a negative A4,.”. This
follows from (2.2) (w— W), according to which the
sign of dW/dM . depends on the choice of D through the

factor
d ,: DX(w)
aw W"‘Wb]

The denominator functions which DF use- have
been criticized by Shaw and Wong,® who give the
result of calculating the derivative (2.20) from a number
of more elaborate forms appropriate to the p;; mV state.
Although there are wide numerical differences, we ob-
serve that the sign never differs from that obtained
from a straight line. This lends at least some support
to the view that, so far as sign is concerned, the linear
or Baldzs-type D is adequate for the computation
of 4 b,M M .

(2.20)

Wp

III. TREATMENT OF LONG-RANGE FORCES

We turn now to a discussion of the electromagnetic
driving term on which the bootstrap explanation of
Ma.—M, is based. As mentioned in the Introduction,
a major obstacle to the evaluation of this term is that
N/D calculations based on the Born approximation to
the left cut produce bound states whose binding energy
tends to depend in the wrong sense on any long-range
input forces. To exhibit this improper dependence, we
give here a modified version of the simple potential-
theory example originally presented in a previous
paper.10

Suppose a pair of particles interact via the potential

Vi)=Vs(r)+Vilr), 3.1)

which has an attractive, unspecified short-range part
Vs(r), and a long-range part which for simplicity we
take to be
Vi(r)=—ge+, (3.2)
with g>0 and u small. Suppose further that V is strong
enough to produce an s-wave bound state. We know
that if g is increased the binding energy will increase.
Now imagine solving the problem by the N/D
method, taking the input left cut from the s-wave Born
amplitude. Vg being short range, its Born amplitude
will only be singular well to the left of threshold. The
Born term coming from V7 is just a single pole, located
at a point »=v;, quite near threshold if ¥, is long range.
By adjusting the strength of Vs, we can arrange that
N/D have a bound-state pole between the Vg cut and
the ¥z pole (Fig. 3).
The residue Ry, of the V' pole must be positive, since

18 G. Shaw.and D. Wong, Phys. Rev. 147, 1028 (1966).
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F1G. 3. The v=¢? plane, with a bound-state pole at »=p; between
the Born cut of Vs and the Born pole of V7.

the Born amplitude corresponding to an attractive po-
tential is positive in the physical region (»>0). If g
(hence Ry) is increased slightly, the position »y of the
bound-state pole will be shifted by an amount

1 1 0 D) Imdf(v')
R[D'(wy) 2w /

dv', (3.3)

— v —p

with Imdf(v), the change in the left cut, given by

Iméf(p)= Im( oz > =—mdRd(v—rr). (3.4)

V—VL

Since v — s is positive (and the residue R of an s-wave
bound state is negative), dv; is positive, which is the
wrong sign. By imagining that g is gradually increased
from zero to the value of interest, we can see from (3.3)
and (3.4) that the entire effect of the attractive poten-
tial (3.2) on the binding energy is repulsive.!®

In relativistic bootstrap models, the left cut is
usually based on single-particle exchange diagrams, the
higher-order contributions being neglected just as they
were above. There can be little doubt that if the N/D
method, with the Born approximation to the left cut,
sometimes leads to completely incorrect dependence of
binding energy on input parameters in potential theory,
the same will happen in relativistic applications.? This
suggests that when there is a bound state in the problem,
especially a relatively deeply bound one whose pole lies
near or atop the left cuts, an effort should be made to
supply a better approximation to these cuts, or perhaps
some technique other than the N/D method should
be used.

The computation of the electromagnetic driving term
corresponds, in the potential model, to the case where
V1 is initially absent. One may imagine that the un-
perturbed problem has been solved with the exact left
cut produced by Vg as input. Perturbation of the po-
tential by the introduction of Vz, with a small value of
g, will then result in a mass shift d»; which is given to
first order in g by (3.3), provided that one supplies the
change in the left cut to equal accuracy. Note that to
first order in g (and all orders in V), the change in the

19 From (3.3) it follows that if » is to the left of vz for g=0, it
will remain to the left for all values of g.

20 A repulsive effect was noticed where an attractive one was ex-
pected in B. Kayser, Phys. Rev. 138, B1244 (1965).

F16. 4. Diagrams contributing to the first-order (in g) change in
the s-wave amplitude. A wiggly line represents Vz®acting once;
a solid line, Vg acting once.

left cut receives contributions from all the diagrams in
Fig. 4.

Let us write the first-order change in the s-wave
amplitude as 8f=06fBorm+08f’, where §fporm is the Born
amplitude for V', and 6f is the sum of the remaining
diagrams. In practice, the strong binding potential Vg
is unknown, so the only part of 6f which can be com-
puted explicitly is &fporn. Thus, a reliable approxi-
mate formula for the first order &y, that requires only a
knowledge of 8. would be desirable. Unfortunately,
if vz, is to the right of »s, then (3.3) yields a mass shift
of incorrect sign if one substitutes Imé fpom, Eq. (3.4),
for Iméf.21:22

With Vs of short range, the neglected singularities
Iméf’ are far to the left. Hence a dispersion integral for
vy with faster convergence than that of (3.3) might
help. Such an expression is the formula introduced by
DF as a way of handling infrared divergences?:

B 1 1
* T RD Gy
0 D)) Im[6f(»") — 6 fRorn(»") S
X/ (") Im[8f(+') = 8 fBorn(»")S( )]dy'

—0 V,_‘Vb

. (3.5)

Here S=¢%" is the unperturbed S matrix. Like (3.3),
(3.5) gives the mass shift to first order in the perturba-
tion, if the full first-order change in the left cut, Imsf,
is supplied. -

Consider an arbitrary long-range perturbing potential
8V (r) which, however, has no important short-range
effects, so that one may assume that the cuts of the cor-
responding 8 fg.:» €xtend only a finite distance into the
left half-plane. Then (still assuming the unperturbed
potential Vs to be short range) the cuts of §fpom and
S do not overlap, so that

Im(af— 5f)30mS)
= (22/D) (N T8 sorm~+8 fBorn ImN)+Imsf’.  (3.6)

Here we have used (S—1)/2ig=N/D, and written %

2 That (3.3), with the approximation Ims f=1Im fsorm, leads to
a sign error when applied to a long-range perturbation has also
been noted by Barton (Ref. 9).

22 When Imé f is approximated by Img fsorn, (3.3) can also yield
an incorrect sign when the perturbing potential is not long range
and all its Born cuts lie to the left of »;. Explicit examples can
easily be constructed.

23 We thank S. Frautschi for suggesting the application of this
formula to long-range, nondivergent perturbations.
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for |g|. Equation (3.5) now becomes

1 0 2¢'D)NG') Imé fporn(y’)
Ry[D'(vy) J?ovo=— fo a’

’
™ J—0 VvV —Vp

1 0 2/D()8 fpor() ImN ()
+- / i

v

TJ vV —vs

1 0 D) I "o
-}-—-/ ————————-—( ) Imd/¢ )dxz'. 3.7)

TJ o V=

The last two integrals in this expression both represent
“far left” contributions. But the last integral is not
small, since it is precisely what was neglected when
(3.3) was applied to the exponential perturbation with
a resulting error in sign. In turns out, however, that if
the original potential is of very short range, the two far
left integrals cancel each other. We show this by proving
that under this condition the first integral in (3.7) leads
to the correct mass shift by itself.

With Vg very short range, one may approximate the
unperturbed amplitude near threshold (a region in-
cluding »; and the cuts of §fpom but not those of f) by a
zero-effective-range formulal:

1 1
f(”)g = ’

igy—1ig X—Xp

(3.8)

where %= [q3| =|+/vs|. From (3.8), N=1, D=x—x,,
and Ry[D’'(vs)]?*=1/(—2x5). Thus, keeping only the
“nearby” integral of (3.7), we have
dxy £ &' (&' —xp) Imd form(¥’)
Ovp———
™ —o0

&'. (3.9

’
VvV —Vp

This expression requires only a knowledge of the cuts
of 8 fBorn. Further, if tested on a long-range exponential
perturbation, it will obviously yield a évy of correct
sign whether the pole of &fgorm is to the right or left of
vs, because the factor #’—=x; (the D function) changes
sign at the same point as »'—»; does.

We proceed to show that the mass shift given by (3.9)
actually agrees with the exact first-order expression

L]

- / 0o(r) | %8V ()dr, (3.10)
[ ]

where ¢3 is the bound-state wave function.!s To this
end, consider the function F(v) defined by

FO)=—)[(v/=2)—(V—75) 18 fora(¥). (3.11)
For » real, negative,
ImF () =x(x—2) Imd fpor(?) , (3.12a)
while for v real, positive,
ImF () =%5(v/»)d fBora(¥) - (3.12b)
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Consistent with the idea that 8V is not singular at
short distances (for instance, if 8V is a realistic represen-
tation of photon exchange, it will be cut off at small 7
by form factors), we assume that at large »

8fBorn(v) — 84 /v (3-13)

(with 64 possibly zero). Then F(y) — — 84, v —», and
we can write

1 9 &'(x—axp)
F(y)=—o4+~ Im3 feora(v')dv’
T J - vy
i ‘\/ ! 6 orn !
e (_”)_,fB_L”ZW, (3.14)
T 0 Vv =y

Since F(vs) vanishes, (3.14) enables us to rewrite (3.9)

as
dvy (\/V/)af Born("’)
vp= —4xs04 —— —d. (3.15)
T Jo V—wy

In terms of éV(r), the s-wave Born amplitude
af Born iS

00

1
8 fBorn(¥)=—~ / dr 8V (r) singr.
14

(3.16)

Substitution of this relation into the integral in (3.15)
yields

4Vb 0 ('\/V/>6fBorn(V,)
— |

T Je vV —vp

0

— 2, / dr sV () (1—e=2). (3.17)
.
As for 84, (3.16) gives

1 -]
5fBorn= *—/ dr&V(r)
[}

v

1 ]
X3(1—cos2¢gr) — —5—/ dréV(r), (3.18)
y->00 v Jeo

assuming that 6V is smooth in 7 so that the integral
over the rapidly oscillating cos2¢r drops out. Thus

0

dr sV (), (3.19)

—4xp0Ad =2xp /
[]

and the mass shift given by (3.9) is related to the

perturbing potential by

0

dvp= be/ dr 8V (r)e—2aor, (3.20)
.

Since the unperturbed potential is very short range,
the bound-state wave function may be taken to be

Yo(r) = (2x3) /%o (3.21)
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for all 7, so that (3.20) and the exact first-order formula
(3.10) are identical.24:25

This result suggests that the relativistic photon-
exchange driving term could be calculated with fair
accuracy using the first integral of (3.7), with some
simple parametrization for the unperturbed N and D,
and with &’ replaced by the relativistically appropriate
kinematical factor. Of course, the N* exchange force
which binds = and NV together to make the unperturbed
nucleon is not of very short range; its left cuts are not
extremely far to the left of the nucleon bound-state
pole. Furthermore, in potential theory the p-wave
analog of (3.9), obtained by making the zero-range ap-
proximation to the unperturbed amplitude,

S(p—wave)—1 N 1

o~ , (3.22)
24¢® D igy®—ig®
does not yield a v, which agrees exactly with /*[¢(x) | 2
X8V (r)d%, even when the unperturbed potential is of
very short range.® However, the use of the first term of
(3.7) will, at least, not lead to the sign error encountered
when applying (3.3) to a long-range perturbation and
keeping only the &fporm cuts. This is because the
integrand of this term involves only one power of D,
which changes sign at »'=v,, counteracting the sign
change of 1/(v'—y).

IV. INFRARED DIVERGENCE

For the perturbation ¢/, the use of the & fpom cut
approximation to (3.3),

sy 1 1 ,0 Dz(u') Imé fBom(V')
S RID )T f_w

@', (3.3)

v —vsp

not only gives wrong-sign contributions from the long-
range parts of the potential, but leads to a spurious in-
frared divergence when A — 0. (The correct first-order
shift, /*|¢s| %> /rd?, is finite in this limit.) DF suggest
that (3.3') can nevertheless be used to calculate elec-
tromagnetic mass shifts, provided that one drops an
infinity at the end of the calculation according to the
following prescription!-? (in potential-theory language):

24 The assumptions made about the perturbation in demonstrat-
ing this equivalence are all satisfied by a finite linear superposi-
tion of Yukawas and exponentials, if the coupling constants of the
Yukawa terms add up to zero so that the 1/r singularity at the
origin is removed. The left cuts of 5 fsora Will then extend only a
finite distance into the left half-plane, and & fgorn Will behave as
1/v asymptotically. A potential of this type has been given as a
model of photon exchange with form factors at the vertices by
DF [see (4.2)].

26 The cancellation between the two “far left” integrals of (3.7)
which this implies can be seen explicitly in the mode% of J. Paton
[Oxford report (unpublished)], who considers the perturbation
dae Kt on the binding potential ae™#". N has a sequence of poles
at vp=—%(nu)?, and &/ a sequence of poles at v’ = —i(nu+K)?;
n=1, 2, -+-. From Paton’s Eq. (A2.6), the contribution of the v,
pole to the ImN integral cancels that of the »,’ pole to the Imé f”
integral in the limit K/u— 0.
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(1) Express the partial-wave Born amplitude 6fcou
produced by the perturbation e~*7/7 in the form

8 fcom=F(») ln[G);)]

~+terms which vanish as A — 0.

(4.1)

(2) Compute dvy by (3.3"), with §fBora corresponding
to a potential representing exchange of a photon of mass
\. (Since this potential should include effects of form
factors, it will be more complicated than e=/r.)

(3) In the result of (2), drop the term diverging as
In[A2/|G(vs)| ], and take the limit A — O.

Of course, the result obtained by subtracting the
In(A2/|G|) term could be of correct sign, even though
the dv, given by (3.3) before subtraction is not. How-
ever, Barton has tested this subtraction procedure in an
s-wave potential-theory model in which photon ex-
change is represented by the potential®

m2— A2

o“""], (4.2)

e—)\r___ e mr

V(= —gl: -

r 2m

whose Born amplitude,

m: 1 m?

~

I—m2 {—\2 f—m?

where ¢ is the (momentum transfer)?, is appropriate to
exchange of a photon of mass A with a form factor
dominated by a particle of mass 7 at each vertex. He

obtains®
gxy?  shexy
8vb=—ln( ,
4R b m2

where ¢=2.718- - -. Noting that (4.2) is attractive at all
r, we see that for the physically interesting case
m?>4ex,?, (4.3) has the wrong sign.

In applying (3.3"), Barton took D(v)=2v—w,, which
parallels Dashen’s relativistic procedure, but results in
serious overweighting of 8fporn singularities far from
vp. In order to assess the effect of improving the D
function, we have repeated the calculation using the
zero-effective-range expression D(v) =x—x3. We find

(xotxm)? 1 xm—2s
Bvb= —xbg{ln - ,
EpXm 2 Xmt2xp

where x,=+/(}m?). One may readily verify that this
mass-shift has the correct negative sign for all x./xs.

For an unperturbed potential of very short range,
the actual first-order shift due to (4.2) is (as A — 0)

(4.3)

(44)

oo

vp= be[ 228V (r)dr
0

xm+xb 1 Xm
I» . (4.5)

= —2xbg‘ln -
%y 2%mtu
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If after letting A — O one lets m — 0, 6V vanishes, and
(4.5) goes to zero as it should, but (4.4) diverges. This,
of course, is just the spurious infrared divergence in-
herent in (3.3’), which appears here because the DF
subtraction process affects only the contribution from
the e77/r term, not that from ¢~ /r. Thus (4.4) is poor
for small values of 7. At the opposite extreme, m —,
(4.4) and (4.5) differ by a factor of £. For the nucleon
bound state in the =N system, = (pion mass), so
that if one takes m=~(p mass), ¥n/%y=7.2 and dv,
(4.4)/dvs (4.5)=0.56.

The results (4.3) and (4.4) show that the In(A%/G)
subtraction procedure is not very accurate in any case.
Whether Dashen’s calculation of the neutron-proton
driving term with this technique has at least correctly
determined the sign obviously depends on the details
of the relativistic problem. We note again that Dashen
used a linear D function [or a D of the form (2.19)
which leads to an almost identical answer], and that
his result conflicts with the sign expected on simple
physical grounds.

By contrast, a calculation of D,_, based on the first
integral I of (3.7) would seem to be more trustworthy.
Considering potentials which do not involve a 1/
divergence at large distances, we have shown that for
the s wave this approach leads to the formula (3.9),
which is accurate in magnitude as well as sign. But now
observe that if 8V does contain a term e~*/7, the
A — 0 limit of dv, as given by (3.9) must exist and equal
the correct value,

0

lim 25 / e 2273V (r)dr ,
A0 o

since (3.9) gives precisely

0

2xp / 228V (v)dr
0

for any value of A greater than zero.?8 For the p wave,
Iy [with 8fBorm=5in9Pgorn €xp(i1PBorn)/¢%, and z' —
—#'%] does not lead to a numerically precise mass
shift, but one can have confidence in the sign for reasons
already given. These reasons remain valid if 6V con-
tains an e*"/r term with small A, and one may easily
show that I; develops no infrared divergence as A — 0.%

V. DRIVING TERM FOR M,—M,

Assuming that the 7% does not emit photons, the only
wN states in (1.2) which contribute to the photon-

26 As A— 0, the two “far left” integrals in (3.7), which evi-
dently continue to cancel each other, are separately divergent.
The first of them diverges because §fporn does. The second must
be divergent because we know (3.3’) is, while (3.3), which is the
sum of (3.3’) and the integral in question, equals the nondivergent
o Ry [ D' (v) ]2

27 The nondivergent behavior of I; as A — 0 is a consequence of
the phase-space factor &’ (or x’3), which vanishes at threshold to
soften the divergent behavior of Imé fpor near that point.
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exchange force are 7—p and w+n. Since the anomalous
magnetic moments of p and # are nearly equal and
opposite, their contributions to M ,—M , cancel. Hence
only photon exchange between »— and p, with Dirac
coupling to the proton, need be considered. If this
produces a mass shift 8M ,-,, the driving term D,_, for
M,—M, will be [cf. (1.2)]

D, p=%M ;. 5.1
The p1j2 N amplitude which is free of kinematical

singularities is%

(W)

sinyet” N

— (5:2)
g(E—M)/W D
where W is the total center-of-mass energy, and ¢ and E
are the corresponding momentum and nucleon total
energy. M is the nucleon mass. £(W) has the nucleon
pole at Wy=M, unitarity cuts for W>M-+u and
W < — (M), and the well-known dynamical singulari-

ties discussed in Ref. 28.

The differences between the relativistic situation
and potential theory should not be minimized. The
nucleon pole is at W=6.7 (in pion mass units), while
the important N* exchange cut lies between W=3.8
and W=5.0, not too far to the left. If we write
8h=0hpomn-+0h', where dhpom is the photon-exchange
Born diagram, and 8% is the sum of all diagrams in-
volving one photon line which would contribute to the
driving term in an exact first-order calculation, then the
relativistic version of (3.6) is

Toa[8h— 8h30raST]
= (1/D) Im[ 8hsora(— 2ip)N ]+ Imék’. (5.3)

In (5.3), —2ip=—2ig(E—M)/W has a left-hand cut,
with an endpoint at W=M —pu (u being the = mass),
as well as a pole at W=0. As A — 0, these kinematical
singularities are infrared divergent because of the
0hporn multiplying (—2ip). In addition, even if one
assumes the cuts of N to have been produced by N*
exchange alone, these cuts do overlap with those of
kB0, Since both functions are singular on the imagin-
ary W axis for A5#0.

This last difficulty is not serious, since the singularity
of 8hBorn On the imaginary W axis comes from a term
proportional to (A2/44?) In(14-4¢%/A?). ¢* is not small
anywhere on the imaginary axis, so this term vanishes
there when A — 0. The contribution of the p singularities
might not be negligible. The fact that they are infrared
divergent is not alarming, however, since the far left
integrals of (3.7), which cancel, are also infrared
divergent.

Whereas ip, N, and 6%’ all become singular at or not
far to the left of W =M —pu, the only consistent way to
approximate the relativistic analog of (3.5) is to neglect
all contributions to (5.3) coming from the left of this

28 S, Frautschi and J. Walecka, Phys. Rev. 120, 1486 (1960).
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W Plane

Fi1c. 5. The contour C around the p-wave cuts of 6%ora.

point. We hope that the sign of D,_, will be correctly
determined by the resulting relation:

TR (W) I 2w
Xf D(W)['—ZiP(W)]N(W)ahBOT“(W)dW’ (5.4)
c W—Ws

where the contour C (Fig. 5) is around the (p-wave??)
cuts of the = p photon-exchange amplitude &kporn.
As does the integral Iy of (3.7), (5.4) involves only one
power of D(W), so that 8hp.m cuts to the right of W,
contribute with the proper sign. Furthermore, because
of the factor p in the integrand, (5.4) is not infrared
divergent in the zero photon mass limit, as may be
verified by explicit calculation.

In calculating 64gom(W,\N), we take both the n— and p
form factors to have the form m?2/(m?—1), with a com-
mon value of m. (This is motivated by the near equality
of m, and m,.) For the unperturbed NV and D functions,
the zero-effective-range parametrization corresponding
to that based on (3.8) would be N=1, D=ip(W3)
—ip(W). This would be a poor choice, because ip is
singular (~[W— (M —p)]*'») at W=M—p, where the
true D is quite regular. What is worse, the vanishing of
ip at both W=M-+p and W=M—pu implies that the
approximate D'(W) would have a zero somewhere be-
tween these two points. If for a moment we regard the
unperturbed nucleon bound-state position W as a
variable, we see that for some value of W, between
M==p, Ry[D'(W4)2=[(N/D")D'?]| w,=D'(W3) would
vanish. Unless the integral in (5.4) vanishes at the same
point, the mass shift, as a function of W3, will have a
pole.

With N=1, D=1p(W3)—ip(W), (5.4) can be evaluated
in closed form. We shall not quote the complicated
result. The salient feature is that the integral itself is

29 Consistent with the neglect of all cuts to the left of W =M —p,
we do not include the s-wave cuts of /8o in the left-half W plane.
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smooth and nonzero for Wy between M =-p ,so that the
calculated mass shift does have a pole.?

A much better choice for N and D is simply D(W)
=W—W,, N=R;,. The contour integral of (5.4) is
then easily performed, and yields

M

=1 S —
oM 7 2CYMI:2+[M2_ am) 2]”2] , (5.5)
where a=1/137 is the fine-structure constant.?!
This mass shift, and the corresponding driving term
D, ,=%6M ,-,, have the sign expected from the simple
physical argument. For m=m,=760 MeV, (5.5) gives
D,_p=—35.7T MeV.

VI. SPECULATIONS

If one accepts the result D,_,<0, then the fact that
the neutron is heavier than the proton must be due to
effects other than the electromagnetic forces between
the = and N which make up the nucleon bound state.
Perhaps the electromagnetic corrections to the strong
forces such as N* exchange play a major role. Estimates
of these effects depend sensitively on strong-interaction
approximations such as the choice of D function. With
the elaborate D functions of Shaw and Wong,!8 the N*
mass splittings make a much larger contribution to
M,—M, than that originally estimated by Dashen.24
Another possibility is that channels other than =N
which can couple to the nucleon are important. With
very reasonable assumptions about the magnetic mo-
ments of the various charge states of the N*, both the
electric and magnetic forces in the #N* channel make
positive contributions to M ,— M ,.3%:33
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30 Barton (Ref. 9) has done the corresponding static-model cal-
culation, choosing p=¢?=(w?—p?3/2, where w=W-—M, and
taking N=1, D=ig3—4¢%. Curiously, D'(ws) and the integral
analogous to that of (5.4? vanish together at wp=0, so that the
mass shift is well behaved.

811n the limit M — o, this result reduces to that obtained by
Barton (Ref. 9) using the static model and a linear D.

2D. S. Beder, Lawrence Radiation Laboratory report (un-
published).

33 In two recent approaches to the #—p mass difference not
based on the composite nucleon picture [H. Pagels, Phys. Rev.
144, 1261 (1966); H. Fried and T. Truong, Phys. Rev. Letters 16,
559 (1966) ], the role of driving term is played by the vN inter-
mediate-state contribution to the process (nucleon) — (nucleon
~+graviton), or to the nucleon self-energy. In both cases it is
found that the driving term by itself leads to M,<M,, but that
the inclusion of feedback effects can reverse the sign.



