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A strong-coupling approach to the fermion interactions is proposed. This is useful in the determination of
the mass of the bound state when the kinetic energy of the constituents is smaller than their rest mass.
The quark model is studied by this method. In the strong-coupling limit, the following statement is proved:
If we assume (i) Lorentz-invariant and local (nonderivative) interactions, (ii) SU(3) invariance, and
(iii) quark and antiquark number conservations in the limit when the quarks are at rest, then (a) the
system does not have, in general, any higher invariance than SU(3), (b) nevertheless, every localized eigen-
state of the Hamiltonian belongs to the irreducible representation of the nonchiral U(+) (6)XU&-) (6).
Furthermore, if (iv) one restricts oneself to the four-fermion interactions, then (c) the system is exactly
solvable, and the mass formula is given by

»r,itro+a()tro 6)a+i&(Gs(3) 4G&+&(3).G&-&(3)g+zLG&&(6)+2ss+6Bsj

where ra„o, 6, and c are arbitrary real constants, and 7&7o, B, G&+& (6) PG (6) = G&+& (6)+G&-& (6)7, G&+& (3)
t G (3) = G&+& (3)+G& & (3)j, and 8 are the quark and antiquark number, the baryon number, the generators
of SU(+&(6))&SU(-&(6},those of SU(+) (3)XSU( ) (3), and the spin operator, respectively. It is also shown
that only a restricted class of irreducible representations is realized in the quark system. The three-bogy
forces among quarks and the three-triplet model proposed by Han and Nambu are briefly discussed.

r. DTTRODUCTIOm

~ ~

INCR the SU(6)-group invariance of the hadron
interactions conQicts with I orentz invariance, ' one

of the most natural views on this diKculty may be that
SU(6) is a dynamical symmetry group of some par-
ticular problem, for example, energy-level classi6cation
in the static limit of quark motion. In fact, the success
of the nonrelativistic, phenomenological quark-model

approach, ' which has recently attracted considerable
attention, seems to be based on the notion that the
quark interaction is so strong that the rest mass is
mostly compensated for by the potential energy, while

the kinetic energy is very small compared, with the
former. This suggests that one should adopt a quite
diGerent approach from that of the conventional
perturbation theory, in which one takes the free particle
as an unperturbed state.

In this paper, a new approach to the strongly inter-
acting fermion system is presented.

In a given Hamiltonian (or Lagrangian) divided into

two parts, the kinetic-energy and the interaction terms,
the latter is diagonalized using the current-algebra

technique. The energy spectrum is obtained in terms of

group generators. Subsequently, the kinetic-energy

part is taken into account as a perturbation. This
method is especiaQy useful in obtaining the s-wave

bound, states of particles.

*VVork supported in part by the U. S. Atomic Energy
Commission.
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In the case of fermion-boson or boson-boson inter-
actions, the idea of the strong-coupling approach' is not
new and has been reported, upon extensively in litera-
ture, 4 while the fermion-fermion interaction has been
treated only in, some very special contexts. ' Recently,
however, the study of the algebraic structure of fermion
interactions has attracted considerable interest, stimu-
lated by current algebra. Okubo, Marshak, Goldberg,
and Ryan, ' and Bardakci, Cornwall, I reund, and. Lee~
have attempted to 6nd a larger group invariance than
SU(3) by analyzing the interaction-energy part of the
Hamiltonian. This is regarded as the erst step toward
the strong-coupling theory.

In this paper, however, we do not try to 6nd any
larger invariance group of the Hamiltonian. On the
contrary, starting with the minimum number of
assumptions which are required from Lorentz invariance
and the phenomenological quark-model analysis, m we
d.etermine the algebraic characteristics of the Hamil-
tonian. The Hamiltonian so obtained is solved exactly
in the strong-coupling limit.

%e know that the Fermi-interaction model suGers
from the serious diKculty of divergences or unre-
normalizability. Nevertheless, we hope that the
algebraic characteristics of the Hamiltonian will survive
in a complete theory. Therefore, we do not do anything
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Phys. Rev. 92, 766 (1953).
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Progress in NNclear Physics (Pergamon Press, Inc., New Pork)
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about this point; instead, we pay attention only to the
algebra of Geld quantities. '

In Sec. II, we show a simple example of the fermion-
interaction model, in which the kinetic energy is taken
into account up to second order in the perturbation. A
condition for applicability of the strong-coupling
approach will be shown.

The rest of the sections are devoted to the applica-
tions of the theory to the hadron system. In Sec. III
the quark model is studied, and the statement cited in

the abstract is proved. The mass formula so obtained
shows that the three-body force is necessary, not only
to raise the masses of the particles with nonzero
triality, ' but also to explain the boson (0 an.d 1
particles) mass levels.

In Sec. IV the three-body interactions among quarks
are calculated. In Sec. V the physical meaning of some
identities (the Fierz transformation relations) is
studied and the restrictions on the realizable irreducible
representations (i.r.) are shown.

The three-triplet model" is discussed briefiy in
Sec. VI with a few additional pertinent remarks at the
end.

some definite point, say, at 1=0.The commutators are
introduced by

{e(1),a*( )}=~,-,
{4'(I)f(m)}= {0*(1)f*(m)}=0 (2 ~)

The Geld is decomposed into particle and antiparticle
parts as

(f (+)
P= Q'(+'4' '),

) p(—)~

or
~"'=!(1+~)~, ~' '=!(1-~)a*. (24)

In fact, P(+)(f( )) and f(+)'(P( ) ) coincide with the
particle (antiparticle) annihilation and creation opera-
tors, respectively, in the limit when the particles are at
rest. The vacuum state is introduced by

P(+)~0)

The kinetic energy K and the interaction energy Bl are
written in a diGerence form as

E=-,'P Lit(k)q;y(k+ak) —lt(k+ak)~;P(k) j
j hk;

II. STRONG-COUPLING APPROACH

This section is devoted to a simple model in order to
clarify the idea of the strong-coupling approach, and to
get the condition of its applicability. Consider an
isoscalar fermion field f and a Hamiltonian

H= d'x ~;8;P+mo+ (~)' =—E—+Hr, (2.1)
mp

and

z
Lp( )(k)o;p(+)(k+6k)

j dk;
—$' '(k+6k) o yP

(+)(k)+H.c.j, (2.6)

Br=g mop(lg (l) — (y(l)P(l))'
l ~Vmp2

where
moS(l) — S'(1)

Avmp2
(2.7)

X= d'x ~;8;P. (2.2) where S(l), the scalar density, is related to X(l), the
particle-number operator, by

To quantize the Geld, we follow the procedure used

by Heisenberg and Pauli. "That is, we divide the space
into small lattice boxes with the volume hV, and
associate each box with P(l) and P(l), where

S(l)= tt'(I) iP(l)

= Z L4"'+)*(1)&.(+'(1)+f.' '(l)4"' '(l) —1j
1,2

=1V(l)—2. (2.8)

P(1)= lim f(x,t),
kV~C Qgp

and 1 specifies the corresponding box containing the
position coordinate x. Finally the limit 6V —+ 0 is taken
at the end of the calculations. Ke do not specify the
time variable in f from now on, because it is Axed at

~ M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
9 T. K. Kuo and L. A. Radicati, Phys. Rev. 139, 8764 (1965).
» M. Y. Han and Y. Nambu, Phys. Rev. 139, 31006 (1965);

Y. Miyamoto, Progr. Theoret. Phys. Suppl. (Kyoto), Com-
memoration Issue for the 30th Anniversary of the Meson Theory
by Dr. H. Yukawa, 1965.

"W. Heisenberg and W. Pauli, Z. Physik 56, 1 (1929); see also
Ref. 3.

The suQix r refers to the spin direction of the particle.
Vfe shall first diagonalize Bg, and then take E into

account.

U'nperturbed part H~

»nce &r commutes with X(1), the particle number js
a good quantum number. The system concerned has a
number density operator at each lattice box, and each
box has discrete energy levels as a function of the eigen-
value e(l) of X(l), which takes the values 0, 1, ~ ~, 4
according to the Pauli principle (see Fig. 1).

The vacuum of Hl, the lowest energy state, is given
when all e(1)'s are zero. The one-fermion state occurs
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~ere

I1)=o.*(»Io) o».*(»Io).
The second-order perturbation is given by

I (~ lit I 1)I
'

hE= —P

o 1 2 8
FIG. 1. Masses of the physical particles. The distance bb' stands

for the binding energy of the thoro-particle bound states.

when one of the N(1)'s is unity and the others are zero;
the one-boson state (two-particle bound state) occurs
when one of the m(l)'s~~is two and the others are zero;
and so on. Therefore, the rest masses of the fermion and
the boson are given by, respectively,

m=Z(1) —Z(O) =~,(1+3g/p') (2.9)
and

„=Z(2)—Z(0) =2~,(1+2g/p'), (2.1O)

g(~) stands for the eigenvalue of IIr for
AT(1) =ti(l), and p'=AVID'. The binding energy of the
boson is, for example, 2m, —y= 2g/p'. All possible levels

and degeneracies are shown in Table I.

p= hlX wo rap/AP)&1 . (2.15)

The characteristic momentum of the particle must be
small compared with the rest mass.

%hen we apply the technique to the quark model, we
are interested in the bound-state mass rather than the
fermion (or the quark) mass itself. But the situation is
the same for the former as far as the applicability condi-
tion is concerned. Details will be given in the Appendix.

8 / 1
+i(&'p'») - I-

I N(q) (2»)
Bk;(E(3)—E(1))

Assuming a continuous energy function

Z(3)—Z(1)= (4g~,/p')
X$(1—k) '+ (k—m)'+ (m —l) 'j+ 2mo,

which satisfies the conditions obtained above I Table Ig,
and working in the rest system of the particle, we get
the mass of the one-ferrnion state:

M =mp(1+3g/p' —3g/p') . (2.14)

In obtaining (2.14) we. have added the unperturbed
mass term (2.9) to (2.13).

Now, it is clear in what situation the strong-coupling
approach should be used. The mass equation (2.14) is
the Taylor expansion with respect to the parameter
1/p=1/(hlXmo), where hP=hV; we therefore get a
condition

Kinetic-Energy Perturbation

De6ning the aonihilation operators of the propagating
states by

o.(» =- Z ~.*(»4(1)~ *"

IIL QUARK MODEL

In this section local quark interactions are studied.
As in Sec. II, the quark 6eld q(x) is replaced by q(1),
the total Hamiltonian H is divided into E and HI, and
the algebraic properties of the latter are discussed
under some assumptions. The index 1 which speci6es

~.(» = —Z 4*(I)v.(»e"', (2.11) Thar, E I, Masses of the physical particles and the number
of degeneracies.

where u„and b„refer to particle and antiparticle,
respectively, we proceed. with the usual -perturbation

program by taking E as a perturbation.
As we can see from (2.6), the kinetic-energy term K

brings a pair cleatlon or annlhllatlon into the system.
Therefore, the 6rst-order perturbation vanishes".

Baryon
No. Spin

1,0
0

E(n) —E(0)

m (1+3g/&I)

2'&�(1+2g/&3)

3~o(j+g/I ')

4m'

Degeneracy
No.
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the lattice boxes will be dropped in the following, be-
cause we are concerned with a definite local point, for
example, 1=lo.

One of the characteristics, which is assumed through-
out the nonrelativistic quark-model analysis, ' is quark
and antiquark number conservation. We call the meson
a bound state of a quark and an antiquark, the baryon
that of three quarks, etc. In a relativistic theory, how-

ever, the quark and antiquark numbers are not sepa-
rately defined concepts, We therefore de6ne the quark
number in the limit when the quarks are at rest.
Algebraically this is expressed by the scalar density

&q'= (v'l)So= (V's) s&oq

which is proportional to (q&+'q'+'+q& —&'q&-&), while the
baryon number is proportional to (q&+&"q'+' —q' 'q' ').
Here we have introduced g(+) by

(q(+) )
(q(—)'] '

the U(3) generators

G (3)=Go, &+'+Go, ' '; (n=0, , 8) (3.6)
the spin operators

S'=S +'+S,' & and S;&+&= (gs)G, ,&+&;

(i= 1, 2, 3) (3.7)
the quark number g

&q =(/6)(Go, o&+& —Go o& &)=N'q —6'

and the baryon number 8
f =(V6)s(Go, o'+'+Go, o' ')=&+6. (3.9)

%e shall prove the following statement about Pz.
Statement I. If we assume:

(i) Lorentz-invariant and local (nonderivative) inter-
sin

(ii) SU(3) invariance,
(iii) quark number conservation,

01'
q'+'= s(1+P)q, q' '=-'. (1—P)q*. (3.2) then

i&IIr,&q7= 0, (3.10)

The algebraic properties of the bilinear forms of the (a) the system does not have, in general, any higher
quark 6elds, which are listed in Table II, are sum- invariance group than SU(3), s,nd

(b) nevertheless, every localized eigenstate of
TABLE II. The bilinear forms of the quark fields belongs to some irreducible representation (i.r.) of theand the generators of U(+)(6) &(U( )(6). nonchrial U&+&(6) X U&—

&(6)J ~

Positive-parity forms

p =gx q=$q pmPeq
Vo, a 40p~aq kgp&0~aq

= gqyeye&a&= sg pep'&~V

=t)qa;, ) q=$eeeg pe&i)~q

Generators of U(+)(6) XU' '(6):
G (+)=$q&+&~ee„X q&+&,

¹gative-parity forms

+a $1g+Paq= gq p2«~aq
V;, =$igjs4aq=~gq PI&s&aq

Ao, ~ =$0VSP4q= kq'PI«&~t
TO', ~=)'/&OP ~q= gq p2&s~ag

G„(—)=$q( )0„X q( )*.

marjzed as follows. The p80' representation' for the
Dirac y matrix for convenience is used. The positive-

parity group of the bilinear forms constitutes a non-
chjral group U&+'(6)XU (6), where (+) refer to the
quark and the antiquark. In fact, deining

G (a)=Go &+&=s(P'o,,+S ), (for)e=0)
Ge ~ s(24', gg&Qeer)e2&le R) e

(for )e= 1, 2, 3) (3.3)

In addition to the above assumptions, if we assume that
(iv) the interactions are restricted to the four-

fermion type, then
(c) the system is exactly solvable and the mass

formula for the localized. states is

M =eeeoXq+a(Nq 6)'—
+bLG (3)—4G&+)(3) G&-&(3)7

+c)G'(6)+2Ss+6Bs7, (3.11)

where G G means the inner product of the SU(6) or
SU(3) group generators Lnot U(6) or U(3)7.

We shall 6rst prove (c). For this we have to 6nd the
four-fermion type interactions which commute with
E~~pagoho. They must have the structure of p3', po,
or pt'+ps' in the p-spin space" because they must
commute with pm. From Table II, we can easily show
that the possible candidates are

we can easily show that S-'-(spe~el .)s,

&-'+(»-)s S.s-(-,poo„).)s- (-ep n,q )s

(3.12)
LG„(k G s(+)7—zP G &y)

PG (+) G s(~)7 —0 (3.4)
(3.13)

~-+~ '-(sped„).)'+(~p„o,),.)s
(sP~(rp)&a) +2(speo;)& )s, (3.14)where F„,„s, v is the structure constant of the U(6)

group. For future convenience we de6ne the following
quantities: the U(6) generators "We nse a convention of notations: (p„tr„), )e ~cans

Z, , (q*p„~„X q)2,

» +P2'-(q*pI«~0q)'+(q"p«y, q) 2, et~.

pGe „, (6)=G„, &+&+G„, & &;
so that

()te=0, , 3; n=o, 8) (3 3)



{).).o(i.).~= 2() o).o() o).o,

(~.).o(~.)"=2(«)"(«).»
(X );,(X )ol ——3(ho);1(xo)ol. (3.17)

As a consequence, we shall take So', S 2, and
P '+(iA )'—S ' as the independent interactions. So'
is nothing but the quark-number operator by (3.8). The
other two are rewritten from (3.12) and (3.13) as
follows:

S-'-[a{a(1+) o)«) -—k{1—po)«lt )3
=LG-'+'(3) —G-' '(3)1'
=G'(3)—4G'+'(3) G' ) (3)+-'(Nq —6)' (3.18)

Pe'+(iA~)' S'~(-'po(r —)%e)'+3(o)oo(r,&o)'

=G„, '+G„,o' ——G'(6)+25'+68'. (3.19)

Here, in going from (3.13) to the first line of (3.19), we
have used (3.17) on the second term of the right side of
(3.13). From (3.18) and (3.19), the general local inter-
action Hl of four-fermion type is written by (3.11).The
first term in (3.11) comes from the quark mass term.

Statement (a) is obvious from (3.11).
To prove statement (b) let us first look at (3.11),

where each eigenstate belongs to some irreducible
representation of U(+)(6)X U( .)(6), although the mass
levels are nondegenerate within a multiplet.

In general, the interaction is composed of two kinds
of bilinear combinations of q&+) and q&+&'. The 6rst is
q&+&*Oq&+& or q& &Oq&

—&*, where 0 is an arbitrary matrix of
08K, each of which is a generator of U(+)(6)X U( '(6).

"Here we have dropped the sures p, and y from the Lorentz
tensors V„, A„, and T„,. S0, Po, Vo, etc., mean the zeroth com-
ponents of the U(3) tensors.

"On the right sides of {3.15), the minus signs come from the
anticommutation property of q and q*. The bilinear forms of the
quark Geld, which arise in (3.15) and (3.16}because of the non-
commutability oi S and S", are cancelled if we uoe the charge-
symmetric version of the vector current. Hence, throughout this
work we imply that the fourth component of the vector current B'
should be replaced by B of {3.9).

together with So' Po'+(iso)' —So' and Ver+1'o' "
where p and v run from 0-to 3, and at runs from 0 to 8.
The above six interactions are not all independent.
Because of the Fierz transformation relations

I+p I+(ig )o+ V I+2' o

=—12S,'+c number,

So'+&o'+ (i&o)'+ Vo'+ &o'
——,'S '+c number, (3.15)

any two of them, say, Ver+To' and V '+T ', can be
written as combinations of the others. Furthermore, we
have another identity:

P '+(id )' S'—
=3[Zoo+ {iso)' So'j+—c number. (3.16)

These three relations can be directly proved'4 by the
use of the identities

M(x)
&I=Q M(l) = (PX

1 hV
(3.20)

where M(l) is given by (3.11).
It ls llltcl'cstlllg llelc to 1'cqllll'c SU(6) lllvarlallcc

on jf'. Then, from (3.11), b=o=0, which shows the
diKculty noted by Ohnuki and Toyoda, '~ that the
system is invariant under a larger group which contains
the baryon-number-changing operator. We want to
emphasize, however, that even if the interaction is not
invariant under SU(6), the state vector can still be an
eigenstate which belongs to an i.r. representation of
U(+)(6)XU(—)(6)

Finally, we apply the mass formula (3.11) to the
meson mass of (6,6a) = I+BS to obtain

V{1)—&{1)=4LV(8)—&(8)j,
where P(8) (P(1)) and V(8) {V(1)) represent the
average mass of the pseudoscalar octet (singlet) meson,
and the vector octet {singlet) meson, respectively. This
formula is in serious contradiction to the experimental
situation if E(1)=960 MeV. As is well known, the
four-fermion interaction (two-body force) is not good
enough to explain the high masses of the triality-
nonzero particles, ' so that one usually assumes a simple
three-body force, say, Soo (Xo—6)'. We want to stress
that the three-body force is necessary to explain the
mass levels of the mesons as well as those of the triality-
nonzero particles (see Sec. IV).

The mass formula (3.11) should not be applied
directly to the baryon mass, because in the usual quark
model it has a totally antisymmetric wave function
about three quark coordinates and it vanishes at the

"Y. Ohnuki and A. Toyoda, Nuovo Cimento 36, 1405 (1965}.

The second is q&+)'Oq& )* or q& )Oq&+). But because of
the quark-number conservation, the former should be
accompanied by the latter in an interaction term; take
the interaction of order e, for example,

((I(+)*Otq(-)~). . .(q(
—)Ooq(+)), ( )

Making use of Fierz transformation about. q&
&* and

q&+), we have

(q(+)~g Iq(+)). . . (q(
—)0,~(7(

—)~). . . ( )
+(terms of less than order I—2) .

To the quantity so obtained the same procedure may
be applied, if necessary, until all terms are rewritten in
terms of the generators of U(+)(6))&U( )(6). If we
choose a state vector which belongs to an irreducible
representation of U(+)(6)&(U( )(6), the state vector
continues to remain in the i.r. representation when
Illllltlpllcd by HI. Therefore statclllcllt {b) has bccll
proved.

The interaction Hamiltonian for the arbitrary (non-
localized) state is given by
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local point limit. The baryon mass formula will be
discussed in Sec. VI.

IV. THREE-BODY FORCES

In Sec. III we found that the four-fermion interaction
(two-body force) does not explain the boson average
mass as well as the mass of the particles with nonzero
triality. To overcome these difficulties we shall in-

vestigate the general form of the three-body
interactions.

All of the possible three-body interactions, which are
local, Lorentz-invariant, and commuting with Ã@, are

S0', SOS ', S0[P '+(iA )' S'j,—
S (P Pp+PA Ao SSO)—,
d p„S SpS~, d,p„(P Pp+i'A Ap S,Sp)—S7, (4.1)

where d p~
——Tr~~)(, {)(p,X&,}. The other combinations,

(V Vp+T Tp)S„d p~, etc., can be written as some
combinations of the above expressions. The interactions
(4.1) can be expressed again in terms of the U(+&(6)

X U& &(6) generators.

The eigenvalues of the three-body interactions are
easily obtained, especially for some low-dimensional i.r.
representations. To do this let us first prove some
simple relations among G&+'(3). For the state vectors
of (6,1), (1,6*), and (6,6*),

G(+)(3) &G(+)(3) P~ &= &i &G(+)(3) P~ )
G' '(3).'G' '(3).'I &=-&."G' '(3) 'I & (42)

where G&+)(3),~ p~00X, ~ "and
~ ) stands for any one

of the states mentioned above. Using the explicit form

of the generators, we can show that

G(+) (G(+) P—
(&

&&G&+) P+ G(+) )&G(+) P

where '. '. means the normal product. Because every
term in the normal product contains two annihilation

operators q(+&q&+', it vanishes when operated on
q&+)'~ 0) (6,1) or (1,6*) and q&+)'q(-'j 0) (6,6*).
Hence we obtain the first relation of (4.2). The same is

true for the second.
Taking the interaction d p„S SpS~, as an example,

we find.

d.p S.SpS, I &

—d p (G (+) G (—))(Gp(+)—Gp(—))(G (+)—G (—))
i )

~ {G '+)'+G ' "—6G (+)G~( &}
I )

= {2A&'o—3G'(3)——'8'+c number)
~ ). (4.3)

In obtaining (43), use of (4.2) has been made. For the
other interactions in (4.1), calculations are performed
in a similar way. Combining these calculations together
with (3.11), we get

M = f(Xq,B)+&),S'+ bG'(3)+c G'(6), (4.4)

16 The 3&(3 matrix () o~),q=b„bf,q which is, of course, written
as a linear combination of X 's.

where u, b, and c are certain polynomials in A~, and
f(No, B) is a polynomial in Eo and B. The mass levels
of the bosons (6,6") and the quarks (6,1) are obtained
by choosing definite a, b, etc. Unfortunately, there are
so many parameters that no sum rule can be deduced
from (4.4).

V. ALLOWED STATES

We should like to consider the physical meaning of
the Fierz transformation relations, used frequently in
Sec. III, and to prove the following statement.

Statement II. The dynamical system with which we
are concerned does not have localized eigenstates of the
arbitrary i.r. representations of U&+&(6) X U& &(6). Only
the representations which satisfy

G&+)'(6) = —(7/24)(38&IV ')'+21/2,
G&+&'(3) = —S&+&'—(5/48)(38&So')'+15/4 (5.1)

are allowed.
The relations (5.1) are the Fierz transformation rela-

tions (3.15) and (3.16) expressed in terms of the
generators. Applying (3.17) to (q(+)"a„X q&+&)' and
(q&+)"oo) q&+')' or (q&-)o„)(.q& &')' and (q& )00)( q&

—&')'

we get (5.1)."
The main reasons why we get such restrictions on

the states are (i) the locality of the interactions and (ii)
the Pauli principle for the quarks. The relations (5.1),
however, prohibit a state which transforms, for example,
like (1,6) with 8= xp and Xo——1 under U&+& (6)X U & '(6).
This comes from the fact that (iii) we do not have a
creation operator which transforms like (1,6) in the
quark model.

VI. REMARKS AND CONCLUSION

We have presented a strong-coupling theory of the
fermion interactions. Using the theory, we have
examined the quark model assuming quark-number
conservation in the limit when the quarks are at rest.
The assumption we have used seems very natural from
the viewpoint of the phenomenological analysis of the
quark model. We have shown that the localized eigen-
state of Hr belongs to an i.r. representation of U&+)(6)
X U& &(6) although the mass levels are nondegenerate
in the multiplet, and that only a restricted class of the
i.r. representations are allowed according to (5.1). The
meson mass of (6,6*) has been studied in detail, where
we have had to introduce three-body forces to explain
the experimental situation. This brings a complication
to the quark model.

The baryon state of (56,1) can not be regarded as a
localized state in our approach. However, taking the
kinetic-energy term into account as is shown in the
Appendix, the baryon mass is also calculable in the
quark model, in which case the state vector may be
classified by a group [U+'(6)X U( '(6)O'XO(3). Each
U&+)(6)XU& )(6) is the group associated with the
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different space box, and 0(3) is the group of the orbital
angular momentum. This is another complication in
the quark model.

There remains, therefore, the question whether there
is a simple model in which the three-body force is not
necessary and the baryon is a localized state as well as
the boson. We know some possible candidates —the
paraquark model, '~ the two-triplet model, " the three-
triplet model, " etc. Though the 6rst model gives the
same commutation relations among the bilinear
quantities of the 6eld as the orthoquark model, the
Fierz transformation can not be performed in a simple
way. We shall therefore avoid it. The second model
does not give the localized baryon state.

Probably the third model, the three-triplet model, is
the best candidate. According to Han and Nambu, "we
can simply formulate the model by introducing a nine-
component field Q;,(x) and a group U'(3)XU"(3),
where the suflix i transforms like a triplet under U'(3)
and the suflix a like an antitriplet under U"(3). Here
we show the general interaction energy of four-fermion

type, assuming the invariance under U'(3) X U"(3);

M=nppNq+ci(No —18)'+cpLG&+&'(3)—G& &'(3)]'
+cpLG&+& "(3)-G&-&"(3)]'
+c4[Q&+&(9) G &

—
& (9)j

+cpL(10/9) 8'+4S'+ G'(18)g
+«L(2/9)~'+(G'(6))'+(G"(6))'3, (6 1)

where 6's are all generators of a group

U + (18)X U &(18):G(18) a„X '&ip", G(9) ap&i». t&",

G'(6) a„&i '»,p", G"(6) aphp X , G (3) apX '&ip",

G"(3) op&p'Xa", and S; a;&&p'&&p".

The formula (6.1) is valid both for the baryons and
the bosons. Unfortunately, however, the term PG&+&"(3)
+G& &"(3)j', whose existence has been assumed by Ban
and Nambu, and is really necessary to raise the mass of
the particle with nonzero triality (the charm number),
does not appear in (6.1).We must therefore break either
the U'(3)XU"(3) invariance or the quark and anti-
quark number conservation in the limit when the quarks
are at rest. Details are, however, not discussed in this
text.

In conclusion we wnat to make a few remarks about
the usual quark model.

(i) If the quark-number conservation in statement I
is not assumed. , the state vectors are classiled by
U(2) XU(6). This will be discussed in a separate paper.

"0.W. Greenberg, Phys. Rev. Letters 13, 59S (1964).
» H. Sacry, J. Nuyts, and L. van Hove, Phys. Letters 9, 279

(1965);Y. Nambu, in I'roceedings of the Second Coral Gables Con-.

ference on Symmetry PrinciPles at High Energy (%. H. Freeman
and Co., San Fiancisco, 1965).

(ii) If the kinetic-energy term in calculating the
boson masses is taken into account, the spin-orbit
coupling may be obtained, as is shown for a simple model
in the Appendix. This is favorable for explaining the
energy levels of the higher mass resonances. '

(iii) Although we have neglected the SU(3)-violating
interaction in this paper, the mass splitting in a SU(3)
multiplet can also be calculated exactly" in our limit.

APPENDIX: ENERGY LEVEL OF A TWO-
PARTICLE BOUND STATE

We show the calculation of the energy level of a two-
particle bound state in the model of Sec. II, laying
emphasis on the kinetic-energy perturbation.

De6ning the creation operator of two-particle state
with momentum p,

4*(p)= 2 p -(p'1—1')4."'(l)k.& '(1')o"&"""
J,l', r,e

we calculate the second-order term of the kinetic energy
in the center-of-mass frame to get

(2/It /n)(n(E f2)
(2[~E(2)=—g

E(n) —E(2)

1 &&' d
&&

1

!&'& Z
2p Br' ' dr&P&,E(4)—E(2)~

where

—-'L S-g —
~ ) &o,

r & dr;EE(4) —E(2)~

v'-=—«&(p' r) [Ap p (1—&f&)]-

which means a pseudoscalar state when L=O, r=l —1',
is the reduced mass of mo, and r; are the relative

coordinates of the four particles in the intermediate
state. The summation P; means the sum over the
possible relative coordinates r;,

We remark that the L S force is obtained in the
second-order correction term.

~9 K. Kikkawa, Progr. Theoret. Phys. (Kyoto) 35, 304 (1966);
J. Arafune, Y. Iwasaki, K. Kikkawa, S. Matsuda, and K.
Nakamura, Phys. Rev. 143, 1220 (1966).
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