PHYSICAL REVIEW

VOLUME 165,

NUMBER 5 25 JANUARY 1968

Self-Interaction Corrections of a Charge in a Nonrelativistic
Particle Formalism*

Joun E. Krizan
Depariment of Physics, University of Vermont, Burlington, Vermont
(Received 24 July 1967; revised manuscript received 26 September 1967)

A nonlinear equation for the description of self-interaction corrections is developed by means of stochastic
mechanics. It is derived within a nonrelativistic framework in which fields do not appear. The linearized
approximation of this equation is also examined, and an alternative, more conventional, interpretation of
the resulting effective interaction is given. Calculations involving effects which have a possible interpreta-
tion as the Lamb shift and anomalous magnetic moment of the electron, and which are free of cutoffs, are
made; these give semiquantitative agreement, offering some encouragement for a possible attempt at a

relativistic generalization.

I. INTRODUCTION

HERE have been questions raised recently about

the adequacy of the present formulation of quan-

tum electrodynamics (QED). The discontent has both

theoretical and experimental roots': The theoretical

difficulties arise from the presence of divergences and

the use of perturbation methods,? while the experi-

mental questions arise in particular in recent Lamb

shift determinations (in spite of the latter questions,

it would be difficult to detract from the quantitative
successes of QED).

This paper in its present form does not pretend to
provide any rigorous answers to the problems plaguing
quantum electrodynamics. It is intended to suggest
a possible direction which represents a different point
of view, in that there are no fields with independent
degrees of freedom (consequently, there are no analog-
ous divergence problems).

At the outset, it should be emphasized that the
treatment is nonrelativistic. It deals with so-called
radiative corrections (here, we prefer to call them self-
interaction corrections) which in the conventional
treatment come from the emission and absorption of
the virtual quanta of a single charged particle. Here
we derive an effective interaction, taking for a starting
point the pattern of recent work in attempts to find
alternatives to the usual formulation of quantum
mechanics®# (although we also give an interpretation
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1See the comments of R, Wilson and S. D. Drell, Comments
Nucl. Particle Phys. 1, 22 (1967).

2 However, nonrelativistic calculations involving dispersion
techniques in calculating the Lamb shift have recently been
made by X. Artru, J. L. Basdevant, and R. Omnes, Phys. Rev.
150, 1387 (1966). Also see H. Abarbanel, Ann. Phys. (N. Y.)
39, 177 (1966).

3 E. Nelson, Phys. Rev. 150, 1079 (1966).

4D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954); N.
Wiener and A. Siegel, 7bid. 91, 1551 (1953); I. Fenyes, Z. Physik
132, 81 (1952) ; W. Weizel, ibid. 134, 264 (1953), 135, 270 (1953),
136, 582 (1954); D. Kershaw, Phys. Rev. 136, B1850 (1964).
Also see L. de Broglie, Etude Critique des Bases de I Interprétaiion
Actuelle de la Mécanique Ondulatoire (Gauthier Villars, Paris,

1963) [English transl.: The Current Interpretation of Wave Me-
chanics (Elsevier Publishing Co., New York, 1964)].
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in linear approximation which is more consistent with
the usual formulation).

In Sec. II the stochastic equations of motion are
derived assuming a random process involving the co-
ordinate as a stochastic variable. Section III deals with
the derivation of a nonlinear equation, as well as a
linearized approximation of it, which reduce in the
limit of no self-interaction to the time-independent
Schrédinger equation. An alternative to the stochastic
interpretation of the linearized equation, in terms of a
complex time transformation, is given. Section IV deals
with the generalization to the time-dependent case,
while the following section involves the calculation of
self-interaction effects in lowest order. Finally, a
possible formulation for nonconservative systems is
suggested.

II. STOCHASTIC KINEMATICS AND
EQUATIONS OF MOTION

In the description which follows, we assume a kine-
matical description which is identical with the one
given by Nelson® The process is one of Brownian
motion according to the theory of Einstein and Smolu-
chowski. The characteristic time involved is that as-
sociated with the Zitterbewegung frequency.5 The
trajectory is not differentiable on this time scale®”; how-
ever, one can define a mean forward velocity Dx(f)
=b(x(#),/) and a mean backward velocity D.x(Z)
=b«(x(?),H), and combine them to form a probability
current velocity

v=1(b+b:), @.1)

51t is recognized that ordinarily this effect has a natural
setting in the Dirac equation.

¢ The nondifferentiability of the trajectory due to the Zjtter-
bewegung here is intuitively suggested by the relativistic explana-
tion (via Dirac) of an electron which oscillates rapidly between
the limits of 4=c. The mathematical property that the derivative
does not exist is to be interpreted physically as a reflection of the
highly irregular motion on the given time scale.

7 For more information on the distribution function of the
Wiener process as well as other information on stochastic pro-
cesses, see the articles in Selected Papers on Noise and Stochastic
Processes, edited by N. Wax (Dover Publications, Inc., New York,

1954). In particular see the papers of S. Chandrasekhar and J. L.
Doob. )
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where the definition arises from the combination of
forward and backward Fokker-Planck equations which
the probability density p(x,f) must satisfy. Proceeding
further one arrives at Eq. (32) of Nelson:
ov/dt=a— (v-V)v+(u-V)utrAu, (2.2)
where u=»(Vp/p) and v=7%/2m.
In defining a Newtonian dynamics with radiation
damping,, we look for an equation which is a time-
symmetric analog of the classical Lorentz equation,

a=vy"'da/di+1. (2.3)

Here v1=27¢/3=2¢?/3mc3, and { is the external force
per unit mass. It is well known that (2.3) adequately
describes nonrelativistic classical radiation damping, al-
though when f=0, the equation gives “self-accelerated”
solutions. The reformulation of radiation damping in
terms of an integrodifferential equation circumvents
this difficulty, although it leads to the requirement
that the force must be specified for future times of the
order of 7.

Rather than using the form of (2.3), we can define
a time-symmetric equation of motion, using the stochas-
tic process introduced above:

a= (2y)"[D—D«Ja+{. (2.4)
This equation is invariant under time “reversal” (f is
assumed to be time-symmetric); this operation is de-
fined as the inversion {— —{ combined with the inter-
change of D and D,.

Equation (2.4) is now substituted into (2.2), after
we make use of the definition of the mean acceleration

of the stochastic process:

a=3i[DDsx()+D:Dx()]. (2.5)
The acceleration defined in this fashion is therefore
symmetric in the operations D and D« and is time-
reversal invariant in the above sense. Note that in
Nelson’s treatment the definition first appears in rela-
tion to his derivation of the dynamics by means of an
Ornstein-Uhlenbeck process via the Langevin equa-
tion, although he later applies the same definition in
relation to the Einstein-Smoluchowski process.

Applying Nelson’s equations (22) and (23) to (2.4),
we obtain

a=y " u-v+4rAJ[dv/0¢

+(v-v)v— (u-V)u—rAu]+f. (2.6)

Defining the operator O=u-v-+(%/2m)A, e=v7, and
using (2.2), we may write the following set of equations®:

ou/dot=— (1/2m)v(v-v)—v(v-u), (2.7a)

[1—e0][av/dt+ (v-V)v]=f+[1—e0]Ou. (2.7b)
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III. NONLINEAR AND LINEAR EQUATIONS
WITH EFFECTIVE INTERACTION

To get a time-independent equation from (2.7), we
set the mean velocity v=0. Then from Eq. (2.7a)
(this equation is related to the continuity equation for
the probability density), u is explicitly time-independ-
ent and the equation of motion (2.7b) can be written

[1—e0][V(w/242V-u/2m)]—VV/m=0, (3.1)

where it has been assumed that f=— vV /m. With the
definitions R= (Inp)/2, y=e¢® we get u=4Vvy/my, and
(3.1) becomes

[1—e0JL(#*/2m>) v (VY /P)]—VV/m=0. (3.2)

By putting in the explicit form for © and using a vector
identity, we may write

V{[1— (eh/m) W'V V+3A) J(RAY/ 2m) — V /m})
+ (ehr/m)[V (I2AY/2m*) - V] (Vg /) =0. (3.3)
If we neglect the last term in (3.3) (we will attempt to

justify this later in the discussion in Sec. IV), we get
the time-independent equation

— (B/2m)AY/Y+V+Ves= E=const., (3.4)
where
Vett= (eh/2m))[ (Vv Iny- V) +3ATAY/Y
= (hi*/4m? )Y [A(AY) — ¢~ (AY)*]
= (¢/My[TH—y(TY)]. (3.5

Above, T=— (#*/2m) V2.8 Finally we may write (3.4)
in the form

{T+V—E+ (/B[ T*— @ TY)*J¥=0.

Note that (3.6) is nonlinear and so it differs quite
radically from the time-independent Schrédinger equa-
tion. However, to a first approximation one can say
Ty~ (E—V)Y, so that to lowest order (3.6) becomes

{T+V+(/B)V,T}W=Eyp. 3.7

One could, of course, take (3.7) as a point of depar-
ture for the usual formulation of quantum mechanics.
Then, the equation is suggestive since an intuitive way
of looking at the self-interaction is to consider (3.7) as
a first-order result in the expansion of the ‘“‘time-
translated” expression

H' =exp(iSor)H exp(—1So7), (3.8)

where H=T4V, So=2%V/#%, and r=i7,. Thus, if 7
were real, the result would leave the energy spectrum
unchanged. For times of the order of 79, however, self-
interaction effects must be examined, and these virtual

3.6)

8 Another way of writing this is as Vets= — e 0¢p, where ¢p is
the Bohm potential (Ref. 4); for a recent discussion of this po-
tential in relation to a connection with the Navier-Stokes equa-
tion see R. J. Harvey, Phys. Rev. 152, 1115 (1966). Harvey’s
reservations about a theory based on Brownian motion do not
seem to apply to Nelson’s work,
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effects enter by means of a complex time transformation
of magnitude 7o, which shifts the energy spectrum.

Perhaps the above interpretation can lead to a linear
generalization of quantum mechanics with self-interac-
tion effects; on the other hand, one should keep in
mind the caveat involving the extension of series in
the parameter 7o beyond the first order.?®

IV. TIME-DEPENDENT CASE

The generalization to the time-dependent case pro-
ceeds directly in the manner following Nelson except
that the canonical momentum #VS is chosen differ-
ently. The basic equations are still (2.7), although
now we have

Y=exp(R+1S), “4.1)

where
VvS=(m/h)(v+T), (4.2)
= (eh/m) / t (Vop:-V)udt'. 4.3)

The reason for this choice of I" will become evident
later; here® op=— (&/2m)(VAy/{).
We also set

f=—VV/m+vX(VXT), (4.4)

so that an effective force (analogous in form to a
magnetic force) is introduced. In what follows we as-
sume we are looking at situations for which v is small
(or is taken equal to zero) so that the term of order e
and involving v in (2.7b) is neglected. This is con-
sistent with the cases examined in Sec. V, involving
the bound electron in a hydrogen atom and an electron
at rest in a fixed magnetic field.

Equations (2.7) with (4.2) and (4.4) then lead to
the following time-dependent equation:

oY/ ot=— (i/2mh)[ihv—mT ]
— @/ (V+Vaptiay, (4.5

where Ve is given by (3.5), R=% In(y*¢), u= (#/m) VR,
and a(f) is an arbitrary phase factor (which can be
taken equal to zero).

Of course, one can also proceed from Eq. (4.5) and
derive Egs. (2.7) (within the limitation of the small-v
assumption) without regard to the stochastic derivation
of the self-interaction potential. In fact, the Eqgs. (2.7)
(with e=0) are used, with suitable further approxima-
tions, for application of the WKB] method.?

Although we will not explore in detail the time-
dependent case for more general situations, it can be
easily seen that if v is not small, the structure of (4.5)

9 This is so because we have assumed only linear terms at the
outset. For a discussion of this point see F. Rohrlich, in Classical
Charged Particles (Addison-Wesley Publishing Co., Cambridge,
Mass., 1965), p. 156.

10 For a recent use of the equations in this form (but without
self-interaction) see T. W. Kibble, Phys. Rev. 150, 1060 (1966).
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[as it results exactly from (2.7)] is changed insofar as
self-interaction terms appear on both sides of the
equation. Also it may be shown that a generalization
involving the Lorentz force may be obtained by a
suitable definition of v in terms of S, I', and the usual
vector potential; we feel, however, that such a gen-
eralization is more appropriate to the relativistic case.

Since we are concerned with the limit v— 0, and
recalling that du/d¢=0 for this case, we get from (4.3)

= (eh/m)(V o5 V)ui.

Now for times ¢ of O(e), I is of O(e?). Thus we can say
that we effectively have, to order e,

ay/ot=i(h/2m)AY— /B (V+Ver)p.  (4.6)

In subsequent calculations we assume the above is
true. For significantly longer times this is no longer the
case and I" would have to be taken into account. Note
that in the v— 0 limit, (4.4) reduces to f=—VV/m
and so we recover the case in Sec. IIT; it also then
follows that neglect of I" above leads to (3.4).

If one is dissatisfied with the stochastic interpreta-
tion, one can refer to the argument given in con-
nection with the latter part of Sec. III. However, we
wish to point out that it is possible that the nonlinear
equation (3.6) may give better results quantitatively,
and it is not clear how one could obtain such an equa-
tion without reference to the stochastic argument.

It must always be borne in mind that the treatment
is nonrelativistic. In the following section we examine
the case of the Lamb shift in the hydrogen atom to
lowest order, and, viewed as a two-body problem, it
is seen that the interaction in (3.7) will be invariant
under the Galilean group of transformations.!

A relativistic generalization would have the rela-
tivistic radiation-damping equation? as a starting
point.®* However, it is not clear in what sense one
should expect the Dirac equation to result since it
would appear that the Zifterbewegung is already con-
tained in it; but at any rate it may be possible to
obtain relativistic self-interaction corrections which
compare favorably with experiment by an extension
of the present treatment.

V. LAMB SHIFT AND ANOMALOUS
MAGNETIC MOMENT

Using (3.7), we evaluate the energy shift, interpreted
as the Lamb shift, in hydrogen. In a first-order per-
turbation calculation we get (note that although con-

11, L. Foldy, Phys. Rev. 122, 275 (1961).

2 See A. O. Barut, Electrodynamics and Classical Theory of
Fields and Particles (Macmillan Publishing Co., New York,
1964), p. 185.

13 A recent covariant generalization of Brownian motion by R.
Hakim, J. Math. Phys. 6, 1482 (1965) may be of interest in a
possible relativistic generalization of the stochastic theory here.
However, a preprint recently received from Hakim suggests that
there may be difficulties in defining relativistically covariant
stochastic processes in the manner of Nelson.
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ventional notation is used here, the expectation can
also be written as an average involving the probability

density)
SE=(e/mW|[V,T]|¥), (5.1)

where the y’s represent the unperturbed hydrogen
levels. Observing that

LV,T= #/2m)[(v*V)+2VvV -V,

we find
SE=(eh/2m) Ze[ (Y| 4wd(x) [¥)+2(¢ |29/ dr|¢)]. (5.2)

This gives no contribution to the 2Py, state, but both
terms in (5.2) contribute equally to a shift in the 2.5y,
state. Thus the Lamb shift is here

SE= (ehi/2m) Ze*87 |25 (0) |2= ()2 Ry, (5.3)

where a=e?/hc. This gives a value! of 855 Mc/sec for
the shift and compares with the result of 1600 Mc/sec
obtained by Welton'® and frequently quoted as giving
an heuristic picture of this self-interaction effect in
quantum electrodynamics. Note, however, that the
result given here does not require cutoffs (there is no
logarithmic term), because the introduction of inde-
pendent fields has been avoided. So a desirable feature
of the present calculation is the absence of any require-
ment for a renormalization or cutoff procedure, of any
kind. Our calculation compares semiquantitatively
with the recent experimental value! of 1058 Mc/sec;
however, it must again be stressed that the treatment
given here is nonrelativistic. Nevertheless we feel that
the comparative simplicity of the approach is appeal-
ing; also, there is the possibility that the nonlinear
equation (3.6) might give better agreement.

One can also make an estimate of the correction to
the magnetic moment of an electron by means of (3.7).
Consider the interaction of an otherwise free electron
in an external magnetic field of constant magnitude.

Then we may write

Hy= (/M) (w- H)T—T(w-H) ¥
= (eh/2m)[YA(w-H)+2vy-v(y-H)], (5.4

where H'= (¢/h)[V,T],and V=yu-H. We see from (5.4)
that the total interaction to first order is

u-H+(eh/2m)[A(y- H)+2v (v-H)-V]. (5.5)

When we examine the limit as the electron wave vector
goes to zero, the second term in brackets in (5.5)

14 The small “vacuum polarization” effects are not involved in
this calculation; this is consistent with the spirit of the nonrelati-
vistic argument.

15T, 1§ Welton, Phys. Rev. 74, 1157 (1948). See also J. D.
Bjorken and S. D. Drell, Relativistic Quantum Mechanics (Mc-
Graw-Hill Book Co., Inc., New York, 1964), p. 58; E. A. Power,
Introductory Quanium Electrodynamics (Amenc{m Elsevier Pub-
lishing Co., New York, 1964), p. 35. The numerical value quoted
here is that of Power; there is some variation depending on how
one chooses the cutoff. For a modification of Welton’s ideas,
including “vacuum polarization,” see Z. Koba, Progr, Theoret.

Phys. (Kyoto) 4, 319 (1949).
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gives vanishing contribution and if we introduce the
Compton wavelength as a characteristic length, such

that
Ap/u~ (N2, (5.6)

The following correction results:
ou/pmo=eh/2m\2=a/3,

where uo=eht/2mc. This compares with the first order
QED result of a/2r. The crudity of the assumption
(5.6) is apparent, however.16

It is to be pointed out that while the temptation to
insert an adjustable constant in place of e= (2)7, exists
[one could, for instance, multiply 7o by a term pro-
portional to In(¢™)], it would be somewhat meaning-
less in view of our nonrelativistic treatment. Also,
such adjustment would run counter to the intended
spirit of the argument.'”

The theory and examples thus far considered have
dealt with situations involving “virtual quanta” (in
the language of QED). We were led to the equations
(2.7) via stochastic mechanics, assuming a formula-
tion which bore resemblance to damping theory in
electrodynamics, and coupling the theory with the
desire for time-symmetric equations of motion.

If a description involving energy loss is sought, we
conjecture that a possible way to proceed is as follows:
First we abandon the time-symmetry requirement by
writing, instead of (2.4),

a= (2y)"'[D+D,Ja+f.

Proceeding in the same way as before, we arrive at
the equations of motion

(5.7)

(5.8
(5.9

ou/dt=—(h/2m)v(V-v)—v(v-u),
Lv=1+ ou+teL[ Lv— ou],

where £=9/9t—v-V, and where u, v, and O are defined
in the same manner as before. Note the time-asym-
metry in (5.9) as opposed to (2.7b). Thus while we
have qualitatively different equations here (they are
identical only if e€=0), the attitude here is that the
distinction between conservative and nonconservative
systems is clear enough to justify it. On the other
hand, we are aware that a formalism capable of de-
scribing radiation damping in classical electrodynamics,
starting from an initially time-symmetric theory, has
been developed.!® Nevertheless, the Wheeler-Feynman
formalism is classical and deterministic, and requires

18 An assumption similar to this, involving the Compton wave-
length, is made by Welton, Ref. 15.

17 A phenomenological relativistic treatment of the Lamb shift
and the anomalous magnetic moment, which contains three
adjustable parameters, has been given by F. J. Belinfante, Phys.
Rev. 84, 949 (1951).

18 J. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157
(1945). See also Ref. 12 for a discussion of such action-at-a-
distance theories.



165

additional assumptions which have not been fully
amplified with respect to their role on the question of
irreversibility.

Finally we observe that one could write a closer,
time-asymmetric analog to (2.3):

Lv=1+0ou+t+{L+0] Lv—ou]. (5.10)

In contrast with the situation with (5.9), however, the
results for v=0 follow as before.

Note added in proof. There is an error of sign in going
from (5.2) to (5.3), so that the equal contributions
actually cancel. This also follows from the anti-Hermi-
ticity of the linearized interaction; we are grateful to
Professor Richard P. Feynman for pointing this out.
Thus the linearized equation does not give an energy
shift, unless possibly one examines the case with com-
plex wave functions and re-examines the role of T, in
Sec. IV. The basic set of Egs. (2.7) and the nonlinear
Eq. (3.6) are not affected by the above considerations.

VI. DISCUSSION

We have obtained generalizations of the Schrodinger
equation, involving self-interactions, by means of clas-
sical stochastic mechanics. While it is possible to give
a more conventional interpretation for the genesis of
the interaction term (as in Sec. III), this interpreta-
tion only appears to apply to the linearized approxi-
mation of (3.6). The calculations of effects interpreted
as the Lamb shift and anomalous magnetic moment
seem to give some encouragement to the hope that a
relativistic generalization of the preceding theory might
give some interesting results. While the avoidance of
the explicit introduction of fields is considered an
anathema in some quarters, here we view the divergence
difficulties and renormalization procedures of current
field theories as offering inducement in attempting to
find a different formulation.

Apart from treating self-interactions, we would like
to point out that a desirable feature of our treatment
vis-3-vis Nelson’s, is that a dynamics based on radia-
tion damping phenomena appears more readily justifia-
ble on a microscopic basis than one which proceeds
from the Langevin equation (where the interpretation
of the frictional term is more obscure).

A difficulty in the present treatment concerns the
interpretation of Eq. (4.2). While the form is sugges-
tive, and while it may be possible eventually to under-
stand it physically, the way is not clear at the present
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time. In a recent article® however, it has been argued
that in a classical correspondence from QED involving
“beam-induced” self-energies it is necessary to ‘“‘re-
normalize” the momentum, in carrying out classical
calculations. While there is no beam in the examples
considered here, perhaps an argument for an analogous
procedure can be made.

An interesting point about the linearized equation
(3.7) is that if [V,T]=0, there is no self-interaction.
Thus with this equation (that is, to first order in )
it is meaningless to speak of the self-interaction of an
isolated charge. On the other hand, if higher orders in
e are examined, then the self-interaction of an isolated
charge can appear.

Of course, the formalism describes a spinless, non-
relativistic single particle, and thus it ignores questions
involving statistics and incorporation of many-body
interparticle-interaction effects. An interesting point
can be made relative to a possible relativistic many-
body generalization: If one did create a valid rigorous
generalization, it might serve to remove a serious
objection to the formulation of current direct inter-
action theories,® namely the objection involving non-
invariance of world lines. A measure of validity for
the stochastic hypothesis would indicate that the re-
quirement that these trajectories be invariant as seen
by all Lorentz observers should be relaxed. This re-
laxation would then follow as a result of a theory
involving classical indeterminism (however, the equiva-
lence of this hypothetical relativistic theory to a theory
involving quantum indeterminism might not hold).

Finally, we again point out that the stochastic argu-
ment in the derivation of the effective interaction may
be in a sense replaced by the interpretation in connec-
tion with (3.8), especially if we demand that the
principle of superposition must hold down to phenomena
involving the time constant 7,.2!
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