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The co —+ re width obtained from (3.8) requires the correction

(4mvmn')'"G, vno' 8) "'(4mnmv)'"G, vn
-2

C(~ ~ g'r) = coshi cosX2—(+8) sinai sinhs- sinX2 cosh'
(4mnmv') "'G~vr n' 5) (4mnmv')' 'G~ van'

Here again our choice of relative sign in (A19) and (A20) determines this correction uniquely as" "
C(rd ~ qy) = [cos) i cosam+sinllrrl sr'nl~&l r~&2sinl)«l cos).q]'.

For the V~ t+l decays the co-p mixing presents no complications because the singlet component does not
contribute. We find

Ar((v' —& l+l )= —-',K3 sinh2

A4Q —+ l+l-) =-',l3 coslrg,
where A4 is defined in (3.10).
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Using the hypothesis of partially conserved axial-vector currents, the algebra of current components, and
the assumption that the pion-hadron total cross section 0 (s) approaches its asymptotic value rapidly, a
method is developed which allows a calculation of the elastic amplitude at high energies and small mo-
mentum transfers. This method uses the fact that asymptotically the dynamics is given by the commutator
on the light cone. The results are 0- „(~)= 25.7~4.2 mb and do/dt= (do/dt) & 0)GE' —(t/4M')G~'j(1 —t/
4'') ' (for small values of the momentum transfer t), where G~(/) and G~(t) are the electric and magnetic
form factors of the proton. It is shown that possible Schwinger terms in the equal-time commutators are
without importance for our results. An important feature of our calculation is that the energy and the mo-
mentum are allowed to go to inanity simultaneously; our method therefore deviates essentially from the
Bjorken limit, which in general involves a continuation of the amplitude in6nitely oR the mass shell.

1. INTRODUCTION

'N the present paper we shall present a calculation
~ ~ of the high-energy total cross sections 0 (~ ) for
pion-hadron scattering which gives good agreement
with the value of 0 ~(~) obtained by 6tting forward
dispersion relations. The main tools in our derivation
are the following three assumptions.

(i) The partially conserved axial-vector current
(PCAC) hypothesis: The divergence of the AS= 0 axial-
vector current j„+(x) is proportional to the pion 6eld"
in the SU(3) limit, ' 4

mass, g is the renormalized pion-nucleon coupling con-
stant, and gz is the renormalization (by the strong
interactions) of the axial-vector coupling constant in
P-decay. The index "SU(3)" indicates that the matrix
elements are evaluated in the mass-degenerate SU(3)
limit. As pointed out in Ref. 4, it is reasonable to expect
that the SU(3) limit is achieved at high energies, i.e. ,
when the energy difference between the states ln)
and

I P) becomes very large; at the same time the invari-
ant momentum transfer between In) and IP) approaches
zero.

(ii) The equal-time commutators (x0=0):
(~la j„+(0)IPb«» ——9'.m~(~l &~(O) IP),~„&, (1) Lq+(*) j;(O)]=2j v'(0)8(x)+S.T. (2)

f.=&2M gg/g,

where &p+(x) is the renormalized Heisenberg field of the
charged pions, m is the pion mass, M is the nucleon
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Lj+(*),j.-(0)]=».j."(0)~(x)
+tensor term antisymmetric in k and l+S.T. (3)

are assumed. Here j„v'(x) is the third component of
the isovector current, and S.T. stands for possible
Schwinger terms. The commutators (2) and (3) are
obtained from a quark model for the currents. We as-
sume that these commutators can be abstracted from
the model and postulated as true for the physical
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currents. ' It has been shown by Okubo and co-workers'
that Eq. (3) contains operator Schwinger terms, and
in general this will cause severe troubles in the appli-
cation of Eq. (3); however, in our use of Eqs. (2) and
(3) the S.T. shall be shown not to play any role. It is
also well known' that Eq. (3) leads to difliculties if
one applies sum-rule technique. However, we use Kq.
(3) directly without introducing intermediates states
and saturation.

(iii) We assume that the high-energy cross section
0(s) (gs=center-of-mass energy) approaches a con-
stant asymptotic limit 0 (~).We furthermore make the
assumption that the dynamics determining o(~) at
high energies is "smooth, " which in x space can be
formulated precisely by assuming that the commutator

& ILj.+( ),j. (0)]IP)
does not contain terms more singular than 5(x') and
derivatives of 8(x'). In addition to these singular terms
the commutator is allowed to contain arbitrarily com-
plicated regular terms. ' '

The program of the paper is as follows: In Sec. 2 we
discuss the applications of PCAC at high energies, not
only from the point of view expressed in assumption
(i) above, but also from the point of view of the pion
pole dominance (PDDAC). At high energies these
points of view are equivalent. In Sec. 3 we discuss the
role played by PCAC I assumption (i)] in eliminating
the Schwinger terms. After these preliminaries, we
derive in Sec. 4 an expression for the scattering ampli-
tude at high energies and small momentum transfers.
The 6nal expression for the scattering amplitude con-
tains a factor lV, which is of the order 1. In Sec. 5 we
calculate E. In Sec. 6 we compare our results with the
existing experimental and phenomenological infor-
mation. We also discuss the connection between our
results and the results obtained by Domokos and
Karplus' for the scattering amplitude at high energies
and large momentum transfers.

2. PCAC AT HIGH ENERGIES

The form of PCAC given in Eq. (1) was based on the
observation that the baryon mass splitting destroys
the exact validity of PCAC. 4 We therefore assumed the
validity of PCAC in cases where one can neglect the
mass splitting, and this is just achieved using PCAC
at high energies, i.e., when the energy E of the state
ln) is much larger than the energy of the state IP) (or,
more generally, when

I
E —Epl ~~). In this section

~ F. Sucella, G. Veneziano, R. Gatto, and S. Okubo, Phys. Rev.
149, 1268 (1966).

gR. F. Dashen and M. Gell-Mann, Phys. Letters 17, 145
(1965); 17, 148 (1965); B. W. Lee, Phys. Rev. Letters 14, 77
(1965); S. Coleman, Phys. Letters 19, 144 (1965).

7 F. J. Dyson, Phys. Rev. 110, 1460 (1958).
S. Okubo, in ProceeChngs of the Fourth Coral Gables Conference

on Symmetry I'rinciples at High Energies, University of Miami,
1967 (W. H. Freeman and Co., San Francisco, 1967).

9 G. Domokos and R. Karplus, Phys. Rev. 153, 1492 (1967}.

we shall show that this point of view is equivalent to
PDDAC (pion pole dominance in matrix elements of the
divergence of the axial-vector current).

Consider the matrix element &flail'j„+(0) I1), where

I 1) is a one-particle state. The contribution from graphs
with a single pion line connecting 8"j„+(0) with the
other lines is given by

we have

" ~(q')
&1/q') =

9~' q
2

a (q') dq', (6)

&0I ~"j.'(0) I ~)=~'f-+&I/q') ~(q')dq' (&)

for q'=0. From superconvergence we get

so that

m4f =— 0(q')dq',

(OI8&g„+(0)I7r)=m'f (1 m'&1/ )—)q(9)
for q'=0. Now it is reasonable to expect that (1/q')
&1/(9m'). Hence the pion pole dominates, i.e.,
(0 I

81'j„+(0)
I 7r) =f m', with an accuracy of —',, i.e., 11%.

This is consistent with the numerical evaluation of the
Gol.dberger-Treiman relation, assuming that the pion-

where q is the four-momentum diRerence between the
states I1) and

I f). Now, when the energy difference
between. the states I1) and

I f) goes to infinity, the
three-momentum diEerence between these states cancels
the energy difference and q' —+ 0. However, since
PDDAC tells us that the contribution (4) to
(fl B&j„+(0)

I 1) dominates for q'-+ 0, it follows that
PDDAC is equivalent to PCAC (in the sense of Ref. 4).
Thus the main point in our application of PCAC at
high energies is that the zero-momentum-transfer limit
q'=0 is achieved in a "natural" way at high energies
(where one also has mass degeneration in a "natural"
way). In this connection we note that the index SU(3)
in Eq. (1) only refers to mass degeneration; it is, e.g. ,
not necessary to use SU(3) coupling constants in the
evaluation of the matrix elements entering in Eq. (1).

For our application of PCAC it is of interest to have
an estimate of the degree of validity of the pion pole
dominance. We can obtain a rough estimate by as-
suming superconvergence. Consider, e.g. , the matrix
element (0 I

8"j„"(0)
I

m ) for which we have the dispersion
relation

m4f 1 " ~(q")dq"
(0 la"j"(0)I )= +- --, , (s)—

q q
—

q

where 0(q') is a spectral function. Defining the mean
value
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nucleon vertex function varies a very small amount
from q'= no' to q'=0.

3. ASYMPTOTIC BOUNDS AND
SCHVfINGER TERMS

In the application of PCAC and the algebra of current
components an essential tool is the use of differentiations
of retarded commutators (or time-ordered products).
We therefore consider the matrix element of the re-
tarded commutator

&„,(ql', ql', (ql) O)

dxc'"*&P'ILj. (x) j'(o)]IP)0(x), (10)

where q2= p+ ql —p'. The states I p) and
I
p') are single-

particle states. From Eq. (10) we obtain the identity

ql"q2"+pe(gAq2 y(ql) 0)

+i~(xo)ql"&P'lL jo (0),j'(*)]lP&) (11)

In this equation we have two equal-time commutators,
and Schwinger terms give rise to higher powers of q
than the canonical values of the commutators. Hence we
can identify the Schwinger terms by looking at the
asymptotic behavior of the expressions involving the
retarded commutators, as pointed out by Bjorken. '0

At this stage it is convenient to introduce PCAC in
order to identify the 6rst term on the right-hand side
of Eq. (11) with the pion-nuc1eon amplitude (the zero-
mass approximation should be completely harmless at
high energies)

ql"q2"R„,(ql2=0, q22=0, (ql) 0)

=if-'&p'~'(q )I 22'I p~'(ql)&

dx b&xo) e '" {&p'ILBI'j (0) jo+(x)]lp&

—iql"&p'ILjo (o) j'(x)]lp)). (12)

6ed with the polynomial in qo arising from the possible
Schwinger terms.

The device given by Bjorken is usually not of much
practical value because the asymptotic behavior of
E„„is unknown. However, PCAC is of great help here
because the forward pion-nucleon amplitude

&p '(q) I
T'I px'(q) &

is bounded from analyticity and unitarity. Hence we
know that the first term (which we now replace by the
covariant pion-nucleon amphtude) on the right-hand
side of Eq. (12) is bounded by a certain power of qo,

qo", say (we neglect logarithms). The asymptotic be-
havior of R&„will bc shown ill Scc.4 to bc glvcI1 by 1/qo,
and hence q„q„R&" behaves like qo. Hence the maximal
number of Schwinger terms is ns —4.

The actual value of the maximal power m has
recently been obtained by Martin, " who established
the Foissart" bound

I &px+(q) I
T

I px+(q) & &Cs(lns)'

(if s is sufficiently large) from axiomatic 6eid theory
and polynomial boundedness for s —+Go. It then follows
that m= l, and hence the Schwinger terms do not, in

general, contribute. Thus, in spite of what one would

expect immediately, Schwinger terms do not become
important at high energies; in this respect, high-energy
theorems are similar to low-energy theorems.

The result that S.T. do not contribute does not con-
tradict the results of Ref. 5, where it is shown that the
commutator (3) contains operator S.T. The point is
that operator S.T. can have certain vanishing matrix
elements and certain nonvanishing matrix elements.
Our conclusion is then that the baryon matrix elements
of the operator S.T. vanish.

Ke 6nally mention that above we have only been
able to establish the absence of Schwinger terms in the
forward direction. However, from "con.tinuity" we

expect that these terms are absent also for small angles.

4. CALCULATION OF THE ASYMPTOTIC
PION-HADRON AMPLITUDE AT SMALL

MOMENTUM TRANSFERS

%'e shall now calculate the asymptotic behavior of
tile pion-hadron amplitude fl'oI11 Eq. (12), willcil CRI1

be written

if-'P'+(p, p' (ql) ~)—T'+(p p" (qI) o=0)7

Following Bjorken" the number of necessary Schwinger
terms can be obtained from the asymptotic behavior of
R„„((ql)~—+~) LWR„„((ql),~~)] as compared to the
asymptotic behavior of the covariaIIt aIIIptitudc

R„„({ql)0—+~). The difference in the asymptotic be-
havior of R„„and R„, (constructed from the retarded
commutator) is a polynomial in qo, which can be identi-

10 J. D. Bjorken, Phys. Rev. 148, j.461' (1966).

dx e'"*~(»)&p'lL jo (x) j'(o)]Ip&

—
q "q "&"(q '=0, q '=0; (q )o)+S.T., (14)

where T+ is the pion-hadron amplitude. Taking the

"A. Martin, Nuovo Cimento 42A, 90j. (1966)."M. Pro&ssart, Phys. Rev. 123, j.053 (196j.).
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real parts of both sides of Eq. (14) we obtain
dm'p4(m', xP= 0, x'=0)

f.' ImT+(p, p; (YI),)= klolo" dx 8(xo)

x(cos(v») {(p'ILi. (*),i'(0)3 I p&

+&pili (0) i'(*)Hlp'&}+
'

(v )

x{(p'll:i.-( ),i. (o)jl p)
—&pILi (0) i'(*)jlp')}) (15)

Now it has been shown' ' that at high energies the light-
cone singularities give the dominating contribution to
the expression (15).The important question, however, is
which type of singularity we have on the hght cone. In
order to study this problem we shalt. use the current
algebra (it is rather unlikely that local 6eld theory
contains any speci6c information on the type of the
light-cone singularities). For simphcity we only con-
sider the forward direction.

For the relevant commutator

F„,(x)= dm'f„, (m', x,p) a(x,m)

f„„(m',x,P)=pI(x,P,m') 8„8.+po(x, P,m')P„B.

+po(x, p,m') p.p.+p4(x p m') g" (1&')

F. (x)=(pILi. (x),i.+(o)jl p&

we have the Dyson representationI (for simplicity p is
collsldered to be scalal')

=-2(plio™(0)lp&, (18 )

(18f)

(18g)

po(x, p,m') =0,

po(x, p,m') =po(m', xp, x'),

M po{m xp=O x =0)dmo=4(plyo~o(0)
I p). (18h)

Ke cannot exclude that other solutions exist, but the
solution exhibited in Eqs. (18) is consistent with local
Geld theory as well as the cornmutators (2) and. (3).
Collecting our results we get

&PILi. () i'(0)lip&= d '( ( ' p, *')p.~

+g„„p4(m',xp, x')pB/Bx}6{x,m), (19)

i.e., the relevant commutator satis6es a Dyson repre-
sentation with only two spectral functions. From (19) it
is obvious that we have two types of contributions to the
commutator, namely, those coming from the singular
and from the nonsingular part of A(x,m).

We shall first investigate the nonsingular contribu-
tions to the commutator and we shall show that this

part of the commutator only contributes on the light
cone for q„—+~ .To see this we use local commutativity,

F„„(x)=0 for xo& lxl,

cos(qx)
dx e(xo) P„,(xo,x)

sin(gx)

and a partial integration then gives the following result

where we only consider the symmetric part of F„„ for the nonsingular part P„„(x)of F„„(x):
I since we are multiplying F„„by q„q„ in Eq. (15)j.
Considering the various equal-time commutators, we
6nd the relations p, =O, v=O:

8
poM +poM'+p4 h(x, m) I

„odm'
Bxo

=2&pl io"'(o)
I p»(x), (18a)

p46(x, m) I., odm'= —2(p Iio™(0)I p)b{x) . (18b)

cos(qx)
dxo Fop(xo)x)

sin(gx)

1 —sin(qo I
x

I

—Ilx)
QX

go cos(qo I
x

I

—llx)

XP„„(lx l,x)+0{1/go') (20)

p4(x, p,m') =p4(m', xp, x')MB/Bxo, (18d)

In the space-space case we have used the fact that any
possible S.T. 6nally turns out to be unimportant, so
that

pl(x, p,M') =0. (18c)

Tile somptosf sollltloll collslstent. With Eqs. (18) ls
(other derivatives with respect to xo do not change the
arguments)

Hence, in the asymptotic limit q„—+ the only con-
tribution comes from the surface of the light cone. This
result as well as Eq. (19) shows that asymptotically
the light-cone behavior of F„„(x) determines the dy-
namics. Equation (20) is actually only valid if F„.(x) is
a smooth function, i.e., if the dynamics is smooth
asymptotically (this turns out to be the case for Ir+P

scattering, but not for ~ p scattering).
Let us for the moment concentrate on the nonsingular

contributions in Eq. (20). From Eqs. (15) and (20) we,
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find (using invariance under parity)

f ' ImT+(P, p', (q ).)= —Lqi"q "/(q ) j
discussed in detail in Appendix D. We find from the

sum rules (18),

f-' Im&+(P, p'P(q )o)=4(q ).(O'I j"(o) I P)&+S T.
+0(1)=4qi"(P'lg.r'(0)IP)iq+S T ,. .(22)

X dx sin((qp)olxl) cosqpx

X(P'ILj (x),j,+(o)pip). , ~*~"'" "" '+0(1) ~
—Lql qp/(qp)oj dx sin((

X(P'ILj„—(*) j+(0)jlP),p-, ~
~ —.P.+0(1) (20)

where

dx sin((qp)plxl) B«»,(x), (23)E= lim
(e2)0

B„(x)~ B(x) for qp~~. (24)

The result above can be understood intuitively from

Eq. (20a), if we insert the total commutator in Eq.
(20a). Equations (22)—(24) then state that the high-

energy limit is dominated by the equal-time commutator
if we insert instead of an exact 5 function an approxi-
mate 8 function 5«(x) which for qo~~ becomes an

exact 5 function. It is very important that the function

b«(x) occurs in Eq. (23); if instead we had an exact 5

function the total cross section would vanish. The form

of the function 5« is suggested by the representation

(19), and we shall discuss this in the next section and in

Appendix A.
In calculating the equal-time commutator I

which

enters because of the sum rules (18)], we use Eqs. (2)
and (3). The fact that the antisymmetric tensor terms

in Eq. (3) do not contribute follows from the multipli-

cation with the symmetric tensor q&&q2" ~q&"q&" for

qi& —+op. In Eq. (22) we have also used the fact that
asymptotically qiqp= (qi)o' and (p'I jor'(0)

I
p)=0 (for

small momentum transfers). Because of the asymptotic
bound (13), possible S.T. in Eq. (22) are in fact absent.

In the next section we shall calculate E. Here we

only mention that E is less than 1. This follows from

the fact that B„(x) is practically vanishing for Ixl)1/qp, and hence sin(qpl xl) is potisive. Replacing
sin x b its u er limit 1 we obtain

for q„~ op. We have used the fact that as (qp)p ~ po the
main, contribution to the integral comes from Ixl

1/(qp)p because of the oscillating trigonometric func-

tion. The commutator with xp 1/(qp)p is almost an
equal-time commutator, but we cannot perform the
limit xo 1/(qp)o ~ 0 directly since the argument of the
sine then becomes undetermined (~ X0). Nevertheless
we expect that the commutator is given roughly by its
value at equal times, which actually means that the
nonsingular part of the commutator does not contribute.

The singular contributions to the commutator are
of the type

5'(x) = dm'p(m', exp x')(8/Bxp)6(x, m), (21a)

where we consider only the singular part of 8&(x,m)/Bxo.
Since the most singular part of BA(x,m)/Bxp is inde-

pendent of the mass variable m we actually have

8 00

S(x)= A(x, m=0) dm'p(m', Vxo x'=0), (21b)
Bxo 0

(25)
qpmoo

(qol I) y pp
where BA(x, m= 0)/Bxp again means only the most sin-

gular part, and where we have used the fact that this

part vanishes outside the light cone. It now follows by X( lim dx B«(x)=1.
an argument of the same type as used in Eq. (20') that
provided p is a smooth function of xo, the contribution Hence we expect g to be some number between 0 and g.
to ImT+ of S(x) is given by

8
ImT+ dx cos(qpx) A(x, m'=0)

8$0

X dm'p(m', xp 1/(qp) p, x'= 0), (21c)

S. CALCULATION OF THE CONSTANT N

In this section we shall calculate the constant X
defined in Eq. (23). It is therefore necessary to intro-

duce some explicit expression for the function b«(x).
The Kallen representation suggests that the equal-time

commutator behaves like

so that for (qp)o ~ pp the integral is dominated by $86&+i( , x)/m8 p)/xBxpj„p, (26)

dm'p(m', xo=0, x'=0),
and in Appendix A it is shown that this behavior leads

21d
to the following representation of the 8« function:

which is given by the sum rules (18), i.e., the integral
(21d) is given by the current algebra. This procedure is

p(qo)
B„(x)=-

~P Lxo+,P(qo) )P
' (27)
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ft(qo) ~ 0 for qo
—+to ~ (28) TAffrz I. Numerical variation of fV(u) aud o „(Ot)=56 N(a) mb

as functions of the parameter n.

4 ff(qp) l
x

l

' sin(qp
l
x

l )
E(q,)=— d

l
x

l
.

L I
x I'+f '(q")7'

(29)

At high energies we must have scale invariance, i.e.,

E()tqo) =$(qo) .
From Eq. (29) we therefore obtain

)f (~qo)=f (qo),
with the solution

f (qo) =nlqo,

(30)

(31)

(32)

where n is some constant. From Eq. (33) we then obtain
(by combination of various formulas in Ref. 13)

Equation (27) follows from (26) by replacing xo by
xo—ip, , instead of an exact 5 function one then obtains
Eq. (27). Equation (28) follows from Eq. (24). From
Eq. (23) we obtain 0.10

0.20
0.30
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.70
0.80
0.90
1.00
1.50
2.00
3.00
4.00

0.294
0.398
0.455
0.479
0.485
0.485
0.485
0.489
0.486
0.486
0.485
0.476
0.476
0.471
0.459
0.440
0.408
0.382
0.242
0.140
0.022—0.006

16.4
22.2
25.4
26.7
27.1
27.1
27.1
27.4
27.2
27.2
27.1
26.6
26.6
26.4
26.2
24.6
22.8
21.4
13.5
7.8
1.2—0.3

1
A'(n) =—L(1—n) e Ei(n) —(1+n) e Ei(—n)7 (33)

(34a)

where
* dt

lix=—
0 lnt

Eix=—li e*,

—Ei(—x) —=

oo e—g—dt.
g

(34b)

n= 0.32. (35)

In Table I we have calculated some values of 1V(n), and
it is seen that X(n) is practically stationary for 0.4&n
&0.6. Since p) 0 it follows that n is restricted to be in
the range 0&n(4.

So far we have expressed the asymptotic amplitude
(22) in terms of the parameter n. However, from as-
sumption (iii) o(to) is nonvanishing. This implies, ac-
cording to well-known results, '4 that the di6raction
picture is satisfied, i.e., ReT /ImT t 0 for $-+oo. In
order to avoid ReT /ImT to go to a constant it
follows by a calculation quite analogous to the work in
Sec. 4 that

a.„(~)=I(/fro, (38)

where 0-0 is a characteristic quantity with the dimension
of a cross section

In Eq. (39)

2 1
0.0= 16m. —= 56 mb.

gg 52

g' fft )'
p= —

l
=o.o82,

4fr 236

(39)

according to Ref. 15.
Recent fits to forward pion-nucleon dispersion re-

lations give"

It is interesting (see the next section) to note that the
two values of E given in Eqs. (36) and (37) only deviate
by 6 jo.

0. DISCUSSION

A. Total Cross Sections

Specializing Eq. (22) to the forward direction, we
obtain

This result is shown explicitly in Appendix B. From
Eq. (33) we find

1V(0.32) =0.459. (36)

Finally, we mention that X(n) has one (and only one)
maximum in the allowed range of 0, values. One 6nds

+ fit($)=o' fit(oo)+f$ /$1'f28

fit($) o. fit(to)+ft /$0. 697

where u+ and a are constants and

o„„"t(~)= 22.72 mb.

(41a)

(41b)

(42)

Max ftfr(n) —() 489 for n —() 48 (37) To comPare the Phenomenological information in Eqs.

"A. Krdelyi et al. , Tables of Integral Transforms, Jjateman
ManuscriPt Project (McGraw-Hill Book Co., Inc., New York,
1954), Vol. 1.

'4H. Lehmann, Nucl. Phys. 29, 300 (1962); L. Van Hove,
Phys. Letters S, 252 (1963); P. Olesen, ibid 14, 66 (1965); Y. S.
Jin and S. W. MacDowell, Phys. Rev. 138, 81279 (1965); A.
Martin, Phys. Letters 15, 76 (1965); R. Wit, ibid. 15, 350 (1965).

"V.K. Samaranayake and W. S. Woolcock, Phys. Rev. Letters
IS, 936 (1965).

'6 S. J. Lindenbaum, in Proceedings of the Fourth Coral Gables
Conference of Symmetry Principles at High Energies, University
of Miami, 1967 (W. H. Freeman and Co., San Francisco, 1967);
K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love, S. Ozaki,
E. D. Platner, C. A. Quarles, and K. H. Willen, Phys. Rev.
Letters 19, 193 (1967).
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(41) and (42) we insert the value of X determined in
Eq. (36), and we get

o.„(~)= (25.7a4.2)mb, (43)

where the uncertainty comes from the uncertainty in
PCAC (which we have applied twice) estimated in Sec.
2. In Appendix C we show that the result (43) is inde-
pendent of the special representation of the 8„function
Lgiven in Eqs. (27) and (28)], at least as far as a large
class of 6« functions is concerned. The reason for this
model independence is that the requirement ReT+/
ImT+~0 for s~~ puts strong restrictions on the
5« function.

Within the uncertainty limits, our theoretical pre-
diction (43) is seen to be in complete agreement with
the phenomenological value (43). The deviation be-
tween the mean value in Eq. (43) and the phenomeno-
logical value (42) is 13/z. This deviation is not unreason-
able in view of the accuracy of the usual sum-rule pre-
dictions of current algebra. It is evident that o ~'"(oo)
is also somewhat uncertain, " "and there is therefore
an excellent agreement between the results (42) and (43).

One interesting feature should be pointed out. If,
instead of the value of E in Eq. (36), we had used the
maximum value of X, given by Eq. (37), we would
obtain

o ~
' (ao) =27.4&4.3 mb. (44)

» P. Olesen, Nuovo Cimento 43k, 875 (1966);and unpublished
report.

» Y. J. Gajdicar and J. W. Morat, Phys. Rev. Letters 18, 2254
(1967).

'9 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 5, 580
(1960).

This value is almost equal to the correct value in Eq.
(43). Our result is therefore in agreement with the
principle of maximum strength of the strong interactions
proposed by Chew and Frautschi. "

In Secs. 4 and 5 we calculated the cross section for
~+p scattering. One can of course repeat all the argu-
ments to obtain the cross section for n. p scattering. It
turns out, however, that the results convict with uni-

tarity since o -„(oo) is less than zero. This means that
in the ~ p case one of our three basic assumptions (i)—
(iii) must be wrong, and it seems natural to assume that
the second half of assumption (iii) is wrong, i.e., that
the n. p light-cone singularities are stronger than b(z')
or derivatives of 5(x'). In terms of the spectral functions

p(m', xp, x') it means that p is singular in the n. p case.
Physically this implies that ~ p scattering has a more
complicated high-energy behavior than m+p scat-
tering, something which is also indicated by the
phenomenological Eqs. (41). It is also well known at
machine energies that the m+p system has a behavior
which is rather different from the vr p system. Hence it
is perhaps not too surprising that the two systems
behave in diQerent ways asymptotically. A possible

intuitive explanation would be that the x+ does not
see the low-energy resonances at high energies, whereas
the x continues to be influenced by the resonant
structure at low energies. In any case the structure dif-
ference indicates that very interesting phenomena might
show up above the present machine energies. '~'8 From
our point of view we know, however, that because of
the Pomeranchuk theorem the prediction (43) also
applies to ~ p scattering, although the dynamics pro-
ducing o (~) is different in the 7r+p and n p case. Finally
we mention that a possible way to change the situation
mentioned above would be to introduce additional
terms in the space-space commutator (3), since this
commutator has not been checked in low-energy sum
rules. Such additional terms would unfortunately be
very complicated in x space. The models studied by
Okubo' and Domokos and Karplus' have the serious
disadvantage that they do not reproduce the ordinary
successful current algebra (in these models the equal-
time commutator either vanishes or does not exist).
It might be, however, that the ordinary current algebra
is some sort of low-energy approximation, although
it appears to be hard to formulate this statement in
a more precise way. In view of the arguments in Ref. 4
as well as in Sec. 2 we believe that PCAC is a very
reasonable assumption for high-energy matrix elements;
in this connection we would like to emphasize that
PCAC is of vital importance in order to obtain a con-
stant cross section.

We now turn to the pion-pion case where Eq. (22)
gives

o (~)= 2opX= (51.4&8.4) mb.

Since no experimental fit exists for o (s) we cannot
exclude this value, although it appears to be too large
Dn any case Eq. (45) has the right order of magnitude j.
An explanation of this might be that the commutators
between pion states behave in a more singular way than
the proton-proton matrix elements of the commutators.
Because of the lack of information on o (s) we shall

not discuss this point further. Similar remarks apply to
o.x(~) and o g(~).

One could also try to calculate the kaon-nucleon
cross sections by extending PCAC to As=1 currents.
Since o-~+„and o-~+„are constants from 6 to 20 GeV
(this is presumably due to the large number of open
channels), condition (iii) is probably satisfied. However,
it has been demonstrated that PCAC does not apply to
the As=i current" and we therefore think that such
an extension is not reasonable.

B. Small-Angle Scattering

Ke now investigate the nonforward direction. Using

Eq. (22) and conserved vector current (CVC), we have

"B.R. Martin, Nucl. Phys. 87, 277 (1966).
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for pion-proton scattering

2A
(p' '4)17'lp '(V))=, (p') eF '(t)

+ — (p.
'—p )(Vi).o""F2"(t) N(p) (4&)

231

where t=(P' —P)' and F2v(t), t'2=1, 2, are the usual
isovector form factors. The unpolarized pion-nucleon
differential cross section then becomes

do 162r f4 1+t/(s —M')
— (Gs')' — (G~")'

dt 2244 gg4 1—t/4M2 4M2

t2 (G V)2 (G V)2
/V'. (47)

4(s—M2) 2 1 t/4M—2

Since our derivation only holds for small momentum
transfers, we have for s))M2, ~t~&&s—M',

do do t 1+t/(s —M')
(Gsv)2 (G v)2

dt d«=2 4M' 1—t/4M'

dog
Gs' — G222 1— ~, (48)

dt) 4 2 4M2 4M2)

where we have neglected the neutron form factor and
where G22(t) is the proton's electromagnetic form factor.

From Eq. (48) one can calculate the quantity

G222 — G242 (1—t/4M') ', (49)4' 2

and compare E(t) with experiments. It turns out that
Eq. (49) gives reasonable predictions (within 20'Pz) for
very small momentum transfers (up to t=0.'/ GeV/o2
around. 15 GeV). For larger momentum transfers the
formula gives too high values for E(t). This is to be
expected, since the derivation of Eq. (49) is valid
asymptotically and for very small momentum transfers.
The last condition is necessary to get rid of the tensor
terms in Eq. (3). If these terms contribute appreciably,
it is obvious that Eq. (49) is wrong; hence we must
restrict ourselves to very small momentum transfers.

It is possible formally to include the tensor terms in

Eq. (44) by replacing F2v(t) by some function H(t),
where H(t) is then an unknown function, and by fitting
the data one can obtain information about B(t).

In the pion-pion case we obtain

do' /do'
F(t)'(1+t/ ),

ww ddt 4=2

where F(t) is the charged pion form factor,

(v'(p')
I i."'(0)

I v+(p)) = (p.+p'.)F(t)

Since F(t) and Gs(t) are probably very similar (both
form factors are expected to be dominated by the p
meson between the relevant particle lines and the
photon propagator) it follows that the diffraction peak
should be similar in the pion-proton and in the pion-
plon cases.

It is interesting to compare our result (48) with a
result recently obtained by Domokos and Karplus. '
They used aIl asymptotic expansion which ls due to
Bjorken"; the Sjorken expansion does not take into
account the light-cone singularities and leads directly
to equal-time commutators with exact b functions. One
can obtain the Bjorken limit from Eq. (18) if one
does not replace the lower limit of the xo integral by

~
x~ &

i.e., if one does not use the condition of local com-
mutativity. In momentum space this means that the
Sjorken limit corresponds to taking qo

—+~, q 6nite,
and the pion is therefore in6nitely off the mass shell. It
is clear that this limit is not the proper physical hmit,
but Domokos and Karplus argue that the Bjorken limit
can be valid for large energies and momentum transfers
if the Regge poles retreat to l= —1. Under these as-
sumptions they 6nd the following differential cross
section:

/'g ' t:G~'(t)j'
2 {Xg)2I

dt (42r L2(s—M2)+t]'

( M4 3 M'+t
Xi 1+ +—,(52)

s 2 s

where Z is a factor of order 1 and where Gsr'(t) is the
scalar magnetic form factor. Karplus and Kroll did not
use PCAC to derive (52), but used the Bjorken limit
directly to the pion-nucleon amplitude (written as a
retarded commutator). From the equal-time commuta-
tor for the pion current, the result (52) follows. Equation
(52) shows that the large angle do/dt is of the order
1/s', whereas the forward do/dt is or the order 1 from
Eq. (47). The di6erence between Eqs. (47) and (52)
enters because we have used PCAC to derive Eq. (4/)
and also because of the use of different asymptotic
limits.

%'e 6nally mention that the Bjorken limit gives
o (oo) =0. This means that the cross section for the scat-
tering of a pion in6nitely off the mass shell on a particle
with 6nite mass vanishes. In order to obtain a 6nite
cross section it is absolutely necessary to let all compo-
nents of the energy-momentum vector go to infinity,
keeping the pion mass 6xed. Fortunate/y this is also
the physical asymptotic limit.

T. CONCLUSIONS

The results discussed in Sec. 6 are reasonable in the
sense that they do not contradict existing experimental
information. The comparison of o o{~ ) with fits to the
forward 2rP dispersion relation gives an astonishing



agreement; one can explain this as an accident or as a
support for the basic assumptions (i)—(iii). At present
we have no means of distinguishing between the opti-
mistic and the pessimistic points of view.

%e wish to emphasize that in our approach the
asymptotic limit is approached by letting the energy and
the three-momentum go to in6nity simekaeeolsly; if,
e.g., one lets 6rst the energy and then the momentum go
to in6nity, the result is 0(~)=0. The explanation of
this is probably that the special order of limits qo~~
and then

l q l

—& ~ implies that the amplitude is con-
tinued from the mass shell to q'= ~. Such a continu-
ation can very well introduce unpleasant features.

Whether the method to determine ~(~) proposed
here can be regarded as satisfactory in principle, or
whether this method, in spite of the good numerical
agreement for 0 ~(~), represents a far too rough and
unsatisfactory approach to the problem of calculating
the physical high-energy cross sections, cannot be
decided without further investigations of the method.
However, even if one agrees on the method, many
unsolved problems remain, e.g. , how to calculate the
kaon-baryon and the baryon-baryon cross sections. In
this respect the Regge model might be of some help.

where

I
~jg t ts

(2~)'
jqj'd jqj ~-"(jqj'+~')'&'

2 p
)(' g&t%( I*it = — - =~21j2(&&t (x21p2) &12) (Ag)

(2&r)'x'+p'

where E~ is a generalized Bessel function, and the well-
known asymptotic expansion of E2 yields" (for m))1/&«)

b„„(x)=const — expL —m(x'+p') '&'j. (A6)
(x'+& ')'"

Hence 8„, (x) is exponentially damped above ss 1/p.
The contribution to the integral (A4) over the spectral
function is therefore negligible for m)1/&«, and Eq.
(A4) can be written

(0l j(x)p(0) l0)=-', lim dm'p(m')&&„, (x). (A7)

For m«1/p we have m(x'+p')'"«1, and expanding
Eg ln Eq. (As) we obtain
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APPENDIX A

In this Appendix we shall show that the Kallen
representation" suggests the representation (27) of the
8 function. %e consider, for simplicity, a scalar field

p(x) for which"

p
b, „(x)=- —const' inj ~p(x2+p2)&&2j. (AS)

m' (x'+p')~

The term containing the logarithm vanishes for p —+ 0.
Hence the only singular term is the first term on the
right-hand side of Eq. (AS). Equation (A7) then gives

1/p

(Oj j(x)q(0) j0)=- lim — dm'p(m'), (A9)
2~2 p~o (x2+~2)2

from which we easily get

«jL'(.),.(0)&j»

I p=—llIQ
~2 P~O (xm++2) 2

1 p
b„(x)=—

~2 (xm+~2)2
The distribution 2 &@&(x,m') is the boundary value of a
function analytic in the lower-half xo plane,

d~ e-'~*t&(~s ~2)e(~,) (A2) It; is trivial to check that
(2s)'

dm'p(re') . (A10)

(A11)

5&+&(x,m') =lim 6&+&(x xo—i&«rs2).
p~o

has the && function property

From Eq. (A1) we then obtain dxf(x)8„(x—a) =f(a)

(0j &'(*)& (o) j0)=k»m ~~'~(~')4. (x), (A4) «r& ~0. Hence wehave shown that the Kallen repre-
0 sentation (A1) suggests the form (A11) for the 6 func-

» G. Kalian, Helv. Phys. Acta 25, 417 (1952); H. Lehrnann, »A. EIdelyi g ~) yy~gh~. „y~~~~~~~ ] ( p
Nuovo Cimento 11, 342 (1954); M. Gelt-Mann and F. E. Low, Muwlsgript I'sojecI, (Mcoraw-HiiI poop Co. Inc, ~e~ y&zg
Phys, Rev. 95, 1300 (1954). 1953), Vol. II.



tion. For p —& 0, Eq. (A10) yields the usual result

&0I[o (~),o(O)]lo)=B(x)

Note that, strictly speaking, we are only allowed to
perform the transition between Eqs. (A10) and (A13)
if the integral over the spectral function converges,
which is very unlikely. It is therefore reasonable to keep
p, 6nite and let p, —+ 0 only at the end of the calculation.

APPENDIX 8
In this Appendix we shall discuss the behavior of

the real part. The details are very similar to the calcu-
lations in Secs. 4 and 5 so we shall only give a very brief
account. Ke specialize the calculations to the forward
direction in order to simplify the formulas. From Kq.
(14) we obtain

—if-'[«T+(P, qp)
—T+(P qp=0)]

=iq" d*e"*B(»)&pl[ip (*) i'(o)]lP)

ReT+ approaches a constant at high energies, and
ReT+/ImT+ —+ 0 asymptotically.

mutator
[i"(~),B"i» (0))..=o (88)

does not contain Schwinger terms. If such terms exist
the quantity T+(p, qo=0) will be replaced by

T+(P, qo= 0)+O{qo).

The term O(qp) should then be added to the O(qo)
terms on the right-hand side of Eq. (83). If we keep the
value (87) for n, local field theory requires that these
Schwinger terms be absent because of the Martin-bound
(13).

APPENDIX C

In this Appendix we shaH show that for a large class
of 5« functions the cross section turns out to be between
20 and 30 mb. The main point is that the quantity M
introduced in Appendix 8 for general reasons is equal
to -', . Thus

cos{qplxl».o(x) lxl'dlxl =p. (C1)

where we have used the fact that asymptotically

"*&PILi. ( ),i. (o)]IP&— "*&PILi. (o),i. (*)]IP)
=»»n(q~)&PI[i. (~),i. (o)]IP). (82) ~'Bo.(0) = »p.(o),

—iq»q" dx e(xp) sin(qx) (pl[i„-(x),j„+(0)]IP&,(81)
Scale invariance M(qp) =M(Xqo) yields

x'B„(x)= BI„,(x I x),
and for x=0 we therefore obtain

(C2)

(C3)

Using the asymptotic Fourier theorem and the corn with the solution
mutators (2) and (3), Eq. (81) yields B„(0)=Aqpo,

where A is a constant. Now we assume that

sin(qo I
x

I )
X B„(x)=0

cos{qplx I)

lxII = 1/qo,
(84) for3f= dx cos{qolxl)B„(x),

f.'[ReT (p,qo) —T (p,0)]
=-2q.&pli"'(0) I

p&(1-2Bf), (»)

i.e»)
4 "x' cos{ox)

3E=- dx= (1-n) e
o (1+~')'

which is our restriction on the 8« function. "Ke there-
(85) fore obtain from Eq. (C1)

&i'co

Again we have used, the fact that cos(Iipl xl) acts as a
function of the type discussed in Eqs. (20) and (21)
[note that cos(ILx) is oooo a function of this type since

q x=0 for II and. x orthogonal], Now the assumption
ol(op)WO requires" ReT+/ImT+ —+0 for s —&op, and
this is only true if 2M = 4, i.e.,

(86)

x~3q pedx= 43~3,

from which we 6nd using M= —',

A=3/Sp.
Similarly, we obtain

(C6)

(C'I)

with the solution (accurate enough for our purpose)

a= 0.32, (87)

as we already used in Eq. (35). With this value of n,

*'sin(qox) B„(x)dx=IrA=0.4, (Cg)

~' The statement in Eq. (CS) can of course be made more rigor-
ous by saying that for a given e&0 there exists a q0 such that
b«(x) &~. In the same way the arguments in Eqs. (C6)-(C8) can
be made more rigorous.
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where we used Eq. (C7). The value (C8) leads to Now, from Eqs. (D4) and (D5),

o „(~)=22.4mb,

and in view of the neglected higher-order terms this 0

value agrees very well with the result in the main text.
Inside the uncertainty (from PCAC) Eq. (C9) agrees
with Eq. (43).Hence our conclusion is that the condition
M=-', insures that the physical result for p(op) is inde-
pendent of the particular representation of the bqo

function [provided that (C5) is satisfied].

APPENDIX D

T=— dx sin(q, lxl) s„(x),
q

(D9)

qp
8„(x)= —— cos(q x).

4~fxf
(D10)

qpf.
dxp cos(qx)F(x) = sin(qolxl —q x), (D8)

44. fx f

The representation (19) of the axial-vector commuta-
It is easily verified that 8qojxj acts as a 8 function,tor shows that, provided the spectral functions are not

too singular, the most singular part of the commutator
is given by cjh(x, m=0)i8xp times integrals over spec- dx f(f xf)& (x) ~ f(0) for qo~po . (D11)
tral functions, which are known from current algebra
in the limit qp ~op [see Eqs. (21)]. The axial-vector
commutator is given by Kq. (19) which we simplify to Reintroducing the spectral function (D3) we find tha, t

F( ) =&pl[i. (x),i+(O)]l p&

00 8
dmop(moxp x') — Z(x,m-), (Di)

0 Bxo

where p=Mpo+Mp4. From current algebra we then
know that

dm p(m, 0,0)=2&pl J, '(O) Ip) (D2)

where we have used 8(x') =0. Now we have

To study the structure of (Di) we shall start by a
very simple free 6eld model where (c is a constant)

p(m', xp x') =c8(m'), (D3)
giving

c 8 c 8
F(x)=— [p(x,)S(xo)]=—p(x.) b(xo), (D4)

2~ ~so 2m ~xo

1 00

T=— dx sin(qo l
x

l ) &o,(x) dmop(mo, o,o), (D12)
qo p

clearly showing that in the free 6eld model we get the
result stated in Eqs. (22)—(24). In other words, at very
high energies current algebra determines the amplitude
if one replaces the exact 8 function in the equal-time
commutator with an approximate 8 function.

If one calculates E in the simple model discussed
above it turns out that E diverges [like 8(q')]. Intro-
ducing a cutoG factor e ~*~ in the integral (D12) gives a
finite, n-dependent result. Requiring the ratio ReT+i
ImT+ to vanish asymptotically, does, however, not work
since in this model M can never be equal to ~~4 Since the
model is not realistic from a physical point of view it is
of course also not to be expected that any reasonable
value of p.(oo) should come out of the model.

The mathematical structure of the above model is,
however, essentially correct also in the realistic case
where the spectral function is nontrivial. To see this
we consider the integral

1
B(x )= [8 (xp—fxf)+8 (xp+ fxf)], (D5)

»4

and for xp=o (equal times) we get an exact 8 function,

F(x) f*,-o= b'(fx f)=B(x).
4ir fx f

(D6)

Now, in our simple model the amplitude is'given by
(apart from unimportant factors) a sum of expressions
of the type

00 8
dxp cos(qx) p(m', xp, x')—a(x, m=0)

0 Bxo

qo
sin(qolxl qx) p(m', Mlxl x'=0) (D13)

4xfxf

where we assume

8
fqop(m', *p,*') f&) p(m', xp,x'),

BXo

T= dx 8(xp) cos(qx) F(x).
for qp very large. This condition is certainly satisfied

(D7) if p does not oscillate too rapidly on the light cone. In
writing Kq. (D12) we have also assumed that p is non-
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qp
dm'p(m' M~x~, x'=0)— cos(q x). (D14)

p 4m ix)

For qp very large the function multiplying p is a 8«
function PEqs. (D10) and. (D11)],i.e., when multiplied

by a function p which does rot depend on qp it acts like
an ordinary 5 function. Thus, if we write

8„(x) dm'p(m', 0,0)—= dm'p(m' M(xi, x'=0)

qp
X cos(qx), (D15)

4irtx[

then we know that the function 8«dejned by this
equation becomes an exact 5 function for qp ~00,

b„(x)-+8(x) for qo~c). (D16)

singular on the light cone. %e can then calculate the
contribution to the amplitude T,

1
T= dx 8(x ) cos(qx) F(g)=— dx sin(qo~xt)

qp

In Appendix A we have considered a special type of
5« function suggested by the Kallen representation.
It is obvious that this function does not necessarily
correspond to reality; however, the condition ReT/
ImT —+ 0 again 6xes the value of X t'and thereby of
o.(~ )J, and this value of X (which perhaps is calculated
in an unrealistic model) turns out to agree very well
with the general model-independent conditions in
Appendix C. Hence we believe that the condition
ReT/ImT —&0 makes the numerical result for o(~)
independent of the special representation of the Bgo

function. The diffraction picture ReT/ImT ~ 0 is then
a substitute for our lacking dynamical information
about p(m', xp, x'= 0).

Finally we would like to make a remark on the
$3orken limit" which corresponds to taking qp

—+~, q
6xed and finite and q' —+~. In this limit the free 6eld
theory gives

e(xa) 8
dx 8(xe) cos(qg) — 8(x')

2x' Bxp

1 ( qo'
dx~ sin(qelx~) I cos(qx) —+0

qo (prix [ )

For large, but finite, values of qo it is clear that 8«(x)
and

is not given by

for qe ~~, q finite (D18)

qe
— cos(q x)

4ir[x[

Ã= dx b„(x) sin(qI~x~). (D17)

since p depends on ~x~. The detailed form of 8«(x)
depends clearly on the dynamics. However, as we have
shown in Appendix C the dywamical condition ReT/
ImT —+ 0 for qo ~~ fixes (at least to a very high degree
of accuracy) the value of the constant X defined by

e(ge) 8
dx 8(xo) sin(qx) — 8(x')

2x' Bxo

qp

l( q09

dxi - cos(qo[xi) ) cos(qx) ~ —1/q,
(4~[x f

)
for qe ~~, q finite. (D19)

In general the Bjorken limit is therefore essentially
different from the physical limit q„—+~, q' Gxed. The
above Eqs. (D18) and (D19) can easily be generalized
in analogy with Eqs. (D13)—(D15).


