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Some features of a model introduced recently by Fubini, Segre, and Walecka and by Segre and Walecka
are examined. A high-energy contribution to a sum rule appearing in the model is calculated, producing
better agreement with experiment. The results of the model are then applied to electromagnetic meson

decays, the ¹

—+ N x decay, and low-momentum-transfer ¹ production by neutrinos.

1. INTRODUCTION

''N two recent papers Fubini, Segre, and Walecka'
- - and Segre and Kalecka' have obtained a consistent
solution of the sum rules derived by considering the
algebra of the generators of U(12) in the framework of
a quark model. They first obtained the largest subset
of "good" charges contained among the 144 charges
appearing in this model. These good charges are dis-

tinguished by the fact that they lead to sum rules which

are not likely to require subtractions since they can be
expressed in terms of difTerences of cross sections which,

by the Pomeranchuk or other high-energy theorems,
vanish at high energy. The authors then showed that,
by assuming these good charge sum rules to be saturated

by a few low-lying particles and resonances and inter-

preting the couplings appearing by "polology, " many
of the results of higher-symmetry groups, such as

SU(6)s, can be derived in an unambiguous, Lorentz-
covariant manner without any assumption of higher

symmetry. The solution obtained in I and. II has some
other interesting consequences which will be discussed
in the present paper.

Segre and Walecka found that, as first pointed out

by Adler, ' the sum rules obtained by taking the ma-

trix elements of the quark-model axial-vector charge
commutator between pseudoscalar-meson states are
not saturated by vector-meson intermediate states.
In particular, the vector-meson —pseudoscalar-rneson-
pseudoscalar-meson coupling constant (Gy n n) obtained

by assuming such saturation is too large by about a
factor of 3.On the other hand, the ratios of the couplings
are given correctly by the consistent solution obtained
in I and II. Adler's suggestion' that a large s-wave x-m

scattering is needed to saturate the sum rule is in-

compatible with the vector-meson-dominance solution
obtained in II, and so would ruin the correct coupling
ratios given by that solution. This is the case due to the
fact that, in the framework of exact SU(3) and vector-
meson dominance, the structure of the equations is such

*Research sponsored by the Air Force Ofhce of Scientific Re-
search, Once of Aerospace Research, U. S. Air Force, under
AFOSR Contract No. AF49(638)-1389,

' S. Fubini, G. Segre, and J. D. Walecka, Ann. Phys. (N. Y.)
39, 381 (1966), hereafter referred to as I.' G. Segre and J.D. Walecka, Ann. Phys. (N. Y.) 40, 337 (1966),
hereafter referred to as II.

3 S. I.. Adler, Phys. Rev. 140, 8736 (1965).

that simply adding an SU(3) singlet s-wave resonance
to the vector-meson-dominance solution no longer gives
a solution consistent with the known G-parity assign-
ments for the mesons. This point will be made clearer
when the solutions are discussed in Sec. 2. In Sec. 2 it is
also shown that the dominant high-energy contributions
to the sum rule, which arise from the vector-meson

Regge pole, can be included in a way which changes the
scale of the V-II-II couplings obtained in Il, bringing
them into better agreement with experiment, while at
the same time preserving the results for the ratios. Some
comments on the relation of this result to the recent
work of Meiere and Sugawara4 on the same problem
are also presented.

A by-product of the consistency solution obtained in I
and II was the direct determination of the vector-
meson —photon coupling constant gy7. The derivation
is given in Appendix A. Using the value of gi ~ obtained,
together with the Gell-Mann, Sharp, and Wagner
model' which is built into the approach of I and II,
results for electromagnetic decays of vector and pseudo-
scalar mesons are presented in Sec. 3. While many of
these decays have been considered previously by various
authors, ' it should be noted that the value of gy~ used
most often is obtained by assuming vector-meson
dominance of the pion electromagnetic form factor, an
assumption which is equivalent to assuming an un-

subtracted dispersion relation for the electric charge.
The value of g~„used in the present calculations is ob-
tained by assuming that only the magnetic form factors
of the nucleon have an unsubtracted representation.
The value of gy~ used here is thus based on much more
plausible assumptions.

In Sec. 4 we illustrate the higher-symmetry results
obtainable in this model with the example of the
E*~E+7r decay. Some of the other symmetry fea-
tures of the solution are also mentioned.

Finally, in Sec. 5 a calculation of the low-momentum-

transfer E* production by neutrinos on protons is
presented. A new result for the X~X weak axial-vector
vertex obtained in I is used in the calculation and the
result is compared with. the existing experimental data.

4 F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1702 (1967).
~ M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev. I.etters

8, 261 (1962).
6 References to previous work are given in Sec. 3.
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2. HIGH-ENERGY CONTRIBUTION TO
THE e-~ SUM RULE

To fix the notation we review brieRy the derivation
of the sum rule. For further details, see II. The com-
mutator of interest is that of the axial charges

Qg»= ft(x)ysh~f(x)dsx

where vo
——~m~' and unsubtracted dispersion relations

for the II„„and their odd crossing symmetry have
been used.

Assuming saturation by a nonet of vector mesons of
mass vs&, we have the equations

0=(a+10)os +(Qs)122 +2122 sos,„
o= (—sg o) 1—(gs) 2„+2 s, s

—
9 ss, l

which satisfy the commutation relations
0=

12=(V's)~2 g CSII
I

—~~s,—~~s

—-', as.„, (2.4)

Here

8 8 8g

LQ~,Q~ej= —2v3 Qvt'

P v

Q v —— ft(x)u4 (x)d'x,

(2 1) where the a„„are the amplitudes coupled in the direct
channel

pv (p
11'(v)= 2

v ~ Ys O''P s (s Q p)

f(x) is a 12-component quark field and the X» are the
usual SU(3) matrices in a spherical tensor basis.
For convenience we work in the limit of exact SU(3)
symmetry.

Taking the matrix element of (2.1) between pseudo-
scalar-meson states of momentum I' and applying the
method of Fubini, Furlan, and Rossetti, ~ we arrive at
the sum rule

8
mn —II e(v) = 12I (2.2)

Bv . 2 ko' P V~&0 V p&

where mii is the pseudoscalar octet mass,

Equations (2.4) admit the solution

~sy. I —~su —0
&

&sII =——,'&2as,

12=——8 ——81 9
2 82' 1 0 8II ~

(2.5)

H we represent pseudoscalar mesons by a dashed line,
vector mesons by a solid line, and axial-vector vertices
by crosses, then vector-meson dominance in the sum
rule (2.2) and pion pole dominance of the axial-vector
current imply that the right side of (2.3) can be repre-
sented schematically as in Fig. 1. If f is the pseudo-
scalar-meson decay amplitude defined by

P„( 1 8 8)
!&ps(v) Ix.~s(0) Io)=sj

(2EQ) '"(000
and

Ii-e(,)= ——;sp-'(,)—pe-(,)j,
E2QQ 1/2

P e(v) =
!

e-'9'8(xs)
mns I

E1E2Q
x(Ps(p) ILD,-(x),D,P(0) jlPs(~)&dsx. (2.3)

I

'"
! &p+.qv„s(„)!I-,„(0)jt!ps( )&

Here E is the meson energy, 0 is the quantization
&mumv i

volume, v= —
q P, and D& (x) is the divergence of the 8 8 8y (8 8 89

axial-vector current J„"(x)=sf(x)y„vsXQ(x). The 4- =(V'q) Gvnn +Gvuu
I

vector q is, as usual, taken to be null, q'=0. 0' (o s

Owing to the coupling coeKcients appearing on the
fidefines the V-II-II coupling constants, where V„ is the

right side of (2.2), it is convenient to decompose II»p

into f-channel amplitudes:

(8 8 p~) (8 p ss)
~-e(.)= z I.472 Ec P el' EO s pi'

N(g) x r ~(a)

so that finally we obtain the sum rules

0=

0=

2tpsg

yo

2mQ

dH

ImII12(v) —,
p2

Im 112„(v)—,
V

0=

12=
X yo

28$Q dp
1mIIio(v) —,

yo P

2mg dp
Im112„(v)—,

V

FIG. i. Meson-pole-dominance model
for the right side of (2.3).

V

~ S. Fubini, G. I'urlan, and C. Rossetti, Nuovo Cimento 40,
iiji (1965).
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vector-meson polarization and jii' is the source current Defining the invariant amplitude Tp, & by
of the pseudoscalar octet, then we find —mDTp~ I' 2

2 t'mn)
lf'(Gvnn ),

+8 tv)
(mn)

aslr asmr= —
2l lf Gvnn Gvnn

&mv)

t'mn)
a»r= 21 If'(Gvnn )'

&mv)

4&+ O.m.

we 6nd in the usual way that

1 t g,E,QQ its

l
(2-)' 2 t&p 8(.)l~'-(0)l»

2k mn' )

X&xl[jrrp(o)]tip, g(a))b4(p, +p, p

tmn
a»r 2l lf (Gvnn )

(mv)

Inserting these values into the solution (2.5) yields two
solutions for the couplings:

Gvnnn=Gvnn0=0, 4mnmv(Gvnnv)s=48mvs/f2,

X&& l J"(o) I psg(~))&'(p4+ pN —pm)]

Again making use of pion pole dominance of the axial-
vector current divergence, which in this notation is
equivalent to the replacement

Dg (x) = —mn'f[yn (g)]",

and

Gvrrrr =0&

4mnmv(Gvnn )'= (80/3)mv'/f',

(Gvnn ) =(16/5)(Gvrrn )'.

the properties of spherical tensor operators [0~]r
= (—1)" 0-~ (v =-',7+II is the charge of the field), and
extrapolating to ps= p~=&, pr= p4=rt, g'=0, we find

1
t
8'Qg rt'( —1)'~

ImTp. '= ——
l l

— — d4xe '&

2kmn') f'
Charge-conjugation invariance requires that we

choose the first solution, so that

Gvnno=Gvnn0=0, 4 mnm(Gvvrt n)'v=48 m/vf'

As mentioned earlier, this result predicts vector-meson
widths which are too large by a factor of 3; the ratios
of the widths, which, once the F or D nature of the
coupling is fixed follow from SU(3) and phase space,
are given correctly. The inclusion of an s-wave SU(3)
singlet resonance contributes to al and thus would re-
quire Gziirl /0, which is not consistent with the desired
G-parity assignments. An examination of Eqs. (2.4)
and (2.5) immediately indicates that the amplitude as„
(or alternatively II»,) controls the scale of the couplings.
Unfortunately, an s-wave octet cannot be coupled anti-
symmetrically to two pseudoscalar mesons because of
Bose statistics, so that as» cannot be altered by con-
sidering s-wave resonances alone. The conclusion is that
in the model considered here we cannot utilize s waves
as the mechanism for altering the scale of the couplings.

A process which contributes only to II8», on the other
hand, would, in effect, change only the value of a8» and
so would alter the scale of the couplings while preserving
the other desirable features of the solution. The domi-
nant high-energy contribution to II &, which involves
the vector-meson Regge trajectory, is precisely of this
type.

%e 6rst relate the II & to the pseudoscalar-meson
scattering process

prg(P)+ p28(~) ~ pr8(n)+ p48(p).

XP'8&p) l
[D- (x),DP(0)]lP8( )).

Comparing this with (2.3) implies

Imll~p= ~r f'[(—1)' ImTp, "—(—1)'p ImT, p&].

Expanding the scattering amplitude into its t-channel
components

t' 8 8 trvl(8 tr 8,
ImTp r=(—1)' Q l ImT„„„

~~v& (—n P e) (o e p

and using (2.3), we find

ImII», =f' ImT»r [odd SU(3) amplitudes only]

so that, in particular,

ImIIS„=f' ImT», . (2 6)

The exchange of a vector-meson Regge pole in the
t channel contributes a high-energy term to Ts„which
can be written

1—exp( —irrnv(t))- ( sTg„-4mns bv(t)
l2 sinrrnv(t) (4mn2)

where nv(t) is the vector-meson Regge trajectory and s
is the usual Mandelstam energy variable. Comparison
with the exchange of an elementary V in the ) channel
yields the result

bv(mv') =rrmv Rerrv'(mv')(Gvnnv)'

so that setting bv(t)=bv(~~v')qv(t) and substituting
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into (2.6) gives the high-energy behavior (note that
s~ 2v as v —+~),

ImIIs„- — - 2f'nsusm vw

v ""(s)
XRenv'(mvs)(Gv unv)slav(0)i

&2mu'

Assuming that the Regge asymptotic behavior sets
in at v=P, we then find that the high-energy contribu-
tion to the 8~~ sum rule is

2m@ dp
ImIIs„(v)—

jj P

4f'mnsmv Renv'(mvs)(Gvnnv)'yv(0)
pa y (0)—2'

2rnns) v(s

= (mn/mv)P(Gvnnv) sX,

where

4mn'mv' Renv'(mv')yv(0)(r)~«» —'

(2mns) «s&$1—nv(0) j
The 8» equation then reads

12= (mu/mv) f '(Gv n nv) '+

(err/trav)

f'(Gv n nv) 'X,

so that the new value of (Gv nnv) s is given by

1
(Gvn v)'=

(mn/mv) f' 1+X~

while the rest of the solution is as given in II.
The best fits to mX charge-exchange scattering' give

for the p trajectory

n (0)=0.57 n '(0)=a '(m ')=0.96 GeV s.

Using these values together with m =0.14 GeV,
my=0. 76 GeV we 6nd

X=0 64 Y(0v)/. ( )'v4s

If we take yv(0) =yv(esv') =1 and assume v=1 GeV',
then X=0.64 and we 6nd

(Gvunv)'= L12/(mn/mv) f'j(0.61).
Vector-meson exchange in the t channel certainly

contributes not only in the asymptotic region considered
here but also down to threshold. We have found, how-

ever, no clear way to include this additional contribu-
tion. The diKculty is that the vector-meson contribu-
tions in the s and I channels which are included trivially
in (2.3) arise at least in part from the background
vector-meson exchange in the t channel. Simply ex-

tending the asymptotic result down to threshold would
therefore count some contributions twice. There is also

' G. Hohler, J. Baacke, and G. Eisenbeiss, Phys. Letters 22,
203 (1966).

no unambiguous method of joining a low-energy
approximation to an asymptotic Regge contribution.
Note that if we do continue the Regge contribution
down to threshold, i.e., take &=0.02 GeV', we find
X=3.4 so that the vector-meson widths are reduced by
a factor of 4. This may indicate that proper inclusion of
the background, if one could do it, might produce
substantially better agreement with experiment than is
obtained here.

At any rate, the reduction in the strength of the
coupling produced by including only the Regge pole
asymptotically brings the predicted widths of the
vector mesons to within better than a factor of 2 agree-
ment with experiment, which, in the light of the approxi-
mations involved and the approach of the work in I
and II, is not unreasonable. It is not surprising that we
are able to do this well, neglecting s waves, since Meiere
and Sugawara' have recently shown that the Adler sum
rule can be saturated by an s-wave scattering only 4
that originally suggested by Adler as a lower limit.

3. ELECTROMAGNETIC MESON DECAYS

The consistency solution obtained in I and II resulted
in a new determination of the vector-meson —photon and
the vector-meson —photon —pseudoscalar-meson coupling
constants (see Appendix A). In this section' we make
use of our approach of pole dominance, which is the
Gell-Mann, Sharp, and Wagner model, ' and these new
values for the couplings to reexamine electromagnetic
meson decays. The new determination of g&~ and 67&ii
used here requires as experimental input only the meson
masses and SU(3) assignments (including the &u-P and
g-X mixing angles)" and the properties of the nucleon
(neutron magnetic moment, p„=—1.91; pion-nucleon
coupling constant, gums/4' = 14.6; weak axial-vector
renormalization ratio, Gg= —1.18). Given this input,
the absolute partial widths for each decay mode are
determined and, of course, the ratios of these to the
dominant modes, which are more amenable to experi-
ment, follow.

A. Pseudosca)ar-Meson Decays

(s) II~ zv

The model used here treats this decay as proceeding
through a two-vector-meson intermediate state as in.

Fig. 2(a). Because we have already developed an
expression for the IIV' vertex in Appendix A, we can
treat the decay chain in the simpler fashion indicated
in Fig. 2(b). The decay width is given by

I'(lI 2y)=(1/32 m ) ~
T~', (3.1)

' A preliminary version of some of this work has been reported
previously in G, Patsakos, G. Segrh, and J. D. Walecka, Phys.
Letters 23, 141 (1966); G. Patsakos, Bull. Am. Phys. Soc. 11, 901
(1966).' A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R.
Price, P. Soding, C. G. Wohl, M. Roos, and W. J. Willis, Rev.
Mod. Phys. 39, 1 (1967). All empirical data are taken from this
reference unless otherwise noted.



SATURATION OF COVAR I AN T SUM RUI..ES

TAm, K I. Pseudoscalar-meson decays.

Theory Experiment Ref.

T(~' ~ 27)

r{~'—+ y+e++e )
r(n'~ 27)
r(~o ++ -+~)
I'(n'~ v+e'+e )
I"(ri' V+u++u )
I'(g') t t'ai

7 82 X10 ' eV
0.34 keV
0.082 keV
5.5 eV
0.19 eV
1.08 keV

1.21~0.26 keV'

1keV&I &10keV 10,b

1 01X10 ' sec (0.73&0.10)X10 "sec a
(0.89&0.18)X10 "sec 10

FIG. 2. Vector-meson-dominance models
for pseudoscalar-meson decays.

where T is the invariant amplitude. " Assuming the
decay chain indicated above and the couplings de6ned
in Appendix A, we find

T(II~ 2y) =47ra(gv»/mv2) (4mnmv) '~ G&vn

Xcp»»~(p~) p~»(P2)~»(p~)(p~)&i, (3 2)

where n=1/137, pq and p2 are the photon momenta,

»(p~) and»(pq) are their polarization vectors, and Aq is

an SU(3) factor:

8 p 1 1 8 p
Ag

——P +-
, a 000 010» V3 000 000»)

v 010 V3 v 000

Here p(P) refers to the intermediate vector meson and

$(v) to the decaying pseudoscalar meson. Squaring (3.2),
summing over photon polarizations, inserting into (3.1),
and using the values for the coupling constants given
in Appendix A, we find

502 A)II 2 3P 4 GA2
I'(II —+ 2y) = — — muham, (3.3)

12 M 4 gn~~ /4»r

so that the width is independent of the vector-meson
mass. The results for the»r' [$(v)=8(010)j and g'

[$(v) =8(000)] are given in Table I together with the
implied total width of the q. In the case of the q we

'~ In all cases we define the invariant amplitude T in the usual
way,

gy; = 5y; —z,(2z) o (I'f P )E 'EfTf;,
where

and the k(l) product is over all fermions (bosons) contained in the
state a.

' G. Bellettini, C. Bemporad, P. L. Braccini, and L. Foa, in Proceedings
of the International Symposium on Electron and Photon Interactions at High
energy, edited by G. Hohler et al. (Deutsche Physikalische Gesellschaft,
Hamburg, 1965).

b M. Feldman, W. Frati, R. Gleeson, J. Halpern, M. Nussbaum, and
S. Richert, Phys. Rev. Letters 18, 868 (1967).

e Note added in proof. The measurement, made by a Pisa-Bonn collabora-
tion using the Primakoff effect, was reported by Haim Harari at the 1967
International Symposium on Electron and Photon Interactions at High
Energy held at SLAC, September, 1967 (unpublished).

have taken account of the g-X mixing through a
correction factor"

C(g ~ 2y) = [cosX~+2K2 sin~ X~ ~]',
where X1 is the g-X mixing angle, tanX1 ——0.19."

The good agreement with experiment in the case of
the m decay is particularly heartening, since this decay
has previously eluded theoretical calculations. The
static quark model, '4 in addition to its other short-
comings, predicts a width about 6ve times larger than
that obtained here for the m'~2y. As far as the
vector-meson-dominance model, in addition to the
original work' and its extension by Dashen and Sharp
to include the co-P mixing, "we can mention here the
work of Faier, "who, using the m —+ 2y width as input
obtains an g ~ 2y width about two times smaller than
ours. Yellin' has obtained a x' —& 2y width, essentially
identical to that first calculated by Dashen and Sharp, '
which is also about 6ve times larger than ours. Using
the experimental m' width as input, Yellin also obtains
an q~2y width about 2.5 times smaller than that
indicated in Table I. Recently, Pagels" has derived an
expression for the x' width remarkably similar to that
given here but based on an analysis of nucleon brompton
scattering sum rules. He obtains a lifetime about twice
as large as ours for the x but is unable to give a reliable
figure for the p —+2p due to the uncertainty in the
g-nucleon coupling. Maiani and Preparata, " using

"In obtaining this factor one must know the ratio of the yVII
coupling for singlet pseudoscalar mesons G~vn0 to that for octet
pseudoscalar mesons G~vtI~. The solution in II gave

(4mvmII )'"G~voo /(4mvmII)' G~vn

See Appendix 3 for further discussion of mixing corrections."R. H. Dalitz and D. G. Sutherland, Nuovo Cimento 37, 1777
(1965)."H. Pietschmann and W. Thirring, Phys. Letters 21, 713
{1966)."R. F. Dashen and D. H. Sharp, Phys. Rev. 133, 31585 (1964).' H, Faier, Nuovo Cimento 41, 127 (1966).

7 J. Yellin, Phys. Rev. 147, 1080 (1966).
I8 H. Pagels, Phys. Rev. 158, 1566 (1967).
'9 L. Maiani and G. Preparata, Nuovo Cimento 48, 550 (1967).
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arguments similar to those here, have also obtained x
and g widths slightly larger than those given in the
present work.

(«) II-+ y+II»+II«

In the model under consideration this decay proceeds
through a vector-meson intermediate state as pictured
in Fig. 2(c). The coupling at the first vertex is given by
(A18) while that at the second was discussed in Sec. 2.
We 6nd for the amplitude

T(II~y+ II»+ II2) = (4«) '~'4mnm v

&-~.»(p»)-»s(p»)(p~) vI'»
XG'vrrn ~~gri-

(pe+ p2)'+me'

where P», P2, P«, and P are the momenta of the II&, II~, y,
and II; e is the photon polarization vector, and

/8 8 8&q-8 8»r~ 18 8
!I+—

0 p l 010 «3 VS 000

where l)„0 refer to II», II«, p to the intermediate vector
meson, and»r(x) to the decaying pseudoscalar meson.
Note that here, as well as in Sec. 3B(»ii), we are making
additional assumptions since we neglect other diagrams
which can contribute. For the other decays considered
the diagrams indicated in Fig. 2 and Fig. 3 are unique.
Using the couplings from Appendix A we find

5n m»')) /mn))
I'(lI II,II,q) =—

grrmr'/4»r /3ye 2

X—
! mnA«'I»X (0.61), (3.4)

where mn is the mass of the II, 0.61 is the correction to
(Gunn~)' obtained in Sec. 2, and

x'(»r —2x)+'
dx~

» (1—2x)'"(P—2x)'
with

which gives the numerica, l result 8=0.24 to be com-

pared with the experimental value" of R,»» ——0.19&0.06
The static quark model' combined with the experi-

mental pox width yields I'=120 eV and a value of
R=0.2. Faier, "again using the ~0 width as input, Ands
I'= 152 eV and E.=0.23, while Yellin'7 obtains I'= 175
eV and the rather poor result 8=1.3. Despite the lack
of direct experimental measurement of the p —+ x+m.

partial width we believe that the value presented in the
present work is less open to suspicion than those

mentioned above since the same model, without

appreciable experimental input, predicts reasonable

values for E, the q —+2y red the x' —& 2y. We should

also mention here the interesting work of Ademollo and

Gatto, " who, making use of pole dominance of the
axial-vector divergence and an assumed commutation

relation between an axial charge and the axial-vector

current components, have found a relation between

g~2y and g~x+x y which yields E.=0.14. The
g~m+x y has also been considered, in. a diferent
model, by okubo and Sakita. "

(»ii) II —& y+I++I-

This decay" is just II —+ 2y followed by conversion

of one of the photons via the usual electromagnetic
interaction as pictured in Fig. 2(d). We discuss this

simple decay here because a new experimental deter-

mination of the q ~ y+e++e is now in progress by a
group at Berkeley. '» Using the results of Sec. 3A(i),
in an obvious notation,

T(11~ y+I++I )

=4«(4mnm~)"'e. ».»(p.)".(p.)(p++p )»-
5$ p'

(4«)'"&(p+)v.g(p )A»(Gv«')-
-(p++p-)'

n= 1—4y'/mn', P = 1—mr'/mn'.
The width is then given by

p, is the mass of IIg and II2.
The numerical result for the qo —+»r+»r y (for which I'(lI —+pl+I )

I&=2.6XIO ), again corrected for q-X mixing in this x~»(g„ /m„»)24m„m (G „n)2m„»(1 A)9nl~, «

case through a factor"

C(g —+»r+»r-y) = [cosl).»+%2 sin! X~!]',
is given in Table I. Note that combining (3.4) and (3.3)
yields the result

I'(n + —
V) 3 (wig)'(AN'i» )'R—=

I'(g -+ 2y) 2»ra 4M Gg'
—1+v2 tan!~, !

-2
X I» X (0.61),

(-,*»»„)' 1+242 tan! ),» I

We have obtained this result by combining the data of F. S.
Crawford and L. R. Price, Phys. Rev. Letters 16, 333 (1966) with
those of Ref. 10."M. Ademollo and R. Gatto, Nuovo Cimento 44, 282 (1966);
J. Pasupathy and R. E. Marshak, Phys. Rev. Letters 17, 888
(1966).

'~ S. Okubo and 3. Sakita, Phys. Rev. Letters ll, 50 (1963).
~8 This decay was 6rst considered by R. H. Dalitz, Proc. Phys.

Soc. (London) A64, 667 (1951); and later by N. Kroll and M.
Wada, Phys. Rev. 98, 1355 (1955); S. M. Herman and D. A.
GeGen, Nuovo Cimento 18, 1192 (1960); E. Celeghini and R.
Gatto, Nuovo Cimento 28, 1497 (1963).

~4 H. H. Pingham (private communication).
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where 6=4mio/mn' and

' x'(1—x) 'I'Ll+-', 6—(1—5)xj
ds

Li —(1—~)x]o&o

1 ( 9 6') 1+(1—6) '~'

~

1——6'+—
~
ln

(1—6)'I' 4 8 4 I 1—(1—6)'I'

7 11—(1—6) '~' ———6——6'
2 4 2

y

Again using the couplings from Appendix A, we get

r(li &I+I-)

5n' (3@~)' G~' mn '
mn(1 —6)"'IoAi'. (3.5)

187r ( 4 ~ gnivivo/4m' M

I'rG. 3. Pole-dominance models for vector-meson decays.

Using (3.7) in (3.6) we find, after taking the appro-
priate sums and averages over polarizations,

In Table I we give the results obtained from (3.5)
for p' and m' decays into e+e and p decay into p+p, .
The correction factor for g-X mixing is the same here as
for the 27 mode.

Combining (3.5) and (3.3) we obtain the coupling-
independent result

r(Vo ~ II+y) = (n/24) t 4mnmv(G7vn ) 'j
X (1—mn'/mv')'mv'&o'

Similarly, for singlet vector-meson decay, we get

r(vo ~ 11+~)= (n/24) t 4mnmvo(G vono) og

mno/(mvo)g (mvo) (Ao )r(II —+ y+I++I ) 2n
=—(1—5)o "Io.

3'
where

('8 8 1 i 1 8 8 1
A '=/ I+—

010 000/ V3 000 000)

r(ii ~ 2v)

For the sake of completeness we also present these well-

known ratios in Table III, although they do not reflect
our new values for the coupling constants. and G~yor~' is the coupling constant for singlet vector

mesons. "
Making use of the results given in Appendix A yieldsB. Vector-Meson Decays

(i) V —+ 11+y 5n (3p„)o (m v mn
r(v, II,)=—

~ ~ ~

I-,A. , (3.8)
18& 4 & kM mv'We treat this decay as proceeding through a IIV

intermediate state as in Fig. 3(a). This mechanism was Sn(3 o m o o( m Q qo
included in the calculation of the IIV' coupling con- r(Vo~11&)=
stant presented in Appendix A. The decay width is 9 4 4 ~ kM ) ( (mv')')

1 mvo —mn')
r(v~ 11+&)= — I~T~'. (3.6)

So-m v' 2m v )

Using the coupling defined in (A17), we find

I'(V ~ IIy) = (47m) '"(4mvmii) '"G~vnD

Xe s o(pi) oo(pi)F-, (po)o&o, (3 7)

where pi and po are the momenta of the photon and
pseudoscalar meson, e is the photon polarization, E is
the vector-meson polarization, and

(8 8 Si 1 8 8 Si)+-
OIO ~ VS v OOO

here 0- refers to the pseudoscalar meson and 7- to the
vector meson.

Xmvo(A, ')' (3 9)

We give results for the p, ~, and p decays to xp and qp
in Table II. Where necessary we have applied correc-
tions to take account of the co-P and g-X mixing. The
procedure used to fix these corrections is discussed in

Appendix B.
Yellin, ' using the experimental ~~my width as

input, has obtained results similar to those of Table II
with the notable exception of his co ~ gy width, which
is more than j.0 times smaller than that presented here,
and his p ~ gy, which is somewhat larger than ours.

'5 The solution in II gave

(4mv'mII) I I'G~voIIo/(4mvmII) I "G~yrl =4/+5.
We use this ratio and that given in Ref. 12 in calculating the
corrections due to co-rjt and &-X mixing in the V~ Ily decays. See
Appendix 8 for further discussion of mixing correct, ions.
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(ii) V~I++t
Here the decay is pictured as proceeding through a

photon intermediate state. The vector meson, after
converting to a photon with coupling gy7, proceeds
through the usual electromagnetic interaction to a
lepton pair Lsee Fig. 3(b)j. The invariant amplitude is

T(V + I+1—)=44rr2(gv, /mv2)II(p4. )EN(p )&4,-
where 24(P ) and w(P+) are the usual lepton and anti-
lepton spinors, E is the vector-meson polarization, and

(1 8 p, 1(1 8 p
A4= +— (3.10)

(000 010 P V3 (000 000 P

I (" '~)
~(p' n'v)
F (co —+ troy)

r( 9'7)
r(@~ ~0~)

~(4 n'v)
r(' +e )
I'(p'~ p+y )
F(co~ e+e )
I"(a —+g+p )
r(4 l+l )
r(~~ zr+zr ~)

Theory Experiment Ref.

&0.56 MeV0.13 MeV
0.055 MeV
1.25 MeV
0.094 MeV
0.019 MeV
0,26 MeV
2.65 keV
2.65 keV
0,345 keV
0.345 keV
0,735 keV
3.34&(10 4 MeV &0.6 MeV

1.15&0.15 MeV 10
&0.18 MeV 10

10
a, 10
b, 10
a, 10

&0.32 MeV
9 1—z 0+15' keV
7.14+1.68 keV
1 19-0.89+'02 keV

10

TABLE II. Vector-meson decays.

with p(p) refering to the decaying vector meson. For
the width we find the well-known result"

(gV2
r(V ~v'

4mlg 'I'( 2mlxl1-
mv2& 4 mv'

or using (A16),

G
r(V~I+I )=—

3 4 ) gulvtII /42r

4mI2) '"( 2m12

X & —-- - - 2. myA4',
mv2I k mv'

which is very insensitive to the lepton mass. We present
the results for p, co, and P in Table II.

Yellin, '" combining the work of Nambu and Sakurai26

with that of Dashen and Sharp, '5 obtains values for
these decays two to three times larger than those
calculated here.

(iii) V~ rr, + 112+&

For this decay we use the same model as Singer, "that
is, we view the decay as proceeding V —+ VII —+ IIpII as
in Fig. 3(C). We COnSider here Only the 40' —+ Ir+Ir y, fOr

which we find

2'(~~ ~'~ 7)=«-Svle 1"(p.)-2S(p~)

(P2)2(P1)s(P2+Pp) 4 (Pl) 4(P2) z(PI+Py) 4

X~) '+
(p2+p, )'+mv' (pl+p, )'+mv'

where pl, p2, and p~ are the pion and photon momenta,
e is the photon polarization, V is the or polarization, and

Y. Nambu and J.J. Sakurai, Phys. Rev. Letters 8, 49 (1962)."P.Singer, Phys. Rev. 128, 2789 (1962).The co —+ 7r+zr & decay
has also been considered earlier by I. M. Brown and P. Singer,
Phys. Rev. I.etters 8, 155, 353 (1962); and Gell-Mann, Sharp, and
Wagner {Ref.5); and, more recently, with emphasis on possible C
violation in electromagnetic interactions, by J. Bernstein, G.
Feinberg, and T. D. Lee, Phys. Rev. 139, B1650 (1965);J. Vellin,
Ref. 17.

a S. S. Hertzbach, R. W. Kraemer, L. Madansky, R. A. Zdanis, and R.
Strand, Phys. Rev. 155, 1461 (1967).

b A. Wehmann, E. E4ngles, Jr. , C. M. Hoffman, P. G. Innocenti, R.
Wilson, W. A. Blanpied, D. J. Drickey, L. N. Hand, and D. G. Stairs,
Phys. Rev. Letters 18, 929 (1967).

4mIImv(Gyvll ) (44r42) cosX2 (Gvoyu sill
l

lI 2 l

G=
+15 V'8 &G2vnn +5

with X2 the co-p mixing angle. Using the values of the
coupling constants from Appendix A, we get

42 guIvrr /4 Ir 3f„)4
r((u ~ Ir+Ir—

y) =— '

(p„)2
72 Gg2 M)

X IM „LV2 cosX2 —sinX2j'(1.92X10 '),

where the last factor is the result of a numerical phase-
space integration given in Ref. 27.

We present the numerical results for the partial width
in Table II and for the ratio of I'(co —+Ir+Ir y) to
I'(cv —l Iry) in Ta,ble III.

As an illustration of the higher-symmetry results
obtainable with the model introduced in I and II, we

present here a calculation of the E*width.
The A'*E~ coupling constant is defined by

(
Ex*n»I2

(lo(„)p+qll ~. (0)jrl p8(t))
3Af~

8 8 20
=GN*~.~,(p+ q) q,24(p)

where co, is a Rarita-Schwinger spin-~ wave function.
The calculations in I, which dealt directly with the

matrix elements of divergences of currents, gave a value
for the coupling n», defined by

(
EE~Q

(10(~)p+qlD'(*) I p8(~)&
.M V~

8 20
e "44,(p+q)II,-u(=p)ngl

c
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By making use of pion pole dominance of the axial-
vector divergence we find, at q'= 0,

Gx'nr. =0:ai/f,

where f is the pseudoscalar-meson decay amplitude de-
6ned in Sec. 2. %e then 6nd for the Ã* width the result

p.p4q 2 3/2

1(X'~Xn) =
12m M* 1

p p* M n, P/8 8 10~'
!X1—

MM* M* P k~

Using the Goldberger-Treiman (GT) value for f:
f= —2MGg/gnNN and tlM value of cay obtained from
the consistent solution in I, n3~=4L2M*/(M+M*)],
we find

It is not surprising that octet-decuplet mass de-

generacy must be assumed for the baryons to obtain a
consistent approximate solution to the sum rules in I
which reproduces higher-symmetry results since, for
example, SU(6) places these particles in the same
multiplet. A very interesting feature of the apploach
in I and II, on the other hand, is that a more thorough
investigation of all the meson relations (some of which
were not mentioned in II) has shown that the corre-
sponding assumption of degeneracy for the pseudoscal. ar
and vector mesons Lwhich are also placed. in the same
multiplet by SU(6)] is not needed to obtain consistency.

5. I,OW-MOMENTUM-TRANSFER N~

PRODUCTION SY NEUTRINOS

We consider here the process"

&p+p ~ ~V +p

The weak Hamiltonian is taken to be

(M*—M)' —mn' "'M'/8 8 10 '/ 2M*
x

2MM* M* k$ e g EM+M*

with
IJ~= (G/v2)(~.i -'+i -~-'),

G=1.023X10 'm„', J„=J r+J ~,

Theory Experiment Ref.

I'(~'-+ y+e+e )

r(~0~ 2~)

r(&0~ &+.+e-)

~.ISS&& j.o-m (I.I66~0.047) y&O- a

1.62 X 10-2

r(n0~ v+~++~ )

r(~&~ 2~)

r(n'~ ~++~ +v)

r(~0~ 2~)

r(a'~ m++vr +y)

r(Cc7 ~ 7f +"//)

5.58 X10 4

2.7 y 10-» &0.5

a H. Sami08, Phya. RCV. 121, 2"I5 (1961)

It was found in I that a consistent solution could be
obtained for the baryon couplings only if the mass of
the octet and decuplet were taken as degenerate, i.e.,
only if M=3f . With this provision o.sj.

——4, and we find
for X*~ p+n.+ the result

I'(E~ -+ p+m+) =63.2 MeV,

a well-known SU(6) result. Note that a first symmetry-
breaking correction (note that corrections of all orders
can be obtained simply by not truncating the sum rules
in I) might be included by allowing M*4M in the
coupling. This results in I'($*—+ P+~+)=83.5 MeV.
Both of these numbers are to be compared with the
experimental value I'= 120&1.5 MeV."

TAar.E IH. Decay ratios.

and j the conventional t/' —A lepton current. The
amplitude for the reaction is then

EE*Q '~' jgT—
~/2

x@*10(1l2) l(~-"'+'+&."+') I-&'8(1 2 k) &

x&(p.)v.(1+v~)~(p,),
where g=G cos9, with 0, the (."abibbo angle. Ke then
find that

do. 1 iVM~m„rn„

Ch 2~ (s—M')'

where s= —(p,+I')' and t= —(p„—p„)'.
Adler" has given an exhaustive analysis of high-

energy neutrino reactions from the point of view of
testing proposed local current commutation relations
and the conserved vector current (CVC) and partially
conserved axial-vector current (PCAC} hypotheses.
Here we will give a simple analysis of Ã* production at
very low momentum transfer, retaining only the most
important pieces of the invariant amplitude in this
region. The reason for doing this is that the calculations
performed in I resulted in a direct determination of the
leading term in the Ã*E axial-vector vertex. Ke can
thus give a theoretical result independent of PCAC or
other GT-like arguments.

~8 This reaction has also been analyzed by S. Herman and M.
Veltman, Nuovo Cimento 38, 993 (1965};C. H. Albright and
I . S.Lin, Phys. Rev. 140, 8748 (1965);Ph. Salin, Nuovo Cimento
48, 5O6 (I967)."S. L. Adler, Phys. Rev. 135, 8963 (1964); 143, 1144 (1966).
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In the axial-vector matrix element (q=P* P)—:

(10{«t)P*
I j„"'(0)

I 8(g)P)= (MM*/EE*Q') ' 'ice.(P*)

iG2 G3 G4
X G bi„,+ q,7„+ q,(P+P*)„+ q,q„

mrr mrr2 mri

xuP')( ),
we will retain only Gi(q'=0) for which the results of I
give a value of Gi ——+4L2M*/(M+M*)7. We stress
again that this value of G~ is the main new input in this
calculation. Sy way of comparison, an argument of the
GT variety combined with the known residue of the
pion pole in G4 yields Gi(0) = fG~«&, which, using the
experimental 1V* width, has a value of 5.6. The value
we use here, determined entirely from the consistency
solution in I, is Gi(0) =4.6.

For the vector vertex we use the CVC theory and the
results of I to write

0

p, l&
LO

8'

5«

,04. .o('

pxpQeQj )&

I

~ 0$

X

«

«1

&»(.)P*l~." (0) I8(~)P)

)MM*
ioo„(P*)CopoLq„p„—qB„,]

EEE*Q'
8 8 10

XN(P)
I

Ep o

where Co= —v3Co/mn and Co is defined in I. The total
hadronic current used in these calculations is then

EE*Q
(10(&)P*IJ„(0)I8(g)P)

= ioo„(P*)[Gib„,+iCob„,yo(M+M*)+Coq, yov„]

t8 8 10
XN(P)l

o

which leads to

T= goi„(P*)[G,e„„—+iCob„,(M+M')go+ C oq.goy, ]
XN(P) tt(P, )v, (1+so)N(P.),

where we have set
gt8 8 10

V2(r, „)
We then 6nd, after squaring and performing the

appropriate polarization sums,

g2 G2
I
T I'=— (4M' —t)(t—m ')

po larisat iong 2m„m„3&2

tL(4M' —t) t —16M'7(t —m„&)
+C 2

123E4

Gio(4M' t) C '(to-—12M')-—
+3'' 6&2

(Mo s) (M' s t)———
X--—

2M2

Fro. 4. Total number E* events for q'(Q', $(Q'), versus Q'.
The single experimental point (actually o6 scale) is taken from
the low end of a histogram of single pion events given in Ref. 29.

where for simplicity we have set M*=M.
Using the data for the CERN bubble-chamber experi-

ments, "we find that the number of events (taken to be
single pion production proceeding entirely through S~
production) per unit momentum transfer is

BN(t) t'do)
= (2.97X10'o)

I Ie
o.oo«ds

(dt &

where s(} and s are the threshold and maximum values

of s Dor the CERN neutrino spectrum s„&19.7 GeV'],
and the exponential arises from a fit to the neutrino

spectrum. Dropping all terms of higher than the second

power in t and neglecting m„' compared to s and M2,

we get

hN/hi= —(2.97X10")(g'/12m-)

X (tt4M'Gi'(t m„') 4M'C—o't(t —m„')]A-
+L2Gio —2M'Co'78(t) },

where '" expL —0.38s]
ds

(s—M') '
and

'" (M' s) (M' s t)— ——
expL —0.38s]ds.

(s—M')'

Gathering results, we And

DN/Dt = —36.4—297.St+206.4t'.

In Fig. 4, we plot

'0 C. I"ranzinetti, CERN Report 66-j.3 (unpublished}.
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which is the total number of events observed with
0(q'(Q' for L'" )E '""'" The CERN data are not fine
enough as yet to allow a detailed comparison with
experiment, although the data indicate a higher number
of events for Q'(0.1 Gev' than predicted here.

6. CONCLUSION

In this paper we have examined some further con-
sequences of the model introduced in I and II. The aim
of this model was not so much to produce any exact
results but rather to extend the Adler-Weisberger"
relations to cover as wide a Geld as possible with the
view of correlating diverse phenomena. At the same
time it was desired that the model incorporate certain
features of the quark model, but in a Lorentz-covariant
way and without the need for any detailed assumptions
on the composite nature of the hadrons. In addition, the
model was an attempt to understand higher-symmetry
results from a dispersion-theory point of view. The
assumptions of the model are:

(i) Integrated quark charge commutation relations.
This is a much weaker assumption than any bound-state
quark model or even local quark commutation relations
since possible Schwinger terms are integrated out.

(ii) Unsubtracted dispersion relations for "good"
charge sum rules. This assumption is supported by
Pomeranchuk and other high-energy theorems.

(iii) Approximate saturation of these sum rules by
low-lying SU(3) multiplets, an assumption inherent in

almost any group-theory or dispersion-theory approach.

(iv) When necessary, the interpretation of couplings

through the use of meson pole dominance just as in the
Adler-Weisberger case for the pion dominance of the
axial-vector divergence. In the case of vector-meson

dominance of the tensor current divergence, the fact
that a Compton scattering sum rule, derived in I, which

relies on extrapolating from the vector-meson pole

twice, agrees with experiment to within 40% indicates

that this assumption cannot be far in error.
As demonstrated in I, II, and the present work, these

few reasonable assumptions seem to be sufhcient to
allow one to calculate and correlate many diverse

physical processes to at worst within a factor of 2 agree-

ment with experiment.
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APPENDIX A: DETERMINATION OF g,~

We define the coupling of a vector meson to the divergence of the tensor current, J„„~(x)= ,'i'(x)fy-„,y„)X"iP(x),
by

1 a//v /' 1 8 8)
'&pl'. 8(~) I ~.J,. (0) Io)= !(p,

p„—p's„,);v„!
(2ppQ) '" mv' (000 n

The vector-meson —pseudoscalar-meson matrix element of this same divergence is given by

(A1)

pgig Q i/0 8 8 8i) (8 8 82)
(p+P'.8(n) I ~.J.. (0) I p8(/)&'= 'es. .///

I' p. G I+GO! I (A2)
k mum v n gi g a g)

In the following we take e such that ~ I'= e q=0.
Assuming that the matrix elements of the divergence of the tensor current are dominated by their vector-meson

poles and writing the vector-meson —pseudoscalar-meson —vector-meson coupling as

(
8 8 8, /8 8 8i

~,&p+ql'. 8(n) IP"(0)71p8(~)&=ie.sv~v:/I'vp~ Gvvn' +Gvvn ! (AB)
miimv 0' ko e

where J„v'(x) is the vector-meson octet source current, we find

(
Z,Z O»12 E2Q '" sv

'(p+vl/'. 8(~) I ~.J..'(0)
I p8(/)&=, .&p+vl'-8(n) ILJ."'(0)jt

I p8(/)&
fsgss v mnmv i/ +mn

+sv 8 8 8i p8 8 82
Gvvrr +&vvn

I &e//pilaf//&y+spx ~

g+mv 6 Y/ s

"S. Adler, Phys. Rev, Letters 14, 1051 (1965};W. Weisberger, Phys. Rev. Letters 14, 104/I' (1965}.
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Comparing this with (A2) we find, at q'=0,

Cay ~8v
GrD= vvn, Gr = vv'n

mv' fsv
(A4)

If we now de6ne the vector-meson —vector-meson matrix element of the divergence of the axial-vector current by

(ErEgQ I'i 8 8 8& 8 8 Si
(~+«"'8( ) I&.~." {0)I&«"8(-)&='e...~,V."rV,"—g" I

—gs (A5)
mv ~ y r/

and assume pion pole dominance, we get

(
EgEgQ2

(~+&«'»( ) I~.J "'(0)I~«'»( )&
fÃv

mn'f Pg 8 8 Si (8 8 82
i(mnmv) '"e„,iq„V r"V,"'—Gvvnn —Gvvrr

I
(A6)

g +~11 SSV O' P T (O'

where we have used the fact that the V-V-s coupling defined in (A3) can also be written

(
jv+Q &/&

{~+«8()ILJ.{0)j I~V 8(.»

trav

Ib= r'(mnm v) "'e...iq, V„"'V,"'
mv

Gvvn~ —GvvtI

(A7)

asv/m v' —— {mnmv) '"f—(Grn/gsn)

Comparing {A6) and (A5) we get, again at q'=0,

gs = —(mnmv)' 'fGvv'n, gs = —(mnmv)' fGvvn

Charge conjugation invariance {orG Parity) forces us to take Gv vnv ——0. Combining the remaining elements of' (Ai)
and (A4) then yields

The consistency solution for the couplings obtained in II gave

gsn =2+(5/3), Grn =2+(5/3mnm v),
so that we Anally arrive at

rrsv/mv =—f (AS)

That this relation arises from the results of II is not surprising since the assumption of meson dominance Is

equivalent to the formal identifications

a„g„'(x)= —mn'fLen (x)jt, a„S„„'(~)=asvLy, '(~)]'.
Because the solution in I and II incorporates many SU(6) results and this group places both the vector and pseudo-

scalar mesons in a single 35-dimensional representation, it. is clear that some relation between rrsv and fmust follow.

The vector meson-photon coupling constant is dehned by

I gv~ I 8 Si 1 1 8 8
(PV.S(n) l~. r-'(0) lo)=,(P.P P'4 V—

We determine gv~ by relating it to usv. This is done by considering the nucleon-nucleon matrix elements of the
divergence of the tensor current and the nucleon-nucleon matrix elements of the electromagnetic current, both in

the limit of vanishing momentum transfer q'. The 6rst of these matrix elements is written as

(
E,E,Q 8 8 Si /8 8 82

"(P+H(~) I ~»~"'(0) I PS(r)), - &(P+v) 2LrI,ej~(P) D+I ~ . (AIO)
3f2 @9~0 T 6 0 kr e 0

Here 3E is the nucleon octet mass and m(p) is the usual Dirac spinor. As was pointed. out in I, only this "magnetic"
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coupling persists in the q2 —+ 0 limit, so that we need only consider the magnetic coupling of the nucleon to the
vector mesons, which we define by

(EiEgQ 0 pvIItv

(P+&8( ) IL~."'(0)7IPS( )&-."=—~~(p+v) N(p)
E ivm 2M

(8 8 si) )8 8 82)
X

~

[pvN'+i (pv& ~, (A11)
0~ (7 ~ 0)

Assuming the matrix element in (A10) to be dominated by the vector-meson pole and using (A11) and (A1), we find

(
1~2~2 1/2 ~sv 8 8 8) pvND 8 8 82 pvN~

'(P+Vs(~) l~.~"'(0) Ips(r)&, - ~(p+9)le, e]~(p) +
M' q~ O q2+.m 2 7. ~ o. 2M v- e 0- 2M

Comparing this to (A10) then yields

SSV PVN SSV PV N
D J

mv2 2M mv2 2' (A] 2)

For the magnetic coupling of the nucleon to the electromagnetic current, we write

(Pjg2g' '/'
(p+qS(~) ~

J„'""(0)
~
ps(r) &m«~„———Zu(p+q)

k M' 2M
— s 8 si) 1 s 8 si)- -/8 s si~ 1(s 8 82~-

x&(p) I+—
I ~+

/
I+—

I

010 0') K3 r 000 O'I kr 010 0'i V3 Er 000 0'i

Now, assuming that only this magnetic coupling is dominated by vector-meson poles and using (A11) and (A9),
we get

(EiE2Q' '" igv~ eI ol ~q~

(P+~8(-) l~. ""(0)
I ps( )&-."=— ~(p+v)

q'+mv' 2'
8 8 Si) 1 8 8 Si) /8 8 82 1 8 8 82

x~(p) i+— PvN )
r 010 0) K3 r 000 o] (r 010 0 v3 r 000 0

and comparison with (A13) then yields

=(gv~/'Niv )PVN, I = (gv~/mv )IivN

Eliminating iivNn v between Eqs. (A14) and (A12), we find

(A14)

gv~ g gv~
)

usv 2~D +Bv 2MF

The consistency solution obtained in I gave

D = 2+(5/3), F=4/43,
so noting that

~ = —(2v'15)~-, u =~~(a.+2~-),

where p„and p„are the magnetic moments of the neutron and proton, we find

gv~
/Jn )

asv 8M

gv~
(~u+k~-) .

asv 8M
(A15)
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As discussed in I, there is an ambiguity as to whether anomalous or total magnetic moments are to appear in

(A14). This ambiguity is related to the choice of invariants made in writing (A13). For simplicity we have here
presented the derivation for anomalous moments, although the entire argument carries through with the same
resulting expressions (except for the replacement of anomalous by total moments) if we adopt a no-subtraction
approach for the Sachs, rather than the Dirac, form factors. At the present time there is, to the author's knowledge,
no compelling reason for choosing one moment over the other or even some linear combination of them. Therefore,
we will let the internal consistency of the theory itself determine which moment, total or anomalous, we are
assuming an unsubtracted dispersion relation for. An examination of (A15) indicates that if we are to preserve the
internal consistency of our approach we must use total magnetic moments. Alternatively, one could just treat p„
as a single parameter and make a best fit to all of the experimental quantities which we have calculated. In this
case it is, of course, also the total moment which gives the best agreement with experiment.

Finally, combining (A15) and (AS), we obtain the value of gvr,

gvr/mv'= (3/83f) fIJ, .

Using the GT value for the pion decay amplitude f:
f= —2MG~/gnus,

where G~ is the nucleon axial-vector renormalization ratio Gg = —1.18, and Gzzz is the renormalized pion-nucleon

coupling constant, gn~~'/4n =14.6, we relate gvr to the properties of the nucleon alone:

gv /mv'= 4p G~/gn—n'—~.

For completeness we note that if the vector-meson —photon —pseudoscalar-meson coupling is defined by

(I:)FoQ'/mnmv)'Io(p+qU, S(g)
~

J„"-'(0)
~
pS(r)&o„=ie prod osU„po

(A16)

8 S,q 1(8 8 8, —
/8 8 So 1(8 8 So

X G,vn I+—
I

+G,vn'
/

+—
I

(A17)
( r 010 g) &3Er 000 g kr 010 g %3k r 000

then the same methods described above lead to the relations

gv~
Gqvn = Gyvrr & Gqyn = Gvyn

51F2 mV2

Combining these with (A4) and (A15), we find

Gr vn ——0, Gr vn ———(A+15)p /M'( mnmv) '" (A18)

APPENDIX B: MIXING CORRECTIONS

If we denote the g-X' mixing angle by X&, then"

I ~)= cosy~
I ~o&

—»»~
I &o&,

I &&=»»~ l go&+ cosa&
I +o&

where
( go& is an SU(3) octet state [8(000)]and

) Xo) is an SU(3) singlet [l(000)].The correction factor which must
be used with the g ~ 2y width calculated from (3.3) assuming a pure octet g is then found to be

(4mvmn") "'G„vnoo
C(g ~ 2y) = cosh' —(2+5) sink~

(4m vmn) 'ioGr vnn

Likewise the correction to be applied to the g —+ rr+rr y width calculated with pure octet g from (3.4) is

(4m vmn') "'G,vnoo

C(g ~ 7r+n. y) = cosh' —(+5) sinXq
(4mvmn) '"G,vugg
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Now the solution for the couplings obtained in II does not determine their relative sign and, of course, the sign
of X& is also not determined. The results presented in Table I were obtained by making the choice

(4mvmn') rr2G"vno'
sink~&0,

(4m pesn) rr'G, vnD
(A19)

because this produces the best agreement with the experimentally determined ratio of F(g ~ ~+n y)/F(g ~ 2y).
Kith this choice the correction factors are"

C(g ~ 2y) = Lcoshr+2V2 sinIXrI]',

C(g ~ m+m y) =LCOSXr+v2 sinIXrI]'.

In the case of the p'~ qy decay the correction factor to be"applied to the results obtained from (3.8) assuming
a pure octet g is

1 (4mvmn')"'G, vno'
C(p'~ gy)= coshr-

+5 (4mvmn) rr'G&vnn

The choice of sign is fixed by (A19), so that we have

C(po~ gy) =LCOSXr+5v2 sinIXrI]'.
For the ~-p we write"

1&v&= cosz2I oro) —sinx2I go&

Iy&= sinz2I coo)+COSTI go)

sink~

where 4=~38', I&so) is an SU(3) singlet L1(000)] state, and Ipo& is an SU(3) octet L8(000)] state.
To the o& ~ IIy width calculated from (3.9), assuming a pure singlet &v, we then find the correction factor

(8 "'(4mnmv)'"G, vn
C(a& —& IIy) = COSA, +I— sinX2

E5 (4mnmv') rr'G~~n'

Again the relative signs are not fixed, so that we take

(4mnmv)'"G, vnn—sinX2& 0,
(4mnmv )'r Gqvorr

so as to produce the best agreement with the experimental suppression of p —+ IIy. The correction is then'5

C(~ ~ Hy) = I-cosh, +-',~2»nI X'2I]'.

For the P —+ IIr calculated from (3.8) we find the correction

(A20)

t'5)'"(4mnmv')'"G von'
C(g —& IIy)= cosh2 —

I

—
I

&8) (4mnmv)"'G, vnn

The choice of sign made in (A20) then leads to"

C(Q —+ IIy) = LCOSX2 —v2 sinI 4I]'.
The correction to be applied to the F(g —+ gy) obtained from (3.8) is

sink 2

(4myptn) G~vno
C(Q ~ q'y) = costi COSX2+(+5)

(4mvmn)'"G, vnn

5)'"(4mnmv')"'G„von' -2
cosx2 sinai+ —

I
sinhm cosxr

8I ™m"~G&vn

Equations (A19) and (A20) fix the relative signs, so that we find'

C(Q~ qy)=Leos'Ar cosh~ —&2coskmsinIXrI+%2sinIX2I coskr]'.

"J.J. Sakurai, Phys. l4ev. Letters 9, 472 (1962); S.L. Glashow, ibid. 11, 48 (1963), See also II.
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The co —+ re width obtained from (3.8) requires the correction

(4mvmn')'"G, vno' 8) "'(4mnmv)'"G, vn
-2

C(~ ~ g'r) = coshi cosX2—(+8) sinai sinhs- sinX2 cosh'
(4mnmv') "'G~vr n' 5) (4mnmv')' 'G~ van'

Here again our choice of relative sign in (A19) and (A20) determines this correction uniquely as" "
C(rd ~ qy) = [cos) i cosam+sinllrrl sr'nl~&l r~&2sinl)«l cos).q]'.

For the V~ t+l decays the co-p mixing presents no complications because the singlet component does not
contribute. We find

Ar((v' —& l+l )= —-',K3 sinh2

A4Q —+ l+l-) =-',l3 coslrg,
where A4 is defined in (3.10).
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Algebra of Current Components and the Hypothesis of Partially
Conserved Axial-Vector Current Applied at High Energies
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Using the hypothesis of partially conserved axial-vector currents, the algebra of current components, and
the assumption that the pion-hadron total cross section 0 (s) approaches its asymptotic value rapidly, a
method is developed which allows a calculation of the elastic amplitude at high energies and small mo-
mentum transfers. This method uses the fact that asymptotically the dynamics is given by the commutator
on the light cone. The results are 0- „(~)= 25.7~4.2 mb and do/dt= (do/dt) & 0)GE' —(t/4M')G~'j(1 —t/
4'') ' (for small values of the momentum transfer t), where G~(/) and G~(t) are the electric and magnetic
form factors of the proton. It is shown that possible Schwinger terms in the equal-time commutators are
without importance for our results. An important feature of our calculation is that the energy and the mo-
mentum are allowed to go to inanity simultaneously; our method therefore deviates essentially from the
Bjorken limit, which in general involves a continuation of the amplitude in6nitely oR the mass shell.

1. INTRODUCTION

'N the present paper we shall present a calculation
~ ~ of the high-energy total cross sections 0 (~ ) for
pion-hadron scattering which gives good agreement
with the value of 0 ~(~) obtained by 6tting forward
dispersion relations. The main tools in our derivation
are the following three assumptions.

(i) The partially conserved axial-vector current
(PCAC) hypothesis: The divergence of the AS= 0 axial-
vector current j„+(x) is proportional to the pion 6eld"
in the SU(3) limit, ' 4

mass, g is the renormalized pion-nucleon coupling con-
stant, and gz is the renormalization (by the strong
interactions) of the axial-vector coupling constant in
P-decay. The index "SU(3)" indicates that the matrix
elements are evaluated in the mass-degenerate SU(3)
limit. As pointed out in Ref. 4, it is reasonable to expect
that the SU(3) limit is achieved at high energies, i.e. ,
when the energy difference between the states ln)
and

I P) becomes very large; at the same time the invari-
ant momentum transfer between In) and IP) approaches
zero.

(ii) The equal-time commutators (x0=0):
(~la j„+(0)IPb«» ——9'.m~(~l &~(O) IP),~„&, (1) Lq+(*) j;(O)]=2j v'(0)8(x)+S.T. (2)

f.=&2M gg/g,

where &p+(x) is the renormalized Heisenberg field of the
charged pions, m is the pion mass, M is the nucleon

* Present address: Department of Physics and Astronomy,
The University of Rochester, Rochester, N. Y.

' M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).' Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
g M. Gell-Mann, Physics 1, 63 (1964).' P. Olesen, Phys. Rev. 157, 1296 (1967).

Lj+(*),j.-(0)]=».j."(0)~(x)
+tensor term antisymmetric in k and l+S.T. (3)

are assumed. Here j„v'(x) is the third component of
the isovector current, and S.T. stands for possible
Schwinger terms. The commutators (2) and (3) are
obtained from a quark model for the currents. We as-
sume that these commutators can be abstracted from
the model and postulated as true for the physical


