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to have the form

g = g'Mq~(q —P)„p~ ding e~&&+e)t+~&n

x(ol T(v.'(~)A, (0)v. (~)) Io)

=" k(V—&).p~L"-.(&+&).l.j
X t.(k+g)),G(k+g, l)+4G(l, k+q)], (15)

where G is a scalar function of the invariaIIts.
We now notice that when l p=l g=l k=l2=0, T

must vanish. In this limit, therefore, A. and E, are
equal. (We are now referring to the invariant functions
which multiply the usual kinematic ~-tensor form in
T„A„and E,.) However, then E, is proportional to
p'; therefore, we divide out the factor of p' before we

use PCAC to obtain amplitudes for which the q meson
is on the mass shell. Apart from this trick, the com-
putation proceeds without difFiculty. Note that al-
though the p-decay amp1itudes have a common factor
of p', there is no need to conclude that the amplitudes
vanish on the mass shell. '5 All the interesting infor-
mation is obtained from the coefficient of p'. We are
able to divide out this kinematic factor since we have
already eliminated the model-dependent term '1,.
Finally, we conclude that the CA calculations done
recently4 ~ give the correct results for the p decays.

The author wishes to acknowledge the hospitality of
the Aspen Institute for Humanistic Studies, where this
work was done.
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The rate for g ~ ~+m m- y has been calculated in terms of the rate for y ~ 7r&yy, using current algebra
and the hypothesis of a partially conserved axial-vector current. The results agree with a previous calcula-
tion by Singer based on a vector-meson dominance model. The rate for bremsstrahlung emission was found
to be smaller than the direct decay rate, but not negligible.

I. INTRODUCTION

ECKÃTLY, current algebra has been used to study
various g-decay modes. ' ~ In particular, the decay

mode g ~ 2m+7 has been examined' ' using current
algebra, and a branching ratio of (g —& 2m. +y)/(g -+ 2y)
=0.19 has been obtained, in good agreement with the
experimental value 0.15.

In this paper we shall be concerned with applying
this same method to the decay mode g ~ 3x+p. Such
a mode has been considered previously by Singer. '
Singer's calculation, based on a quadrilinear meson-
interaction model, predicts the branching ratio
(g —+ n+m ~'y)/(g~vr'7y)=0. 23%. However, if one
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~R. H. Graham, L. O'Raifeartaigh, and S. Pakvasa, Nuovo

Cimento 48A, 830 (1967).
3 C. H. Woo, Phys. Rev, 156, 1719 (1967).
4 S. L. Adler, Phys. Rev. Letters 18, 519 (1967).
' J. Pasupathy and R. K. Marshak, Phys. Rev. Letters 17,

888 (1966),
' M. Ademollo and R. Gatto, Nuovo Cimento 44A, 282 (1966).
7A. M. Polyakov, Zh. Kksperim. i Teor. Fiz., Pis'ma v Re-

daktsiyu 4, 74 (1966) t English transl. : Soviet Phys. —JETP
Letters 4, 50 (1966)j.

8 P. Singer, Phys. Rev. 154, 1592 (1967).

adopts the theory of Bronzan and I.ow' in which a new
3 quantum number is introduced, the above ratio is
much larger. The current algebra approach would permit
a model-independent estimate of this branching ratio.

There have been two recently reported experi-
mental searches for the g —+x+x x'y mode. These
experiments have established upper limits for the ratio
F(g ~ m+m m y)/I'(q ~ 7r+~ m.o) of 7 and 0.9/o. '0 "

It should also be noted that the g ~ 3m+7 mode
could offer a new test of a possible C violation in electro-
magnetic interactions. If a

sufhcient

number of
p

—+x+x x'p decays are found, one might hope to
observe a ~+/vr asymmetry due to electromagnetic
C-violating interactions.

II. DETERMINATION OF THE FORM-
FACTOR RELATIONS

In applying the current-commutation relations and
the partially conserved axial-vector current (PCAC)

9 J. B. Hronzan and F. K. Low, Phys. Rev. Letters 12, 522
(1964).

"S.M. Flatt6, Phys. Rev. Letters 18, 976 (1967).
"L.R. Price and F. S. Crawford, Phys. Rev. Letters 18, 1207

(1967).



g —+2l+x m'y DECAY MODE

hypothesis, we shall adopt the technique developed by
Weinberg. ""We will expand decay amplitudes in
powers of the pion momenta. The resulting expansions
will give us the on-mass-shell decay amplitudes up to
lowest nonvanishing order in pion momenta. This expan-

sion technique has been successfully used by Weinberg"
for E,4 decay, by Abarbanel" for IC3 decays, and by
Pasupathy and Marshakb for the &~2z.+y decay
mode.

We begin by considering the quantity

3vI „&= dxdydz e'« '+p'"+" *~(OI T(A (x)A '(y)Ab'(z) J 'M(0))l q) v (2.1)

where the electromagnetic current
J EM= V '+(1/v3) V '

V ' is the third component of the AI= j strangeness-conserving current; V ' is the hypercharge current;
3„' is the AS=0 axial-vector current; q„(tb, q, are the pion four-momenta; and a, b, c are isospin indices.

Isolating the pion pole terms in Eq. (2.1) in the manner of Weinberg, we write

P,qa 1qbvbqcbilf vX(qbvqc)
1qaybqbv&ecbiq Icvk &qalc&qbv&qcb~pvb+ +permutations

(q
2 ~p)

with

F' qaa qb bqcb~b(qc) 1'7r gg, g b (gg M

(q
'—~')(qb' —~') (q.'—b ')(qb' —b ')(q.'—b ')

(q qb) ( q '+bb') dxdydz e'&"' +pb'+"'&(0
I T(A (x)A„b(y)p '(z)J EM(0))

I g), (2.3)

~ (q ) = (—qb +p )(—q +bc ) dxdydz e&(pa a+pc u+pc c)(0I T(A a(x)y b(y)y c(z)J EM(0))
I ~) (2 4)

M =( q, '+p')( q—b'+p')( q—,'+y') d—xdydz e' "*+""+'"'('Ol T(4 v (x)4 '(y)& '(z)J,™(0))
I g), (2.5)

where 7&' is the pion decay amplitude, p„ is the pion field, and p is the pion mass.
Adopting the notation of Weinberg, "the current-commutation relations proposed by Gell-Mann"" are given by"

[A p (x),A.'(y)j&(xp —
yp) = 2ip b V„'(x)8 (x—y),

[Vp'(x), V, b(y)]8(xp —yp) = 2ip, b.V„'(x)8'( xy),

[A p'(x), V„b(y)]8(xp yp) = 2i p. „A„—'(x)8'(x y), —

LA (*) V '(y)j~(* —y ) = LVo (- ),V.'(y)3( 'o—yo) =o,

(2 6)

(2.7)

(2.8)

where e b, is the totally antisymmetric symbol with ~»3 ——+1.We also make use of the conserved vector current
and PCAC hypotheses

B„V„'(x)=0,

a„A „(x)=F.bc'y. (x),

(2.10a)

(2.10b)

along with the additional commutation relations"

[Ao (x),~RAN'(y)j~(xp —yo)=e. b(x)~'(x —y)

[A p'(x), o b, (y) $8(xp—yp) = 8 b,B„A„(x)bc(x y) . —
(2.11a)

(2.11b)

"S.Weinberg, Phys. Rev. Letters 16, 879 (1966)."S.Weinberg, Phys. Rev. Letters 1?, 336 (1966)."H. D. I, Abarbanel, Phys. Rev. 153, 154? (1967)."M. Gell-Mann, Phys. Rev. 125, 1064 (1962)."In these commutation relations we ignore the so-called "Schv inger" terms."In the o.-model the term 0,t, (x} would be just b, t,o(x}, with a(x) the a-mesoii field. See M. Gell-Mann and M. Levy, Xuovo
Cimento 16, 705 (1960).
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Computing the various terms in Eq (.2.2) by partial integrations" and making use of Eqs. (2.3)—(2.11) as well
as the following identity for time-ordered products'4:

8
T{Ao(x)B.(y)Cb(s)D (0))=T{&oAo(x)B.(y)Cb(s)D~(0))+&(xo —yo)T{[Ao(x)|B(y) jCb(s)D (0))

8x~

we find"
+8(xo so) T{[A o(x),Cz(s) jB„(y)D,(0))+8(xo) T{[A o(x),D, (0)jB,(y) Cb(s) ), (2.12)

K&ob~lb~&&b+o~b F~ ( A +&b )( gb +&b )( g~ +&b )

Cxdyds si(q~ s+ob o+oq g&(p
~
2'(y a(x)y b(y)y (s)J EM(p))

i s)+2bp oo ( ~ 2++3)( ~ 2++2)

X dyds e'«'"+"'&(Oj T(p, b(y)lt '(s)A, ~(0))~»)+permutations —2F (o,o,ob,d+o», o„z)(—q, '+&b')

X dx e'"'(0~ T(Q '(x) V."(0))~»)+permutations —F ob.~(qb —
q )„(—q. '+&b')

X Cxdz e'«.+o» * '+'o(0~ T(y, '(s) V (x)J EM(0))
~
g)+permutations ,'io..,—ob—af(lg g )„

X Cx s'«+ob+"& '(0~ T(A„(x)J.EM(0))
~
q)+permutations —2io obod(g g )„

X d«'«. +"& *(Oi T(V„(*)A.'(0))
~
~)+permutations

obo og(obgfo rq+o ~r obr~)(O~A, ''~&&)+permutations. (2.13)

In order to proceed with the calculation it is necessary
to neglect a large number of terms in Eq. (2.13). The
validity of this procedure will, of course, be ultimately
determined by a comparison with conclusive experi-
mental data. However, we are encouraged by the fact
that our final result is consistent with recent experi-
ments, ' "as well as being in agreement with the model
calculation by Singer. '

We consider first the terms involving the matrix
element (2&r~A ~»). We neglect terms of this kind
on the basis of G-parity considerations and the absence
of second-class currents as discussed by Weinberg. "
Next, we consider terms with the matrix elements

(0
~
T(V„(x)A (0))

~ ») and (0~ T(A, (x)J. (0))
~
»). If

we include only single-particle intermediate states, then
these matrix elements will vanish by ordinary parity
arguments or the absence of second-class currents.
Furthermore, terms of the form (0~A, ~») must vanish
since they involve matrix elements of a AI=1 current
between I=0 states.

'8 We will neglect all surface terms arising from the partial
integration."We neglect, as is always done, the "e terms" which are gener-
ated from the commutation relation (2.11a). One assumes that
this is a good approximation without any real justi6cation. See
H. Abarbanel {Ref. 14).

'0 S. Weinberg, Phys. Rev. 112, 1375 (1958).

We note that our matrix elements are all taken on the
mass shell "'4 Th. is means that (I'„q, rjb q.)'—=0.— —
But since we may also consistently take (P,—q,)'=0
simultaneously, the matrix element (&r'~ V. ~») corre-
sponding to» —» &r'+y is also dropped as this decay is

forbidden.
Finally, we also drop the term q „q&„q,),N,.„), which

is cubic in the pion momenta. Neglect of such terms
is notalways justified, as noted by Rubinstein and
Veneziano. " This is particularly true in the analysis
of the» —& 2~+y decay carried out by Marshak and
Pasupathy.

However, in our particular case the approximation is

indeed valid. This n1ay be seen as follows: As indicated
below, the g —+ 3m+ad amplitude is linear in the mo-

menta of the mesons. We shall also find that the form
factors are quadratic in the pion momenta, so it would

appear that cubic terms cannot be neglected. However,
only g4, the form factor multiplying the p momentum, is
nonvanishing. Thus, to lowest order, the amplitude is
actually quadratic in the pion momenta and we may
neglect the cubic term.

~' H. R. Rubinstein and S. Veneziano, Phys. Rev. I etters 18,
411 (1967).
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Thus, Eq. (2.13) becomes

F '(2)r)"'(8q."qooq, ') ' '(m')r'x'I J."M(0)
I ))}= f .(2)r) "'(2q, ') '"oo„(qo—q.)„

X dx. '~'+- '(
I T(V. (x)J. (0))I»+F.(2 ) (2q )""...(q.-q.).

dx e'«~+")'~()r'I T(V„'(x)J.~"(0)I)))+F~(2or)'Io(2q')"'o. os(qc —qo)o

X d* ~'"'+""(~'IT(V,'(x)~.'"(0))
I »

The g ~ 3or+y form factors may be defined by

(2)r)o)o(8q oqooq o)i)o()ran'on'eI J EMI»= —i(2or)

1
&&(2P') "' (giq-+g qo.+g q-+g4P. &, (2 13)

M,'
where I', is the four-momentum of the g, and M, is the
g mass.

We write the amplitude for the decay of g —+ )ro+2y,
where one photon is an isooedor photos, , as

(2')'I'(2q, o)'I' dx e'«+""(n'I T(V„'(*)J.R"(0))
I g)

—= (2or)-"'(2Po) "'T,'(P q.+qo, q,) . (2.M)

On grounds of covariance, the most general expression
for T„„associated with r) ~ oro+2y (real), is

T„.=A iP„(ki.+ko.)+A o(ki„+ko„)P,
+Ao(ki„ko +ko„ki.)+A4P„P,

+Ao(ki„ki.+ko„ko.

)+Aors„.

, (2.1/)

where we have demanded symmetry in the photon
momenta ki, k2.

Gauge lnvariance demands thRt

P=ki k /Poki.
Let us write P = 1—o, where

o=q. ki/P ki.
Then,

(2.21)

T„.=F(oP„q„)P., — (2.24)

with F=A,+A, . Thus, although there are actually
two form factors in the amplitude for the decay mode

g -+ m+27, for the case of "soft" pions, i.e., neglecting
higher-order terms in the pion momenta, T„, is given
in terms of a single form factor Ii.

We note, however, that the preceding result is not
symmetric in photon momenta since o= q ki/P ki. We
have not demanded that the form factors be symmetric
in k& and k&. We may now impose this symmetry by
symmetrizing T„, from the start, in the obvious way:

T„.=Ao(oP„q„)(P, —q.)+Ao—(oP„q„)P„—(2.23)

where q„ is the pion momentum.
We retain only the lowest-order terms in the pion

momenta. We then have

(2.18)

2Ai(P ki)+Ao(ki ko)+Ao ——0, (2.19a)

e"&'dx(or
I
T(J„E"(x)J.E"(0)) I g)

2 6~0

35=23,
A i= —pAo,

Ao= —PAo,

(2.20a)

(2.20b)

(2.20c)

Ai(P ki)+Ao(ki ko) =0, (2.19b)

Ao(ki ko)+Ao(P ki) =0. (2.19c)

We shall assume that the form factor Ae is slowly
varying, so that it will remain essentially constant for
arbitrary photon momentum. Then we note from Eq.
(2.19a) that in the soft-photon limits, P ki ~ 0,
ki k2~ 0, A6 vanishes. This condition, of course, rests
on the fact that there are no pole terms in A~ and A3
whose residues would contribute in this soft-photon
limit, Thus we take

+f 8' 's*( IT(z, M(*V.'"(o))I~) . (225)

Then one finds

where now
T„,=F(oP„q„)P„—

1/q ki q ko)

2EP ki P.ko~

(2.24')

(2.22')

and Ii must be symmetric in k~ and k2.
For the isovector photon decay, we de6ne

T„.(P, q.+q„q,)=F E.(~ k)P„q.„jP., (2.26)—
1 (q, (q +qo) q

' (P q qo —
q ))——

o(u, b)
I

=-+ I. (2.2'I)
2 V'(q. +qo) P (P q.—qo q,)l——

,
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If we assume that the photon is a U-spin scalar, then
by SV3 invariance these form factors can be related to
those associated with the real photon process by

Fe 3F$ 3 (2.28)

Combining Eqs. (2.14)—(2.16), (2.26), and (2.28) we
obtain

Z

{glqac+gpgbc+gpqcc+g4Pc}
M, '

F
eb 6(qb q)„{—e(a,b)P„q,„—)P,

F 2

eca3(gc go)a{e(a c)Pa qblp}P
F 2

ecbb(gc gb)„{e(b,c)E„q.„)E.. —(2.29)
F 2

From Eq. (2.29) we obtain

gq —g2 —g3-0 (2.30a)

where e(a,c) and e(b,c) are defined analogously to
e(a,b).

Neglecting terms quadratic in the pion momenta,
Eq. (2.2'I) reduces to

3iFN„2
g,= t eb.6{e(a,b)E (qb —q.)—q. (qb

—q.))
2F.2

+e-6{e(a;)E (q. q.) qb (q-q.-))-
+e,bp{e(b,c)P (q.—qb) —q. (q.—qb)) j, (2.30b)

g(kp)

FIG. 1. Feynman diagram for the decay g ~ m pp.

Thus, I'(ii~3m'+y)=0, a result which we know to
be true from the fact that such a mode corresponds to
a forbidden 0—0 transition.

For the g —+z+~ ~ y mode, we obtain

3FM„' (qp (q++q )E (q-—q+) I4P-' — + (q++q-)

P qp)+, 12qo (q-—q), (233)

where q+, q, qo are the ~, m. , x' momenta, respectively.
We have thus related the form factor for q

—+ ~+m m "y
to the form factor for g ~m'yy. We observe, however,
that the form factor g4 is, to lowest order, a function
quadratic in the pion momenta. This strong momentum
dependence suppresses the rate for the mode
g~x+z m'y and accounts for the small branching
ratio for this mode.

III. CALCULATION OF THE 61 ~ 666+2'
DECAY RATE

The S-matrix element for the decay g~+"+2y
obtained from Fig. 1 is

c 'Ip+cP P'p)
e(a,b) =— +

2 P (ga+gb) Mz

and Eq. (2.30b) becomes

3iFAII„2
g4=

F 2

qc' (qa+qb)
eb. p P (qb —q„) +

4 . — p (p.+p ) M', ')

(2 31)

T,I, F(eP„q,)P)„—— —(3 2)

e'(2lr) 484(P—
q
—kl —kp)

2(2e-)'(16M„alia) E )'"
X (elpeÃL+ eppeii) Tpb p (3.1)

where we have symmetrized with respect to the photon
momenta, and

gb' (ga+gc)—2q (qb q.) +e..p P (q
——q.)

E (q.+q.)

+ i
—2gb' (g —

g ) +e, bp P (g,—gb)
bf„ i

and

Then

g2

i q kg q k2
e= — +

2 P ky P k2
(3.3)

/qa' (gb+gc) ga'P
X

~

-- + —2q (g.—qb) . (2.32)
EP (q +g,) 3I„'

For the g —& 3m'+y mode, we obtain

gl =g2= gs= g4= 0

(preyed ( li) = — (2m-) 484(P—
q
—kl —kp)

2(27I)6

X j(«i P—ei. q)(ep P)
(16M,aIlalpE ) 'I'

+(ee, P—e, q)(e, P)j. (3.4)
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The decay rate is given by vr (q, )

d'q d'kl. d'k2
84(P—

q
—ki —km)

16M „,(2m) ' E„(ui (o4

XP J(«i P—ei q)(44 P)
pol.

+(«'P —44 q)(4i P) I', (3 5) Flo. 2. Feynman diagram for the decay q-+ m+m q1.0y.

g (44, 4 P)'=P'=M„',
pol.

(3.6)

QL44, 4 (4P q) j4= 4—'M„'+14'' 24P q, —
pol.

where e is the one-structure constant, Ke have taken
F out of the integral, assuming that it may be approxi-
mated by a constant. This approximation is certainly
legitimate to lowest order in the pion momentum.

We have
—gS g ™1/2

@(x)= (X'—2) x+1) tanh-'—
(li —x)'

l~= M„/p4,

x .,= (l~'+1)/2lb. .

(3.12c)

(3.13)

(3.14)

(3.15)

Z ( 442P),L4i 4 (4P. .
q) j—=4M' P—q~ (3 g) The integrals Bi, B4, B4 can be evaluated numerically.

I'rom the experimental value of the rate 2'

where p, o is the m' mass. Thus,

n'f' d'q d'ki d'k4
I'=— 24'M„'+i444 44P q—

2M& (2') F~ 2%i 2M4

(P q)'
+ 84(P-q-k, -k,), (3.9)

3II~2

where we have defined the dimensionless form factor
fby

Ii'= f/M, '.

1'(it -+ xoyy) = 2.05 keV, (3.16)

where we have taken F(it ~ all modes) =10 keV, we
6nd from Eq. (3.11) the effective coupling constant for
the mode g~m'yy to be

f=6.2. (3.17)

IV. CALCULATION OF THE g ~ ~+~-~op
DECAY RATE

The 5-matrix element for the decay g —+g+~—~op
obtained (rom Fig. 2 is

The detailed calculation of the it ~ x'+2y decay rate
is carried out in Appendix A. We obtain the result (ir+ir ir'Vtit)= (2s')'&'(P qi —q4

—
q4

—k)
(24r)'"

n4f F4 (li4—1)(2X211)
1(~ 'V~)=

4) 4(24r) SX'

(X4—1)(X'—1)' (P.4—1)
+ ——', ink

64) 3 32K

—li' in' — (X'—1)4+4Bi+B4—OB4, (3 11)
Q'

X — 4.M. , (4.1)
(32M4444014404k) i14

32(2 )'F4r'M, '
CPk Pgl, 8 gg 6 g3

k 2&j 2(dm 2&3

M.= (g4/M, ')P„. '

(4.2)

Using the results obtained in Sec. II, we have for
the decay rate for this mode

xe(x)dx, (3.12a)
q4'(qi+qm)

X~ (P-qi —
qs

—
qs

—k) P'(q4 —qi) ~ (qi+q4)

(xs—1)414(X&—xXx+1)
P'go

+
M,~

—2q4 (q4 —qi), (43)

+(x)
1+ dx, (3.12b)

(~-x)(x —1)'I'

where once again we approximate f to be a constant.

~' A. Roseafeld eI uL, Rev. Mod. Phys. 39, 1 (19$').
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The detailed calculation of the g~m+~ m y decay rate is carried out in Appendix B.We obtain the result

3rsf (ws)max )Qs 4+st sls Qsr(„~~+. ~s7) = kdk q,
I I (Q q,)s-4„sQs+

QsM, s(Q qs)' -(a+c) e+b 1
X (ac ',—b')-— — -+2Q'(Q qs)» —1 + (ascs+-,'k'+-ssbs(as 4ac—+cs)j d(a (4.4)

(as—k') 2b u b — M', '
where

s

&Qs+2Q qs+yss~
(4.5a)

, L(Q qs)' —~s'Q'j'",
'qs ps

M„(kIs—k)

,L(Q qs)+I s'j
'qs +ps

~ss—(2u+s s)'
~mgx

2M„

~as+ ps' 4ls'—
8 max=

(4.5b)

(4.5c)

(4.6)

(4 &)

Es=(N s—2M k)'~s. (4.8)

ming over photon polarizations gives

2(qs qs)g )an I'= — — , (5.2)
)(qs k) (qs k)' (qs k)''qs k

(4.9)
and the rate becomes

1'(~ -+ sr+sr sr')= 7 5X 10"sec-'

The remaining two integrals in Kq. (4.4) were carried

out numerically. Using the results of Sec. III, namely,
y= 6.2, we obtain for the rate"

which gives us the branching ratio

r(~ ~ ~+~-~'7)/r(~ ~ ~'qq) = 2.4X 10-s. (4.10)

V. CALCULATION OF THE INTERNAL
BREMSSTRAHLUNG CONTRIBUTION

g Ikd gyd ggdeqe
1(&~ 3~+&)=

2(2sl ) lVs k 2Q)s 2Q)s 2Q)s

&& ~ I~l'~'(& ql q
—

q k—), —(5.3)—
POle

where we assume that g is constant.

The calculation of the rate for the decay mode

& ~ ~+~—~0~ in Sec. Iv only contains the direct electro-

magnetic decay. It isalso of interest to estimate the

contribution to the rate from internal bremsstrahlung.

We therefore consider in this section the contribution

from the bremsstrahlung emission alone vrhich may be

computed using perturbation theory. '4

The diagrams for the bremsstrahlung process are

shown in Fig. 3. The matrix element has the form

'9 (P3

~+( )'(k)

~~ ~~qs' ~ qs's)
m=

qs'k qs'k~
(5 1)

where ~ is the photon polarization. Squaring and sum-

~'%e obtain the value of P from the Goldberger- freiman
relation, I'~= Ngg3f~ jg&.

I4 R. H. Dalitz, Phys. Rev. 99, 915 {f955).

~ &q, )

FIG 3 Fey man diagrams for the internal bremsstrahlung
in the decay q ~ ~+~-~~.
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The branching ratio for the two modes will be inde-
pendent of the coupling constant g. As shown in Ap-
pendix C, we obtain the rate

f'(r/ ~ 3gr) =43.7 g' keV. (5.5)

In Appendix C we also Gnd the rate

g2n
I'(r/ ~ 3x+y) =

2(2x)'M,

where

2k)dk
(

1—
~

—C,(k), (5.6)
M,) k

42(k) = (qL1+x'(k) j tanh-'x(k) —qx(k) Ida, (5.7)

We wish to compare this rate with that for the
g
—& 3m mode. The diagram for the latter mode is shown

in Fig. 4, where g is the same effective coupling constant
as in the g

—+ 3m+ad mode.
The rate is then given by

g dgjdggdg3
r(&~3x)=

2(2x)'M, 2o&r 2o)2 2~3

Xh'(&—qi —q~
—q~). (5.4)

m (q, )

Fro, 4. Feynman diagram for the decay y —+ ~+~ ~0.

The result obtained is 1'(r/-+ x+n. n'y)/1'(g ~ x"yy)
=0.24%%uo, which agrees with Singer's model calculation'
assuming vector-meson dominance.

Aside from phase-space considerations, the current-
algebra calculation affords a convenient way in which
to understand the suppression of the g —+ ~++ m'y mode.
The presence of a strong momentum dependence in the
direct-emission form factor is largely responsible for
the resulting small branching ratio.

We note that the photon spectrum shown in Fig. 6
differs from that of Singer (see his Fig. 1) in that our
spectrum tends to be skewed toward lower photon
energies. However, the total rates are in agreement.

We have also calculated the rate for bremsstrahlung
emission. The branching ratio for bremsstrahlung emis-
sion as a function of minimum photon energy is plotted
in Fig. 5, and compared to the similar ratio for the
direct decay. We note that the contribution from the

and
(Q2 4~2) 1/2

x(k) =
~

(5 g)

-2
IO

E/'+so' —4/ '
(5.9)

IO

and E/, is defined by Eq. (4.8). Let

E(3x)—=F(g ~ 3x), (5.10)

lo

gma

Z(3x+&)dk=
~

1-
~

—C,(k). (5.»)
2(2x)'M, ( M, / k

Then the integral

Io

K

IO

' ~E(3s.+y)
R(k) =

P(3m)
(5.12)

IO

is the branching ratio of g~m+m m'y compared to
p~ m+m x as a function of the photon cutoff energy
for internal bremsstrahlung. A plot of R(k) versus k is
shown in Fig. 5.

lo

VI. CONCLUSIONS

We have shown in this paper that we may determine
the rate for g~x+x x'y in terms of the rate for
g~x'yy using the method gf current algebra and
PCAC.

-9
I I I I I I I I I I I 1

0 I 0 20 50 40 50 60 70 80 90 IOO IIO I20
k{Mev)

Pro; 5. Plot of the branching ratio R(k) as a function of the
photon energy. The solid (dashed) curve represents the direct
emission (internal bremsstrahlung) contribution.
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g~3~+y is small, it wouM be of great interest if
such decays could be observed.
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APPENDIX A

In this Appendix we carry out the detailed calculation
of the q ~ m "+27 decay rate. Equation (3.9) is

2', '(2n)'.

Let us write

d g d ky d kg
2e'3/I '+p '—4&I' q

E& 2M' 2G02

(P q)'-
~o(P—

q
—k,—k,). (A~)

3f,'

I I I I l I
40 60 80 l00 I 20

k (MeV)

FrG. 6. Plot of the photon energy spectrum
for the decay g-+ m+~ ~'y.

direct decay is about Ave times the bremsstrahlung
contribution except for the very low-energy photons
where, of course, the bremsstrahlung spectrum
diverges.

This result contradicts an assertion of Singer' that
we may neglect the bremsstrahlung since it is of order
u' compared to the direct emission, and illustrates the
pitfalls involved in making order-of-magnitude esti-
mates of g-decay modes by counting powers of o..

The agreement of our calculation using current
algebra with Singer's vector-meson-dominance model
is an additional confirmation of the equivalence of the
two methods. The vector-meson-dominance model has
been used in several papers. "" These results also
agree quite well with the corresponding predictions of
current algebra. This agreement suggests that such
model calculations do yield excellent estimates of actual
rates.

As Singer has noted, the p ~ vr+m=m-'p decay may offer
an opportunity to observe a C violation directly through
an asymmetry in the x+-versus-m spectrum at moderate
photon energies where the direct emission exceeds
the bremsstrahlung. While the branching ratio for

~of2 doqr- (6+Io+Io),
2N, '(2or)' I:.

(P q)'- dokj doko
Ix(M, ',I o',P q)= po'+

3f
& 2GOy 2072

X~(P—
q
—k,—k,), (»)

Io(M, ',IJoo,P q) = 4(P q)—d'kg d'kg

2arq 2co2

X o8'(P —
q
—k~ —ko), (A4)

d'kg d'k2
Io(3/S ' po' P.q) =23II,o

20Py 2%2

Xo'~'(P —
q
—k, —k,). (Ag

We shall evaluate I~, I2, I3 in the center-of-mass system
of the photons. We introduce the relative coordinates
Q and R where

Q=kg+ko,
E=kj.—k2.

Thus,

(P q)'
Ig = po'1- — — d4kgd4k2

3E,2

X b(kg') 8(ko') 8'(P—
q
—kg —ko)

1 (P q)'=—go'+ d4Qd'8
4 SI„'

2' L. J. Clavelli, Phys. Rev. 154, 1509 (1967).
'6 L. J. Clavelli, Phys. Rev. 160, 1384 (1967).
~'K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,

255, 384 (1966).
~ W. %V. %ada, Phys. Rev. Letters 16, 956 (1966).

or
x~(Q &)&(Q'—~')~'(P —

q
—Q)

Ii = Qo'~ '+ (I q)'j.2' ~2
(A63
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Similarly,
/'q k& q k2)

I2= —2(P q) dpk|d'k28(k22) 8(k22)
i +

or

(qQ+qR qQ —qR)
x

i
+ l~'(P —

q
—Q)y Q+P R P Q PR—)

X8'(P —
q
—k2 —kp)

= ——,'(P q) d4Qd4R 8(Q R)8(Q2+R2)

Thus, the decay rate is given by

/22 f2 d'q
r=

M,p(22.)' E, 4M, '

XL2M,4+pppM, 2+(P q)']—x(P q)

+-,'(P Q)L(P q)
—Mpp]J+-'„M„2(P Q)'E . (A15)

We have for the various integrations

where

I2= 2~(P—q)+(P q)(P Q)J
8(Q R)8(Q2+R2)

J=Q' d4R
(P Q)'-(P R)'

(A7)

p2. (ppp+2M„2) = 222-2(/22'+2gppM ')
(AS)

" p

with

Also,

Q=P q. — (A9)

)4—1
X —1nX, (A 16)

iq k& q kpip
I2= ,'M, ' dpk-2d'kph(kP)b(k22)i +

kP kg P kpf

Xb'(P —
q
—k2 —k2)

= -,'M„' d4Qd4R 8(Q R)b(Q2+R2)
1 X'—1i

+—
i

—
g22 1nh, (A17)

8 4Z)
2Q'(Q P) Q'(P Q)'

X +
(P Q)'-(P R)' L(P Q')-(P R)']'

xs'(P —
q
—Q),

d'q (»—1)'
(P q) = —p~'~p'

E X'
(A18)

OI

where

j de &max

I2=2/Mp' M, '(Q P)J+—,'M„'(Q P)'E-) (A10) — P (P—q)(P q)J =4m'pp' x(),'+1—2&x)
2

~(Q R)~(Q'+R')
E=Q4 d'R-

L(P Q)' —(P R)']'
(A11)

X tanh —' dx, (A19)

J and E may be evaluated explicitly and we obtain

22-Qp

J=
(P Q)'(1—M.'Q'i(P Q)')"'

2Q2- 1/2

Xtanh —' 1—,(A12)
(P Q)'-

d3
P (P—q)J= 42/2///ppMp———3f,2

g

E

&maz —&2 y -Z/2

X (X —2Xx+1) tanh ' dx, (A20)
(X—x)'

E=2Q2 +
M,'(P.Q)' (P Q)'t1 —M 'Q'/(P Q)']'"

M 2Q2 1/2

Xtanh ' 1— . A13
(P Q)'

Combining Eqs. (A6), (A7) and (A10) gives

—'M ' [P (P—q)]'E= ppp

E

max

X (x'—1)'/'(» —2Xx+1)
1

(»—2~x' 1) —1 dx. (A21)
I2+I2+I2=

X 1+ tanh
L/ ppM 22+(P. q)2] 2~(P q)— (X—x)(x'—1)'/2 (X—x)2

2M„'

+(P q
—M,2)(P Q)J+2M„2+22M„2(P Q)'E. (A14) Combining Eqs. (A16)—(A21) and substituting in Eq.
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(A15) yields

P.&—1)(2&2+1)
r(~ ~ ~'~~) =

4Ã3(22r) 8X2

YVe shall carry out the integrations over the pion
momenta in the center-of-mass system of the three
pions. In this system F=(Fs,K), k= (&3,K), Es=&,
where

(X'—1)(Xs—1)' (X'—1)
+ —-', Ink

64X~ 32K.

—),

sinai

— (As —1)3+48g+82 4Xj33 —. (A22)
M, '

Fs——(IC2+M„')"'.

Also, F k= (L~'3—,0), where

Es (M, s———2M,k)"'.

(&2)

(&3)

9/sf 2

p
32(22r) 'F„4&V,3

dkd gyd gpd gg

k 2M' 2ct32 240'

qs' (qs+qs)
xh'(F qs qs q—s k—) F—.(qs——qs)

.-F (qs+qs)

APPENDIX 8
In this Appendix vie carry out the detailed calculation

of the 3/ ~ 2r+2r 2rsy decay rate. Equation (4.3) is

For the gy and g2 1Dteglat1ons~ we again lntrocIucc the
relative coordinates Q and R. Then

9nf' d'k d'qsr- d'Qd'R
128(22r)3F 33133 k 2333

Xh(Q R)h(Q'+R' —4/32)h'(F —
Q
—

qs —k)

(qs'Q ~'qs)
X (F R)~ +

~

—2q, R, (as)
&F.Q Sr, )

~
Om 2

+ —2q, . (qs—q,) . (31) where /3 is the sr+ mass. Expanding the bracketed ex-~ 2 pression in Eq. (85) gives

l (qs'Q ~'qs)
d'Qd4R h(Q R)h(Q2+Rs —4/tss) (P R)i + i

—2q, R hs(F Q
&ZQ ~;)

(& R)'(Q qs)' P'R)'(F q,)2 2p'R) (Q q,)(F.q,)d'Qd'R h(Q R)h(Q2+R' —4/32) + +
(F Q) P'Q)x, s

4(F R)(qs R)(qs Q) 4g'R)(qs R)(F qs)
+4(qs R)'— h'(& Q qs k) =L—s+—&2+—~s+&3+Ls+&3=&, (&6)

(F Q) 3f~~

(F Q)'(Q qs)' 2~(Q qs)' . . . (Q'—4/&"'I3= d'Qd'Rh(Q R)B(Q2+Rs 4/32) — h'(F —
Q qs k) = — —«Q.F—)2—Qsill, s)

(F Q)' 3 (QF)' E Q

(F qs)'
I,,= d Qd Rh(Q R)h(Q2+Rs 4/2)(Z R)'h—s(F Q q, k)—— —

3I,4

22r (F qs)' (Qs 4/3$ 3/2

«Q F) -Q'~, 'jl
3 Sf' Qs )

(&-qs) (~R)(Qq)
Ls= 2 d'Qd4Rh(Q. R)h(Q2+Rs 4/32) h—sp' —Q—qs —k)

(F Q)

(&&a)

(~ qs)(Q qs) Q2 4~ 3/2

L(Q F)'-Q'~, 'j (87c)
(Q F)/lf, s 2

82r Q2 4/3 3/2

Z..=4 d'Qd'Rh(Q. R)&(Q'+R' —4/')(qs R)'h'(& —Q—
qs

—k) =—L(qs Q)' —/ 3'Q'j
3

(»d)
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(P R)(q R)(q'e)
1.3 —4——d'Qd4Rb(Q R)b(Q'+R' —4/42) b'(P —

Q
—

qp
—k)

(P Q)

82r (Q qp) Q2 4~21 3/2

L(e P)(e q*)-e (P q.)&
3 (Q P) 2

(P qp)
1. = —4 d Qd4Rb(Q R)8(Q2+R2 —4/42)(P R)(q R)84(P—Q —

qp
—k)

Thus,

82r (P qp) (Q2 4~/ 3/2

He P)(Q qp)
—Q'(P qp) jt I (»f)

3 M,2 Q2

(Q' 4/&"—' (Q qp)' (P qp) (P qp)(Q qp)-
L(e P)2—Qpm 2j

e i (e p) ~„(ep)~„

l
(Q qp) (P qp)-

+4t(q Q)' —/o'Q'j —4 +, L(e P)(Q q) —e'(P q,)], (as)
-(e p) t

where Q=P —
qp

—k. Equation (B8) reduces to

(Q2 4~ 3/2 3Q2 (Q qp)(P qp)
(Q qp)'-4»'e'+ (P qp)'+2Q'

M,2
(Q P)

(Q qp) (e » (P q.) Q ~. (Q q.)
(Q P)(P q.)+

3f„2 M,4 (e p)

Then, performing the angular integrations, we obtain from Eq. (35)

3nf2 &maxr(„+—
o&) = kdk

64(22r)4F 4%33 ~

&»&m~ /Q2 —4/4Q 3/2 Q2

qpt t (Q qp)' —4/ ppe2+ (3c'+b')e'

(Q.qp), Q'~p'(Q qp)' (a+c)
/
a+b)—2 (ac—3b') — +2Q'(Q qp) lnt t

—1
bf'32 (a' —b') 2b (a bf—

1
+ Eapcp+-'b4+-'b2(a2 4ac+c2) jt /fpp

—(Il1O)M2 t
where a, b, c are defined by Eqs. (4.5).

APPENDIX C

In this Appendix we carry out the detailed calculation of the contribution from internal bremsstrahlung to
the p~ x+x x'7 decay rate.

Introducing once again the relative coordinates Q, R, Eq. (5.4) becomes

g2
r(~~3~) =

8(22r) 3M

d gs

2s

g
d'Qd'R b(Q R)8(e'+R' —4/4')b'(P —

qp
—Q) =

16(2n.)4M „
(3) max(Q2 4/45 1/2 g2

xt
E Q2 & S(2~)pbbs, „,

//III 2—2' 443+/432 4/4p 1/2

(~3'—/ 3')'"
t

—

t
c',~3, (c1)~32—23Epp/3+/432 //
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~ 24The third term giv

I662

04 in the restw — — '= iV, '—2'„&»3+/40' lnwhere Q=P —
q4,
alldframe of the

%'e may wnte Eq. C1) as

g Py

8(24r)'X
CI(x)dx,

(c2) R)8{Q'+R'—4/4')d'Rb(Q.
(Q k)' —(R k)'

2 4 I/2

. (c1o)tanh '
(Q k)'

Thus, Eq. (C8) becomes

2 i/2X'—2hx+ 1—4

(79+1 —4p ), —2+msx (C5)

I/22 2 2

g !OR!'8'(J'—q, —q, —q, —k =
2Gt7g 2(d2 Poi.

2

~=~»l/ o p=/ lp'
we obtaint the integration,Carrying out

I"(4/-+ 34r) =34.7 g
' keg. {C'l)

2» g ~ 'R "Jc

integrations inand E, the q~ and g2 inIntroducing Q all

Fq. (5.3) become

and
g2~

(
2 X/2Q' —4/4'&

2 (Q' —2p) t nh-'

QI 4~5 I/2
—3.Q

-I C(&a—~4)+q4 x]'

s. 32) and (34). Thed E/, are defined in Eqs.where E and E/, are
above reduces to

!OR! 'II'4(P —ql —q2
—

q»
—k

2loI 2402 P&»

F(I/ —» 3Ir+y) = ggf(og
kdk 24r(Q'-2/4')

R' —4 'd4Qd 'R 8(Q R)b(Q.'+R' 4/4— 2 2 i/2(Q' —4~

)Xtanh-' -- — — —x (C11)

(Q k+R k)'

2(Q' —R')4@2 2 2

(Q k —R k)' (Q k)' —(R k)'

. C8) contributems in the bracket of Eq.
te t nsequally since t e in

//(Q R)b(Q'+RI 4/4')—
(Q k+R k)'

Q' (Q' —4p')
XII4(P—k —

q»
—Q) =

)

It is convenient to define

(Q'—4/ & "'
x(k) =!

C11) is then given byThe rate in Eq. i

go,

2(2n.)4/M',

' * ( 2k dkNk'
. 5.7).~here C,(k) is de6ned by Pq.

(C12)


