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light and the 0. component in absorption. The second
peak at 8 kG arises from the resonance between the sr+

component in the exciting light and the x component in
absorption. The shapes of the o and 0.+ components in
the exciting light are identical and thus the observed
differences in the pro61es of the peaks in Fig. 10(a)
should arise from the diBerences in the rates of increase
in hy with magnetic 6eld for the 0 and 7r components,
as shown in Fig. 10(b). These rates are in the ratio xs. s.

and, consequently, the half-width of the second peak is

twice that of the first peak. This relation has been shown

experimentally not to depend on the magnitude of the
magnetic field.
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Nonadiabatic theory has been applied to calculate an accurate wave function for the ppd muonic mole-
cule. The value of the wave function describing the nuclear motion evaluated at an internuclear distance
equal to zero yields a cross section for the D(p,p)He reaction in agreement with the experimental value.

I. INTRODUCTION
' ~ROM the total fusion rate of a proton and deuteron

bound in an S state by a muon, one can get,"
under certain assumptions, the radiative fusion rate
)„, which can be expressed as

-s'),„=R~G(0)~s,

where R denotes the reaction constant, the $ factor is
the probability that the pd system is in the doublet
state, and G(0) is the value of the wave function de-
scribing the nuclear motion in the muonic molecule Ppd,
evaluated with the internuclear distance equal to zero.
On the other hand, the low-energy S-wave cross section
for the D(P,y)Hes reaction is'

o,=2sv)Lexp(2sg) —1j tR/s,

where ~ denotes the velocity of the nuclei at ~~~~ity,
and r) =e'/hs. Assuming the same rate constant R in
(1) and (2), one can eliminate it from the above equa-
tions thus getting a relationship between X„, o„and
G(0). Usually the experimental value of X„and the
theoretical value of G(0) are used to evaluate o„and
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the result is compared with the experimental cross
section. However, previous theoretical values of G(0)
yielded the cross section 0„|Mering from the experi-
mental value by a factor of 10 or more. ' Recently,
Carter' reported for o., a more accurate value which,
however, was still about 2.5 times smaller than the
experimental one. To clarify this matter, extensive
computations on the lsd system have been carried out.
The method of computation is brieQy sketched in Sec.
II, and the results are presented and discussed in
Sec. III.

II. METHOD

The pard system is similar to the HD+ molecular ion,
the only difference being in the mass of the light particle.
However, since the muon is abnost 207 times heavier
than the electron, the adiabatic approximation, success-
ful in molecular calculations, breaks down, and the
muonic molecule must be treated as a three-particle
system. Previous nonadiabatic calculations~' for
muonic molecules have usually been limited to sym-
rnetric systems, as, e.g. , pIsp or lsd. For ad, however,

~ See, e.g., Ya. B.Zel'dovich and S.S. Gershtein, Usp. Fiz. Nauk
71, 581 {1960)t English trsnsl. :Soviet Phys. —Usp. 3, 563 (1961)g,
or Ref. 1.' W. Kolos, C. C. J. Roothaan, and R. Sack, Rev. Mod. Phys.
32, 178 (1960).' S. Fliigge and U. Schroder, Z. Physik 162, 28 (1961).

~ C. W. Scherr and Milos Machacek, Bull. Am. Phys. Soc. 9,
(1964)

~ W. Roy Wessel and P. P»t»pson, Phys. Rev. Letters 13, 23
(1964),

8 A. Halpern, Phys. Rev. Letters 13, 660 (1964).' P. K. Kabir, Phys. Letters 14, 257 (1965); Z. Physik 191,
447 (1966).
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TABLE II. Variation of yR, and R, in the
133-term expansion for pQ.

o.o6 i

G(R)

0.04

0.02

0.2
I

0.4 0.6

yR,

1.417
1.517
1.617
1.502
1.502
1.502
1.502
1.502

R,

2.382
2.382
2.382
2.382
2.332
2.307
2.282
2.232

—0.5124329
—0.5124359
—0.5124303
—0.5124354
—0.5124356
—0.5124350
—0.5124378
—0.5124336

V/2E

0.9998992
0.9999947
1.0000968
0.9999583
0.9999772
1.0000550
1.0000920
1.0001374

G(0)

0.01013
0.00993
0.00940
0.00964
0.00921
0.00923
0.00913
0.00953

FIG. 1. Pseudowave-function G(R) for ppd computed from
various complete wave functions as dehned in Table I; both G
and R are in muonic units.

several calculations have also been carried out. '""
The main difference between the various calculations
consists in using different basis sets to approximate the
exact solution of the three-particle Schrodinger equa-
tion and in taking different numbers of terms in the
expansion, which critically affects the accuracy of the
results.

The method employed in the present calculation was
that developed previously by %olniewicz and the pre-
sent author"" for nonadiabatic treatment of diatomic
molecules. It consists in transforming the complete
Hamiltonian to the angular momentum representation,
separating off the rotations, and solving, by the varia-
tional method, the equation, or system of equations,
for functions depending only on the relative coordinates
of the particles. For the nonrotational ground state of
Ppd, we assume the variational wave function in the
form

0'= (2~) '"Q c,„C;x„,

where

C,=~„.,(,e; &,~)+1~„..(-, -~; ~, ~),
= exp( &k P'll) A'

Xa ——(41r) "'R "'H„(x) exp( —x'/2)

(4)

—1/2

$ and g are elliptic coordinates of the muon, R is the
distance between the two nuclei, "H denotes the nth
Hermite polynomial, and x=y(R —R,). Thus, in addi-
tion to the linear parameters c;„, we have n~, n2, P, y,
R„and X to be optimized by using the variational
principle.

Note that the p„, functions depend implicitly on. the
internuclear distance R, and in the calculation of the
matrix elements the R "' factor in X.„merely cancels
the R' factor from the volume element in elliptic
coordinates.

The basis set (4) results in matrix elements analogous
to those derived previously" for the hydrogen molecule,
and they will not be given here explicitly.

Following Carter, ' the calculated three-particle
wave functions were used to compute the pseudo-wave-
functions for nuclear motion dered as

fe f'dr„ (5)
TABLE I. Convergence of energy and of G(0) for ppd with in-

creasing number of terms in expansion (3).

No. of
Run terms

1 59
2 67
3 84
4 97
5 106
6 113
7 116
8 120
9 128

10 133

(r+s) e
4 4
4 5
5 5
5 6
5 7
5 8
5 9
5 10
6 10
6 11

E. (m.u.)
—0.5106636
—0.5113848
—0.5115945
—0.5)20430
—0.5122567
—0.5123528
—0.5123824
—0.5123950
—0.5124270

E (ev)
—2873.29
—2877.35
—2878.53
—2881.0S
—2882.26
—2882.80
—2882.96
—2883.03
—2883.21
—2883.26

G(0)

0.03902
0.02484
0.03125
0.022S1
0.01948
0.01787
0.01385
0.00914
0.01091

' A. Froman and J. L. Kinsey, Phys. Rev. 123, 2077 (1961).
'~ A. A. Frost, M. Inokuti, and J. P. Lowe, J. Chem. Phys. 41,

482 (1964).
~ W. Koios and L. Wolniewicz, Rev. Mod. Phys. 35, 473

(1963)."W. Kolos and L. Wolniewicz, J. Chem. Phys. 41, 3674 (1964).

TABLE III. Nonadiabatic energies of ppd calculated
with various wave functions.

No. of
terms

12
8

84
?

133

Energy (eV)

—2856
—2859
—2876.5
—2883.8
—2883.3

Reference

Present work

a Reference 10. b Reference 11. e Reference 2.

'4 Not to be confused with the reaction constant used in Eqs.
(1) and (2}.

where the integration extends only over the elliptic
coordinates of the muon. The values of G(0) were then
used in Eq. (1), which combined with Eq. (2) yielded
the value of 0,
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III. RESULTS AND DISCUSSION

The numerical computations were carried out on the
IBM 7094 computer at the Computation Center of
the University of Chicago. The primitive integrals over
the muonic coordinates and the Hermite polynomials
were calculated in double-precision and all other
quantities in single-precision arithmetic.

The convergence of the results with increasing number
of terms in the expansion (3) was rather slow and a
systematic approach had to be adopted to select the
most important terms. The general procedure was the
same as that used previously"" in H& computations,
i.e., numerous machine runs were made in which the
expansion length was gradually increased and those
terms that did not improve the energy were dropped in
subsequent runs. The nonlinear parameters were first
optimized for an arbitrarily selected wave function, and
in the course of the systematic selection procedure
they were reoptimized.

Table I shows convergence of the energy and of G(0),
as defined by (5), with increasing number of terms. "
The runs 1—8 were all made with the same set of the
nonlinear parameters. One can notice that terms with
higher powers of ( and g increase the value of G(0),
whereas those with higher degrees of the Hermite poly-
nomials have a diminishing effect. A reoptimization of
the nonlinear parameters in each case might make these
e6ects less pronounced.

The G(E) curves are plotted in Fig. 1 which shows
that, particularly in the virinity of E=O, they are
quite sensitive to the accuracy of the complete wave
function. It is also seen that the general shape of our
curves is quite different from the shape of the G(&)
curve calculated by Carter. 2

In the last two runs, 9 and 10, we tried to reoptimize
the parameters y and E, since they seemed to aBect
most significantly the value of G(0). The optimization
was more or less successful for the 128-term expansion
but could not be carried out for the 133 terms. With
this expansion length for a function of three variables,
and working in single precision, we had nearly re-
dundant terms, and the rounding errors were larger
than the changes of energy due to the exponent varia-
tion. The problem could be overcome by reselecting

"W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219
(1960).

'6 The following masses were used in the present calculation:
m„=206.77 m„m„=1836.12 m„and mq ——3669.44 m„ the con-
version factor was 1 a.u. =27.2118 eV, obtained by using the most
recent value of e/h fW. H. Parker, B. ¹ Taylor, and D. N.
Langenberg, Phys. Rev. Letters 18, 287 (1967)j; by m.u. , we
denote the muonic units resulting from m„=h =q= 1,

the terms and omitting those that contributed mainly
to the rounding errors, but this did not seem to be
worth doing. It was rather unlikely that this would
give any sizable energy improvement, and from the
results shown in Tables I and II, it was quite clear
that the final value of G(0) obtained with our basis set
would be between 0.009 and 0.010. Using Eqs. (1)
and (2) and Carter's value~ of the radiative fusion rate
X„=0.276 psec ', the above bracketing values of G(0)
give o-'=1.30X10" cm' and 0..=1.05X10" cm' re-
spectively, for 25-keV protons, and both cross sections
agree with the experimental value" 0,=(1.3&0.3)
X10"cm' within the experimental error.

The problem of energy of the ppd molecule remains,
however, not quite clear. In Table III, we compare our
result with nonadiabatic energies computed by other
authors, and it is seen that Carter's value' is by 0.0001
m.u. , where m.u. stands for muonic units (or 0.5 eV),
lower than the best result of the present work. Judging
from the energies listed in Table I, it does not seem
likely that by increasing the expansion length with the
basis set (4), which in double precision would be still
possible, one could get an energy improvement of 0.5
eV over the best result listed in Table I. The main
difference between our basis set and the set used by
Carter consists apparently in the fact that he has only
linear dependence on R in the exponents. However, in
our basis set, we have the factor expL —x~y'(E —E,)'j,
and since both y and R, are variational parameters, we
have in principle both the quadratic and the linear
dependence on E in the exponent. Carter expands the
wave function in terms of products of simple exponen-
tials and uses diBerent exponents in each term of the
expansion. Variation of exponents is known to be a
powerful tool in determining approximate wave func-
tions, and Carter's basis set with carefully optimized.
exponents could give a faster convergence of the energy
than ours. However, our best results for G(R) as shown
in Fig. 1 seem to be better than Carter's; therefore, it
is somewhat puzzling that we were unable to reach his
energy.
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