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High-spin wave functions, propagator numerators, and vertex functions are developed in a covariant,
on-shell manner. General formulas are given for massive bosons and fermions and for photons. The applica-
tion to dispersion theory is discussed.

r. INTRODUCTION

~CONSIDERING the growing importance of high-~ spin particles in elementary particle physics, we
wish to present a systematic analysis of high-spin
propagators and vertex functions with a view towards
application to dispersion theory. ' We shaH stress
"covariance" instead of "helicity, " and the notion of
"on-shell" instead of "o6-shell. "

We begin by unifying previous treatments of high-
spin wave functions (Sec. II) and show that they give
rise to covariant on-shell propagators which are simply
related to rest frame rotation group tensors. Then we
use the 0(3) tensor analysis of Zemach, ' ' in covariant
form to obtain general formulas for high-spin propaga-
tors (Sec. III). This analysis differs from the general
projection operator approach of Fronsdal' in that we
start by contracting all covariant spin labels with mo-

menta, and then remove the momenta one at a time.
In addition, Fronsdal s projection operator is o6 shell,
and we shall 6nd in Sec. III that staying on shell
and we shall 6nd in Sec. III that staying on shell leads
to great simpli6cation for fermion propagators.

In Sec. IV, we discuss the coupling of high-spin to
lower-spin particles and systematically list general
coupling formulas. In Sec. V we attempt to go off shell
to analyze photon couplings. Finally, in Sec. VI we

point out some of the areas to which our results can be
applied. Since our formalism is written in terms of the
usual s-channel variables, we devote an appendix to
the transformation of the formalism to the crossed
t channel.

II. HIGH-SPIN WAVE FUNCTIONS

Consider a free particle of spin s, and let J be the
largest integer in s. First, let us study a boson (with
s=J) in its rest frame. Its wave function is then a rota-
tion group tensor of rank J; we form such a tensor out
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of J spin-1 polarization vector wave functions e;&"),

where X is the spin projection along some axis X= I, 0,
—I and index i= 1, 2, 3. The index traceless and sym-
metric tensor spin-J wave function, e;,...;~&A), with spin
state A, can then be obtained by a series of Clebsch-
Gordan couplings as4

e;, ;,&~..&.= P (Xg Xgl JA)e; &"» . e;,&'" (I)
$$ ~ ~ ~ $J'

where (4 XJ l JA) is the "parallel coupling coeScient"
deined by4 6

(J+h.) i(J—cl) '

(~ "~,lJp, )= 2
—

~ '~ ~.... (2)
(2J)!

The traceless condition, 8;„.,e;„,...;~( & =0 easily follows
from Eq. (2).

Ke boost this spin-J particle into a general frame
with momentum p and mass m by using covariant
polarization vectors e„~~~(P) (with index p=0, I, 2, 3,
and X can be taken as helicity) along with the subsidiary
conditions P"e„&"'(p)=0 and obtain the covariant spin-
J wave function

b" ~ I») '"'(P)"' '""(P) (3)
XI. ~ ~ Xg

which clearly satishes the subsidiary conditions

P"'ew "oz (P)=0.
The traceless conditions

golem clem"'oJ (P)

follow from the boost prescription

&"—+ —(g „—P P„/m')
where p'=m'.

Next we consider a high-spin fermion with s=J+—,

and use the Rarita-Schwinger-Kusaka' ' prescription
for coupling the above integer spin-J wave function to a
spin-~u Dirac bispinor, ee~'(p):

~. - -"'(P)=Z (J 2~,ul J+2,»" - "'"'(P)N"(P) (4)

'P. Csonka, M. Moravcsik, and M. Scadron, Ann. Phys.
(N. V.) 40, 100 (1966).

7%. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941}.
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It is easy to show that u». ..»'"&(p) can also be expressed K'=M' (on-shell), we use the prescriptions
as" —(g„. K—„K.)= g„—„(K) and p, —+ —pu(K), where

u»" » (P) = 2 (!~i' ' '!i&0'I 1+2 Jt)
so that

p„(K)=—p„—(p KiM')K„, (13)

III. CONTRACTED PROPAGATORS —ON-SHELL

Now we proceed to calculate the numerator of a high-

spin propagator defined as the spin sum

rp. -,'..- "'(K)=Zf. - -—"'(K)0 - z "i(K)
h

(7)

where |P»...» is either a boson e». ..» or fermion

p„,...» wave function, |P is e* or u, and K is the mo-

mentum of the propagated particle of mass M. We
contract (P»...», „,....~'(K) with initial momenta p„
and final momenta p„', which produces the contracted
propagator (P'(p', p; K), with s=I or J+i2,

~ (p,p; K)=p"-
If we take a virtual boson of spin J to its rest frame,
e&"&(M) p= pi (X=1,0,—1).Then from Eqs. (3) and (6),

(p )pt K) Q pig' ' 'pig' rpxg'. "ig';i&."XgpXy' ' 'pig
X',)

= Ts(p'): Ts(p),

the contraction of two 0(3) tensors of rank J.'4 This
is easily worked out by aligning p along e3 so A=0 in

Eq. (2), and one can show that

6'~(p', p; M) = cg(Pg(p' p) (10)

where (Pz(p' p) is the "solid" Legendre polynomial

6's(p'. p) = I1'I'll I'&s(P' p) (11)

X~ '" '(p) c '"'i(p)u" (p) (5)

where (Xi Xqo
I J+s,h.) is the parallel coupling coef-

6cient defined by Eq. (2) with J~ I+i~. This satisfies
the usual subsidiary conditions" (p—m) u». ..»(p)

r»upi »(P)"P» pl" '»(P)
The normalization and orthogonality properties of

e». ..»(p) and u». ..»(p) are embedded in the ortho-

gonality properties of the parallel coupling coefficients. 4 6

In particular, the traceless symmetric projection
operator on the 0(3) helicity labels is

6'~,"-i~', i - iz=Z Pi'

y(X," X, IZA). (6)

p~ ~ pe+ &gva )

where e is a small number, so that

(16)

p (K) ~ p (K)+~a-(K)
(P~(p', p; K) —& (P~(p', p; K)+eJ(P, ~(p', p; K) (17)

6's ~ +z ~[P.'(K)+z'+P"(K)P-(K)rP~ i'j, -
and equate the coefficients of e, where

6 .'(p, p; K)

—=p'"' p'"'&.,"'.; -,"' (K)p"' P"' (lg)

and (PJ' is a derivative solid harmonic of degree J—1,
becoming

6'.'~
I
p'I' 'I pl' '~.'(P' P)

in the K rest frame and satisfying the covariant recur-
sion relation,

P"(K)p'(K)6'.—'=6'.+ '—(»+1)6" (20)

This same technique can be used to free final labels P
by letting p„' —+ p„+eg„s with formulas similar to
Eqs. (17), where p'+-+ p, i ~u, u ~ p, and

~P; (P',P; K)=P'"' P"'res. , '—,;., .,P"' P"-' (2-1)

p' p~ —p'(K) p(K)
P' P—(K)= LP' —P (O' —Kp KiM')] (14)

Thus, the covariant on-shell result for the contracted
propagator (numerator) is"

(Ps(P', P; K) =cs(Ps, (15)

where we delete the dependence of the solid harmonic
6'g on its invariant argument —p'(K) p(K) (see
Appendix). This completely specifies the spin-J boson

propagator when it is coupled to spin-0 particles.
However, when particles with spin other than zero

are at either end of the propagator, covariant labels p
or i must be "freed" from (P~(p', p; K). This can be
accomplished by realizing that the solid harmonic (PJ
is a homogeneous polynomial of degree J in either p'
or P. Then we use a covariant version of Zemach's

0(3) differential technique'; namely, we let initial mo-

menta in Eq. (15) become

and
2~JIJf

(»)!
(12)

Successive initial (or final) labels can be freed by
again using the above technique along with

P'(K) ~ P'(K)+2~P-(K')
and

To boost this result up to momentum K, providing

' D. Brunoy, Phys. Rev. 145, 1229 (1966).
11 Vile use the y in Proceedings of the 1965, Trieste Seminar on

E/ementary Particles and High Ener gy Physics (International
Atomic Energy Agency, Vienna, 1965).Our metric is gpp= —g

"= 1.

(Pg' —+ (Pg' ct p.'(K)(Pg"+ p"(K—)p.(K)O's i"i,
"This result has been shown to hold oG shell as well; c.f. S.

I'"rautschi, M. Gell-Mann, and F. Zachariasen, Phys, Rev. 126,
2204 (1962). -
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cg
(P, (p', p; K)=—A,. (J),J ' 6'"'*(P',P; M) = T~+*.*(p'):2'~+.(p) (24)

etc. The resulting boson propagator (numerator) consider the above boson propagator formulas with at
formulas are: most sq+s~ free n labels and s~'+s2' free P labels.

Next we investigate spin-J+~ fermion propagators.pJf In the rest frame one can repeat the arguments leading
to Eq. (9) for s=J+—', and obtain

cg
~p. '(p', p; K) =—~p. (J),J

cg
6'p;-'(P', P; K) =—~p;.(J),

J2

Using the spinor projection operator'

T *,(p) = (J+1+ S)/(2J+1) 2' (p),
(22) where S=—iy)& V~, we can write

cg
(p~+~&2(p' p M) = L(J+1)(p~—fe p')(p(pg'7 (2$)

2J+1
CJ

~'~1~2(J) ~J(J—1)
CJ+I

L(Pg+y —Il'p IJ'p(Pg 7.J (26)

where

cg
rPp;- "'(P',P; K)= ~p;- -.(J),J'(J—1)

h(J) —= (Pg,

~;.(J)= [P-'(K—)r—P '+P"(K)p-(K)rP '7, —

~p;(J)= LPp(K—)—6'~'+P'(K)p p'(K)6'~ ~'7

~p;-(J)=LPp'(K)P—-(K)+Pp(K) p-'(K)7'~"
+LP'(K)P p'(K)P-'(K)

+P"(K)Pp(K)P-(K)76. "
gp.(K)6'-

(2J+1)pp'(—K)P«(K)+

~;- -,(J)=P-,'(K)p-, '(—K)6' "+P"(K)LP-,'(K)p-, (K)

+P-,(K)P-.'(K)76'~ ~"+P"(K)P- (K)

Xp.,(K)6, ," p"(K)g...,(K—)6, ,',
+p; aga2(J) = (p p p) paya26 j + (p p p j p )pagag6 J—1

+p"(K)pp(K) p, (K)p.,(K)(Pg 2"'

(gP') 8-1-.rPJ"—L(»+1)Pp'(K—)(p'P)- -,
+P"(K)(gp) p-, -,76'~-~"—(»+1)P"(K)

XP,'(E)P.,(E)P.,(K)6', ,"
+(2J+1)Pp'(K)g, ,(K)(Pg g', (23)

and so on, with A. . .(J) —& Ap, p, (J) and Dp. . .(J)~
&p,p. ; (J) when a+-+ P and p ~ p', where ( ) indicates
symmetric combinations such as

(P'P'P) p- -,=Pp'(K) P-,'(K)p-, (K)
+Pp'(K)p-, (K)p-,'(K)

+Pp(K)P- '(K)P-, '(K),
(P'P'P' P') 8-,-,=P'(K)P p'(K)P-, '(K)P-, '(K)

+P"(K)LPp(K)P-, '(K)P-, (K')

+»(K)p.,(K)P., (K)
+Pp'(K)P- (K)p-, (K)7

For the interaction s~+s2 —+ J—+ s~'+s2', one needs to

Equation (26) is in a form which can easily be boosted
into the covariant Dirac formalism. Given the nor-
malization IN =2M, the rest frame spin matrices 1 and
o.;cr, can be replaced by

1 —& K+M,
'

(27)

e p'e p~p'(K)(K M)p(K)— (»)
(with K=y"K„), wh—ere the form p(K) =p (p K/M')—E
can be written as

p(K) =p+p K/M (29)

because it will always be next to the operator E:—M,
and K(K M)= M(K M—) on —the ma—ss shell. It
should be noted here that Eq. (26) is in such a form
that the usual y-algebra manipulations are reduced to
a minimum. That is to say, if the external lines p and
p' are on-shell fermions with masses m and m', then

p'(K) (K M)p(K)—
p'K ( pK

=~ m'+
~

m+ (X—M). (30)

This means, for example, that the usual spin-2
propagator numerator

y (K)=y +K /M, (32)

"' Eq. (43) is also valid on' shell with y (E)=y —E E 'K.

6'p;-"'(K) = —
gp- 3vpv- (Kpv- —K.vp)— —

3M
2

EEp(K+M)— '

3M'
is best written as"

(Pp, '"—— fgp (K)(%+M)—
+3&p(K)(K—M)v-(K)7 (31)

Using the differential technique again with the added
condition P(E) ~P(K)+ey (E), where
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we can free initial and final momenta from the spin-J+2 fermion propagator. The resulting formulas are:

rf"+'(P' O' E)= (~'(J+1)(K+M)—~'(J)P'(E)(K—M)P(E) }J
CJ+y

(P! ~+~(p', P; E)= f 6, '(J+. 1)(K+M) 6, —'(J)P. '(E) (K M)p—(E) 6'(J—)p'(E) (K—M)7 (E)},
(J+1)J

CJ+y
6'p., ~+&(p', p; E)= f Ap, '(J+ 1)(.K+M) As, '(J)—P(E) (K M)P(E—) 5'(J)7—s(E) (K—M)P(E) },

(J+ 1)J
CZ+1

6'p, ~+'(P', P; E)= (hp, '(J+1)(K+M) Dp, '(—J)P'(.E)(K M)P(—E) Ap, '(J—)P'(E) (K—M)y (E)
(J+1)J'

~; '(J)vp(E) (K M)P—(E) ~'(J—)vp(E) (K M)v—-(E)}
Cg+i

O ...,'+~(P', P;E)= (6, ,'(J+1)(K+M) 6, ,'—(J)P'(E) (K M)P(E—)
(J+1)J(J—1)

,'(J)P'(E) (K M)y, (E)—6,.,'(J)P'(—E)(K M)y, (E)—},
(Pp,.„,~+&(p', p; E)= (hp, „.,'(J+1)(K+M) 6s... ,'(—J)P'(E) (K M)P(K)—

(J+1)J'(J—1)

L~s;—.'(J)P'(E)+ ~;- '(J)7~(E)](K M) v—- (E) [~s;—-a'(J)P'(E)+ ~;- '(J)vii(E) ]
X(K—M)7 (E)—&;,'(J)vp(E)(K—M)P(E)}, (33)

where 5'(J), 6'.
, q(J), etc. are just the A. ..(J) of Kqs. (23), with the solid harmonic derivatives taken to one higher

order, as LV(J)=(P~', or A,. '(J)= —LP '(E)(Pq"+P"(E)P (E)(P~ i"].
Given the interaction si+s2 ~ (J+-,') —+ si'+s2', one need consider the above fermion propagator formulas with

at most Ji+J2 free n labels and Ji'+ J2' free P labels.
It will prove convenient to evaluate these contracted propagators in the forward direction with P =P. One can

either use the value of the eth derivative of the Legendre polynomial

(J+N)! 1
P (ni(1)—

(J—0)!2"e!
(34)

or use new differential techniques when P =P . Defining &
= —P'(E) ~

~ P ~

' in the propagator rest frame, the result-
ing forward direction formulas for bosons are:

O'(P, P; E)=c,~~,

~,.'(P,P; E)= «V 'P-(E), —-
rI'~ (P,P E)= ~~&' 'P~(E), —

Cg
&8:-'(P,P E) = k' '{(J 1)PP(~&)P-(E)—+(J+1)al -(E)P'(E)}

2J

3cJ
~;-,-.'(P, P; E)= ~'-'(P-, (E)P-,(E)—lP'(E)g-, -,(E)},

2

Cg
~ -. '(PP E)=( )" V "& - '"'(-P(E—))-

+i -t- -.'(PPi E)=(—)"+' —Y " '((2J+1)(~+1)PP(E)2'-1 --.'"'(P(E))
Jc„(n+1) —(i+1)(2~+1)&s- - -.'"+"(P(E))} (3~)
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and for fermions:

(P~+l(P, P; E)=c'g+i P(E+3f),
~.."(P,P; E)= —:".V- ~».(E)(~+~)+P(E)(~-~».(E)),
&s +'(P,P; E)= 2c~—+lY '(3Pp(E)(&+~)+Tp(E)(&—~)P(E) f

&J+1
zs'8;-"'(P, P E)= Y—'(L~(~ 1)P8—(E)P-(E)+(~+2)P'(E)gs-(E)3(E+~)

2J

+(~ 1)LP —(E)P(E)(E ~)v-(E)+P-(~&)7 (E)(& ~)P(E)j+P'(E)7 (E)(E—~)T (E))
~;- ~ '+'(PP'E)=l + &' '(PP. (E)P- (E) g. -(E)—P'(E) j(&+~)+P(E)(& ~)

E E E ELP- ( )v. ( )+P- ( )v- ( )j)
rl';. ,- .."'(P,P; E)= Y "{(2~+1)T- - -.'"'(P(E))(E+~)

c„(zz+1)
+ P(E)(& )&- -—-.'"'(P(E) P(E)v(E))} (3~)

IV. COVARIANT VERTEX FUÃCTIONS-
ON-SHELL

Before applying the propagator formulas of Sec. III
to any specific problem, one must know how a high-
spin J or J+~~ particle couples to other particles. We
de6ne the "normality" zz of a particle of spin J or I+—',

as zz= (—)~X(intrinsic parity), '4 so a "normal" (I=1)
particle has parity (—)~ (7~=0+ 1 2+ ~ and
(J+-,')~=-,'+, s3, —,

'+ ~ ), and an "abnormal" (zz= —1)
particle has parity —(—)~. Then we de6ne the nor-
mality of a three-point Yukawa vertex as the product
of the normalities of each particle, N„=N~e2@3. Parity
conservation then divides vertex functions into the
normal class with e„=1 and the abnormal class with

I o

If the coupling is of the form 0+s~ s' in spin space,
the number of independent on-shell couplings as
counted from the rest frame of one of the particles is
clearly 2s +1, where s =min(s, s'). If s and s' are
fermions then —',(2s„+1) couplings are normal and
2(2s +1) couplings are abnormal, " whereas if s and
s' are bosons, then —,'L(2s„+1)+1]couplings are normal
and zz [(2s +1)—1j are abnormal.

We can generalize this counting procedure to the
general coupling si+sz —& sz. Take sz and sz to be the
lowest of the three spins and combine them into
s=sz+sz so that the problem is reduced to couplings
0+s ~ sz for

~
sz —sz

~
&s(sr+ sz. Hence the total num-

ber of reduced couplings is g, (2s +1), where
s„=rrun(s, sz). It is then easy to show that if si+sz&sz)
there are

1V+= -,'(2sz+1) (2sz+1)

independent normal (E+) or abnormal (iV ) couplings

~4 Normality is related to "y parity" as dered by P. Carruthers,
Phys. Rev. 152, 1345 (1966). See also Ref. 22.

'~L. Durand, P, DeCelles, and R. B. Marr, Phys, Rev. 126,
i882 (1962).

for FFB interactions (F=—fermion; B—=boson), and

E+=—,
' [(2si+1)(2sz+1)+1j

independent normal (1V+) or abnormal (1V ) couplings
for BBB interactions. "However, if sz+sz) sz (but sz,
sz& sz) there are g(/+1) "nonsense states, "and there-
fol e

normal or abnormal couplings for IiIiB or BBB inter-
actions with g=sz+sz —sz. These counting rules will

apply to covariant three-point functions providing all
three particles are on shell with P,z=zzz;z. (Photon
couplings are discussed in Sec. V.)

The above facts indicate that as long as we let just
one spin at a vertex become arbitrarily large, the num-
ber and structure of the couplings depend only upon
the other two (low) spins. In momentum space we con-
sider s&(P)+sz(q) ~ sz(E) with E =P+q andh. = —',(P—

q)
and write effective Lagrangian interactions as,

~slaC$' ' ' ClOX~~I baal. ~ aJ3,' Pl. "PJ'3; vl v J2

X~"' " (P)~" "(q)+H' («)
where 6 is what we shall call the covariant coupling
function or "6function" which will depend upon various
combinations of momenta, metric tensors, and
matrices (kinematic covariants) and upon the independ-
ent on-shell vertex functions (coupling constants). The
subsidiary conditions on the high-spin wave functions
(Sec. II) imply that all the momentum covariants can
be written as A with A„=—-', q„= ,'E„,A„= 2P„=,'E„, ——--
aild A.gg=p»= —qa.

For BBB interactions the abnormal couplings (6 )
also depend upon the covariants e„„(EA.)=—e„„„Eh. ' and
e „„(E)=e„„,E~. We list —such interactions with

"This has been derived in a more formal manner by J. S,
Lanmnt, J. Math. Phys. 1, 237 (j.960).
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6(sI(p)„+s2(q), ~ s3(K).) written as 8(sI,s2,s3):

8+(O,O,J)=gA, A. ~

8 (O,O,J)=0
6+(1,0,J)=A. , A ~{glg &„+g2A,A„}
6 (1,0,J)=A„, A,{g6.»(KA))

(2&0&J) Aa3' ' 'Any{giga&»&ga2»+g2gn»IAa2A»+g3Aa&Aa2A&&&A»}

6 (2,0,J)=A, . A ~6», (KA){gIg,„,+g2A Q»)
8+(1,1,J)=A.," A,{gIg-»g-;+g2g-,.A A.+g3g"A-P.+g4g"A- A +2g A5.A AA ) (41)

6 (1,1,J)=A, A„~{gI6„„(KA)g,„+g26„„„(K)A,+g36„, &(A)A 2+g46„„(KA)A,A 2}

8+(2,1&J)=A., A-.{gIg-;lg-2»g-3+g2g-&. &g-2»A 3A+g3g. »lg.2A 3A.2+g4g-»lg»A 2A 3

+g5gal»l a2 n3 P2 v+ g6gnlvAn2Aa3AI&1A»+ g7g»&vAa&Aa2Aa2»+ g6Anl a2 nl 1&1 P2 v)

(2» &J)=Ael
' Any{ g'I6a&v(KA) ga2»lga3»2+ g26n»&v(K) ga2»a n3+ g36a»lv(A) ga2» n3+ g4&»lv(KA) ga»2Aa2Aa3

+g5 a»lv(K)Aa2Aa3A»+ g66a»&v(A)Aa2Aa3A»+ g7»»(KA)Aa&An2Aa3A»} .
As the wave functions in Eq. (40) are symmetric in their indices, the 8 functions need not be symmetric in the p,
v, or e labels.

Fermion 6 functions are quite similar in structure to boson 6 functions but contain an extra kinematic covariant,
y„where p must be a boson label. We need consider only normal coupling functions 6+, as 6+ —+ 6 when 1 ~ y;
in the Dirac spin space. Note that covariant like y„y„, 0.„„,e„„p,or y5~„„p are never necessary in on-sheH coupling
functions. For FI'8 interactions with high-spin bosons, '"
6 (-,' 22,J)=A, A„,{gIP „+g2A,}
6 (2,2,J)=A, A ~{ggIy», +g g2A», +gg,A P„+g4A,A P„)

(2 & 2 & ) An4 AJ{giga»2ge2» rn3+g2ga»lga2»An&+ g3gn»&7n2An3 &&2+g4galP1 a2Aa3 &&2

42
+g5y &A P 3A„,A»+g+ &A .A,A„,A„,)

(2 & 2 &J) Aa4 Ae1{ gal&&ga2&7a2+ g2gn»gn2v a3+ g6ga1&& rnk a3~v+ g4g&&v ra& aga3

g5gnl&&A a2A n3A 2+ g6g&&vAnlh n2Aa3+ gl yn&A a2An3A&&A&+ g6A n&Aa2A a3A&&A 3}

and for FBIi interactions with high-spin fermions,

6+(-', ,O,J+-', )=gA. ," A.,
8 (20~J+2)=A '''A {gIg a+g2A. Aa)

(2&0&J+2) Aa3 nj{gIgnlalgn2&&2+g2gn»1 ak&&2+g3 al a'Al &&2)

6+(-'„1,J+-,') =A,, A. {glg,„+g2y„A,+g3A,A„}

8 (l1 J+2)=A-. A-~{glg-»"g- +g2g-.&A +g3g-»A A+g4g"A A *+g5V&-A A+g& A.AA }.

(43)

More couplings can be written in 8 (1,1,J), 8 (2,1,J),
6(-', 62,J), and 8(-,',1,J+-', ) but are related to the in-

dependent sets we have chosen. This point will be con-
sidered in more detail in Sec. V. Note that, if J or J+—,

takes on values less than sl+s2, then some of the cou-

plings in Eqs .(41), (42), and (43) vanish (beginning with

gl) III accol'claIlce wl'tll tl1e countlIlg 1 Ilies Eq. (39)
or Eq. (38).

Further restrictions on the couplings occur when we
impose the discrete symmetries on C. Bose or Fermi
statistics relate like couplings; 8 (1,1,J) and 6(26,—,6,J)
should then be written in a form which manifests the

symmetry. "b Time reversal invariance ensures the

"Strictly speaking, if both fermions are incoming, 6(F,II,B)
must include the charge conjugation matrix C.

'6b According to Eq. (49), the g1 term in 6 (1,I,J) should then

(4mgy = 4tm ~+

for 888 couplings, and

dimgy+ = fÃ ~

(44)

(45)

be symmetrized in the labels p, and u. In this case, Bose statistics
implies g1 and g3 vanish for even J whereas g~ and g4 vanish for
odd J.

reality of the coupling constants. Charge conjugation on
self-conjugate fermion states (in the crossed channel)
eliminates half the abnormal fermion couplings be-
cause r5(yII, Pp) ~ 75(yS, PII), whereas —(yS,I'II) ~

(v , sJ)I—
The coupling constants that we have chosen in

Eqs. (41-43) are not dimensionless; however, one can
show that



M I CHAEL D. SCA DRON

for FFB couplings, where g=—si+s2 —ss(0 Lgi=0 for
y&0 by Eq. (39)j and

imgm~+ =m1—(eI+e2+e3) (46)

for both 888 and FEB couplings, where g, couplings
contain the maximum number of momenta, J3+Ji+J~,
and gi couplings contain the minimum, s3—(si+s2)
Lexcept for abnormal BBBcouplings with s3—(sr+ s2)+ 2
minimal momenta].

V. OFF-SHELL VERTEX FUNCTIONS
AND PHOTONS

One possible prescription to take the propagator mo-
rnenturn off shell, with K'NM', is to keep the propaga-
tor numerators of Sec. III on shell and alter the cou-
plings of Sec. IV. That is to say, since K' (P (K) is no
longer zero, we relax the subsidiary conditions on 6
and add to it terms proportional to E . If the off-shell
particle is a fermion, we must also add couplings pro-
portional to y p. The coupling function 6 then becomes
a vertex function 'U, where the coupling constants be-
come complex form factors depending on K'=s.

In the usual perturbative approach to vertex func-
tions, the set of kinematic covariants reduced to
simplest form yields form factors free of kinematic
singularities. For low enough values of the other two
spins si and s~ (the off-shell particle being s3=J or
J+-',), this process is straightforward, the number of
possible kinematic covariants that one can write down
just agreeing with the necessary count. However, for
higher spins beginning with 6(1,1,1) for abnormal BBB
couplings and 6(—,', 1/32) for FBF couplings, these exist
more kinematic covariants than the count requires.
Such covariants are related by the abnormal BBB
(on-shell) "equivalence theorems"

e „(KA)A„e„(KA)A„=e—„„(A)K A e„„(K)A'—
~„„(KA)A., (47)

e „(KA)A„+e „(KA)A„=,'e „„(A)K'-
2ie „„(K—)K A, '(48)

e.,„(KA)g.,„e.,„(KA)g.,„= —e.,„.(K)A „—(49)

6(2,2,2) and can be obtained by consideration of four
episilons each contracted with one momentum.

In such cases, when s3(K) goes off-shell with K' ~ s
and M —& ps, one must take care to eliminate, by
means of these equivalence theorems, only those
covariants which do not introduce any kinematic
singularities in s. Clearly these are the terms on the
left-hand side of Eqs. (47)-(50). Hence our choice of
coupling functions in Sec. IV always leads to vertex
functions free of kinematic singularities.

Consider now an off-shell photon in the cross channel
(see the Appendix) with square mass t=A' and p(ns)
+yp(A) —+ p'(m') where A= p' —p and P= ', (p+-p'). If
m'@m, the added condition of current conservation at
the vertex necessitates off-shell terms in Ap. That is,
we may regard the off-shell photon as an on-shell 1
particle of mass g/ with

'U~(~) =(go~ At As —l~)6~ " '(~) (51)

Of course current conservation just ensures the gauge
independence of the photon propagator. If the Landau
gauge is used then 6~&' '(t) alone is suNcient to de-
scribe photon vertex functions.

Alternatively we could have used manifestly gauge in-
variant "helicity covariants" to describe photon cou-
plings, ""such as Rp A'Ps PAAR,——rs 2»—Ep(P——AQ)
and Sy„(PA) = esr(PA) e~„(PA) or uses„(PD). They have
the advantage of leaving cross sections as a sum of
squares but contain kinematic singularities in t and are
not independent at threshold. "'

(p'Z, 'q9„'~ T
~
pX,qZ, )=p„,...&" 'i(p')p„. ..&" 'i(q')

&&OR.;"';-;.,"',-4., - (p)4', - (V), (52)

with s-channel pole contributions given by

VI. APPLICATIONS

A. Feynman Pole Amplitudes

Consider the s-channel process si(p)+s2(q) ~ si'(p')
+s2'(g'). Its covariant OR function is defined from the
T matrix as

which follow from the identity e„„„gp= e „„g„p
+e„„g„p+e„„,g.p+e„„.g,p, and the FBF equivalence
theorem

j~fi n' f+n'nni p

s—M'
(53)

2mg „A„=[g„(K p+nsM)+2A A„jy„
+Mg„„A 2(m+M—)g „A„, (50)

which follows from the double epsilon form e ~(Ky)
X er„„(p) taken between spinors n (K) and N„(p) "The.
normal BBB equivalence theorem first occurs in

'"For equal fermion masses, Eq. (50) in the crossed channel
Lbetween wave functions uu. (P')N„(P) e8(A)g

'177 (gu'8t u+ gu8&u') = r & gu'u+2~l 'I ul'V8+~aJ 'uI 8
Note that such equivalence theorems t including (47)—(49)g al-
ways relate covariants which transform the same way under
charge conjugation.

where i, f, e, and m indicate all possible covariant spin
labels. Using the formulas of Secs. III and IV, 5Kf; can
be expressed as sums of Legendre polynomials and their
derivatives.

"Helicity covariants could also be used to describe the massive
particle couplings of Sec. IV, with A„—+ Ru, g„,~ S„„, and

'g Helicity vertex functions are considered in great detail by
I. Ketley and R. King (to be published).

"Recall that Gg=G~ at t=4m for nucleon form factors.
"For the case of electromagnetic production of high-spin

nudeon isobars, see J.Bjorken and J.Walecka, Ann. Phys. (N. Y.)
38, 35 (1966).
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B. Unpolarized Cross Sections

The unpolarized spin sum is of the form

~

T
~

TrSKr;P;; QR r; 6'r r,
all )

(54)

where 6';; or (Py. y is the product of the initial or final
propagator numerators (on-shell). If one of the ex-
ternal particles is of high spin, and if 5R~; is given by
either s- or 3-channel poles in the form of Kq. (53), then
the spin sum reduces to "forward direction" propagator
terms fKqs. (35) or (36)). Thus, in a simple manner,
one can obtain generalized Rosenbluth formulas. ""

C. Decay Rates

For the process s(E) —+ s&(p)+s&(q), the total decay
width in the rest frame of the decay particle is

where

p

2M2 4m

Q ~T~ = Tr6 (rP,; '&r;6'r r
2s+1

(55)

for s=J or J+~~, one can readily calculate decay rates
of high-spin bosons22 or fermions. "

D. Invariant Amplitude Separation

Consider the 5K function development

DR„... ,„...=P A;(s, t)x„.. ,„...', (.57)

where the A; are invariant amplitudes free of kinematic
singularities"' and X„...,„...' are kinematic covariants
depending on the momenta P, Q, and h. Expressing
s-channel poles with E=P+Q or t-channel poles with
& ~P or Q (depending upon the subsidiary conditions)
enables one to isolate the kinematic covariants of
Kq. (57) and hence to "pick off" the pole contributions
to the discontinuities of the invariant amplitudes. For
the analysis of superconvergence relations" ' at t=o,
one must first isolate the invariant amplitudes for
tWO (p'0 p) according to Kq. (22) or (33), after which
one may set /=0 and use Kq. (34).
"Polarization or higher moments of the density matrix can be

obtained in our relativistic formalism with the aid of the covariant
version of Table III of Ref. 2,"R. King, thesis, University of London, Imperial College,
1964 (unpub/ished).

~ J. Rushbrooke, Phys. Rev. 143, 1345 (1966).
24 A. Hearn, Nuovo Cimento 21, 333 (1961).
'~ V. de Alfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.

Letters 21, 576 (1966).
'6 For examples of this technique, see H. Jones and M. Scadron,

Imperial College, report 1967 and R. Rivers, Imperial College
report 1967.

The high-spin propagator terms will always be of the
"forward" type and with the aid of the contraction
property'

2s+1
s—1

g~ 6'~-",'- =— 'V ~ ~ ~ ~ ~ ~ ~

2s

APPENDIX

From the point of view of dispersion theory, our
formulas for propagators and vertex functions have
been given in terms of the s-channel p+q -+ p'+q' with
s=(p+q)' t=(p' —p)' and N=(p —q')' Then the
s-channel resonance poles of Fig. 1 become the t-channel
force poles of Fig. 2 when p~ —q'. The s-channel

Flo. 1. Diagram for s-channel '
(

poles.

FIG. 2. Diagram for t-channel
poles.

pole variables E=p+q= p'+q', h. =-', (p—q), and
h. '=-,'(p' —q') become A=q q'= p' p, —Q=-', (q+—q'),
and P= ', (p+p') with —E~ 6, h. -+ —Q, and A'-+ P.
We have chosen p and p' in the propagator formulas
to be nucleons when they exist (then p -+ m, p' —& m');
nevertheless p and p' could be replaced by A and h. '

due to the subsidiary conditions. Hence, for s —+ t,
p(E) ~ —Q(h), p'(E) ~P(h), and p' p~ —P Q in
the solid harmonics, which have the on-shell invariant
forms

X'Es Z
p' p=A' A. —+ —h.' A+

( "—~")(m'—~')-

in the s channel (p'=m' p"=m", q'= p', q"=p"), and

P AQ 6—PQ PQ-
Q2

(m"—m') (p"—p,')

in the I, channel. If instead, one dehnes the t channel
by q ~ —p' then A. ~ P and A.'-+ —Q.

'7 L. Durand, Phys. Rev. 154, 1537 (1967); Phys. Pev. Letters
18, 58 (1967};J. G. Taylor, Oxford Report (unpublished); H.
Jones and M. Scadron, Nucl. Phys. (to be published}.

E. Isobar Expansion and Reggeism

Assume that the amplitude can be approximated by a
sum of resonances of the form of Kq. (52). There is then
a one-to-one correspondence with the exact helicity
partial-wave expansion only when the sum of the initial
(or 6nal) spins is less than one. If the isobar expansion
is made in the crossed t channel, a possible "covariant
Regge prescription" is to let J—+ n(t) in the resulting
Legendre polynomials of the propagators in Sec. III."
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