
PH YS ICAL RF VIEW VOLUME 165, NUMBER 5 25 JANUARY 1968

Regge-Pole Model for ~p, pp, and pp Scattering*
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A model for high-energy xp, pp, and pp elastic scattering at small momentum transfer is presented,
based on the assumed dominance of a few Regge poles in the crossed channel. For ~p scattering these are
the P, P', and p poles; for pp and pp, ignoring isospin dependence, they are P, P', and co. This model its a
wide variety of data, including the differential cross sections that shrink for pp but not for m p or pp, recent
results from Brookhaven on total cross sections and ratios of the real to imaginary parts of the forward
scattering amplitude, and also recent mp and pp polarization results, but it gives zero polarization for mp

charge-exchange scattering. (Although the latter disagrees with experiment, additions to the model to
correct this insufEciency would affect the other results but little. ) The factorization property of Regge
poles is tested by these its to data for the P and P' couplings.

I. INTRODUCTION

HE idea that high-energy scattering at small mo-
mentum transfer may be dominated by a few

Regge poles in the crossed channel' has recently proved
successful in fitting a variety of two-body scattering
and reaction data. ' The present paper extends previous
work by showing that a wide range of orp, pp, and pp
scattering data may be simultaneously fitted by a
model using the I', I",~, and p Regge poles.

The significance of simultaneous fitting to diGerent
processes is that, in addition to requiring that the same
trajectories are important in various processes, the
factorization constraints characteristic of Regge poles
are tested. In the model reported here, factorization
relates the ratios of spin Rip to non-Rip in the I' and
I' residue functions. Before high-energy polarization
was measured, such relations were tested rather
weakly'; and in "spinless" models they played no part
at all.

In Secs. II and III we describe the formalism and
parametrization of scattering amplitudes and the data
used. Section IV gives the results found by adjusting
the model parameters, and illustrates the fit to data.

*This work was supported in part by the U. S. Atomic Energy
Commission.

t' Visiting scientist.
' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394

(1961);S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.
Rev. 126, 2204 (1962); V. N. Gribov, Zh. Eksperim. i Teor. Fiz.
41, 667 (1961) I English transl. : Soviet Phys. —JETP 14, 478
(»62)r.' For a recent survey, see R. J. N. Phillips, in Strong and 8'eak
Interactions, Present Problems (Academic Press Inc. , New York,
1966), p. 268 ff; or L. VanHove, in Proceedings of the Thirteenth
Annual International Conference on IIigh-energy Physics, Berkeley,
California, 1966 (University of California Press, Berkeley, Calif. ,
1967).' R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336 (1965).
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A discussion of the results is given in Sec. V, together
with predictions of the model for ore scattering, pp
polarization, and second-rank polarization tensors for
~p and pp scattering. Some of these predictions may
soon be tested experimentally. Finally, five Appendices
give supplementary discussions about: (A) the unitarity
limit for an exponential diffraction peak, (8) partial-
wave projections and unitarity tests, (C) polarization
effects, (D) the way secondary Regge poles affect
shrinking, and (K) the simpli6cations in notation and
comprehension which can be obtained through the use
of vector notation for the scattering amplitudes.

II. REGGE-POLE MODEL FOR ~P) PP)
AND pp SCATTERING

As has been found in earlier studies, ' ' at least three
Regge poles are needed to describe ~p scattering: the
two vacuum poles I' and I", and the isovector pole p.
We have restricted our analysis to these three, assuming
them to dominate in the processes of interest. Following
Singh' and subsequent analyses, 4 we introduce two
amplitudes A' and 8, and parametrize the Regge-pole
contributions to them as follows':

=Co exp(Cat)n(n+1)$(Ez/Eo) for I and I' (1)
=CpL(1+Co) exp(C~r) —Coj(n+1) $(Ez/Ep) for p,
' C. B. Chiu, R. J. N. Phillips, and W. Rarita, Phys. Rev. 153,

1485 (1967).
5 V. Singh, Phys. Rev. 129, 1889 (1963).

The amplitude A is given by Singh in Ref. 5, Eq. (6.4), as

A =A (E'+'~' "'B
(1—t/4M. ')

where A and B are the invariant amplitudes. Thus, unless B has
a zero at t =4M~', A' will have a pole there. Since we are far from
this point in the present analysis, we parametrize A' as an analytic
function in the region of interest. A similar consideration also
applies to the parametrization of the nucleon amplitudes b1, bg

)see Eqs. (15)—(17)g.
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and
t(t) = —Lexp( —iorn) &11/sinorn

n(t) =n(0)+ tn'. (4)

Here, u(t) is the trajectory, t is the squared momentum
transfer, and g(t) is the signature factor (with signature
+ for P and P', and —for p). Ez is the total pion lab-
system energy, and Eo is a scale constant chosen to be
1 BeV. The P and P' coe%cients contain factors
n(n+1) to kill a ghost state at n=0 and to nullify the
amplitude at o.= —1;similarly, the p coeKcients contain
factors (n+1) to remove a nonsense state at n= —1.
In addition, all the 8 terms contain a factor ot,' this is
necessary in the case of p, but not strictly necessary in
the P and P' cases."'

For de6niteness, let us take Co and Do to be the
coeKcients occurring in or p elastic scattering. Then for
or+p scattering, the P and P' terms stay the same while

p changes sign; for charge exchange, the P and P' terms
vanish and p is multiplied by —V2.

Although it will not be explored here, a different
parametrization for the P' amplitudes has also been
investigated following the so-called no-compensation
mechanism. ' ' At n~. =0, for this mechanism both A'
and B have to vanish (see Sec. V. viii of the Discussion. )
In this case the parametrization for the amplitudes is

B=Do exp(D&t)n'(a+1)$(Ez/Eo) ' for P and P'
=Do exp(D~t)n(n+1) $(Ez/Eo) ' for p, (2)

where

For pP and Pp scattering, we assume that the P, P',
and co Regge poles dominate. Any small contribution
from the P is effectively absorbed in ~.The contributions
of the p and A2 to the total cross section have been
found to be small by Phillips and Rarita. ' Their part in
the differential cross section. (DCS) and the polariza-
tion can be estimated using the results of a recent
analysis by Arbab and Dash" for ep and pp charge-
exchange scattering. For the D CS the contributions are
of the order of 1'%%uo. The same model for the p gives to the
polarization (in which the amplitude enters principally
via an interference with the P, P', and co) a contribu-
tion of a few percent, which, although not negligible, is
about as large as the errors in the experimental measure-
ments. Thus we feel that it is reasonable to ignore the

p and A2. Furthermore, since we confine ourselves to
pp and pp elastic scattering, any p and 2& pole contribu-
tions will behave similarly to ~ and P', respectively, and
may be supposed to be absorbed in the latter at least
approximately.

Our pp and pp formalism follows that of Sharp and
Wagner. "The five helicity amplitudes p& p5 have
the following forms, for each of the above Regge poles:

M~Eog (EI,)
4 i= q4=

4o-s'" &F.o)

Moog (Eg
go= —44= —

~

—4~',
4ms'~' (Eo

A '= Co exp(C~t) n'(n+ 1)'$(Ez/Eo),
B=Do exp(Dgt)n'(n+1) $(Ez/Eo)

(1')

(2')

MNEof Eel
4s=—

I 'QN~N &

4n.s'~' Eo/
(10)

Corresponding changes are made in the nucleon-
nucleon amplitudes.

In terms of A' and 8, experimental quantities are
given by

oo (s) = ImA'(s, f= 0)/p,

do' 1 (Mor) o

dt mrs k 4k ) 4M~'l

t /4M~'p'+st)

4M~'E 4M~' —] /

sin8 Im(A'B*)
P(s, t) =—

167rs'I' (drr/dh)

Here, s is the invariant square of total energy, p is the
pion lab momentum, k is the c.m. momentum, 8 is the
c.m. angle, and P(s, t) is the polarization parameter
defined relative to the normal p;)&pj, where p; and py
are initial and 6nal pion momenta.

7 S. C. Frautschi, Phys. Rev. Letters 17, 722 (1966).
8 L. L. Wang, Phys. Rev. 153, 1664 (1967).
~ C. B. Chiu, S. Y. Chu, and L. L. Wang, Phys. Rev. 161, 1563

(1967).

where s, (, n, and Eo have the same meanings as before,
and El, is now the total proton lab-system energy. The
factor functions q& and p& embody the factorization
property of Regge-pole couplings in the nucleon-
nucleon system. The signs given above are appropriate
to pp amplitudes; for pp amplitudes, the oo terms have
opposite signs.

The factor functions q~ and P~ are related to Gell-
Mann's" » and» by'4

(11)

(12)

10 R. J. N. Phillips and W. Rarita, Phys. Rev. Letters 14, 502
(1965).

» F. Arbab and J. Dash, Phys. Rev. 163, 1603 (1967).
12 D. H. Sharp and W. G. Wagner, Phys. Rev. 131,2226 (1963);

W. G. Wagner, Phys. Rev. Letters 10, 202 (1963)."M. Gell-Mann, in Proceedings of the 1962Annual International
Conference on High-Fnergy NNclear Physics, at CFEN, edited by
J. Prentki (CERN, Geneva, 1962), p. 533.

'4 In Ref. 12, the @z relation to g& and q2 as given by Wagner
has a sign error which has led to some confusion. In R. J. N.
Phillips and W. Rarita, University of California Radiation
Laboratory Report No. UCRL-16185, 1965 (unpublished), for
example, the p~ that is used is the negative of the p~ we use here.
We are grateful to W. G. Wagner for confirming this statement,
and to J. V. Lepore and one of us (R.J.R.) for providing an
independent check.
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It is convenient for parametrization to express g~ and
P~ in terms of two functions bi and b2, as follows":

do X'—(s,t) = (14r1'+ leol'+ I e I'+14 I'+41@pl'), (19)
dt 2k'

rt~= bg —(nt/4M~') b p,

y~ ——(—t/4M'')'"(br —nbo) . (14) F(s,t) =
2k2

1m[a (ei+Sp+e -e.)*j
(do/dt)

(20)

This last step allows a convenient connection to be
made between the pp and the orp parameters, because
factorization gives' '4

Itl+ stot/(4M% ")

EI,B

bg
(15)

nb p(1 t/4M—&')

"W. Rarita and V. L. Teplitz, Phys. Ilev. Letters 12, 206(i').

where EJ. is the energy of the pion in the laboratory
system. Hence, for the P and I" Regge poles it is
enough to parametrize b~,' b2 is then determined by bj
and the m p parametrization.

The functions bj and b2 are parametrized as follows:

b~=Fp exp(F~t)[n(a+1)]'" for F and F'
=F.-p(F.t)[(1-tlto)(+1)j'" f",

b =Gp exp(G&t)[(1—t/t, )(&+1)]' (1—t/4M )-
for ca, (17)

where Po, Pj, Go, Gy, Rnd $0 Rre RdjustRble parameters.
The factors n'" and (a+1)'" are present to remove
ghost or nonsense states at o.=o Rnd —1. The extra
factor (1—t/to) '" in the p&-factor functions is introduced
to produce a sign change in all the ao residues Rt t= to,
as is required to explain the crossover of pp and pp
differential cross sections. "

From the forms assumed for A', 8, and bl, we then
find for the P, I"poles

bo G, exp(Ggt) [n——(++1)]'"(1—t/4M~') ',
wheie Go=Fo(Do/Co)»d R=Fi+(%—G)

An alternative parametrization of the ~ residues
has also been tried. In this the sign change in b~2

and b2' is achieved by having o.„pass through zero
while the couplings "choose nonsense" —the original
Gell-Mann ghost-killing mechanism. " This makes
the sign change physically understandable, by linking
1t with the pomt Rgy= 0. In this case [note that these
forms differ from those of Ref. 9 in their (a+1) factors
for this mechanism j,

br„=Fo exp(F~t)[n(n+1)$"", (16')

bo„——Go exp(Ggt) [(n+1)/n j'"(1—t/4M~') '. (17')

Kith this type of solution we used a curved co trajectory;

n(t) =no+art+not . (4')

Experimental pp and pp quantities are given in
terms of the helicity amplitudes as follows:

2'
~r {s)=—rm(yr+y, ,),=„

with our previous notation and conventions for F(s,t)
and b as stated following Eq. (7). Compact expressions
in terms of the factor functions g~ and p~ can be
derived. '2

Appendix C contains a discussion of second-rank
polarization tensors, for orp, pp, and pp scattering, with
formulas for the experimental quantities.

For xx scattering, factorization allows us to predict
the F and F' couphngs. Let A. {s,t) be the scattering
amplitude, so normalized that

or(s) =ImA(s, t=0)/s,

do j.—(,t) =
d) 16m s'

Then asymptotically A has the form'6

A,.{s,t) = (sp{s/sp) ~q.', (23)

where $(t) is the signature factor as before, and. the
scale constant is so=2M~ED. The pion-factor function
occurs also in the s p amphtudes; for example, A N' has
the asymptotic form" "
A.~' ——&Fp{s/sp) blurt.

t' so (s& [rtN+( t/4MzP)'—"4w]

E2Mm (so & (1 t/4M~')—

(Although A ~' appears to have a pole at t=4M~o, the
parametrization which we use actually produces a com-
pensating zero in the numerator. ) Hence, using Eqs.
(8)-(10), we can express the F and F' terms at given s
Rnd $ ln telms of the x'X Rnd XS contributions:

2 ) 2

1—
27rs'~' 4M~'

A ~'j'
X— (25)

[4~+ (t/4M~') 0 o
—2(—t/4M~') '"6]

For our parametrization we find

g = (Cp/EpFp) exp[(Cg —Fg)tj[a(n+1)g'". (26)

One may Rsk why we did not use the Sharp-Wagner
formalism for orp scattering also, simply parametrizing
g, q~, and p~ directly? The reason is that this for-
malism rests on extreme asymptotic approximations;

"The I' and P' contributions considered here are independent
of isospin. The amplitudes for I=0, 1, and 2 are equal; the result
given is for the sum of the three channels,
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all corrections of order 1/s are ignored —including the
difference between sin8 and 1. For ~p scattering at
t= —1(BeV/c)' and Er, ——6 BeV, sin8=0. 6 (though at
Ez 18 ——BeV the value drops to sin&=0.3). The ~p
analysis seems to warrant a more careful treatment, and
we therefore use the A' and 8 amplitudes. The EE
analysis, on the other hand, has additional approxima-
tions anyway, so the Sharp-Wagner approximations
are more acceptable here.

IIL DATA SELECTION

For xX scattering we use the following data which
have incident momenta from 5.9 BeV/c upward, and
squared momentum transfer

~
t~ (1 (BeV/&):

Total n+P and s P cross sections; 16 data points. 'r

Elastic ~+p and m p differential cross sections; alto-
gether 45 data points. "
Charge-exchange m +p ~x'+e cross sections; 56 data
points. "
Elastic ~+p and ~ p polarizations; 85 data points. "
The phase of the forward 7r+P and m p amplitudes,
from Coulomb interference measurements; 9 data
points. "

%e do not use the recent charge-exchange polariza-
tion data. " In our model, such polarization is always
zero, and it would have to be explained as interference
with some background eBect.

For pp and PP scattering, the data used are the
following:

Total pp and pp cross sections; 24 data points. 'r

Klastic pp and Pp differential cross sections; 161 data
points. 2'

Elastic pp polarization; 43 data points. '4

"W. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontic,
R. H. Phillips, A. L. Read, and R. Rubinstein, Phys. Rev. 138,
B913 (1965}.

'8 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 425 (1963);
D. Harting, P. Blaekall, B. Elsner, A. C. Hebnholz, W. C.
Middelkoop, B. Powell, B. Zacharov, P. Zanella, P. Dalpiaz,
M. N. Focacci, S.Focardi, G. Giacomelli, L. Monari, J.A. Beaney,
R. A. Donald, P. Mason, L. %.Jones, and D. O. Caldwell, Nuovo
Cimento 38, 60 (1965).

"A. V. Stirling, P. Sonderegger, J. Kirz, P. Falk-Vairant,
O. Guisan, C. Bruneton, P. Borgeaud, M. Yvert, J. P. Guilland,
C. Caverzasio, and B.Amblard, Phys. Rev. Letters 14, 763 (1965);
I. Mannelli, A. Bigi, R. Carrara, M. Wahlig, and L. Sodickson,
ibid. 14, 408 (1965).

0 M. Borghini, G. Coignet„L. Dick, L. di Lella, A.
Michaelowicz, P. C. Maca, and J. C. Olivier, Phys. Letters 21, 114
(1966};and Dr. Dick and Dr. di Lella (private communication).

~' K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L.
Yuan, Phys. Rev. Letters 14, 862 (1965)."P.Bonamy, P. Borgeaud, S. Brehin, C. Bruneton, P. Falk-
Vairant, O. Guisan, P. Sonderegger, C. Caverzasio, J.P. GuiOand,
J. Schneider, M. Yvert, I. Mannelli, F. Sergiampietri, and M. L.
Vineelli, Phys. Letters 23, 501 (1966).

~' K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 (1963);
11,425, 503 (1963); 15, 45 (1965}.

24 M. Borghini, G. Coignet, L. Dick, K. Kuroda, L. di Lella,
A. Michaelowicz, P. C. Macq, and J. C. Olivier, Phys. Letters
248, 77 (1967).

Coulomb interference measurements of the phase of
the forward PP amplitude; 12 data points. "

Recently new data on total cross sections and the
ratio of the real to the imaginary part of the forward
scattering amplitude have become available. " These
data have been used as an alternative to some of the
preceding data, including:

Total x+p and m p cross sections; 28 data points.

Phase of the forward m+p and s p amplitudes; 21 data
points.
Total pp cross sections; 18 data points.

Phase of the forward pp amplitudes; 7 data points.

In addition to these new measurements of previously
measured quantities, the phase of the forward pp
amplitudes has now been measured at one energy.

Lindenbaum26 has given two sets of results for the
phase of the forward scattering amplitude for m+p,

according to two theoretical analyses of the Coulomb
corrections, and we have compared our 6ts with each.

None of the above EX or XX data themselves imply
any isospin dependence, and we have not tried to fit
such a dependence explicitly. Thus we do not use any
data for pl or pe scattering, nor for Np or pp charge
exchange, though some is available. '~ 2~ Our reasons
are these:

(a) There are many Regge poles that could bring
isospin dependence to XE and gE scattering (e.g. , p,
A2, m., 8, A~), compared to p alone for mlV, so we can
scarcely hope for a unique prescription.

(b) Even with all these poles, there are still some

difficulties in understanding the charge-exchange data. '
This is a special question that should be treated
separately.

"E.Lohrmann, H. Meyer, and H. Winzeler, Phys. Letters 13,
78 (1964); L. Kirillova, L. Khristov, V. Nikitin, M. Shafranova,
L. Stanov, L. Sviridov, Z. Korbel, L. Rob, P. P. Markov, Kh.
Tchernev, T. Todorov, and M. Zlateva, ibid. 13, 93 (1964);
G. Belletini, G. Coeeoni, A. N. Diddens, E. Lillethun, J. Pahl,
J. P. Seanlon, J. Walters, A. M. Wetherell, and P. Zanella,
ibid. 14, 164 (1965};19, 341 (1965);A. E. Taylor, I. L. Watkins,
A. Ashmore, W. S. Chapman, D. F. Falla, %. H. Range, D. B.
Scott, A. Astbury, F. Capocci, J. F. Crawford, M. Sproul, and
T. G. Walker, ibid. 14, 54 (1965); K. J. Foley, R. S. Gilmore,
R. S. Jones, S. J. Lindenbaum, W. A. Love, S. Ozaki, E. M.
Willed. , R. Yamada, and L. C. L. Yuan, Phys. Rev. Letters
14, 74 (1965j, L. Kirillova, V. Nikitin, V. Pantuev, V. Sviridov,
L. Strunov, M. Khachaturyan, L. Khristov, M. Shafronava,
Z. Korbel, L. Rob, S. Damyanov, A. Zlateva, Z. Zlatanov, V.
Jordanov, Kh. Kanazirsky, P. Markov, T. Todorov, Kh. Chernev,
N. Dalkhazhav, and D. Tuvdendorzh, Yadern. Fiz. 1, 533 (1965)
LEnglish transl. : Soviet J. Nucl. Phys. 1, 379 (1965)g; G. Bel-
lettini, G. Coceoni, A. ¹ Diddens, E. Lillethun, J. P. Scanlon,
and A. M. Wetherell, Phys. Letters 19, 705 (1965}.

"S.J. Lindenbaum, in Proceedings of the Third Coral Gables
Conference ol Symmetry Prince'ples at High Energy, edited by B.
Kursunoglu, A. Perlmutter, and I. Sakmar (W. H. Freeman
and Co., San Francisco, 1966)~

2' G. Manning, A. G. Parham, J.D. Jafar, H. B.van der Raay,
D. H. Reading, D. G. Ryan, B. D. Jones, J. Malos, and N. H.
Lipman, Nuovo Cimento 41, 167 (1966); P. Astbury, G. Brantti,
G. Finoeehiaro, A. Michelini, D. Websdale, C. H. West, E. Polgar,
W. Beusch, %.E. Fischer, B. Gobbi,. and M, Pepin, Phys. Letters
23, 160 {1966);M. N. Kreisler, F.Martin, M. L. Perl, M. J.Longo,
and S. T, Powell, Phys. Rev. Letters 16, 1217 (1966).
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TABLE I. P Regge-pole parameters.

Solution -(0)
' a (BeV ') Co(mb BeV) C1(BeV ') Do/Co(BeV ') D&—C~(BeV ') Fo(mb'") F1(BeV ')

1.0
1.0
1.0
1.0

0.12
0.11
0.00
0.29

7.23
7.09
~ ~

10.24

2.36
2.38

~ ~ ~

2.18

—3.69—3.59—4.36
3011

7.02
8.05—0.35

10.32

3.80
3.88
3.29-
4.17

2.09
2.17
3.25
1.77

Ter,z II. P' Regge-pole parameters.

Solution

1
1a
2
3

(0)

0.73
0.73
0.75
0.57

1.50
1.50
1.50
2.17

16.35
16.91

~ ~ ~ ~

16,58

0 44
0.24

~ ~ ~ ~

—2.99

3052—4.24—5.61
7033

3.42
5.47—0.56
8.29

5.04
4.87
5.82
5.86

1.06
0.87
2.80—0.93

cx (BeV ) Cp(mb BeV) C1(BeV ) Do/Cp(BeV ) DI—Cq(BeV 2) Fo(mb 2) F1(BeV )

(c) Isospin dependence is in fact small, giving cor-
rections to total cross sections that are &5/q, and
charge exchange that is &1% of elastic scattering, at
energies of present interest.

(d) Although they are not explicitly included, at
least some of the leading isospin terms from p and A~

may be considered as implicitly included in the ~ and
I" terms, since they behave in the same way for pp and

pp scattering. LSee also the remarks on these poles in

Sec. II following Eq. (7).]
Within the classes of data that are used, some selec-

tion is needed. There are too many available data
points for the search program to handle efhciently, so
in several cases we have taken representative subsets.
For example, for z p charge exchange we took only
the values of Stirling et ul. of Ref. 19, after con6rming
that the data of Mannelli et al. agree with the former

quite well. In our 6tting of the data to the phenom-

enological forms assumed in Sec. II, we adjust the
parameters to obtain values of X' which are reasonable
for the various classes of data. Thus the number of

points retained for each type of data does not sig-

nificantly a6ect the 6nal result. Another problem is

that certain data points, from diferent sources, strongly
disagree. In such cases, we have sometimes eliminated
these points, or have arbitrarily increased their quoted
errors.

Note that for subsequent use the term "phase of the
forward scattering amplitude" refers to the ratio of the
real part to the imaginary part of the amplitude.

IV. RESULTS

We adjusted the model parameters to 6t the data,
using the CDC 6600 computer at Berkeley with
programs based on a variable metric minimization
method (vARMrT). 28 In this method a minimum for a
function of many variables is obtained. For our use the
function selected was the sum of the X' for each point
multiplied by a speci6c weight factor chosen for each
type of data. These weight factors were varied until
the X,' associated with each class of data had a reason-
able value (see Table V).

Solutions (1) and (1a) are parametrized according
to Eqs. (1)—(4) and (15)—(17). The difference between
them comes from p-meson constraints which are only irn-

posed to obtain solution (1a). (See Secs. V. v and V. xii. )
The fit to the 211 xX data points and 240 ES data
points gives the X' values of 301 and 317, respectively,
for solution (1). The parameters are presented in
Tables I—IV, and in Table V we present the X' value
for each type of data for both solutions. The fit to the
data and predictions for various energies up to 200
BeV are illustrated for solution (1) in Figs. 1—20. The
results for solution (1a) are very similar to these its.

Solution (2) is also parametrized in the same way as is
solution (1), except that the a& amplitudes are parame-
trized according to Gell-Mann's ghost-killing mecha-
nism given by Eqs. (16') and (17'). In this case, we are
able to obtain a satisfactory 6t only to the XX data
alone. As expected, this 6t is much less restricted than
is the 6t to the combined data. Kith 240 SX data
points, the obtained X. value is 266, which is better
than the corresponding value for solution (1), and is

TAaLE III. p Regge-pole parameters.

Solution (0) '(BeV-2) Co(mb BeV) C1(BeV ') C2 Do(mb) D1(BeV ')

1
1a
2
3

0.58
0.58

~ ~ ~

0.57

0.94
1.01

~ ~ ~

0.99

1.47
1.51

~ ~ ~

1.57

0.20
2.39

~ ~

2.02

15.2
1.48

~ ~ ~

1.65

26.3
29.4

~ ~ ~

29.1

0.34
0.14

0 0 ~

0.11

28 Ql. C. Davidson, Argonne National Laboratory Report No. ANL-5990, 1959 (unpublished). vARMIT is a version of this method
developed by E. Beals at Lawrence Radiation Laboratory.
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TABLE IV. ou Regge-pole parameters.

Solution ay(Bev ') F2(BeV ) tp(BeV') Fo(mb'"} F (BeV '} Go/~o Gg —Pg(BeV ')

1
ia
2
3

0.45
0.47
0.21
0.36

0.31
0.38
1.66
0.32

~ ~ ~

1.35

—0.13-0.13
~ ~ 4

—0.13

3.94
3.82

13.1
4.51

1.85
1.70
1.10
1.93

—16.4—14.1—3.10—13.1

4.47
4.30—0.08
3.56

only slightly poorer than the solution corresponding to
the latter when only pp and pp data are used, for which
X'=255. A search for the fits for the combined xN and
NN data gives a X' of about 800; the corresponding
value for solution (1) is 618. We present in Tables
I—V for solution (2), the parameters for the EE arnpli-
tudes only, and the X' values for individual groups of
data.

The alternative data from Brookhaven'6 have also
been 6tted to give solution (3), using essentially the
same parametrization as for solution (1). In this solu-
tion o.J ' tended to become quite large, so that the
amplitudes for some data points came near to a pole in
$(t) at n= —2. This pole was removed by multiplying
the P and P' amplitudes by a factor [n(t)+2]/[u(0)+ 2j.
In these data, several features stand out, aside from the

TABLE V. g~ fits to data.

signihcantly improved errors: First, the asymptotic
limits to the n p and pp total cross sections are some-
what higher; secondly, the magnitude of the phase of
the pp forward amplitudes is found to decrease with
energy whereas previous data do not clearly indicate
this trend. For asymptotically large energies, the
Regge-pole model predicts a decreasing magnitude for
the phase. Further, the magnitude of the w+p phase is
now found to be larger than the n=p phase, whereas the
reverse situation was formerly obtained. This new result
is in agreement with the Regge-pole prediction (and the
forward dispersion relation), whereas previous data were
incompatible with it, although the stated error limits
were large. The detailed parameters and the X' for the
individual groups of data found in this solution are
presented in Tables I-V. The values of x' for the
magnitude of the phase of the s+p forward scattering

Type
Number Solution Solution Solution
of points (1) (1a) (2) (3)

40
I I I I I I I I

mN data:
oz (m+P}

Rex'(0)
— (~+P)

Imd'(0)

do'—(~'P)

16
28

21

~ ~ ~

23

10

50

35-

30-

do—(&-p o~)
dt

56 90 90

NN data:
~~(PP)

85 140 141 137

~ ~ ~

11

2 5
CL

+I

20-

Re@,(0)
(PP)

Imqb1 (0)

Re@,(0)
(gpp)

Im@1(0}

12 28

19

do—{PP,pP)
dt

161 192 189 171 184 10 I I I I I I

0 2 4 6 8 IO 20 40 6080IOO 200

~(PP) 76 88 60 80 P, (BeV/c)

Total x'= 618 627 266 629 Fro. 1.Total cross sections for ~+P from Ref. 17 compared with
solution (1) with predictions up to 200 BeV/c (solid line) and also
compared to solution (3} (dashed line).
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amplitude data is only given for the Solov'ev correc-
tion. The data using the Bethe correction which are
given in Fig. 22 have comparable error bars to the
Solov'ev points. Aside from the t=0 Gts to the data,
the results are similar to those of solution (1), and with

comparable X'. The fits to the ~+p and pp total cross
sections and to the phase of the m+p and pp forward

scattering amplitudes are illustrated in Figs. 21-24. The
ratio of the real to the imaginary part of the forward

scattering amplitude for pp scattering at 12 BeV/e
for solution (3) is found to be —0.096 as compared to an

experimental value of +0.02&0.032 with an additional

systematic error estimated as &0.05. (This experi-

mental value was obtained using the Bethe correction;
this choice was also made for the pp data. ) In Figs. 1, 2,
12, and 13 we have superimposed the result for 6tting the
Brookhaven data to show the change made by use of
these data. As is seen, the asymptotic behavior of the
total cross sections is markedly changed. (See Discus-

sion, Sec. V. vii also).
Results using the no-compensation mechanism, Eqs.

(1') and (2'), are not reported here, and the reader is

referred to Refs. 8, 9 for further information. This
mechanism is also further discussed in Sec. V. viii.
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60—
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60

IOa

60
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E

I.O
a
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I

0.2
I I

0.4 0.6
-t ( BeV /c) 2

O. B
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I.O

O. I 0— FxG. 3. ~+p differential cross sections at 8.8 and 16.7 BeV/c;
and x p differential cross sections at 8.9 and 17.0 BeV/c compared
to solution (1).Successive sets of data are spaced by a decade.

-O. I 0—
7l' p

V. DISCUSSION

-0.20—
CL

+I
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-0.30— II
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-0.40—

-0.50—
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I
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7T' p

I
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It is convenient to subdivide the discussion under
separate headings.

(i) Preososss mE analyses The imm. ediate predecessor
to the present work is Ref. 4, which presented two
solutions: (a) with small slopes for the P and P' trajec-
tories, corresponding to earlier work generally'; and
(b) with a big P' slope, in order to associate the dip and
second maximum in the elastic s+p differential cross
sections with a zero of Q.g .

We have found reasonable over-all fits to both mE
and EE data with solutions of type (b) only. Type (a)
has not survived.

As to the s.+p crossover effect, our solutions rely
strongly on a sign change in A,

'
(using C2/0) as dis-

cussed in Ref. 3.
(ii) Preeions EX analyses Most o. f the earlier

work'5"" has not included spin dependence. Some
work including the BerkeLey polarization data" which

P, (BeV/c)

Fxo. 2. The ratio of the real to the imaginary part of the forward
scattering from Ref. 21 compared to solution (1) with predictions
up to 200 BeV/c (solid line) and compared to solution (3) (dashed
line).

"F.Hadjioannu, R. J. N. Phillips, and W. Rarita, Phys. Rev.
Letters 9, 183 (1962)."T.O. Binford and B.R. Desai, Phys. Rev. 188, B1167 (1965)."P. Grannis, J. Arens, F. Betz, O. Chamberlain, B. Dieterle,
C. Schultz, G. Shapiro, H. Steiner, L. Van Rossum, and D.
Weldon, Phys. Rev. 148, 1297 (1966).



1622 RARI TA, RI D DELL, CH I U, AN D PHILLIPS 165

60- 50—

IO

60

IO

50

IO

60

OJ

O

IO

60

E

IO,

50

OJ

IO

50
63

E

IO
CL

cL IO+

O. I

O. I =
I

0.2
I I

0.4 0.6
-t (BeY/c)

I

0.8 I.O

0.0 I
1

0.2
I I

0.4 0.6
- t (BeY/c)

l

0.8 I.O

FIG. 4. x'+p differential cross sections predicted by solution (1)
up to 200 BeV/c. Successive sets are spaced by a decade. .

FIG. 5. ~ p differential cross sections predicted by solution (1)
up to 200 BeV/c. Successive sets are spaced by a decade.

here and its relation to the physical cv meson is illus-
trated in Fig. 25. For comparison, in the same 6gure
we also present the co and p trajectories for solution (1).

gave good its has been reported" "(See also the report
referred to in Ref. 14.) The Berkeley data are not con-
sistent with the more recent and more accurate CERN
data of Borghini et a/. ,

'4 and so we conine ourselves in
this report to the latter.

(iii) pp and pp crossover The fac.t that do/dt curves
for pp and pp cross at small

~
tt is attributed to a sign

change in an ~ residue function. ""In order that real
analyticity of the residues and factorization be main-
tained, all co residues have to vanish at the same point.

Hitherto, this vanishing has been regarded as a
dynamical accident, and has simply been parametrized
into the residue functions rtN', Q~', and rtNP~ Solutions.
(1) and (3) embody this view. It is conceivable, how-
ever, that this vanishing is associated with n„(t) going
through zero, while the couplings "choose nonsense"
(see Sec. II). This idea is attractive since it relates the
vanishing point of e to the rest of the dynamics.
Solution (2), with the alternative parametrization of
Eqs. (16')—(17') and (4'), embodies this idea. Although
the 6t to the EE data is a respectable one, the fit to the
combined mX and XE data is rather poor. Neverthe-
less, we believe that an explanation along these lines
is not completely excluded. The co trajectory obtained

"V.Flores-Maldonado, Phys. Rev. 155, 1773 (1967).
33 W. Rarita, in 200-BeV Accelerator: Study on Experimental

Use, Vol. 3, 1966 Summer Study, Lawrence Radiation Laboratory
Report No. UCRL-16830 (unpublished).
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0.8
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Fia. 6. 7r +p~ 7f'+n differential cross sections at 5.9, 9.8,
13.3, and 18.2 BeV/c compared to solution (1), with predictions
up to 200 BeV/c.
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We note that extrapolation of the p trajectory to
positive tI leads to a mass of 670 MeV, in reasonable
agreement with the experimental value. On the other
hand, the m trajectory in this case has a small slope and
and a signi6cant curvature is needed for t&0 for the co

trajectory to pass through the physical value. (For
further discussion on the small slope of the ~, see Sec.
V.ix.) This should not be surprising since the composite

co used is undoubtedly modified by effects of the P, p,
and low-lying trajectories which are lumped together
in our model. The trajectory for solution (2) actually
turns over near 3= —0.6 (BeV/c)'. This peculiar situa-
tion is associated with the particular polynomial func-
tion that we have used. We expect that the 6t beyond
t= —0.6 (BeV/c)' does not depend crucially on the
detailed shape of the trajectory; in particular, we sug-

0.30—

0.30-
6 BeV/c

0.20—

lo Bev/c

0,20-

CL
+

0.10
Q

o

+
O. IO

Q.

-O. IO—

-O, IO
0

I

0;2
i I

0.4 0.6
(BeV/c)2

l

0.8
I I

0.4 0.6

-t (BeV/c)2

I

0.8 I.O

0.30

l2 BeV/c

O. I 0

FIG. 7. m+p polarization at (a) 6, (b) Io, (c) 12 BeV/c
compared to solution (1).

-0. I 0—

0.2
I I

0.4 0.6
-t (HeV/c)

I

0.8 I.O
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gest, a trajectory such as the one indicated by the dotted
line in the figure should also give an adequate fit to
the EÃ data.

{iv) Factorisotion tests F.actorization severely con-
strains the analysis, and the fact that the solutions
have been found is itself a test of compatibility with
this property. However, since the constraints apply to
ratios of spin-Rip to non-Qip couplings, the test would
be made stronger if there were more polarization data.

In fact, we have found that a somewhat better X' can
be achieved if the factorization relationship between the
7rp and pp systems is released. On the other hand, we

0.30

(a)

feel that the solutions which we have obtained incor-
porating factorization are reasonable and no incom-
patibility with it is seen in the results. %e have not
released the factorization constraints involved in the
Sharp-Wagner formalism for the i7-E amplitudes alone.
Our assumption that low-lying trajectories can be
lumped into the sects of the three particles which we

keep explicitly is not exactly true when factorization
is taken into account. Thus only if the eGects of these
particles are very small can we expect factorization to
be well satis6ed.

0.30

(b)

0.20— 6 BeV/c 0.20—

8 BeV/c

Q. I 0— 0.10—

CL

0
CL

0

-0. 1 0 -0. I 0

-0.20— -0.20-

-0.30'
0

0.30

!
0.2

I I

0.4 0.6
-t {BeV/c)

I

0.8

(c)

1.0
-0.30

0
'I

0.2
I I

0.4 0.6
-t {BeV/c)

I

0,8 1.0

0.20—

10 BeV/c 0.10

O. I 0- 12 BeV/c

-O. 10

-0.10

I I

I I IT oo

11

J.

-0.20—
-0.20—

—0.30
0

I
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I
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FiG. m p polarization at (a) 6, (b) 8, (c) 10, and (d) 12 BeV/c compared to solution (i).
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CL

O. IO

I I I

IO BeV/c

25

that the P-P' term is small. Factorization then predicts"
that the P P' t-erm is also small for ES, and that the pp
and pp polarized cross sections are roughly mirror-
symmetric; (similarly for EX, approximate mirror sym-
metry is predicted for E+p and E p). Measurements of
polarization for pp (and also X+p) will therefore provide
rather transparent tests of factorization. The pp pre-
dictions are presented in Fig. 17.

It is interesting that the vanishing of P-P inter-
ference in polarization, with the trajectories we use,
also implies the vanishing of P-P' interference in the

200
70
25

O.B—

CL
I

—O. IO
CL

0.2 0.4 0.6 0.8 I .0
-t ( BeV/c)

0.5—

0,4 —
i

O

I

eV/c
200
70
25

IO

FIG. 9. Predictions from solution (1) for m+p polarizations
at 10, 25, 70, and 200 BeV/c.

As an example of how factorization constrains the
model, consider the polarized cross section P(do/dt).
All contributions are interference terms between pairs
of Regge poles. In xE scattering, the P-P' interference
terms can be separated at once, since they have the
same sign for both e+p and e. p but the remaining terms
change sign. Experimentally one 6nds that m+p polariza-
tions are approximately mirror-symmetric, showing that

O. I

I.O

0.9—

I I I I I

(b)

I I I I I I I I I I
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Fzo. 11.8» for (a) x+p and (b) m p predicted by solution (1)
for 10, 25, 70, and 200 BeV/c.

0.6 I t I I I I 1 I I

0.2 0.4 ' 0,6 0.8 I.O

-t ( BeV/c)

FIG. 10. A» for (a) ~+p and (b) m p predicted by solution (2)
for 10, 25, 70, and 200 BeV/c.

I In all cases, the P—E' polarization term vanishes if both poles
have the same phase, or both have the same ratio b~/bg. In our
model, the erst possibility does not happen. The second condition
is enough to make the interference term in C~~ and E~~ vanish
also (see Appendix C).
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FIG. 12. Total cross sections from Ref. 17 for pp and pp com-
pared to solution (1,) with predictions up to 200 BeV/c (solid line)
and also compared to solution (3) (dashed line).

IO

5

IO
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second-rank spin tensors C~~ and EN~ (see Ap-
pendix C).'4

The vanishing of the co couplings at the crossover
point (Sec. V.iii) offers further tests, since all &o contribu-
tions in other reactions must vanish at the same value
of t This is.already checked for RAT and EX scatter-
ing. ' "lt is a severe constraint on the use of co in ex-
plaining X+X~K~+X, for example.

(v) atm rule con-straints The s.um rule associated
with the I=0 Regge trajectories originally developed
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FIG. 13. The ratio of the real to the imaginary part of the
forward scattering amplitude from Ref. 25 for pp compared with
solution (1) with predictions up to 200 BeV/c {solid line) and also
compared with solution (3) (dashed line). The forward scattering
amplitude A (0) is either @I or @3(=@&)and is given by Eq. (8).
Predictions for pp are also given for solutions (1) and (3).

FIG. 14. pp differential cross sections at 6.8, 8.8, 10.9, 12.3, 14.8,
16.7, 19.7, 21.88, and 24.63 BeV/c compared to solution (1), with
predictions up to 200 BeV/c. Successive sets of data are spaced
by a decade.
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by Igi35 has recently been modified and the numerical
analysis brought up to date by Scanio, " using data
which have become available since Igi's analysis was

200—

100

50

200

100

50

200

100

2Cprx+(np+1)Cpr'x ri
2x'(—1+ii/M)a+ m f'/—2M+xI(p), (27)

where

co dc'
I(I )=- [or(n.+p)+ ro(n. p) j—, (28)

(io~2 ~2) 1/2

made. A corresponding sum rule for I=1 trajectories"
has been developed by Restignoli, Sertorio, and Toiler,
and recently also discussed by Igi and Matsuda. The
question which we must answer here is the extent to
which this sum rule should be used to restrict the
allowed values for the parameters used in the X.' search,
particularly the intercepts of the P' and p.

For the I=O forward scattering amplitude, we find
from Eq. (8) of Ref. 36, after some trivial modifications,

50
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Kl
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ia

b 200

IOO

200
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50

20

IO

1.0

O. I

7.2 BeV/c

IO

l2

15.9I

70

and we use the relations between the C; of Scanio and
the Cp' of this paper: Cr=2Cpr, Cr =nr (nz+1)Cpr

Using values for a+ and f'/4nof —0..001&0.003 (in
natural units) and 0.081&0.002, respectively, "we find
that the first two terms on the right in Eq. (27) con-
tribute 0.06%0.19 mb BeV' and —0.66&0.02 mb
BeV', respectively. We use the value 7rI(p)=195.4
&1.3 mb BeV', as given by Scanio for x=6 BeV. Thus
we 6nd the contraint

Hp —=2Cprx+(nr. +1)Cpr'x r'
= 194.8&1.3 mb BeV' (29)

To obtain this equality it is clear that an explicit
assumption has been made that P and P' are the only

significant Regge poles beyond 6 BeV/c. To be specific,
suppose that there is a low-lying Regge trajectory with
intercept O.p . Then we would have a new Ho.

H, =2Cpx+ (n&.+1)Cpr'x~&'+ (np" +1)C, "x~r"

=X Oy AT@ Qp~ Oz cLp~i (30)

where 0~' is the contribution of the i'th pole to the total
cross section. If Eq. (29) is satisfied within one standard
deviation, this would imply that at 6 BeV any further
contribution to o-z must satisfy

or" ~& (1 3l194 8)(or'+or'/n') Inr- I
.

For our solution (1), for instance, this implies

orr" &0.009
I
nr-

I
or.

200

0.01
0 0.2

I I

0.4 0.6

-t (BeV/c) 2

I

0.8 1.0

'5 K. Igi, Phys. Rev. Letters 9, 76 (1962).
'6 J. Scanio, Phys. Rev. 152, 1337 (1966).

Fzo. 15. pP di6erential cross sections at 7.2, 8.9, 10, 12, and
15.91 BeV/c compared to solution (1), with predictions up to
200 BeV/c. Successive sets of data are spaced by a decade.

Since we have not taken other possible poles or- a back-
ground integral into account, and in any case we do not
feel that the Regge amplitudes are this accurately
known at 6 BeV/c, we feel that this constraint is too
stringent to be used directly in the X.' search. The sum
rule is in fact included in the search, but the error used

» M. Restignoli, L. Sertorio, and M. Toiler, Phys. Rev. 150,
1389 (1966); K. Igi and S. Matsuda, Phys. Rev. Letters 18, 625
(1967).» J. Hamilton, Phys. Letters 20, 687 (1966); J. Hamilton and
W. S. Woolcock, Rev. Mod. Phys. 35, 737 (1963).
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FIG. 16. Pp po1arization at {a)6, (b} 10, and (c} 12 SeV/c
compared to solution (1}.
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was increased from that in Eq. (29). The values of Ho
vrhich @re then obtain are

H~ ——192.0 mb BeV', solution (1),
=193.5 mb BeV', solution (1a),
=195.8 mb BeV', solution (3).

In view of the above discussion, we consider this to be
reasonable agreement with Eq. (29).

For the I=1 amplitude, it can be shown that if the p
is the only significant trajectory (ignoring lower-lying

Regge poles and a background integral as before) one
6nds

Bj—=Co&x ~+'

7I f + if(d —(Gl —p )

The contribution to Hi from the term in f2 is —1 24
~0.03 mb BeV', whereas numerical evaluation of the
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Fn. 18.~ 18 +recoil for PP and redipp p icted by solution (1)
, and 200 BeV/c.

wheieas for solution (3)

"=246ex 041t~- =246 po41t)( ( +1)( +2)i[ (o)+2])'"
Fzo. 17. Predi'ctions from solution (1) for pp and

t 10 25 70 d 2008 V/

integral gives" 20.7&0.5 mb 8 V',m e ', atx=5 Beg. Thus,

H j.= 19.5+0.5 mb BeV'

This constraint was also included in the sea
ith 1 tio of tho e error. For our solutions we 6nd

H~= 18.7 mb BeV', solution (1),
=19.1 mb BeV', solution (1a~

=19.7 mb BeV', solution (3).

Again, agreement with the constraint seems reas
(vi) s~w predictions. U to nowp o o, there has been ver

e on w cc an estimate about xx sca
o ldb de ma e. Using equations iv

factonzatcon allows u tows us to derive the P and
i.e., t e isospin-averaged" am 1

This derivation assum thassumes t at our P' ar
ot tl ff t dba ec e y contributions from A or

re a e to calculate the contributi
the total cross section and th d'

for mm scattering. For s 1 t' 1
an e i6erential cross s

sou ion 1 wefind
ection

g ~= 1.90 exp(0. 27t) [n~(n~+1)]'"
and

g ~'=3.25 exp( —0.62t)[n~ (n~+1)]"27
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I
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I t I
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—t {BBVic)'

0.8 I,O

I.O—

0.8

0.6

0.4

rt ~'=2.83 exp( —2.06t)

&«-'(-'+1)(-'+2@[-'(0)+»
Note that, althou h

~ ~
gh these expressions for'- n"-"--g "p--t 1 f

strong decrease from th
n ia or increasin

om e term in nr, 'ln(s/s, ) so that

with (t .
s an over-all decrease

3~WWe used the same set of data as that q

performed up to 5 SeV/c The corres
th 6 t of R f 37 —198&02 b

tion
error is slightly underestim t d T
'on we have recalculated Ho with x =6

Scanio.
e, ln perfect agreement with the results of

0.2 '-

0
0 I.O0.2 0.4 0.6 0.8

-t (BeV/c)2

Fn. 19.R.9. R;~,;1 for (a) PP and (b) repp predicted by solution (1)
, and 200 BeV/c.
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26 28

Fzo. 21. Total cross sections from Ref. 26 for x+p
compared with solution (3).

0.2 0.4 0.6
-t (BeV/c)

FIG. 20. Cziv for pp and pp scattering predicted by solution (1)
for 10, 25, 70, and 200 BeV/c.

~t t' Emit. Because the P intercept is
rather high, its contributions are not negiigib e un i

h
'

re reached. Thus for solution (1)very high energies are reac
SE N and xw total cross sectionsthe asymptotic

14.5 and 7.3 mb, respectively, compared toare 28.8, 1 . , an
39.0, 47.7, 23.1, and 24.4 mb for pp, pp, tr p, an tr p,

l at s=40 (BeV)' (corresponding to arespective y, a s=
f r the gE and

trzV cases). Using Eqs. (21), (23), and (26) we get a cor-
d t tal crosssection of 13.3 mb. The cor-

e s= 130ondin total cross sections at 70 BeV/o (s=
Ser ukhov accelera-BeV'), corresponding to the future Serp

tor, are 7.0, 41.3, 20.7, 21.5, and 11.6 mb, respectively.
l

'
(3) e find corresponding asymptotic

f 34.8 20.5 and 12.1 mb. , whereas for s=values o, , , s=
(BeV)' the corresponding values are 39.1,
25.2, and 14.0 mb, and for s=130 (BeV)' they are

.00

-Q5—
a

-I 0—
0

I I I

Solov'cv Bethe

~p f' x

{0

I I I I 1 I

-.I 5—

E~ -20-
o

~25
tiz
K

I I I I

8 IO i2 I4 I6 IS
Pl b (BeV/C)

I t t t

20 22 24 26

FIG 22 The ratio of the real to the imaginary p 1 of th26e

ared to solution (3}.The circles and squares are for the
Solov'ev correction; and t e crosses an
correction.

N''N. Cabibbo, L. Horvritz, J. Kokkedee, and Y. Neeman,

k H. Schlaile, and P. Sonderegger, Phys.
4 275 1966).

. ' -, J. -... . '.
C'Ch. Ph. .R-. 147, 1045Letters 20, 79 (1966);F. Arbab and C. C &u, ys. ev.

an Ph s. Rev. 160 1490 (1967)S. Mandelstam and L. L. Wang, ys. ev
3 C. T. Coffin, N. Dikmen, L. Ettlinger, D. Meyer, . auy,

K. ~Terwilliger, an
' l', d D. Williams Phys. Rev. Letters

(1965); 17, 458 (1966).

7.8, 41.4, 22.4, 23.2, and 13.2 mb. These values give an
f r NE to ~E total cross sections ofasymptotic ratio or

1.99 for solution (1) and 1.70 for solution (3).T is is to
be compared with the predicted value of 1.5 which
comes from the quark model.

The continuing slow fall of total cross sections
throughout the energy range of foreseeable accelerators
is similar to that predicted by the model of Cabibbo
et a/ 4' in which nz (0) =0.93 and the asymptotic limits~

7

char e-(viii) Dips and secondary maxima in zr p c argo
exchange, zr p e usic, an

' '
s.i i' and pp digererztial cross sections

The dip in the charge-exchange differential cross sec-
tion near = —0 6 (BeV/o)' is explained here, as
previous y, y e v1,44' b the vanishing of Bp at ~p Tile
secon ary ump ind b n the differential cross section is

secon ary ump s rd b tructure has also been observed in
both tr p an id ~~ d'fferential cross sections at lower
energies, an in e casd

'
th e of trap at higher momentum

trans ers. n our prr" . j: esent analysis we have inc u e
above 5.9only the data for higher energy (with Pr, above

BeV/o) and small momentum transfer,
I tI (1 (BeV/o)',

but since this phenomenon is closely related to our work
reporte ere, we wot d h we would like to discuss this dip- ump
phenomenon rie y.briefly. Recently it was pointed ou y
Mandelstam and Wang ' that if the fixed-po e con ri u-
tion in the J plane is dominant, then the dip phenome-
non would be greatly suppressed. For the discussion
which follows, we assume that the fixed, -pole contri u-
tion is not important.

The di -bump structure in both tr+p and tr p
ferential cross sections as measure y e

e ip- u

group is qui eite pronounced in the 2.4-4-BeV/o region
for the ~iI interval between 0.8 to 2.0 (BeV/c) . e
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magnitudes of the bumps for both z.+p and z p are
comparable and are significantly larger than the con-
tribution of known direct-channel resonances nearby.
The bumps fall off smoothly as the energy increases.
These facts imply that the bumps are dominated by
t-channel I=0 exchange. Frautschi suggested' that the
main contribution to the bump could be associated with
the P' trajectory. Analogously to the case of charge
exchange, this contribution might come mainly from
BI, and the minimum in t prior to the rise of the bump
is then to be associated with the vanishing of BI. at
o,~ =0. He pointed out that this mechanism would be
feasible if the P' coupling incorporates the Chew ghost-
killing mechanism [see Eq. (2)]. On the other hand, it
was suggested by Kang' that if the P' interacts in
accordance with the no-compensation mechanism, both
A'i. and BI would vanish at np ——0 [see Eqs. (1') and
(2')]. Since these suggestions were made, thesecondary
bump data for both m+p and pp have been analyzed in
some detail. As summarized in Ref. 9, it is found that
the mp and pp dip-bump structure together with the
high-energy mS and ES cross-section data can be
satisfactorily explained with the no-compensation
mechanism for the P' trajectory. Kith this mechanism
the z +p secondary bump has been associated mainly
with A'p. On the other hand, with Chew's ghost-
killing mechanism for the P', the fits found were less
satisfactory even for the xX data alone. In our present
solution, we also 6nd P' is preferred to be quite steep
even though we have not included any low-energy data
in the search [see also V.i]. However, our fits for solu-
tions (1), (1a), and (2) are not too sensitive to the exact
value of the slope. It could vary between 1 and 2

(BeV/c) '. We fixed it at 1.5. On the other hand, the
fit for solution (3) actually preferred a larger slope.

For the EE differential cross section, the dip-bump
structure occurs only in the pp differential cross section
(observed unambiguously only below 2.5 BeV/c), and
the pp differential cross section in the same region is
rather smooth. Thus we feel that the pp dip-bump
structure is generated by a rather delicate interference
effect between the P and P' amplitudes and the co

amplitude in the low-energy region. (See Ref. 9 for a
qualitative example of the fit with this interference
effect. ) Since we have not included these low-energy

4I I I I I I I I I I

& 40—

CL
CI.

bl-

I I I I I I I I I

6 8 IO I2 14 I6 I 8 20 22 24 26
PIOI, (BeV/c)

FIG. 23. Total cross sections from Ref. 26 for pp
compared to solution (3).

".05

a.-J 0—

o;I 5-

gp
C~-.25-
O -30—

7 9 I I l3 I 5 l7 l9 21 23 25 27
lob (BeV/c)

FIG. 24. The ratio of the real to the imaginary part of the
forward scattering amplitude from Ref. 26 for pp compared with
solution (3).

data in the present analysis and all the high-energy pp
data included are smooth in the dip region, we did not
anticipate that our solutions would produce this
delicate low-energy effect.

(ix) Polarization parameter P. Because flip and non-
Qip terms have the same phase for a given Regge pole,
polarization can come only from interference between
different poles, with a resultant asymptotic s depen-
dence: P s ~ ' 'I, where o.I ande~ are the twohighest
trajectories.

For mE scattering, the P-p and P'-p interference
terms, with opposite signs for ~+p and z. p elastic
polarization, seem to dominate. The P-P' term has
the same sign for both, and is found to be relatively
small. Experiment seems to require the latter to be
positive at 6 BeV/c and negative at 12 BeV/c ";this is
of course impossible for the simple P-P' term in our
model, but could come from interference with the ex-
change of a third I=O pole.

Our model gives no polarization in z. +p ~ &o+ri, ,
though some is observed. "It is not yet clear what new
ingredient should be added; suggestions to date in-
clude another Regge pole" p', s-channel resonances, "

I 7 I

I,O—

0.5

e ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ +

-05—

0 I I I I I

-I.O -0.8 -0.6 -0.4 - 0.2 0 0.2 04 0.6 0.8
t ( BeV/c)~

FIG. 25. The p and co trajectories (Rem versus I).The solid curves
are for p, coy I from solution (1)j and cog Drom solution (2)j.The
dashed curves show the relation of these trajectories to the
physical particles. The dotted curve is a possible alternative
trajectory for solution (2) for the co.

44 G. Hohler and G. Eisenbeiss, Institut fiir Theoretische und
Kernphysik der Technischeon Hochschule, Karlsruhe, Germany
Report, 1967 (unpublished).

4'H. Hogaasen and A. Frisk, Phys. Letters 22, 90 (1966);
H. Hogaasen and W. Fischer, ibid. 22, 516 (1966); R. K. Logan,
J. Seaupre, and L. Sertorio, Phys. Rev. Letters 18, 259 (1967);
W. Rarita and B. Schwarzschild, Phys. Rev. 162, 1378 (1967).

46 R.J.N. Phillips, Nuovo Cimento 45, 245 (1966);R. K. Logan
and L. Sertorio, Phys. Rev. Letters 17, 834 (1966); B. R. Desai,
D. T. Gregorich, and R. Ramachandran, ibid. 18, 565 (1967).
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and Regge cuts. '~ The calculations incorporating these
suggestions indicate that, whichever choice is made,
no large corrections to the elastic or charge-exchange
scattering occur.

For pp and pp polarization, the I' I" in-terference
term must be small, from the AN result plus factoriza-
tion [see (iv) above]. The I' au and -P'-s& terms have
opposite signs for pp and pp, and also have to vanish
at the crossover point where all ca residues vanish [see
(iii) abovej. If the co trajectory were to pass through
zero, the P-co and P'-co interference terms would change
sign. Note that the pp polarization shows no evidence
of a sign change for 0.2~& ~t~ &~0.7. Thus for our solu-
tions (1), (1a), and (3), we 6nd &o trajectories which have
a relatively small slope.

(x) Second rank p-olarizatiorl, rensors. (See also Ap-
pendix C.) For vrp scattering, in addition to P there is

only the depolarization tensor D;;, with two nontrivial
elements D~~ and D~p. To measure them one needs a
polarized target, with recoil polarization analysis. As
a practical point, note that target polarization ie the

scattering plane is needed. In practice, one probably
measures linear combinations of these elements, in the
form of Wolfenstein E„„;iand A„„;iparameters.

For pp and pp scattering, however, there are the de-

polarization, polarization-transfer, and spin-correlation
tensors: D;;, E;;, and C;;. Because our model contains
no pseudoscalar or pseudovector trajectories, D;; again
has only two nontrivial elements D&z and DzI, while

C;; and E;; have only one nonzero element between
them: C~~——E~~. Because of factorization, for a
single Regge pole we have

D' ( p)=D' (pp)=D* (pp),
c; (pp) =c'(pp) =0

Figures 10, 11, 18, and 19 show predictions for the
depolarization tensor, in the form of the Wolfenstein
parameters R„„;iand A„„;i, for 10, 25, 70, and 200
BeV/c. As expected, the m.+p, pp, and pp results become
similar as the Regge pole I' becomes dominant.

Figure 20 shows predictions for C~N for pp and pp
scattering at 10, 25, 70, and 200 BeV/c. Since C~~ de-

pends on interference between different Regge poles, it
decreases asymptotically just as does the polarization
P 0

~&—
) aI—0,2(

Factorization requires the I'-I" interference to be
small, since this interference is small" in I'(zX). The
remaining P'-ar and I"-co interference terms are mirror-
symmetric for pp and pp, and vanish at the crossover
point where co residues vanish.

(xi) Asymptotic spin dependence An imp. ortant
property of Regge poles is that they permit nontrivial
spin dependence asymptotically. This contrasts with
the diffraction picture, which suggests that summing

4' V. M. de Lany, D. J. Gross, I.J. Muzinich, and V. L. Teplitz,
Phys. Rev. Letters 18, 149 {1967);C. B. Chiu and J. Finkelstein,
Nuovo Cimento 48, 821 (1967).

l.Q T ~~t 7
—0 +- I

j
I

& recoil

0.5-

0
OJ

CL

recoil
l~

O
CP

-0.5

t e i i I—t.O
0 l.20.4 0.8

(BeV/c )

FIG. 26. A„;& and E„ f& for some simple models at 20 BeV/c:
(a) 8=0 (solid line), (b) H=O (dash-dot line), and (c) f+ =0
(dashed line). For A„„;I, (a) and (c) e6'ectively coincide.

I'(e,+1)(43IIN2 —m, ')
=13.'7 mb BeV,

48 M. Jacob and G. C. Wick, Ann. Phys, (N. Y.) 7, 404 (1959).
4~ V. Singh and B.M. Udgaonkar, Phys. Rev. 128, 1820 (1962).
~0 J. S. Ball and D. Y. Wong, Phys. Rev. 130, 2112 (1963).
~' B.R. Desai, Phys. Rev. 142' 1255 (1966).

over many inelastic intermediate states will leave no
preferred spins.

On the other hand, it is not clear exactly what "no
spin dependence" should mean, for the "natural"
definition depends on the formalism used. Take xN
scattering, for example: According to whether we
describe the nucleon spin by a c.m. Dirac spinor, or a
rest-frame Pauli spinor, or a c.m. helicity state, the
"natural" definition of no spin dependence is 8=0,
or H=O, or f+ 0(where f+——is the c.m. helicity-fhp
amplitude). 4' These are not equivalent.

To test for asymptotic spin dependence experi-
mentally, we need the second-rank spin tensor D;;
(since we expect E and. C~~~0). Figure 26 shows
predictions for the z.p depolarization parameters
R„„;~and A„„;~at 20 BeV/c, for comparison with the
predictions of our model —and with eventual experi-
ments —for the three de6nitions of "no spin dependence"
given above.

(xii) m.lV amp/itedes ai 1=m, ' Calculations .of the
xw —& EN amplitudes for the state I= 1,J= 1 have been
made by Singh and Udgaonkar, 4' and by Ball and
Wong, " in which the experimental information on the
nuclear-charge and magnetic-moment form factors was
used. From these results the amplitudes at the mass of
the p (1=m, ') were obtained by Desai. " Comparing
Kq. (4) of Ref. S1 and our Kqs. (1), (2), and (6) for
the p amplitudes, we 6nd

~=Co&[(1+Cd) exp(C&&m ') —C&~$

2"z'"(2n,+1)I'(n, +-,')8mM~r~
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and
2-.~i/2r(~, +-',)4~r

R =Dg exp(Di'//t, ') = -=34.8 mb.
I'(op+ 1)M//'

To obtain these results one must identify Desai's
amplitude A' with V2 times the A', used in this paper,
and the approximations s/2M//'=P/Zo and 4k'=s
must be used. The r~ are defined by Desai and are
found by him to be r+ ——0.87 and r =3.98 (no errors
were quoted for these numbers).

In our fit, we found that the data in the t&~ 0 region
are not very sensitive to R+, in particular to the value
of R+. Solution (1) is obtained without including R~
in the fit, whereas solution (3) includes them. As
mentioned in the results section, solution (1a) is ob-
tained with the same conditions as (1) except that the
E~ constraints discussed here are imposed. The R~
values for solutions (1), (1a), and (3) are as follows:

where we use t= —2k'(1 —cosg).
If we write

then unitarity demands that ~ai—2ii~ &~-'. From the
properties of I/+i/2(x), namely that I/+i/&(x)&~0 and
Il—i/9(x) &~I[+. i/2( x), we see that unitarity must be
violated in the 5 state (l= 0) if at all. From the require-
ment that ~ao—i2i~ )—', and that

Ii/g(s) = (2~s) I/2(ez e
—

z)

we find

C[1—e
—'""])4/ik

for violation of unitarity in the S state. As 4k'a))1 in
practice, we get the simple condition C&4ku. When we
use the optical theorem o.r ——4ir Imf(0)/k, this condition
becomes 0~& 16xa.

Solution (1)
Solution (1a)
Solution (3)

13.0
10.9

32.1
31.8
31.0

APPENDIX B: PARTIAL-WAVE PROJECTIONS
AND UNITARITY TESTS

1. Pion-Nucleon Scattering

Note, aside from the E~ constraints, most of the
parameters and the quality of the fits for solutions (1)
and (1a) are similar. A comparison of the solutions (1)
and (1a) as exhibited in Tables I-V shows that, although
individual parameters change when the constraints are
imposed, there is relatively little change except for C&'

and C&0, and either solution 6ts the data reasonably well.
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APPENDIX A: UNITARITY TEST OF THE
DIFFRACTION EXPONENTIAL PEAK

We assume that the scattering amplitude f(t) has the
form f(t) =iCe". Our task is to obtain a criterion as to
when and how unitarity may be violated.

The partial-wave expansion for f(t) is easily obtained
from a result of Gegenbauer":

( m

iCe"=iCe 'k"(—
(4k'al

X P (2L+1)Ii+i/2(2k'a) Pi(cose), (Al)
L=O

"G. N. %atson, Theory of JjesseI, Punctiorls (The Macmillan
Company, New York, 1948), Second ed. , p. 369; also J. V. Lepore
pointed out that this equation can be obtained easily from the
well-known partial-wave expansion of a plane wave by analytic
continuation.

Following Singh, ' the pion-nucleon partial-wave
amplitudes are easily obtained. The invariant ampli-
tude A is given by

Lr,+t/4M
A=A'— 8

1 t/4M'— (B1)

~(Anal~ f~initial) ~'.
dQ spins

Then one hnds

E+M
fi= (A+8(s'/' M)]-

8m s'i'
and —(P. M)—

f2 [a—a(ei/2+M)],
S~s'~'

(B3)

where 8 is the c.m. energy of the nucleon. The partial-
wave projection formula for f is given by

a/~ = exp[i'/~] sin8/+

[fiPi(x)+ f2Pigi(x)]dx, (B4)

where l~ stands for the state with orbital momentum l
and total spin J=l&~. We note that the partial-wave

and the scattering amplitudes fi and f2 are defined in
such a way that

f= fr+(e kf)(o k,)f2, (B2)

where kf and k; are unit vectors in the direction of the
final and the initial pion three-momenta, respectively,
aiid
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amplitudes in Ref. 3 are de6ned to be larger than those
in Eq. (B4) by a factor of 2; and, further, the former
are tabulated there in units BeVs mb (=2.568).

Thus far we have suppressed isotopic spin indices.
The crossing relations between the direct channel
I= 2, 2 amplitudes and the 3-channel Regge amplitudes
are given by

I.O

0.8—

lsi. l

0.6—

A'='"=A +&=Ap+Ap. As, —
Ar '"=A &+srA *=Ap+Ap. +2Ap,

(B5)
0,4=

0.40
I I I

where A" is the charge-exchange amplitude. Parallel
relations can also be written for the 8 amplitudes.

From Eqs. (B4) and (BS) we can readily obtain the
partial-wave amplitudes for our solutions by numerical
integration. The results for solution (1) at 10 BeV are
presented in Fig. 27. In order that the partial-wave
amplitudes be compatible with unitarity, it is of course
necessary that lS&~l &~1, where St~=exp(2i8&+) We.
find as illustrated in Fig. 28 for I= ~, that if unitarity
is violated, the value of l is quite large, and the partial-
wave amplitude is quite small, but the imaginary part
of ai- is negative (as is seen in Fig. 27), which is for-
bidden by unitarity. A similar result is obtained for
I=—,. Further, as EJ. is increased the violation of uni-
tarity occurs only for larger / values. %e feel that the
violation occurs because of a small error in the form
chosen for the parametrization of the amplitudes near

l.o
I I I I I I I

0.8—

lsi-I—

0.6—

0,4—

I I I I I I I I I

O. l. 2 4 6 8 l0 l2 l4 I6 IS 20

FIG. 28. Unitarity test for s'+P scattering.
~
Srs ( for various

energies based on solution (1).

the forward direction, since the contribution to the
high / partial waves comes predominantly from this
region. This diKculty with unitarity is of the saIne kind
as that found in Ref. 3.

0.30—

0.20—
Im

0. I 0—

0-

—I=—I

2 2. Nucleon-Nucleon Scattering

In the case of nucleon-nucleon scattering, Goldberger
et al. 53 chose partial-wave helicity amplitudes in the form

(~,'~s'l pl ~,~s)

I=-g (m+1)(~t, '~,'lT ( ) l~,~,)d» &(II), (B6)
J

where the );, ); are the helicities of particle i in the
initial and final states, respectively, p is the mo-
mentum of either nucleon in the c.m. system, oo is the
total c.m. energy, d» ~(8) is the reduced rotation
matrix, and X=)~—X2, and )'=)~'—)~'. The partial-
wave helicity matrices can be shown to be related to the
partial-wave S matrices by

S~=1+2iT~,

where SJ is a unitary matrix in the space of the helicity
components and 1 is a unit matrix in that space. '4 A

-O. IO = Re ap (&)

I I I 1 I I I I I

0 I 2 4 6 8 lO l2 l4 l6 l8 20
j'

Fro. 27. Partial-wave amplitudes for mp scattering at 10 BeV.
Real and imaginary parts of a&+ for I=-,' and —,

' based on solution
(1).

~'M. L. Goldberger, M. J. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).

5 The expression of Goldberger et al. (Ref. 53) difFers from that
of Jacob and Wick (Ref. 48) by a factor of 2, since the latter
authors chose T~= —i(S~—1).Note that both choices dier from
that in Goldberger and Watson, fCollisioe Theory (John Wiley R
Sons, Inc., New York, 1964)j, in which S~=1—2~ipT~, where
p= p'dp/dW'. In all cases, the S~ is the same —only the de6nition
of T~ difFers.
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0.5—

where
lol'+lt I'=1, (Bg)

the total number of particles going out in the elastic
channels is

04— x.„,=g IS~4;.I~

—P.

'(seats

Jf. (89)

where the sum is carried over all final spin helicities.
If we write the 2&(2 part of S~ as

0.2—

then

p»
!s.

V 12 s'f2~
(810)

0.1—

v'=
tP
& -O. I

=

I I I I I ! I I

0 I 2 4 6 8 10 12 14 16 18 20
J

FIG. 29. Partial-wave amplitudes for pp scattering at 10 BeV.
Real and imaginary parts of f0, f1, f11, f1&, and f&z for pp given by
solution (1).The dashed curve gives Refry.

[Sii I
'+ [Sip [' SiiSig*+S»S»*)

S~ts~= ! . (811)
s»*s»+s»*s» Is» I'+ Is&"- I'

Finally, if S,„t is varied with respect to a, b, subject to
the constraint (88), one finds that

I
s~=~i'I'—=&-i-*=4( I s»

I
'+

I s» I
'+2[s»

I
'

+!( I sii
I

'—
I s» I

')'+4
I
s»s»*

+S»s»*l'J'"} (812)

This quantity was compared to one in testing unitarity.
The results for the unitarity test are given in Fig. 31.
As in the xp case, incompatibility again occurs only
for large J, small f's, and Imf(0.

unitary transformation corresponding to the selection
of states of de6nite parity reduces S~ to its irreducible
parts, This transformation leads to fo (the singlet
amplitude), fi~ (the J=l triplet amplitude), and f»~,
f»~, and f»~ (the J=l+1 triplet amplitudes). For
further details, see Ref. 53. These parts can be obtained
using Eqs. (4.22), (4.23), and (4.25) of Ref. 53, which
can be used for the partial-wave decomposition.

!There is a misprint in Eqs. (4.25d) and (4.25e) of
Ref. 53. The factor 1/(2J+1) outside the integrals
should not be present. J The results of this analysis for
solution (1) and Er, =10 BeV are presented in Figs. 29
and 30.

%ith the elements of S~ determined, one can im-
mediately test those parts of S~ which correspond to the
singlet and triplet states in which J= l for compatibility
with unitarity, i.e., IS I

~&1. The parts corresponding
to J=l&1 are slightly more complicated, since they
are represented by a 2)&2 matrix. In order that these
be compatibile with unitarity, it is necessary that no
more particles appear in all the Gnal elastic-scattered
channels of any spin state than were present initially
and further that this be true for any linear combination
of the initial spin states. If the initial state is represented

by

0.4—

03—

0.2—

0.1—

-O. I

-0.2—

! I I I I I

01 2 4 6 8 10 12 14 16 18 20
J

FIG. 30. Partial-wave amplitudes for pP scattering at 10 BeV.
Real and imaginary parts of f0,f1,f»,f», and f» for pp given by
solution (1).
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I.G

I I I I & I i I i The mX and EE c.m. scattering amplitudes have
general forms

M ~——G+iHo N,

0.8—

0,6—

0.2—

I I l i 1 l i t I

0 I 2 4 6 8 IO IR f4 I6 IB 20
J

Fio. 31. Unitarity test l8q'l. ', l8J I'l' and [8g I+I'l' for pp
(solid line) and pp (dashed line). For J=/, 8g=—Sg, and for
J=l+1, see Eq. (812).

The partial-wave amplitudes are obtained by in-

tegrating the elastic amplitude over aH angles from 0
to 180, whereas the experimental data were restricted
to tllc iaIlgc —t$1 (Bcv/c) . Tlllls if tile IIlcldcll't

energy is 10 BeV, 0&30 . Hence a large part of the
integration range lies in a region to which the scattering
amplitudes must be extrapolated. A troublesome point
is that the forms which were assumed have poles for
large ill, as the hnear form assumed. for n(t) goes
through negative integers. Nevertheless, as a numerical

matter this problem seems unimportant in determining
the partial-wave amplitudes, since we removed the
poles in various ways with no significant effect on those
amplitudes. In one trial case the o.'s were bounded by a
constant so that if the computed value of n were smaller,

the bound was used, and in a second case the poles were

removed by use of a product function like a gamma
function. The small dependence (a few percent at most)
on these changes is explained by the fact that for large
—t the amplitudes decrease rapidly and thus any
residues at poles are very small.

APPENDIX C: POLARIZATION TENSORS

The discussion of polarization" is simpler if we de-

scribe nucleon spin states by Pauli spinors in the rest
frame. This procedure is fully relativistic, but we must
take account of certain rotations of spin axes between
successive scatterings, in double- and triple-scattering
experiments. "

3llrr~=a+ic(tr&I&+II&2&) N+IIIIr&I& Nir&'& N

+(g+h)ir&I& Pir&'&. P+(g—h)ir&I& KIr&'& K. (C2)

Here ir is the Pauli spin operator; N, P, and K are unit
vectors along k;Xky, kr+k;, and kf—k;; k; and kr are
initial and final c.m. momenta; G, H, u, c, m, g, and h
are scalar amplitudes, functions of s, t, and isospin;
their connection to the xE amplitudes A' and 8, and
the EA helicity amplitudes p;, may be found in the
literature. '"

%ith Regge poles of the types we are considering
(i.e., for 0+, 1, 2+, , etc., t-channel mesons), there
are two simplifications. First, the coe8licients g and h
in Eq. (C2) vanish asymptotically compared to the
others. "Henceforth we assume g=h=0 and use N, P,
and K as convenient axes of reference. Second, the
contributions of each pole to mE and EE amplitudes
are simply related by factorization, asymptotically:

where I&~ and y&i are defined in Sec. III, and j labels the
Regge poles; the choice of the + or —sign depends on
the signature of the pole and the particular process
considered. Regge poles with odd G parity have g =0.
M(EÃ) is the same as iV(XÃ) except for the sign of
odd-signature terms. Note that Kq. (C4) gives a rela-
tion c,'= —u,m; for each pole term; when one pole
dominates, this applies to the whole amplitude.

Suppose the polarization of an initial state is de-
scribed by a density matrix p; in spin space. After
scattering, the final density matrix is pf

——3fp;3ft,
where 3P is the Hermitian conjugate matrix to M, and
the expectation value of any spin operator $r is ($r)
= trace(prof)/trace(pf). Thus polarization CGccts mea-
sure quantities of the form trace (3',M $f).

The simpler possibihties for experimental measure-
ments are these:

(a) No polarization initially, none measured finally;
p;=1, $r ——1. We get the unpolarized differential cross
section Io ——trace(pf)/trace(p;):

' A somewhat fuller discussion is given in the reference in
Ref. I4.

"H. P. Stapp, Phys. Rev. 103, 425 (1956).

~~ A. Scotti and D. V. Kong, Phys. Rev. 138, Bj45 (1965).
'8 From Ref. 12 one can deduce that asymptotically (g—h)

&&(g+h) and (g+h) is order s ' compared to g, c, and m.
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FIG. 32. Geometry for measurement of depolarization parameters,
R and A, using a polarized incident beam.

IoDzz= IoDpp= I
G

I

'—
I
II

I

'
8 —m

for mE

for XS, (C10)

IpDzp= 2 Re[GH]* for grX

=2 Re[(R—r&o)c*j for I&IIV. (C11)

When a single Regge pole dominates, Eqs. (CB) and

(C4) yield"
D;o(nI&I) =D; o(NIV), . (C12)

and this equality extends trivially to XE, EE, and EX
scattering as well.

(d) Particle 1 with initial polarization (P in the j
direction, 6nal polarization of particle 2 analyzed in
the 0 direction: p&=1+(Po;"', fr =op"'. This gives an
element of the polarization transfer tensor E,o (for
EX only, there being no counterpart for orÃ):

IpK;o ——trace[Mo" &'&Mto o&'&j (C13)

As for D;I„ the oG-diagonal elements of E constitute an
antisymmetric tensor, and E'zz=E»=0 from parity
conservation. The vanishing of g and h gives E~~——E'~~
=EEI =0, and just one nontrivial element remains:

Io&» 2Re[cir&p*j——+2 I
c

I

' (C1.4)

»This result divas 6rst noticed by V. N. Gribov and L Ya.
Pomeranchuk, Phys. Rev. Letters 8, 412 (1962).

(b) Osc polR1'izRtloll used eitliei' iiiitiRlly oi' 6naiiy:
e.g., p;=1, fr=os&'& We. then get the polarization
parameter I"
IpI'=trace[MMt~&v&'&1=2 Im[GIIo) for i' (C7)

=2 Im[(u+m)c*j
for $$. (CS)

When a single pole dominates, all scalar amplitudes
have the same phase and I' vanishes.

(c) Particle 1 with initial polarization (P in the j
direction, final polarization of particle 1 analyzed in
the k direction: p;=1+6'0, "&, $q=oo&». The new term
we get this way is an element of the depolarization
tensor D&7c'.

IoD;p ——trace(Mo" &'&Mto o'") (C9)

Referred to axes N, P, and K, the off-diagonal elements
of D constitute an antisymmetric tensor. Parity con-
servation makes D~~= DI ~=0, in general, and
D~~= I foI' KE scRtteling. The vanishing of g RIld h

makes D~~= 1 for EE scattering also. There remain
only two nontrivial elements:

of potorizotlon

Loborotor y

oil

Center of moss

«L. Puzikov, R. Ryndin, and J. Smorodinsky, Nucl. Phys. 3,
436 (I957); R. J. N. Phillips, Barbell Report No. AERE-R3j.41,
1960 (unpublished)."L.Vfolfenstein, Phys, Re@. 96, 1654 (1954).

Flo. 33. Geometry for measurement of depolarization parameters,
8 and A, using a polarized target.

When one pole dominates, the factorization condition
c'= —am makes even this element vanish.

(e) Both particles polarized initially (or analyzed
finally): e.g. »;=1 Jr=a"i'&opi'&. This gives the spin
correlation tensor C;o (no counterpart for s Ã):

IpC;o= trace[MMto" &'&op&'&j. (C15)

As for D,I„C;I, is an antisymInetric tensor in its off-
diagonal elements, and C~~= C~~=0 from parity con-
servation. The vanishing of g and h gives C~~=Cy~
=C~~=O and just one nontrivial element remains:

IpCzN= 2 Re[am*j+2 I
c

I
'. (C16)

This is exactly the same as E~~, and vanishes for single-
pole dominance.

(f) Higher-rank spin tensors can be defined, 'o but
their measurement requires three or four polarization
determinations. We shall not discuss them.

Thus the only nontrivial 6rst- and second-rank
polarization tensors with our model are 8, C&r&r( =Ez&r),

'

D~~, Rnd D~I. The 6I'st tw'o ale usuRlly IneRsured
directly; they involve polarizations normal to the scat-
tering plane, and are unaffected by the spin-axis rota-
tions. " Measurements of the depolarization tensor
usually give linear combinations of DE:~ and D~I, and
are affected by the spin-axis rotations.

The usual %'olfenstein" parameters R and A repre-
sent convenient experimental conditions. An incident
beam has polarization (P; in the scattering plane; the
scattered beam has transverse component of polariza-
tion 6'y, also in the scattering plane. According to
whether the incident polarization is transverse or
longitudinal, 6'g ——E6';, or (Py=A6';. The lab and. c.m.
geometries are shown in Fig. 32, where R and A are
given by

R= Dzz cos(8 8z) Dzp sin(8 ——8z),— (C17)

A = Dzz sin(8 8z)—Dzp cos(8—8z)—, (C18)—
where 8 and. 81. are c.m. and lab scattering angles.

With present-day techniques it is probably easier to
use a polarized target instead of polarized incident
beams, and analyzing the recoil polarization; indeed,
for mX this is the only way to obtain information of D.
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We de6ne analogous measurements, denoting them
R„„;iand A„„;],in which the target has longitudinal
(A„;i) or transverse (E„;i) polarization, and the
recoil polarization is analyzed transversely. The
geometries are shown in Fig. 33, The terms R„„;iand
A 1 gqo ji are given by

R~oeoil= DEK cos($ $i)+D&I' sin(P —Pp), (C19)

;1=DKKsln(4) '—Pr) —Drrp cos($—Qr) (C20)

where P and pl, are the c.m. and lab recoil angles,
respectively.

If, given do/dt in a many-pole situation, we choose to
approximate it by the one-pole formula, the resulting
effective one-pole trajectory is

1 d[ln(da/dt)]
n. ii(E,t) = 1+—

2 d [In(E/Eo) ] (D2)

where o.,«varies with energy; its slope in I, characterizes

the degree of shrinking.

We now make a simpli6ed model of mE scattering
for small t by absorbing all the t dependence in ex-

ponential factors and neglecting spin-Rip:

$0—=
f
pa;(2E-2,

dt
(D3)

APPENDIX D: REGGE SHRINKING

One of the earliest predictions for a single Regge pole
is that differential cross sections "shrink" with in-

creasing energy, because the trajectory has a positive
slope in t. Experimentally, some cross sections shrink
and some do not; this can be understood when several

Regge poles take part. Here we illustrate this effect by
deriving an "effective one-pole trajectory"; depending
on the energy and the process considered, its slope
may be positive or negative, giving shrinking or
antishrinking.

A single Regge pole leads to cross sections of the
general form

Assuming P is dominant, with np(0) =1, and taking
I"and p effects to first order, we obtain

n'. ii(t=0) =1+(oi /0~)[np (0)—1]
+(~./~~)[~. (0)—1] (D3)

&'.«(t=0) =& r+(&r /&r) (L&r (0) 1](—DP —D~)

+[n'i —n.i ]{1——',n.[1—ni (0)]
Xcot[-,'~ni (0)])]+(0,/0'i ) [[np(0) —1]
X (D,—D~)+ [~',—~'z]

X {1+-,'A/1 —a„(0)]tan[-', sn, (0)]]], (D6)
'

Reaction a', ff (&eV/c) '
—0.062+0.068

0.103~0.074—0.914+0.376
0.685&0.051—0.398&0.322
0.50 &0.16

where OJ, o-p, and 0., are the partial contributions to
the total cross section for the particular process and
energy being considered. With this definition, o.,
changes sign between m.+p and m p scattering. These
relations show explicitly how o.,«~ o.& as o-&. —& 0 and
0;—+ 0, asymptotically.

The question of shrinking concerns the slope o.
'

f f.
Equation (D6) shows that if the P' amplitude is more
sharply peaked than that of P (i.e., Dp )Dr), a positive
contribution from o.'p can be offset, leaving o.',«=0 and
no net shrinking, in a range of energy. This is indeed
what happens in the present paper and in previous
analyses. '4 A second point to notice is the alternating
sign of the p effect; if p increases the shrinking in n+p
scattering, it decreases the shrinking for ir p scattering.

The argument above can be made also for pp and pp
scattering (or for X+p and K p), with ~ taking the
place of p. If co tends to produce shrinking for pp (K+p),
it will tend to produce antishrinking for pp (E p): its
contributions to o.',« in the two cases will be equal and
opposite. The argument can obviously be generalized
to any number of secondary trajectories of the "normal-
parity" type so far considered. Terms with odd signature
change sign between pp and pp; terms with isospin I=1
change sign between pp and pm; and so on.

TABLE VI. Values of 0,',ff deduced from
various experiments (see Ref. 62).

A;= C; exp[ i)+—D;t+n; —ln(E/Eo)], (D4)

where the Regge poles are labelled by j (=P,P',p). The
phase factor p; is i2m-n, for P and P', but is 2im (a,+1) for

p. Here C; and D; are numerical coe%cients; C, changes

sign between ~+p and. z p scattering. The trajectories
are linear as before; u, (t) =n;(0)+tn, '. It is convenient

to define D=D,+n ln(E/Eo); these quantities deter-

mine the width of each pole contribution to the

amplitude.

Table VI, expressing results from Ref. 62, shows
values of n', gg deduced directly from experiment for
various processes in the momentum range 6-25 BeV/c.
These results suggest that most of the shrinking or anti-
shrinking comes from the interference between I' and
the odd-signature poles p and co.

"S. J. Lindenbaum, in Proceedings of the Oxford International
Conference on Elementary Particles, 1WS (Rutherford High-Energy
Laboratory, Chilton, Berkshire, England, 1966).
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FIG. 34. Representations of (+ in the complex plane.

P+= i—cot-', trn=

$ =i +t an-', sn=.

—exp( ——s'im. n)

sing%'Q

i exp( —si~u)

cos-

Note that: $ (u) = $+(n&1). Also
t
$+

~

= 1/sin-', trn+ and

~

=1/cos —,'sru . In Fig. 34 we show the above rela-
tions in geometric form.

For xE scattering, let us dedne:

a =A'M ~(1 r) ' "/(4s'"k—s'")
and

a
b=

(m.s)'ts 4k 4Mws(1 —r)

where r= t/4M~s. Then Eqs. (6) and (t) take the simple
forms

d0'

(s, t) = as+bs, —
dt

(6')

APPENDIX E: APPLICATION OF VECTOR
NOTATION TO THE SCATTERING

PROBLEM

Instead of the usually employed complex algebra, we
sometimes 6nd it advantageous to use the mathematic-
ally equivalent vector notation, which has the virtue
of compactness and of geometrical clarity.

To preserve mathematical equivalence, we require
that: (i) the two components of a complex variable
A=Ai+iAs go into the two components in a two-
dimensional vector space A= (A i,As), (ii) the operation
Re(A*B)= Re(AB*)=A iBi+AsBs ~ A. 8, and (iii)
the operation Im(A*B) = —Im(AB)*=AiBs —AsBt~
AXB.

We summarize some results on the signature factor P:

l I l I I I I t t

6 8 Io I2 I4 I6 Ie 20 22 24 26
plo b (BeV/c)

FIG. 35. The ratio of the real to the imaginary part of the
forward scattering amplitude for m+p scattering from Ref. 63
compared to solution (3}.The upper curve (x) is for ~ p and the
lower curve (+) is for m+p.

We see immediately that if
~
P

~

= 1 then aJ b and its = bs.

Also, if only two poles contribute to the scattering, then
n =n+ or ~ut+ —ns"

~

=1 for maximum polarization for
fixed u and b.

To take full advantage of the vector notation, we
introduce an additional vector space for the non-flip
and flip factors, i.e.,

8.—(1 &) t/s(g i ( &) t/sn. g a)(g/g ) (a - )/ ts
The formulas developed by Wagner" for SX scattering
then become

d0 1
~ ~, ~~, 2

dt 16~ '.~'

d0' 1
P =Q i(—;X(;i IS;XS;I(8;8,).

dt 16m i.~

As expected, the maximum polarization that can be
attained from these formulas is i. For example, when
only two poles interfere, we require that gt J (s, $t' ——b',
8t'='Qs', and the angle in the 8 space getween Si and
Ss is 45 . For instance, the first condition is satisfied
if ni(=u+) =0.5 and ns(=n-) =0.5.

POSTSCRIPT

A month af ter this paper was received by the Physical
Review revised data became available from Foley
et at. on the phase of the forward amplitudes for s.~p
scattering. "In Fig. 35 we show these data together with
the calculated values obtained from solution (3).
Although the fit is not so remarkable as that shown in
Fig. 22, we feel that it is good, especially in view of the
estimated systematic error. A very similar result for
the phase was obtained by Foley et al."with the use
of dispersion relations.

P(s, t) =
—2LaXbj

a'+bs

"K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love,
(t ) S. Ozaki, E. D. Platner, C. A. Quarles, and E. H. Willen, Phys.

Rev. Letters 19, 193 (1967).


