1594 IAN H.
with
Pra=(1=08ya)+GoW ya, (A4)
Qsy=(1—085,)+Wps,Go, (AS)
Qay = (1—085,)+ W5, VGo. (A6)

On using 7, =T, V+4T,® [Eq. (2.22)], Egs. (A1) and
(A3) give

Wge—Wga M= > Qsy VT, @
yFa
+ é (Qﬁv—'Qﬁv(l))Tv- (A7)
yHFEa

With the use of Eqgs. (AS) and (A6), and writing
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Now, with the successive use of Eqgs. (A4), (A2),
(A9), and (A2) we obtain
2 A5Gy =22 ApyGoTy(Pra—GoW ya)

rHe k4

=Y Ap,GoTy(Pra—Go Y TsPsq)
v

Y78

Z AB'yGOTy)GOTBPSa

y#b

=§ (Ags—

=2 2 0y P Ty OG5 sa

Yo

=2 sy DT PG ya. (A10)
v

The result of substituting (A10) into (A9),
Aﬂt!:Z QBV(I)T7(2)P7a:
el

is equivalent to Eq. (2.25).

Apa=Wpa—Wpa®, (A8)
we obtain
Age= 22 Qay O TP+ 2 45,GoT . (A9)
yFa yFEa
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A derivation of low-energy theorems for Compton scattering from spin-0 and spin-1 targets is given
within the framework of dispersion theory. We work exclusively with physical helicity amplitudes and
utilize the zeros of these amplitudes forced by angular momentum conservation to write unsubtracted dis-
persion relations. The conventional requirement of gauge invariance is replaced in our work by Lorentz in-
variance together with the knowledge that the photon is a massless spin-1 particle. From the dispersion re-
lations we extract a number of sum rules of the superconvergence type, one example of which reduces the

Drell-Hearn result in the forward direction.

I. INTRODUCTION

HE amplitude for the scattering of low-energy
photons by spin-; systems has been given by
Low! and by Gell-Mann and Goldberger.? Using the full
machinery of quantum field theory and, in particular,
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AF49(638)-1545 and in part by a National Science Foundation
Postdoctoral Fellowship.

t Present address: Stanford Linear Accelerator Center, Stanford
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1F. E. Low, Phys. Rev. 96, 1428 (1954).

2 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433

(1954).

the gauge invariance of photon emission and absorption
matrix elements, the following theorem was proved:
The Compton amplitude, regarded as a function of the
photon energy, at fixed scattering angle (and given
target-photon polarizations), can be exactly specified in
terms of the static properties of the target (i.e., charge,
mass, and magnetic moment) provided only terms of
zero and first order in photon energy are retained. The
feature which distinguishes this result from a number of
low-energy theorems recently derived from current
algebra?® is that it yields the amplitude in the physical

A thorough exposition of the methods involved in obtaining
such theorems and a critical analysis of the results will be found
in the forthcoming book by S. L. Adler and R. F. Dashen, Current
Algebra (W. A. Benjamin, Inc., New York, 1967).
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region and involves no extrapolations from unphysical
points.

There are a number of reasons for our taking up this
almost classic result at such a late date. One is that it
should be possible to derive the theorem, since it is true,
using only physical, on-mass-shell quantities at every
stage. Among other things, this means we deal only with
amplitudes for the emission and absorption of photons
with physical helicity.* Another reason for our interest
is that we shall be able to formulate unsubtracted
dispersion relations for Compton scattering, which to
our knowledge has not been done. Finally, utilizing
these dispersion relations we are able to derive a number
of superconvergence relations.

Customarily in dispersion theory one works with the
scalar invariant coefficients of a set of basic tensors in
spin-polarization space. Instead, we work directly with
helicity amplitudes® which are physical S-matrix
elements. We exploit the property of such amplitudes
which states that at scattering angle © equal to zero
(or ) the net initial state helicity, A\, and the net final
state helicity, u, must be equal (or opposite). In general,
near ©=0, helicity amplitudes vanish like [sin3@]*#I
(or faster) and near @ =, like [cos3®]*#l (or faster).
These results follow from angular momentum conserva-
tion and the assumption of no long-range forces. The
vanishing of the helicity amplitudes at specified points
enables us to write subtracted dispersion relations with
subtraction constants known to be zero. Alternatively,
we may deal with the amplitudes divided by suitable
powers of sini® and cos}® which may, hopefully,
satisfy unsubtracted dispersion relations. This same
division removes most of the kinematical singularities
of the helicity amplitudes.®

We shall see that the fixed-f and fixed-s dispersion
relations for the appropriately modified helicity
amplitudes allow an easy derivation of the low-energy
theorem of Refs. 1 and 2. In particular, the one-particle-
state contribution to these dispersion relations yield

4In conventional quantum field theory, one writes for the

rocess: matter state a+photon — matter state b, the amplitude
(b|J | a)ea(®,\), where £ is the photon four-momentum, e, (%)) is
the polarization four-vector, and J, is the current density operator
of the matter system. Since photons have spin one, we may require
€x(k,\)ke=0 and further, from gauge invariance, that the ampli-
tude be unchanged when e, — ea+Aks Or ko(b|Jo|a)=0. The
latter condition plays a key role in Low’s (Ref. 1) derivation
where he is able to concentrate on the evaluation of (b|p|a),
p=—1J4. Such components of the current density, of course, do
not really enter in physical matrix elements and our method will
avoid ever talking about them. It is, of course, well known that
the conditions €.k, =0 and invariance under ez — ea+Akq implies
that there are only two helicity states.

From an S-matrix point of view D. Zwanziger, Phys. Rev. 133,
B1036 (1964), and S. Weinberg, ibid. 135, B1049 (1964), have
established that 24(b|J.|a)=0 must be satisfied to guarantee the
Lorentz invariance of the theory. The basic reason for this is
that although e, (k,\) looks like a four-vector, when it describes a
quantized massless photon field, it does not transform like a four-
vector but acquires a component along its momentum k.

§ M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

¢ M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, B145 (1964), Sec. 2. Also L. L.
Wang, ibid. 142, 1187 (1966).
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F16. 1. The kinematics of Compton scattering.

exactly the results of lowest-order perturbation theory
which when expanded in powers of photon frequency
is well known? to be equivalent to the low-energy
theorem. The continuum contributions are at least
second order in the frequency. Although to our knowl-
edge the unsubtracted dispersion relations for spin zero
targets have not been heretofore given, they are essen-
tially trivial to deduce. This is not so for spin one-half
systems. The work of Holliday? and Hearn and Leader®
has shown that the standard dispersion relations for
invariants cannot simultaneously reproduce the low-
energy theorem and be free of subtractions.

Our unsubtracted dispersion relations give us a set
of sum rules which in turn under some assumptions
about high-energy behavior lead to superconvergence
relations.’ For example, the Drell-Hearn' sum rule and
a direct generalization of it for nonforward scattering
emerge as superconvergence relations. Similarly, we
obtain a relation between the lifetime of the neutral
pion and static parameters of the nucleon.

There are two interesting features about our deriva-
tion of the low-energy theorem. First, we make definite
assumptions about high-energy behavior of amplitudes
which are not connected in any obvious way to the
tacit assumptions made in the conventional derivations.
Second, we never use gauge invariance explicitly. This
is because of our direct use of helicity amplitudes in
which the two allowed photon helicities (4=1) are a
consequence of masslessness and the Lorentz invariance
of the theory, and the low-energy theorem follows from
these properties of helicity amplitudes.!t

In the next Section (IT) we discuss some kinematical
preliminaries which will be used extensively. In Sec. I1I,
the low-energy theorem for Compton scattering from
spinless targets is given as an example of our methods
and to sharpen our tools for the more interesting but
algebraically more involved case of spin-} targets taken
up in Sec. IV. Section V is devoted to sum rules and

7 D. Holliday, Ann. Phys. (N. Y.) 24, 289 (1964).

8 A. C. Hearn and E. Leader, Phys. Rev. 126, 789 (1962).

9 For a survey of such relations, see F. E. Low, Proceedings of
the 13th International Conference on High-FEnergy Physics (Univer-
sity of California Press, Berkeley, 1967).

(1;)686.) D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908

11 A discussion with S. Adler helped clarify this point.
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superconvergence relations. A summary of results,
conclusions, and speculations is given in Sec. VI.

II. KINEMATICAL PRELIMINARIES

We consider the elastic scattering of a photon with
(four-) momentum k;, helicity & by a particle with
momentum py, spin J, mass m, and helicity a leading to
a particle of momentum p. and helicity ¢ and a photon
of momentum k,, helicity d. See Fig. 1. The process
will be described by a Lorentz-invariant helicity
amplitude,® A.a.qs, related to the S matrix as follows:

S(a+b— c+d)=bca;ap

g[cd;ab(s,t;u)
+i(2m)4 8 (patko— p1— k1)) NoN o

" (bhyoka)V?

The normalization factors N, N, are (2p10)'2
(2p20)~22 for boson targets or (m/p10)'/2, (m/p20)"'? for
fermions. The variables s, {, # are the usual ones:
s=—(p1+k)?, t=—(p1—p2)% u=—(pr—k)? and
s+t+4+u=2m?. We shall occasionally use the var-
iable » defined by v = —1(p1+p2)- (krtko)=3(s—m?)
+it=1(—u).

In the barycentric system of the scattering channel s
is the square of the total energy, and —¢=2p*(1—cos®,)
is the square of the momentum transfer with p the
magnitude of the photon (or particle) three-momentum
and O, the scattering angle between the initial and
final photon (or particle) directions. The particle
energies pio=pz0=E, the momentum p are given in
terms of s by

p=(s—m?)/2s\2, E= (s+m?)/2s'?;

some other useful kinematical relations are the follow-
ing:

coshO=[(4p"+1)/4p7 1= [ (s—m s/ (s—m?)

= (mt—su)2/ (s—m?)

sink@,=[—t/4p* ]\ 2= (—st)!%/ (s—m?).

We note in passing that for fixed @,(40), ¢ vanishes as
the square of the photon momentum when the latter
goes to zero.

The s-channel helicity amplitudes are denoted by
Nea;an(s,f) and we conventionally take the massive
particle, a, to be incident in the positive z direction and
imagine the scattering takes place in the x-z plane; the
final momentum of the particle, ¢, is in the direction
(sin®,, 0, cos®,). The projection of the total angular
momentum of the initial (final) state is A=a—b
(u=c—d) along the respective directions of motion
[i.e., the z axis for the initial state and (sin®, 0, cos®,)
for the final state]. It follows from angular momentum
conservation that the helicity amplitudes vanish for
©,=0(r) unless \=u(A\=—pu). Formally, this property
of the helicity amplitudes emerges from the standard
expansion.
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acd:ab(syt) = Z (2J+ 1)9ch;ab', (s)d)\#J(GS)
J

when we use the fact that the rotation matrices dy,” (0,)
may be written as (siny®,)**!(cos3®,)**# times a
(Jacobi) polynomial in cos®,. We define new helicity
amplitudes . 4.45(s,f) by dividing the original ones by
these factors of sint®, and cosi®,:

Woasan(5,8) =Wea,an/ (sind O,) =4l (Cost @) M+#l

These new amplitudes are free of kinematical singulari-
ties in ¢ (and #)® and have better large ¢ behavior than
the original set since sin1®, and cos}®; are, for fixed s,
proportional to ¢/ for large .

We shall also have occasion to refer to the crossed (¢)
channel where the square of the center-of-mass energy
is ¢. We take this reaction to be: y(d’)++v (") — particle
(¢)+ (anti-) particle (a’). The photons have three-
momenta of magnitude k,=%#? and the particles
pe= (31—m*)Y2. The scattering angle, ©,, is measured
between the photon of helicity d’ and the particle of
helicity ¢’. Some relevant kinematic relations are

COS@;= V/Ptk¢= (s——m2+%t)/2p¢k, N
pkE Sin?@,= p 2k 2— 2= — [ (s—m2)>+st]

= —1(s—m?)? cos?(30,).

Just as in the s channel, we remove from the /-channel
helicity amplitudes, 4 ¢, a1 (5,£), kinematical singulari-
ties [this time in the s (and ) variables] by defining
new amplitudes A ¢, a5 (5,2) :

Ac’a’;dlbl (s,t)=Ac,a»;d;b,/(sin% t)l)‘l_”"' (COS%@L)I)"'H‘" y

where N'=d'—¥’, u'=c¢’—a’. Our notation and phase
conventions are those given in Ref. 6.

III. SPIN-ZERO TARGETS

We consider first Compton scattering from spin-zero
targets which we refer to as pions. There are two
independent transitions in this process (corresponding
to electric and magnetic multipoles which, because the
target is spinless, cannot mix) which we represent by
the helicity amplitudes %1.1(s,£) and 1,1(s,#), suppress-
ing the (zero) pion helicities.

In lowest-order perturbation theory (Fig. 2), these
amplitudes are (e is the pion charge and ¢?/4r=1/137):

N11(s,8) = +2¢[ (s—m?)*+st/ (m?—s) (m*—u) ]
=—2¢3(14cos0,)/1—p(1—cos®,)s?],

Wi, 1(s,8) = — 2 [m2/ (m2—s) (m2—u) ]
= —¢[1—costy/1—p(1—cos®,)/s7].

The second forms for .41 are obtained using the
previously given kinematical relations together with

mr—u=s—m?+t= (s—m?)[1—p(1—cos®,)/s7].

We note that in the forward direction ;_; vanishes
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while 9;;, yields the Thomson limit —2¢2.12 The low-
energy theorem tells us that this is correct to order p?
as p— 0. Actually, the theorem tells us even more:
For fixed ©,(540), both the zero- and first-order terms
in p are given exactly by these Born approximation
expressions. It is our purpose to show how this result
may be derived from dispersion theory.

If one attempts to approach this problem by writing
unsubtracted, fixed-¢ dispersion relations for ;,41(s,?),
he quickly encounters a contradiction. In particular,
from such an expression for ;.1(s,0) one finds that an
integral over the total photon-pion cross section is
negative.!* Thus, a dispersion relation for ;.1(s,?)
may be expected to require a subtraction. The fact
that ;3 must vanish at @,=m, since it contains a
factor of cos?(30,), enables us to make such a subtrac-
tion. In fact, using the previously noted fact that
cos*(30,)~sin?@, is zero at = %= p.k;, we may make two
subtractions at points where ;3 is zero without
introducing extraneous quantities.

The precise manner in which we capitalize on this
kinematical fact is as follows: We note from the crossing
relations'#!® that to within a phase (&1) (restoring
the pion helicities momentarily)

3[01;01 °¢Aoo;1—1 ,

Aoy; 01 )
(s—m?)2cos2(30,)

. 00;1-1
« p2k2 sin?@f ———— ).
D2k 2 sin20,

which we write as

(s—m?2)? cosz(%@3)<

The quantity in parentheses on the left-hand side (right-
hand side) is free of /-(s-) kinematical singularities,
and since p2ks sin?@,= —(s—m?)? cos?(30,), we may
conclude that

No1;01/ (s—m2)% cos?(30,) = Nox, 01/ (s—m2)?*+ st
Edl:l(srt)

is free of both s and { singularities. The amplitude 4,3
is a likely candidate for a fixed-f unsubtracted dispersion
relation by virtue of the factor s~ we have been able
to introduce. Indeed, if one may appeal to Regge-pole
theory to predict high-energy Compton scattering,!6:14
we may expect Ay;1~s*®2 for large s where for
t<0, a(f)<1, which is more than adequate for an
unsubtracted dispersion relation.

12The scattering amplitude, f, defined so do/dQ=|f|? is
Sed, ab(s,t) (1/874/5) X Wea,ab(s,t) and becomes —ea/m as p?— 0
or

18 M. Gell Mann, M. L. Goldberger, and W. E. Thirring, Phys.
Rev. 95, 1612 (1954)

M % D. I. Abarbanel and S. Nussinov, Phys. Rev. 158, 1462
(1967).
( 15 T) L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
1964).

18V, D. Mur, Zh. Eksperim. i Teor. Fiz. 44, 2173 (1963); 45,
1051 (1964) [English transls.: Soviet Phys.—JETP 17, 1458
(1963); 18, 727 (1964)].

LOW-ENERGY THEOREMS
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Compton scattering on a spinless target.

We assume, then, the legitimacy of writing cA44;1(s,)
as

1 = ds
A (s, ——/ A11°(s,8)+— / ds'—————

1 5'—s

A, 1“(% t)

—U

The quantities . 41,,%* are the absorptive parts of 41,1
in the s and % channels, respectively. Since .4, ; is even
under interchange of s and # at fixed ¢ (this follows
from the relation between .4;; and the f-channel
amplitude Aoo;1-1 which contains only even angular
momenta in its partial-wave expansion; it therefore
does not change when cos®z=2—cos®; or s2u), we
may write

1 r= 1 1
u41;1(S,l)=—f ds' A, 1“(8 t)[ ].
™ J m? s’ —S s'—u

The absorptive part of .4 from the one-pion inter-
mediate state can be computed from the generalized
unitarity relation or more simply from the Born
amplitude previously given. We find for the one-particle
state,

2mre?
A1;1*(8",8) | Born=——08(m2—5")
¢

so that our dispersion relation becomes [using (#?—s)~!
+ (P —u) = t(m*— )~ (m?—u)™]

2e?

1 0
¢/41;1(S,t)= -+ / dS'cAl;l"(S',t)
a0

mi—s)(m2—u) =«
1 1
X[ —+—].
s'—s s'—u

where 5o is the inelastic threshold; since we work to
lowest order in €2, so=4m?. ‘Fmally, using the relation
NAs1=[(s— m2)2+st]¢11 1, we have

2¢?[ (s—m2)2+st] ' [(s—m?)24-s1]

(m2—s) (mP—u) T
X/wds' W) 711 ]

(s’—m2)2+s’th’—s ' s'—u
This is precisely the desired result. The first term is just
the Born approximation given earlier while the second
term, for fixed @,, is proportional to ? since (s—m?)?
+st= 2(2;1>s1/2)2(1~}— cos®;,). The exact terms of order p°
and p' are given by the Born approximation.

Wsia(s,0) =
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This is half of the story, since we must still obtain
As._1(s,8). To do this, we remark that ;,_; is propor-
tional (to within a phase) to the {-channel amplitude
A 11415 Since the latter is free of s-kinematical singular-
ities (\'=u’=0, so there are no factors of sin®;/2 or
cos®,/2 to be removed) we may divide by ¢ and intro-
duce none. Thus Ay,—1/t=Us;—1/—2p2(1—cos®,) is
free of both s- and {- kinematical singularities; further
.1/t clearly is sufficiently well behaved for large ¢
that we may write a fixed s unsubtracted dispersion
relation for it. We return to this point below.

We write a fixed-s dispersion relation for Ay,—;

= g‘l;—l/t H

1 pr° dt
Ay () =~ / )
[

™ J b

B 1 = dw
+- / Ar,-1*(s,0),
TS mrt —u

where #y=4m?. There is a one-particle contribution in
the # channel which one may compute from unitarity
or from the Born approximation, namely,

— 2mwe*m*
—d(m2—u').
mi—s

Ayt (su) =

Using this in our dispersion relation, we find (#o=4m?)

2e2m? 1 p® dt
A a(s)=— ———*‘l‘—/ ——A1;14(s,)
(m2—s)(m>—u) wJy '—1
1 r° du'
+- Ar(s,u),
TSy ' —u
oLo(50) 2e2m?t ' toreodt Ye—at(s,t)
a(s,)=— —_——
S (m?—s) (m2—u) r 0o U'—1 ¢

¢ e du’ Wy—1*(s,u’)
([ )

TS ug W —n 2m2—s—u’
The first term is the full Born approximation while the
integrals are multiplied by ¢= —2p?(1—cos®,) and thus
goes zero like p? for fixed ©,. The zeroth and first powers
of p are again given exactly by the Born term as
required by the low-energy theorem.

The assumption that 41, satisfies a fixed-s disper-
sion relation may be based again on Regge arguments
which lead to an asymptotic behavior *()-1 or (-1
and we may reasonably expect a substantial range in s,
say s<4m? where a(s)<1, which is all we need.

Before considering the algebraically more complicated
case of a spin-% target, let us summarize the important
steps in our derivation. The first is the recognition and
removal of kinematic zeros from the helicity amplitudes.
Since one-photon helicity always flips in crossing from
the s to the ¢ channel, there must be a channel in which
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there is helicity flip. Holding fixed the variable in the
helicity flip channel (s ot £), we may hope to write an
unsubtracted dispersion relation in the other variable
(¢ or s). Thus, since Ay,1(s,) is proportional to 4 1_1(s,),
we are led to consider a fixed-¢ dispersion relation for
i,1 after removal of a factor of p2k2sin?@,. Stated
otherwise, we may make two subtractions (at the
points v=ctpk,) where Ui, is known to vanish.
Similarly, after removal of a factor of ¢ we may write a
fixed-s dispersion relation for %;;_;. The next step is the
assumption, with possible justification from Regge
theory, that the helicity amplitudes, with appropriate
kinematic factors removed, satisfy unsubtracted disper-
sion relations. The fact that we have in addition worked
with amplitudes which are free of otk s- and #kinemat-
ical singularities means that our subsequent discussion
of the limit p — 0 or s — m? is legitimate once we have
isolated the dynamical singularity at s=m?, the single-
particle state.

The no-subtraction philosophy is not crucial to the
part of our program which involves establishing the
low-energy theorems. Consider, for example, a once
subtracted dispersion relation for «41;1(s,f):

c/ql;l(syt)—_—{/ql; 1(s1)t)

22[ !
i Isra v, (mle)(mL—ul)]

(s—s1) =
+ 1/ Ar1"(s,1)
S0

™

X[<s'—s>1<s'~s1) <s'—u>1<s'—u1)]

Because «41;1(s,¢) is free of s- and -kinematic singulari-
ties, the possible contribution to the low-energy theorem
[st+ (s—m?)2 ] A4;1(s1,f) will vanish in the limit as s
approaches m? with ®, held fixed. This property may
easily be seen by making a power series expansion of
A1;1(s1,8) around ¢=0 utilizing the analyticity of
Apa(s,t) in ¢ for fixed s. As far as establishing the
low-energy theorems is concerned, then, we are free to
make as many subtractions as we choose, since the
simultaneous analyticity in s and ¢ assures us that the
contributions of the subtraction functions will still be
killed by factors such as si+ (s—#?)? when the appro-
priate limit is taken. The low-energy theorems are thus
liberated from any assumptions about high-energy
behavior.

Itis, of course, possible that subtractions are required.
Such a circumstance would vitiate the general useful-
ness of our representations, but we cannot claim to have
proved the high-energy behavior required for no sub-
tractions. The assumed behavior can only be said to be
a sufficient condition and obviously represents the most
beautiful way for the low-energy theorems to emerge.
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IV. SPIN-} TARGETS

We now address ourselves to Compton scattering
from spin-} targets. The essential ingredients for the
deduction of the low-energy theorem are just those
illustrated in the preceding section, but there are a
number of nontrivial algebraic complications with which
we must deal.

We know from the work of Ref. 2. that the lowest-
order Born approximation, when expanded in powers
of the photon momentum, gives the exact Compton
amplitude up to order (p*) where p is the photon
momentum, as before. We shall show that it is possible
to construct single-variable dispersion relations (with
definite high-energy assumptions) which reproduce
precisely the Born terms plus terms definitely of order
$? or higher so that the low-energy theorem is explicitly
obtained.

The predictions of lowest-order perturbation theory
for the six independent helicity amplitudes correspond-
ing to the Feynman diagrams of Fig. 3 are as follows:

281/2 _62 2#28”2
=t { ? | sin¥(10,)
m2—ul m m
em 2um/e w?
e O )
s s \m m
Xcos(30,),

—p (2e*m e
Nz13-1= { +4ﬂmP(_+M> ]
m

mi—u | sU?

Xsin2(30,)cos(30,),

2s1/2p e 2u2stip
QI‘}—lié—1= {_ + }COS3(%®S) ’
mi—ul m m
P 4pasti?p e
9[;1;_51——- {"202— +4#<—+ﬂ> (s+m2)
mei—u m m
(-2 |sin(30.)e0s 10,
-2 2um
Ay 1= d {62-1- - P(nm+26)}8in3(%®s),
mi—u si/2
e 2
Wpssga= {4;»(——+u)<s—m2>~—sin?(%@g
mi—u m s

2ue
X[62m2+_(8“"m2)2
m

(o= m) 25—t |Jsint0).

The charge of the particle is ¢, its anomalous magnetic
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Fic. 3. The lowest-order perturbation-theory contributions to
Compton scattering on a spin-} target.

is u, and we have introduced the quantity e=e-2mu.
These results simplify dramatically at ©,=0, where only
Nj1;31 and Ay_1;3-1 are different from zero. In the first
of these, the photon and particle spins are antiparallel
and we call the amplitude 2,, while for the second the
spins are parallel and we call the amplitude U,. We
have then
et 2ul2p

2[4}1;;-1(8,0)52[“(3‘,0): —_—— ,
m m
62 2 ZSIIZP
Wy114-2(5,0) =, (5,0) = ————.
m m

In working out the Born approximation correspond-
ing to the diagrams of Fig. 3, it is necessary to specify
the nonunique photon-particle vertex I'x(p’,p). We have
taken this to be T'\(p’,p) = ieyr—iuor.(p'— p)», which is
the choice made in Ref. 2, consistent with the general-
ized Ward identity. In our dispersion theoretic ap-
proach, we encounter only %(p")Tx\(p',p)u(p) where the
u’s are mass-shell spinors satisfying the Dirac equations
(&y-p+m)u(p)=0 and a(p’)(¢y-p’+m)=0, so any
vertex ambiguity disappears. The point here is whereas

a(p" )T (p',p)u(p) = a(p")liarn—n(@' +pJu(p),

we have more generally

Ta(p',p)=tayr—u(p'+ p)r—iuys (v - p+m)
=dayn—p(p'+p)h—in(y-p'+m)a.

The use of the possible vertex T)\'(p',p) given by
TV (' p)=1tava—r(@'+p)r would yield Born approx-
imation amplitudes different from those given above.
Exploitation of the relation between T')\(p',p) and
TV (p',p), which is, of course, the familiar Gordon
decomposition of the current in Dirac theory, simplifies
the evaluation of the Born approximation.

We turn now to dispersion theory and our presenta-
tion of dispersion relations which are unsubtracted and
which reproduce the Born terms given above, together
with continuum contributions which are negligible in
the low-energy limit. We shall start by considering
fixed-s dispersion relations and later work with fixed ¢
after discussing the rather involved s-£ crossing relations.
According to the discussion given in the preceding
sections, the following helicity amplitudes divided by
their kinematic zeroes are candidates for unsubtracted
fixed s-dispersion relations (they will in addition, as we
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shall see, lead to a simple fashion to the low-energy
theorems) :
g_I%I; 1-1(5,)= 131 sin?(30,)cos (30,) ] 1,
Wy 1;3-1(5,0)=Wy_1;31[cos*(30,) 1,
Wps;—11(5,)=Wy1,—pLsin (30.)cos*(30,) 11,
Wyz;—pa(s5,0)= sy, p[sin®(30,) 1.

In order to illustrate our method and show how the
low-energy theorem emerges, we discuss in detail the

amplitude ;_1.31= 3, ; the dispersion relation is
- 1 p* dt _ 1 /> dw
e s e |
™ J ¢ ’—t T m

0

@Izt“ (s)ul) ’

1y —y

where the ¢ and # discontinuities of [, have been
designated by 9, and A ,*; the t-channel threshold is #.
The one-particle intermediate state contribution to
9,* may be calculated explicitly using the on-mass-shell
current matrix element given previously (e=e-+2mu):

0 0/ 1/2
(P—P—) I\ = () Lien—p(r+ P Ju(®);

m?

if (p’—p)?=0, as in our applications, the above current
matrix element is the same as that of the proper vertex
function aI'\(p’,p)u. We find

2psti?

Ape=—md(m*—u) { 4Wt<—e—+u)l+ Dﬂt—i—aﬁl} ,
m

m

which we rewrite for fixed s, #=m?, and {=m?—s, as

2
A= —md(m>—u) [ (Us%)(iz— —dpe— 4mﬂ2>
m

2
- eppt]
m

o2 2p51/2y2}

=7r6(m2—u)2psl/2{ -t
m m

Inserting this single-particle contribution, our dispersion
relation becomes

_ 2psi e 2psMy 1 e dY _
(0 =] — 4 ]*“/ T Gs)
i

mz—ul_ m m wJu
1 r® du' _
+— 2[Ilu(s;u/)'
TS ¥ —u

It is convenient to rewrite this expression using various
of the formulas

(s—m?)? cos?*(30,) = (s—m?)?+st=m*—su;
we find then [remembering that in the % integral, for

example, the cos?(30,) implicitly contained in the
definition of I must be written as a function of #’ at
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fixed 5]
2psl/2 3 l@s 2 Qpsl/2,2
RO e adabio he! (e & “)+<s-m‘2>3
mi—u \ m m
1 ® dtl %[ ,t' t
Xcos“(%@a){—/ [ 2(5/) ]
T/t t'—-lL[st’—{— (s—m2)2 /2

1 2 du r A, (s,u") ]“}
™ /w w—aul (m2—su’)%?

The notation [ %, [ ]* means the ¢,  absorption part
of the quantities [ 7.

The first term is precisely the previously calculated
Born contribution and the continuum integrals appear
superficially to go to zero as p® since p~ (s—m?). This
would be very surprising since we expect the deviations
from the low-energy theorem to be O(p?). We shall see
below from a study of the crossing relations that
A,/ [st+ (s—m?)?]32 contains a factor of (s—m?)~1, and
in this manner our expectation obtains. The reason this
complication did not appear in the spin-zero case is that
the crossing matrix there involves just constants—
2[1;1'\'/1 1-1, €tc.

For completeness, we record the one-particle-state
contributions to the remaining three amplitudes
for which we expect unsubtracted fixed-s dispersion

relations:

— €
sz g =md(m*—u) { - 8mu(—+n)P2 cos®,
m

4
+ 4e<—+u> p*
m

2 31/2

Cautp? cose(%@s>+a23] ,

St = =) 4672 =+
m

duap?si/?
LI T } ;
m

Wy = —mo(mP— ) [ 202 p-4-8u%° cos2(30,)

+16u(—c—+y> (51— p)p cos?(%@)s)} .
m

In these absorptive parts we must express ¢ and cos®,
in terms of # and s; since u=m? we find t=m?—s,
cos@,= (m2+ys)/ (m?—s), cos?(:0,)=m?/ (m2—s). When
these results are substituted into fixed-s dispersion
relations like the one written for 9(,, above, we repro-
duce the full Born approximation together with
continuum contributions which superficially go like
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$°% as p — 0 but which, as for ¥, in fact go like p?:
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—psin?(30,) cos(30,) [2e2m e (s—m?)3
Wjsppr= St ) |+ 300 cos30)
mi—u stz m s
X{l / car Wgr;3-105,2) ]‘_’_1 /” du' - Ws1;3-1(5,0") jl“]’
L t’—tL(—l’)[st’+(s—m2)2]‘/2 T/ w u’-—uL(s+u'—2m2)(m‘4—su’)1/2 J
psin(30,)cos?(30;) 4uasii?p e (s—m2)3
Wy opm {20 +4u(—~+#) () + 205 |+ sin(40,) cos(16)
m2—u m m si2
<[ 2] Ui -s.) Jo [ =] Wy, (5) Il
T t’—tl_(——l’)”"’[:sl'-l- (s—m)d 7 /. u’—u'.(s-l—u’—ZmZ)‘”(m“-—su') ’
—2¢ sin®(30,) 2um —m?)3
= g b e 20+ st (1)
mi—u si? s3/2

<L,

If we imagine that our spin-} target is a nucleon in
the real world, we may adduce Regge asymptotic
arguments in support of our unsubtracted dispersion
relations for the ’s. Alternatively, one may regard the
reproduction of the low-energy theorem as an expression
of the consistency of the no-subtraction hypothesis.

We now have established the low-energy theorem for
four of the six Compton amplitudes as well as presenting
unsubtracted fixed-s dispersion relations for them.
To obtain the remaining two we turn to the ¢ channel.
We form linear combinations of s-channel amplitudes
which are proportional, via crossing, to ¢-channel
amplitudes with known kinematical zeroes. These linear
combinations, divided by kinematical zeroes, are taken
to satisfy unsubtracted fixed-¢ dispersion relations.

We discuss the ¢ channel at some length. Recall from
Sec. II that we take the f-channel reaction to be
v(d")+v(d") — particle (¢’)+antiparticle (¢’) and that
the scattering angle is that between pg and p.. First
we note in Table I the allowed physical partial-wave
amplitudes in the ¢ channel. The angular momentum
and parity of the transitions follow from the identity
of the photons and charge conjugation invariance. It is
convenient to work with the following combinations of
t-channel helicity amplitudes (the helicity labels are
Ac'a’;d’b') :

A=Ay ut A3 3u=2(2T+1)a’ ()do’ (8),

J
A=A+ A 331
=2 (2J+1)as’ ()dz” (0)),
7

A=Ay yu—A_yu=3 (2J+1)as7 () du’ (),
J

r—d (—py

a rﬂ%—l;—el(&t')]‘ Lo dw [ Wygp(sw)
j;o w'—aul (s+u'— 2m2)3/2:| } '

™
ad () +as7 (¢
Mt d) =4y a3 @41 090, o0,
J
3(di— A=Ay TO—ar? ()
aqs’ (H)—as’ (¢
=T@/+1) L T (8)),

Ae=Ayu—A g 3;u=2 (2T +1)a’ (£)do’ (0).

The behavior of the amplitudes under s—u crossing at
fixed ¢ can be easily deduced using Table I for the
allowed J values, together with the properties of the
d”’s; we use the fact that p.k; cos®,=p=21(s—u) and
spell out the results in terms of »— —» which is
equivalent to s ». We find four amplitudes which
are even under y — —y,

AgnEAd g yu=Aus,
(Ayg1a+A 3 3,11)/p ke sin?@ = Ao/ p2k 25in?0),

(AH;H , A—%%;l-l)/ %2 in® =4
sin®,=
1+cos®¢T1—cos®t bk o

TAl}LE I: Allowed transitions in the ¢ channel y+v — fermion
+antifermion. The states of definite angular momentum |As),
are (1/V2)[|AAz)==| —N\1—Xz)] and have the J suppressed.

Transition J P
A/ =(33|T7|11), even even
A/ =33 T7|1-1), even even
/= —3|T7|11), even even
/=G —-3|T7|1-1), even even
/=G —3|T7|1—-1)_ odd even
e’ = G377 |11)- even odd
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and two odd ones, As1,3-1 m s+m? N
. . =41
(Ay—g; 11— A—_33;11)/ pike SINO = A 3/ peky sin®,, cos30, 2p; 4p2sin@,

A —1.1— A 11.

( o i >/17:2kt sin®,=4_. Ws;—pn s2—p  m[st+ (s—m2)2]A
= — 5,

14-cos®, 1—cosO, k0,  2p, 85192k sin@,
Furthermore, A, A2(plk?sin?®,)~1, and As(pk:
Xsin®,)! are free of kinematical singularities in s and ~ gy—3-1F+Wp—1;-50 s2—p  m[st+(s—m?) 2]
are candidates for unsubtracted dispersion relations 1O = A1~ 452y 2k 2 @
which because of factors like 2k sin?@,, say, will also Stz e pe $pik? sin®,
yield low-energy theorems as in the scalar target case. W 1g—Wsrys P

1t is for these four amplitudes (or more precisely for S =T A,
the combination of s-channel amplitudes they cross siny @, ky

into) that we will write fixed-¢ dispersion relations. We
will then have eight ways of representing six quantities.
There is a redundancy because some of the s-channel
amplitudes entering the fixed-¢ dispersion relations also
satisfy fixed-s ones by themselves. In principle one can
extract two sum rules involving mixtures of fixed-s and
-t dispersion integrals and we will use these in connection
with superconvergence relations in the next section.

The next step in our procedure is to give the crossing
relations between s- and #-channel helicity amplitudes
and write fixed-# dispersion relations for 44, As, and 43
(the latter two divided by the appropriate factors). To
do this, we evaluate the absorptive parts of (s-channel)
’s in the s-channel center-of-mass system. With the
crossing relations given below the absorptive parts of
the 4’s are then obtained. We may solve for the individ-
ual s-channel A’s if we choose to, and all reference to
the ¢ channel disappears. This rather tortuous path is
followed to gain algebraic sign security.

The crossing relations between the A’s and the 4’s
almost have to be derived by the individual reader.
With our conventions as spelled out in Appendix B,
we find the following results:

QLH—QI,,_ m (s+m2)
cos%@s—p, " 2p: sin®, s
2[,,——2[,, (s—m?)

4
cosiO, Zj)tk, sin®,

In these formulas, p,= (2t—m?)'2 k=312 and A,
=Ws1,31, Ap=U3_1,3-1. Any reader concern about what
we mean by p; when <0 should be restrained; these
quantities will shortly disappear from view.

We must digress briefly to clear up a point mentioned
in connection with our fixed-s dispersion relations
having to do with possible s-dependent kinematic
singularities. If we solve for 9, we find

s+m?
Ag—
Zptz Sin@t

2, m s—m?

=y
cos3®;

Ay
Zptkt Sin@t

If this expression is divided by p2k¢ sin?®, on both
sides, we obtain on the right quantities guaranteed free
of s-kinematical singularities, e.g., 42/p 2k sin?@, and
and on the left we have —8[,/cos?(30,)](s—m?)2.
The quantity in square brackets is guaranteed free of
{-kinematical singularities and thus the whole thing is
free of both s- and f#-kinematical singularities. The
important point is that we have the factor (s—m?)~2
instead of the naively expected (s—m?)~3. Stated
otherwise, the proper amplitude for a fixed-s dispersion
relation is (s—m?){,/[st+ (s—m?)*]%2}.

Returning now to the fixed-¢ dispersion relations we
find, using the s—u crossing symmetries previously
noted and our old calculation of the #-channel absorp-
tive parts, the following (after some rather tedious
algebra):

—2[st+ (s—m?) 2][62+ " <__|_#)_| 1

dome—s) (mZ-u) x

st+ (s—m?)? r* ds'Ay (s',0) 1 1
J (=)
50 ST (s’—m2)2\s’——s s'—u

(0, (=)ot (o=
)

Az(S,t) =
— (u—s)[st+ (s—m?) 2]/
Aslst)= (m2—s) (m2—u) ym( 'u/ be
_2tptkt 1.2 ’ u
A+(s’t)=m('m2——u) ) (ea+3u2t)+— / ds'A, (s’ t)(

4(S_M)Pt2kt2ﬂ2 A_“(s’,t)

u—s [
'm(mL—s)(m?—u)T T /.;o

A_(s,H)=

ds’ .
(s'"—u)(s"—s)

m™

[T 2 (s",1) 1
w [5"14(s'—m2)2 V2 (s'—u) (s'—s)

1 1>
us—s’
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We are now in position to write dispersion relations for the two remaining s-channel amplitudes, namely 31,31
(called A, sometimes) and 31, _3_1. Using the above fixed-¢ dispersion relation for 4, and our earlier fixed-s relations
for Ay1; 31, we may solve for A 5 from the fourth of the crossing relations and then with the fixed-s dispersion relation
for A, solve the first crossing relation for ,. Similarly, from fixed-s dispersion relations for ;1,31 and 1,31, and
a fixed-¢ representation for 43, we solve the third and fifth crossing relations for 31,—31. We find:

2s1/2 @ 2 Qusl/2 2 2 y e
| it PRATTEY e L PRI MY | Bl

mi—u m m s T

[ 2t o ety oo

o u’-ul_ (mA—su’)3I2 T

® ds’' 1 1 \[Lst4(s"—m?)2 12 s'+m?
% / (4 )[ [%1;%1“(5’,1)4-%—1;%1“(8’1/)]4-(-0”2(, m)

o ST+ (s’—mz)z\s’—s s'—u s'—m? —m

24 st —m2)22 0 i D R ,i’ ¢
X?[%l;—h“(s',t):l-i- Gt mAsit (s—m)'] 4/ [ -3 (54 ]

s — 1L (— )5+ (s— m?)?]

© du' r Wsy;—31(s,0") *
+ / L ] }
o W' —ul (s+u'—2m?) V2 (m*— su’)

mm

psin(30,) e 2 2ue (—1)32
91%1;—%—1=——{4M<—+M> (s mt) == i 10, e (s w5 — ) (2s—m2)]} -
mi—u m s m T

© A T Wya-n(s!)Y e dw [ Wogn(sw)
< J* Il

t r—i (=132 o w'—ul (s+u'—2m?2)%?
4 (u—s)(s—m?) = ds’ 1 [s't+ (s'— m2)2]H/2

T o (=8 (s"—u) [s't4 (s’—m2)2]1/2{ s'—m?
s’ 2 _|_m2 (__ t)3/2

X (32 (D) Agmgon (") ==

= ()| +

m ™

carr As1;3a(s,t") s W11 (s,0) “
<] I+ iz
t t’——ll.(—t’)[st’—{— (s—m?2)2]u2 o u’—u[_ (' 5— 2m?2) (mt— su’) 2

The only immediate consequence of these rather ferocious expressions for 31,31 and 31,1 is that they indeed
yield the low-energy theorems as advertised.

It is also possible and perhaps useful to note that fixed-¢ dispersion relations for .+, may be derived by virtue
of the fact 4, and 4, (and hence 4, and 45) satisfy such. It is convenient to use a rather widely mixed notation
involving s, t, v=3%(s—m?+31), p2=%1i—m? and k2=1%i:

W+, 2ps2p 2e2 1 €2 e
e P Sin2(%®s)|:—(s+m2)~—2Mﬂ<~+u> =]}
m m

cosi®, m:—ul m s

4(v2—pk®) A Im[@[a(v’,t)—l—ﬂp(v',t)]rz o) vi(v—pe2) (V’—pt2):|
m2y’ —
,"_(47”2_ If) v (6) p'2— 2 (V/_ktz)(Vﬂ_Ptzktz)lmL g vz——j)["kﬁ

m(—HY2 = dy ' p2ke?

™ o) V' —Ri? v+’
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W—A,  2psV2(  4ulpsii2 ' (s—m“’)sin“’(%@,)r ea+2/.¢2(s—-m2):”+2ps”2
cos10, m2—u{ m s L m

(VZ'-Pt%tz)

m ™

Im¥ys;—5:(v',0)

° vy T We( )] 25 m (=M o dy
X / ImI: 4 /
n® ¥ nw V'

(2 —kep2)r ]

— 2

™ _Ptzktz V""“kt2
Zpsl/zkﬁ/w ' (V' —pe2) . l:%[a(”l,l)"l‘al:p(ﬂ',t)]
— m ,
L wy V' —k? (v'2— p 2k 2)3I2

where »o(f)=3%(so—m?)+%t. Therse complicated dispersion relations are generalizations to nonforward scattering
of those given by Gell-Mann, Goldberger, and Thirring!” many years ago and reduce to them at /=0:

22 202 = dv' Im[(v,0)+A,(+,0)]
s 3,00+, (5,0) = ——— / ,
m w S0y V'i— 2 v
4uy 28 v’ Im[A(»,0)—A,(»',0)]
LOO-He0=———t— [ . .
m T Jw@) VvV —v v

(In the ancient notation, 2f=U+A,, 2fo=Ua—A,.)
We have now presented unsubtracted dispersion
representations for each of the six independent s-channel
helicity amplitudes for Compton scattering on a spin-}
particle. These representations reproduce the Born
approximation exactly and have the property that the
continuum contributions are explicitly proportional to
#? as p— 0. We have thus given a dispersion theoretic
deviation of the low-energy theorems and this completes
the main task of this work. In the next section we shall
explore a few consequences of our unsubtracted disper-

sion relations.

V. SUM RULES AND SUPERCONVERGENCE
RELATIONS

There is a class of what have come to be called
superconvergence relations which can be extracted from
single variable dispersion relations. As an example,
consider the fixed-s dispersion relation for the amplitude
3.1 (s,t) encountered in pion scattering:

Ay, —a(s,8) 2¢%m? @ dt' Wy,—1'(s,2")
¢ T (m2—s) (s+1—m?) l Ty V'—1 '

1 = du’ Nz, —1(s,u")
+1_r [uo u'—2m2+s+t 2m2—s—u’) '

In a truly Reggeistic world, the large-t behavior of
2[1;_1(3,0 is given by #2(® where the trajectory a(s)
is the one for which a(m?)=0. Since one expects the
slope of a to be positive, a(s)<0 for s<#?, and thus
90,1/t should decrease faster than ¢! for large £. Imposing
this condition on our represenation leads to the sum rule

(superconvergence relation)

17 M. Gell-Mann, M. L. Goldberger, and W. Thirring, Phys.
Rev. 95, 1612 (1954).

2mem? @ i N, —1(s,u’ 2[1 =1 (s t’)
mi—s —,/;mn @Cm2—s—u’) ,/

This relation is not too easy to check; one might
imagine, as is fashionable nowadays, saturating the
integrals with resonances: vector mesons for the
integral and C=1, G=+1, J even, partity even states
(like the fo) for the ¢ integral. A characteristic problem
encountered in trying to saturate superconvergence
relations is the choice of the parameter s. We shall not
discuss this particular relation further.

Let us turn to the case of Compton scattering by
nucleons and consider the fixed-# dispersion relation for
Na(s,t)— A (s,2). From our crossing relations we see that
this combination is proportional to #-channel amplitude,
A4(s,t). On the basis of Regge asymptotic arguments we
would expect that for fixed /<0, U, —N,~s*® with
a(f)<1, assuming that there are no fixed poles in the
complex angular momentum plane at J=1. The latter
assumption is a rather violent one!® and we shall return
to this point in Appendix A. We shall show in fact that
the sum rule we are about to obtain is the residue of a
fixed pole at J=1. If, however, we demand that
Ua—A,)/ 2ps112 cos—®—>0 as s— o for fixed £<0,
we are led to the following superconvergence relation
from the fixed-¢ dispersion relation given at the end of

Sec. IV:
2u? m(~t)‘/2/°° . Im1,_31(+',2)
A S y
m T ww (V= pk®) (V' —k?)
i re V—p2 [gla(yr,t)_'_g[p(yl,t)
av' Im ]

4 J oty (v'2— P2k s?)¥?

1, v'dy
— / A
TSy (V2= ptk)¥?

18 H. D. I. Abarbanel ef al., Phys. Rev. 160, 1329 (1967).

V,—’kt2

[210«0",;;) - %P(V,)t)J .
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This is a sum rule on the anomalous magnetic moment
of the target which must hold for all ¢ It is traditional
to evaluate such superconvergence relations at =0
and we obtain

dv

2”'2 1 © ’
Zem [ D000,
m Sy v
upon using u?= (e2/4m?)k2= 7 (e*/4m)k?/m?= wax®/m?* and

0a,p= (4r/P) (m/4ws' ) Iy, , (v,0) = (m/v)ImUs, »,

where o,,, are the total nuclear cross sections for
photons circularly polarized antiparallel or parallel to
target spin, we find

m: e dv
o= [ )=t
2% J (o) v

This is the so-called Drell-Hearn sum rule’® and we see
that our original superconvergence relation is the
generalization of it to ##0.

In view of the fact that this result is so directly
subject to experimental test, it is worth being very
explicit about the assumption being made to derive it.
One may start directly with the =0 relation

QL,(V,O)—QIP(V,O)
—4;.;21;1 218 /'” dv' Im[.(»,0)—A,(»",0)]

m T Sy V2= p'2

which may be derived from the usual analyticity
requirements together with the assertion that [ (»,0)
—A,(»,0)]/v approach a constant or go to zero as
vy— oo, in addition to the low-energy theorem. The
crucial assumption is that (Ae—NA,)/»—0, not @
constant as v — oo, If there is a fixed pole at J=1 in the
odd signature part of -channel amplitude 4 4(s,) it will
contribute a constant to (U,—A,)/». Thus a failure of
the Drell-Hern sum rule would be a direct experimental
proof of the presence of a fixed singularity in the
angular momentum plane in an electromagnetic process.

Let us turn now to our fixed-s dispersion relations.
We can extract some interesting information by noting
that the amplitude A;_y;—41 has a contribution from the
exchange of a neutral pion in the ¢ channel. To discuss
this we write a fixed-s dispersion relation for Ny, 31/
sin3(3@,) (which we have given previously) and write
explicitly the contribution from the single neutral pion
{-channel intermediate state:

2[;—1;—}1 _ P
sind(30,) m?—pu
_’_ZP"’ng R / © dr I_QI%—I;—M(SJ')]‘
w =t (=1
+8_Pf © du' [ Wy pa(s) ]"

T Ju w—ul (s+u'—2m2)3/2

{— 2¢®— p(4m2u2+8uem)/s42}

1
M=t
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where g is the pion nucleon coupling constant (g?/4ur
~15) and F, is #°— 2y amplitude factor defined
by Goldberger and Treiman.!* From Regge asymptotic
arguments we expect that ;1,1 (sin3®,)~* behaves
like ga(W)-3/2 for large ¢ (W=s"2) and a(m)=1%, so that
for s<m? we have superconvergence relation :

(s—m?)*
0= —2e25— 1 (s—m?) (4m2u’-+ 8uem) ———E—F 8
m

2(s—m?? = dt,[ﬂ;—l;—n(s,i’)]‘
T ]:0 (_t/)3I2

2(s—m?)?* e Wgg—a(s,0) *
R 7 [ S T

T .,4, (s+u'—2m2)¥2
If we imagine that at s=0 the contribution of the
integrals is negligible and further take the #-channel
isospin to be 1 (by subtracting from the above relation

for a proton target the corresponding one for a neutron)
we find (the «’s are anomalous moments in units of e/2m)

F.g kp>—kn2+4x,

e? 2m

This differs from the result of Goldberger and Treiman
as corrected by Pagels® in that the coefficient of «,
found by those authors was 2. The #° lifetime from our
formula is 7~0.5%X1071% sec, which agrees quite well with
experiment. If the {-channel isospin were zero we would
encounter an n-meson pole (take the sum of proton and
neutron scattering for this) and we find, at s=0,

Fugy ko™ ten’+4kp

e? 2m

b

where g, is the NN coupling contrast.

We present these calculations of decay amplitudes, F,
only as examples and not because we can give compelling
reasons for the neglect of the continuum integrals at
s=0. If one neglects the integrals, he may study F as a
function of s and find that it is a slowly varying function
in the region —m?/2<s<3m? but that as s — m? the ne-
glect of the integrals is unacceptable—they in fact
diverge there.

VI. CONCLUSIONS

We have given a derivation of the low-energy
theorems for Compton scattering from spin-zero and
spin-} targets from the standpoint of dispersion theory.
In addition we have presented unsubtracted single-
variable dispersion relations for all of the physical
amplitudes. To accomplish this we have exploited the

1 M. L. Goldberger and S. B. Treiman, Nuovo Cimento 9,
451 (1958).
% H, Pagels, Phys. Rev. 158, 1566 (1967).
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fact that because the transverse character of photons
it is inevitably true that in either the s or £ channel, one
has enough helicity flip to exploit the kinematical
zeros required by angular momentum conservation to
make free subtractions in dispersion relations. We make
the additional assumption, which we have based on
Regge-pole ideas, that this minimal number of subtrac-
tions is adequate. We have been unable to trace in
detail the corresponding assumptions on high-energy
behavior which go into the conventional derivation of
the low-energy theorems.

The unsubtracted dispersion relations for the
Compton amplitudes may be exploited to derive
superconvergence relations, one of which, for the pion
lifetime, is new. Further, the relation of such sum rules
to the presence or absence of fixed singularities in the
angular momentum plane is clarified by our approach.

Using the techniques given here it is possible to
write unsubtracted dispersion relations for the Compton
effect on a target of any spin. Further, one may discuss
low-energy theorems for any process involving the
emission or absorption of massless particles of arbi-
trary spin (e.g., neutrinos or gravitons). A typical
example is the Kroll-Ruderman theorem on meson
photoproduction which one can prove utilizing our
methods; considering the fixed-s dispersion relations for
this process as well as for electroproduction of mesons,
one may derive some new superconvergence sum rules.
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APPENDIX A

We wish to discuss the relation between the Drell-
Hearn sum rule and the presence or absence of fixed
poles in the angular momentum plane. The critical
point for our discussion is that the combination of
s-channel amplitudes entering that relation, namely
9, —A,, is to within a constant the {-channel amplitude
Aj 3,11+ A_3331-1; the latter in turn gets contributions
from partial-wave transitions with J, P odd, even (like
the A; meson) and J, P even, even (like the vacuum
trajectory). As we shall see, 4;-type trajectories are
dominant here and a fixed pole at J=1, corresponding
as it does to physical signature, leads to an asymptotic
form Y,—A,~» which would invalidate the Drell-
Hearn sum rule.

We begin by constructing the parity-conserving
helicity amplitudes® we have used elsewhere in this

aper, namely
ppen Ay A

A:t= = - >
(1432)sin® (1—2)sin®
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where z=cos® and O is the fchannel scattering angle.
The partial-wave expansions of these quantiites are
given by

Ap= %: 2T+ D) [Ga(,0)+5b(J,0) JLear”* (8)+en’~(2)]
£ 2T+ D) [Ga(J,0)—30(J 1) Lea’t (2)— e’ (2)]
7
=2 2J+D[a(,)en’*(2)+b(J Hen'F (2)],

where a(J,f) and b(J,¢) are what are called a4’ and a3” in
Table I and correspond to the physical partial-wave
transitions

a(JH)=(G—%|T7()|1—1)y, Jeven, P even,
b(,0)=G—3T7(®|1—1)-, Jodd,

We note then that

P even.

Z(A %_;.;1_1—|—A_H.;1_1)=sin® A+—I—z sin® A_.,

and that eg; 7t~ 272, e9;7~~27/=3, Thus a Pomeranchuk
trajectory contributes for large z [remember that this
trajectory is in ¢(/,f)] a term ~z*2 to 4, and a term
~z*~3% to A_, while the 4, type leads to 2% to A4,
and zt2 to 4_. It is the latter, therefore, which leads to
the dominant asymptotic behavior of 43 3.1_1+4_33,1-1,
namely ~z%; a fixed singularity at J=1 in 8(J,t)
would lead to the 2z referred to above. Finally, we
remark in passing that because ¢(J,f) and 5(J,f) are
nonvanishing for even and odd J, respectively, 4, (4_)
is an even (odd) function of z.

We may invert the partial-wave expansions and solve
for a(J,t) and 6(J,¢):

1+
(l(],t) =§ / dz[CglJ+(Z)A+(Z,t)‘*‘CmJ'—A_(Z,t)] )

1+t
b(J 1) =5 / dz[Car’t(2)A— (2,1)+Car’ (2) A (2,1)]-

-1
For the purpose of discussing a¢(J,/) and &(/,f) in the
complex angular momentum plane, we introduce fixed-
dispersion relations for 4 4 (z,f), namely

1 > 1 1
Ai(z,t) =— / dz’ ImAi(z’,t)< :’1:—“—“) )
TJ 2 g'—z 'z

which incorporate the known even-odd properties.
Using the well-known relations (true for integral 7)

1,1 P
Ql(zl)zg/ s IZ(Z)’

1 2—2

Qu(—=2)=—(=1'u(),

where P; (Q:) are Legendre functions of the first
(second) kind together with the definitions of the
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Ca17%(2), namely

Cu't= L LT+1) (2T +3)Pr-2(3)
" (21—1)(2J+1)(2]+3)" 3)Pr2(z

—3Q2J+1)P;—T(2J—1)Pyys],

—[U=DU+D
PP,

Cor?—=
we find for a(J,f) and 5(J,f) the expressions
a(J,b)
o)
LU-D)+2)]"
ImA . (2)

—2
=7{ o QT (2T+1) (27 +3)
XQJ—Z(Z)—3(7J+ Qs (2)—T (2T —1)Qs42]

+/ ¢() 1i(—1)’:|.

2

In the usual way, we define partial-wave amplitudes
of definite signature by taking the coefficient of the
factor [14=(—1)7]/2 for the extension into the complex
J plane. Assuming that for the relevant ¢ values, the
signatured amplitudes a™®, ) may be defined by
these integrals in the neighborhood of J=1, we may
ask whether there is a fixed singularity at J=1 coming
from the fact that

LU+1)(27+3)

0 I—Qm)}[

PU(Z)
Qr-a(z)= ; near J=1.
We have
{a(+) (_],t)}
b (T, 4
im(J—1) =—— | dzImd.(z0)
I TU-)U+2)T"2  3r
)
Pi’ks 3R,
or in terms of v=p.k3,
{Ra(t)} 1 /w ; ImA (v,0)
=— y—.
Rb(t) mJo Pczkt2

The Born contributions to Im4, are easily deduced
from calculations carried out in the text and they are

ImA+(u,15)

2
= (eaturt/2[8(—2)—5(3i+29)],

Pk mpiky
ImA_
Ptzkz m

31— 20)+8G1+20)],
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and it should be remembered that to insure against
subtractions we want to take $<0, so that it is 6 (3¢4+2v)
that contributes. We have then the following relations
for R,(¢) and Ry(%):

(ea+u2t/2) 1 p= ImA, (v,t)
Ra()= + / i ,

mplkt vo () PtZktZ

2 1 po ImA_(»,t)
Rb(t)=-,i-}—- dy———.

Dk

We shall concentrate on R(f) here although there are
interesting aspects of R,(f) and we return to them
elsewhere. To proceed, we relate A_ to s-channel
quantities using the crossing relations given in the text:

2kem Wyy;—q1 R2(sY2—p)

Pp2sU28ind @, p2sY2 cosiO,

m ™ J ()

2k 2—p?) =

piks?

X Qi 2+ —————— (@,

ps12 cost B,

Substituting this into R;(f) we find
2u? 1 dv
Ro(f) = f (=)o
m 7 Jww PikiE—v?
21% i—3 (Vyt) * v—ps? 1
XIm[ n —:I—%t/ PR _
V—If/4 v (£) V—I:/4: pg2kt2"‘ V2

%Ia(Z,t)'}‘%Ip(P;t) * 4
Im[—————:l—}—/ dy————
(VZ__Pt2kt2)1/2 o (1) Ptth2_ V2
211’(”71:)_2[0(’/70
XIm[———————-:l

(v2— P2k )12

which is just the Drell-Hearn relation for 50 if Ry(?)
=0. At t=0, our result reduces to

2u? 1 g
Ry(0) = —

m  mw

dv
—op(»)— O'a(”)]

v () ¥

upon using the optical theorem o,,.(v)= (m/v) Im, .
(»,0). Thus we see that a failure of the Drell-Hearn sum
rule would be an experimental proof that R,(0)5%0, that
there is a fixed pole in the angular momentum plane.

APPENDIX B

In evaluating the Born approximation and the
absorptive parts of the Compton scattering amplitude
as well as in the deduction of the crossing matrix, it was
necessary to choose certain phase conventions, etc. We
have carried out these calculations in a very pedestrian
way, using explicit single-particle wave functions which
we now present in detail.
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Two-particle helicity states in the barycentric coor-
dinate system are defined with the Jacob-Wick phase.’
A photon moving along the positive z axis with polariza-
tion \ is described by a polarization vector

A
e= ‘E (ex+1Mey),

where e, e, are unit vectors along the x and y axes, and
\ takes on the values 4-1. For a photon moving in the
direction 2= (sin®, 0, cos®), i.e., in the x-z plane, we
have

. A
e(k)= —E(e,5 cos®—e,sin®@-1ixe,).

If the photon is the “target,” or what is called particle 2
by Jacob and Wick, and £ is the projectile, or particle 1
direction specified by p= (sin®, 0, cos®),

. A
e(k) — e(—p)= —‘72—(—«3, cos®—+te, sin®@-+ire,)

obtained simply by replacing © in e(%) by =+ ©; the
phase factor (—1)®¢ is unity in this case. We have
taken the photon to be the “target” in defining our
s-channel helicity amplitudes. The corresponding initial
state “projectile” nucleon spinor is:

2\ap1p1
A)=Ni1 X.,
wlphe) l( + E;—f—m)

where Ey= (m2+p2)V2, N1=[(E1+m)/2m]"2, py is the

4X4 matrix
0 I
Pl=< ) )
I 0

with I a 2)X2 unit matrix, and X, is a four-component
spinor
Xa
e ()
0

with X,, a two-component spinor satisfying o.X»,
=2)\,X),. The final-state spinor is given by

Dp 2pl)e—.-«rge/z X,
E2+m

u(ﬁg,)\c) = N2(1+

where © is the scattered direction in the x-z plane, and

2>\cpgp1>
E2+m '

ﬂ(P%)\c) = Nzxcfei%(@/?(l_

Here o, is the 4X4 matrix

gy, O
(72"—‘( ) 5
0 oy
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with ¢, the usual Pauli matrix, and X, is a four-
component spinor just like X, such that ¢.X .= 2A.X..

The Born-approximation invariant amplitude for the
s-channel process pi1(a)+k1(b) — pa(c)+ka(d), where
the helicity labels are in parentheses, is, for spin-zero
targets,

ed* (2patks) 2p1+k1) - &
mi—s
n ™ (2p1—ko) (2pa—Fk1)- &

mi—u

®rgre=¢

—LE€Q " €p( ,

where in the s-channel barycentric system the fourth
components of the polarization vectors are zero,

ep=— )\b(_ ez+i}\ey)/\/’2_ ’
eq*=—Na(—e, cosO,+e,sin®,—i\e,)/V2,

and s=— (p1+k1)?, u=— (p1—ks)% The physical scat-
tering amplitude f is related to the invariant amplitude
by f=[8ws'?]'Xinvariant. The ¢-channel Born ampli-
tude B corresponding to the process ko (D)+/k1(d)
— pa(c)+p1’ (A) is defined to be that obtained from the
above ® by the substitution kz— —ko/, p1— —p1,
et — ep=—Ap(e,+i\pe,)/V2, where the transverse
polarizations of the photons are taken to have zero
fourth component in the #-barycentric system. One
finds by explicit evaluation that the relation between
s- and t-channel Born terms is

631;1=—B;1_1, (Bl;—l-":——'B:l 1.

This crossing relation is, of course, true for the entire
amplitudes as may be immediately verified from the
Trueman-Wick crossing relations'® in a more elementary
fashion by writing the general amplitude in terms of
invariants and eliminating the latter from the helicity
amplitudes in the two channels. A convenient represen-
tation for this exercise is

T=A{q1*qz€s- €1— €2-q1€1- Qo) +B{q1- q2€2 Pes- P
——P°KE€2'P€1'(]2+Eg‘qlél'P:H‘e?' GI(P'K)Q} ’

where A, B are scalar functions of s, ¢ and in the
s-channel, g1= ki, ga=Fks, 2= es*, e1= €, P=5(p1+p2),
K=21(ki+ks); in the t-channel ex=ep, e3=c¢,, 1=k,
qe= —kgl, P=%(P2—P1I), K=%(k1—k‘2,) Recall that
according to our convention, cos®,=ky’-ps. One finds

Wy 1=[st+ (s—m?)*|B=—4,;11,
2[1;—1= %tEZA + (%t'—' mﬂ)B]“‘—" —4 ;11

The minus signs are, of course, totally without signif-
icance since the relative phase of the physical s- and
t-channel amplitudes is not measurable. One does
indeed get a unique, continuation-path-dependent,
answer by going from one channel to another, but this
unique answer may differ by a unimodular factor from
one’s definition of the physical amplitude.
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For completeness we give the Born approximation
invariant amplitude for a spin-} target and the s-
channel process p1(a)+k1(0) — pa(c)+k2(d):

Brorairars =% (p2\e) | €T (P2,P2+k2)m

X Eb'P(P1+k1, Pl)"l“ eb'r(?% P2_kl)
1

X—————6* T (p1— ks, "Aa)
iv-(pl—kz)—l—med (pr—kes, p1) pu(p1,\a)

where ¢, and €;* are as given above for the spin-zero
case, and

I‘A(P',P) =7:87X—7:#0')\V(P,_P)P’

with u the anomalous magnetic moment. Our y-matrices
are Hermitian and satisfy vy +vye=20uw, on
=[vx7»]/2i. The standard representation, the one in
which our explicit spinors are given, is

<I 0) (0 —io’)
Ya=p: =p20= .
TP 1 T e o

The physical scattering amplitude is obtained from the
invariant amplitude by multiplying the latter by
m/4ws'/2,

The s,t-crossing relations in the spin-} target prob-
lem may be taken from the appropriate zero-mass
limit of the Trueman-Wick relations or, as in the
spin-zero case, be deduced by brute strength by
introducing and eliminating invariants. The precise
form of the results depends in an unessential way on
conventions made at various stages. Qurs were the
following: The invariant amplitude in the s channel
[the reaction p1(@)+k1(b) — pa(c)+ke(d)] is written as

Wnorgirars = €™ (Ra,Na) i (P2, \e) My (Pokia; prker)
Xu(;ih,)\u) ev(kl))‘b) ]

where 917, is a 4X4 Dirac matrix and a tensor in
Minkowski space. The ¢-channel invariant amplitude
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corresponding to the process ks (D)+k1(b) — po(c)
+p1/(4) where particle 4 is an antiparticle is taken
to be

Arprainony =T (P2, N )My (P2, — k2 5 — pr'kr)v(p1' Aa)
X G,‘(kz',)\b) ev(kly)‘b) ’

where v(p/,\4) is a negative-energy spinor to be
defined in a moment.

We evaluate the helicity amplitudes in the center-of-
mass systems of the respective channels and the photon
polarization vectors have zero fourth components in
each system. The polarization vectors are exactly the
same as those used for the spin-zero case. The anti-
particle of momentum p¢/, helicity A4 is the “target” or
particle “2” in the Jacob-Wick sense and the spinor
v(p'a) s

Ey+m\Y?s  2hapipr\ .
v(pr'\a)= (1 - e 020 %gyp X 4,
E1’+m

where
(%)
X A= )
0

and @, is, as before, the angle between £’; and $’s. The
appearance of the Pauli spinor X_,, rather than X,,
is a consequence of the fact that the antiparticle is
particle “2.”

Since the invariants are to be eliminated between the
helicity amplitudes any choice may be made. We found
it convenient to use the following:

m

M (poka;prky)
=M\P, P,/ +M.L,L+My(P,L—L,P,)ivs
+MP,/P/iy-K+MsL,Liy-K
+Me(PJ/LAL,P))iysiv-K,
where

L,.=1:€“,,)‘,P,/K)‘Q,, Pl=P“ (P'K/Kz)K,
P=%(P1+P2); K=‘12‘(k1+k2) , Q”—‘l(kl“‘kz).



