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A new approximation for the three-body collision problem is described, which allows practical calculation
of elastic, inelastic, rearrangement, and breakup amplitudes. The approximation is derived from a novel
form of the Lovelace-Faddeev equations in which all two-body bound states appear explicitly. It appears
in practice as a simple modification of the impulse-pickup approximation, and is expected to considerably
extend the useful energy range of that approximation. It is shown that unitarity is satisfied within a certain
approximation, and that the submatrix of the S matrix that excludes the breakup channel satisfies a unitary
constraint. The symmetry requirements for identical particles can be treated rigorously, and lead to a
practical simplification of the method. Numerical calculations of bound-state scattering in an exactly

soluble model show encouraging results.

1. INTRODUCTION

N recent years the formal understanding of the
three-body collision problem has been greatly ad-
vanced through the work of Faddeev and others.* On
the other hand, the complexity of the problem still
prevents exact solutions, except for a restricted class
of two-body interactions, those of separable type.
Lovelace! has shown that the approximation of sepa-
rable interactions is useful if the two-body scattering
is dominated by bound-state or resonance poles, as is
the case with low-energy nucleon-nucleon scattering.
Nevertheless, it is very clear that there are many situa-
tions in which it is necessary to consider more general
interactions, for which approximate methods of solution
are needed.

We here develop® a practical method for the approxi-
mate solution of the Lovelace-Faddeev equations, with
arbitrary two-body interactions. The method appears
in practice as a modification of the impulse-pickup
approximation (described in Sec. 3), but it is expected
to considerably extend the useful energy range of that
approximation. The method allows practical calculation
of all physical amplitudes (except free-free amplitudes)
if the two-body amplitudes are known, and it satisfies
the important constraint of unitarity in a certain
approximate sense (Sec. 4).

Many theoretical approaches and approximation
methods run into difficulties when more than one of the
three pair interactions supports a bound state. For
example, the Born series fails to converge.® The present
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method, on the other hand, takes advantage of the
existence of bound states, and uses the knowledge of
bound-state energies and wave functions as valuable
input information.

The Lovelace-Faddeev equations contain the two-
body bound-state information in a concealed form.
In Sec. 2 we therefore recast the exact equations into a
form in which the bound states between each pair of
particles appear explicitly, so that it becomes possible
to approximate without losing the bound-state informa-
tion. Two versions of the approximation are described
in Sec. 3. In this approximation the physical amplitudes
satisfy coupled integral equations, in which the inhomo-
geneous terms and kernels are the on-shell impulse-
pickup amplitudes.

In the final section we consider bound-state scattering
for a system of identical particles, and show that the
symmetry requirements lead to practical simplification
of the method. The method is then illustrated with
numerical calculations on an exactly soluble model.

2. EXACT EQUATIONS

The particles are denoted by 1, 2, 3, their masses by
my, me, ms, and the pair interactions by Vi, Vs, Vs,
where V,="V,3 is the interaction between particles 2
and 3. Following Lovelace,* we also define

Vo=0. (2.1)

The channel in which particle « is free and the other

pair bound by V, is called channel a, and the channel

in which the three particles are free is channel O.

Unless noted otherwise, Greek letters run from 0-3.
We require the operators

G(s)=(s—H)™, (2.2)
Go(s)=(s—Hy)™, (2.3)
To(s)=VatVaGa(s)Va, (2.4)

where H, is the three-body kinetic energy in the center-
of-mass system,
Ho=Hot+Va, (2.5)
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and H is the total Hamiltonian,
H=Ho+V1+V+7Vs.
For future reference we note the relations?

Go(5)Ta(s)=Ga(5)Va,
To(5)Go(s)=VoGa(s).

Equations (2.3) and (2.4) define two-body propa-
gators and transition operators in the three-body space.
The corresponding operators in the two-body space are

ga(8)=(s—ha)*, (2.8)
1(8)=VatVaga(s)Ve, (2.9)

where %, is the Hamiltonian of the pair of particles
other than « in their center-of-mass system. The oper-
ators T, and {, are simply related in the free-particle
representation. Let %p, be the momentum of particle
a with respect to the center of mass of the other pair,
and let %q. be the relative momentum within that
pair. Then

(2.6)

2.7

(e=1,2,3)

(pa,qt!,l T‘! (S) I pa‘la)
=8(pa’ —Pa){0a’ | ta(s— (7/2M o) pe?) |0}, (2.10)

where M, is the reduced mass in channel , for example,

M1=my(matms)/ (my+mat-ms) , (2.11)

and {(q.’ | £2(s) | 4o is the off-shell two-body amplitude.

The possible three-body processes may all be ex-
pressed in terms of transition operators Ug,* (in the
notation of Ref. 2), where

Uga*(s)= (1—08pa) Vat-Wga(s), (2.12)
Usa™(5)= (1—88a) Vg+Wga(s), (2.13)
Wea(s)= X V442 T V,GE)Vs. (2.14)

BHyHa BFy dFa

Let ®,,(E) be a suitably normalized unperturbed state
in channel @, with quantum numbers » and energy
E,ie.,

H @y (E)=E®,(E). (2.15)

Then the physical amplitude for a transition from
channel « to channel 3 is the on-shell matrix element

(B | T|av)= @py (E), Uga®(E+ie)®ur(E)). (2.16)

The operators Ug,t and Upg,~ have the same on-shell
matrix elements, as follows from Egs. (2.12) and (2.13),
and the identity

(q)ﬂv’ (E) ) Vﬂq’av (E)) = (q)ﬂl” (E) 3V aPas (E) ) )

which itself follows from Egs. (2.5) and (2.15). How-
ever, the off-shell matrix elements of Ug,t and Ugs™
are different.

(2.17)
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Lovelace? has derived coupled equations for the
operators Ug,¥, similar to the Faddeev equations,! and
has demonstrated their superiority over the three-body
Lippmann-Schwinger equations.” The Lovelace-Fad-
deev equations are

Uga*(s) =ﬂ§ Vot E Upy*(5)Go(s) T (s), (2.18)

U (5)=2 Vot 2 Ty()Go(s)Uya(s). (2.19)

yHEe B4y

We find it convenient to express the equations in terms
of Wga, through Eqgs. (2.12) and (2.13). With the aid
of Egs. (2.4) and (2.7) the equations become

Wea= X Tyt We,GoTy (2.20)
BHy#a y#a

=Y T+ X T,GWa, (2.21)
BHEy#a By

where for clarity the variable s is suppressed. (Iteration
of either equation yields directly the general multiple-
scattering expansion.)

We now recast the equations into a form more suit-
able for approximation. Let T, be expressed as the

sum of two parts,

T,=T,O+T,®, (2.22)

with 7,,® and 7,® to be defined later. We define
operators Wg,® and Ug,® in terms of T, through
equations analogous to Egs. (2.20) and (2.12):

Wauld= T T,0+E W OGT,®, (223)
By e kfald

Upa®=(1—8p0) Vat-Wsa®. (2.24)

Then it is proved in the Appendix that Egs. (2.20) and
(2.21) lead to the identity

Wea—Wea® =3 [(1—08y)+W5,PGo]T,®
Y
X [(1— 6ya)+G0W1a] ’

which is valid for any choice of 7,® and 7°,® satis-
fying Eq. (2.22). A variety of formulations may be
generated by decomposing T, in different ways.

We now restrict attention to the physical energies
s= E-}1e, and choose

T, (E+ie)=V,G, (E)V,,

(2.25)

(2.26)
where

Gy (E)=—ind(E—H,)Py,(v=1,2,3)  (2.27)

and P, is the projection operator onto the channel v
eigenstates (i.e., the eigenstates of H, that include a

7B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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bound state). For notational convenience we also define
G (E)=0. (2.28)

The first factor of Eq. (2.27) is the energy-conserving
part of the propagator G,(E+ie) [Eq. (2.3)]. We
define 7°,® to include just the energy-conserving part
rather than the full propagator, in order to obtain an
integral equation that involves only the on-shell three-
body amplitudes.

With this choice of T',®, Eq. (2.25) can be simplified
by using the relations

Gy (E)V,Go(E+ie) =G, (E),

. , (2.29)

Go(E+ie VG, (E)=G,/(E),

which themselves follow from the identity
Go(E+ie)V 2, (E)=3,,(E)+0(e).  (2.30)

With the use of Egs. (2.12), (2.13), and (2.24), Eq.
(2.25) then becomes

Usa (E+i€) = Upga® (E+ie)
+2 Upy W (E4ie)Gy (E)U e~ (E+ie).  (2.31)
v

Now because of the § function in G/, the on-shell matrix
elements of this equation involve only the on-shell
matrix elements of Ug,t and Ug,—, which are both equal
to the physical amplitude [Eq. (2.16)]. It follows
that the equation

Upe(E+i€)=Upga® (E+1€)
+2 Ugy P (E+i€)Gy/ (E)U ya(E+ie)  (2.32)
¥

defines a new set of transition operators Upg,, Whose
on-shell matrix elements are the physical amplitudes.
This is the exact equation that we shall approximate
in the next section. The on-shell matrix elements of
Eq. (2.32) yield coupled integral equations relating the
physical amplitudes to the on-shell matrix elements
of U, 3,,(1).

It remains to investigate the operator T°,®, which is
involved in the definition of Ug.®. From Eq. (2.26)
we have

T, (E+ie)=T,(E+ie)—V,G,/(E)V,. (2.33)
To clarify the meaning of T, we first discuss T,
using the spectral representation of the two-body
operator #, [Eq. (2.9)];

+ / 0 Vgl yd5—ere T orel Ve, (2.34)

where the ¢,, are the bound eigenstates of 4,, with
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binding energies eyn, and the ¢, are the continuum
eigenstates. The last term exhibits the cut for real
positive two-body energies s, and the second term the
bound-state poles at s= —e,,. Now the matrix elements
of T',(E+ie) in the free-particle representation are seen
from Eq. (2.10) to involve #,(s) with the two-body
energy
s=E—(#/2M ) p>+ie
=e¢41e. (2.35)
Thus integration with respect to p, causes s to follow
a contour parallel to and above the real axis, extending
from E+ie to — o +1e. For e positive, the small posi-
tive imaginary term ze in Eq. (2.35) has the effect,
familiar in two-body scattering theory, of specifying
the branch of the function #,(s). But in the three-body
application the imaginary term has an additional func-
tion: It prescribes the contour in s past the bound-
state poles.
From Egs. (2.33), (2.10), (2.34), and (2.27) we can
write, in analogy with Eq. (2.10),

L4 %0 o | T\ O (E+ie) | pyy)
=8(py'— P8, |1,V (etie)|ay), (2.36)

where e is given by Eq. (2.35), and
t,W(etie)=V,+P3a V7|¢7n>[3+37n]‘1<¢7nl Vy

+/dK V7|¢7x>[e+i€—e1x]~1<¢1xl Vo, (2.37)

with P denoting the principal value. That is, £, ® (e+1e)
differs from ¢,(e+7¢) in only one respect—the pole
terms are replaced by principal values. Therefore there
is no special difficulty in calculating the matrix elements
of £,®: In fact, in the limit ¢ — O,

(ay [ty D (etie) | ay)

=(a,|t,(e+ie)|q,) for e£—eyn. (2.38)
The practical effect of replacing £, by £, is seen only
in subsequent integration over s=e-7e. With £, we
have seen that the contour in s passes above the bound-
state poles, whereas with ,® the principal values must
be taken at the bound-state poles.

3. APPROXIMATIONS

The goal of the approximation is to approximate
Uge™ [Eq. (2.24)], and then to solve exactly for the
physical amplitudes using Eq. (2.32). From the
multiple-scattering point of view the exact solution of
Eq. (2.32) provides a simple way of including a wide
class of multiple-scattering corrections. Furthermore,
these corrections are important in connection with
unitarity, as we shall see in the following section.
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Specifically, we retain only the leading terms in the
iterated form of Eq. (2.24), i.e., we replace Uz, by

Iﬂa=(1—5ﬁa)Va+ > T'y(l)- (31)
' B y~a

Equation (2.32) for Up, then becomes (with energy
dependence suppressed)

Uﬂa= Ipa-l-Z;Igng' Usa. (32)

The operators Ig, constitute what we refer to as the
impulse-pickup approximation. The reason for the name
is perhaps made clearer by writing typical operators
explicitly. For the case of particle 1 incident on a
bound state, the operators for elastic, rearrangement,
and breakup processes, respectively, are

Iy=TyW+T1,® )
In="Vaut+T1?,
Ton=T1s+T1e,

(3.3)

where for clarity we have used the alternative notation
To= T3, etc. The direct operator I3; is seen to be
closely related to the impulse approximation.®® The
rearrangement operator I is the sum of two terms, the
first of which is the Born approximation for the pickup
process,® in which 1 collides with 3 to form a bound
state, leaving 2 free, and the second is an impulse-
approximation term describing the ejection of 2 by 1
through direct collision. The breakup operator Ig; is
again a version of the impulse approximation. In
writing Eq. (3.3) we have used the fact that the on-shell
matrix elements of Iy involve only the two-body
amplitudes with positive energies, so that it is un-
necessary to distinguish between T, and T,®. In
addition, the term V3 has been omitted from I, since
Eq. (2.17) with 8=0 shows that the potential term
does not contribute to the on-shell breakup amplitude.

On taking =1 in Eq. (3.2), corresponding to particle
1 incident on a bound state of 2 and 3, we see that Uhs,
Us, and Up satisfy a set of three coupled equations,
and Uy, is expressed in terms of Uy, Us, and Us. If
V1s and V52 do not support bound states, so that re-
arrangement collisions cannot occur, then the first set
of equations reduces to the single equation

Un= (T13+T12)+ (T13+T12)G/ U1s, (3.4

which is a practical form of the method proposed by

Rosenberg.! In the general case, however, it is easy to
see by iterating Egs. (3.2) and (3.4) and comparing

8 G. F. Chew, Phys. Rev. 80, 196 (1950); G. F. Chew and G. C.
Wick, sbid. 85, 636 (1952).

9 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952).
(1105%}). F. Chew and M. L. Goldberger, Phys. Rev. 77, 470

950).

1 1,, Rosenberg, Phys. Rev. 135, B715 (1964).
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the terms in the expansion of Uy, that the present
method retains a very much wider class of multiple-
scattering terms. If only the terms in which 7' and T3
alternate are retained in the iterated form of Eq. (3.4),
the result is equivalent to the method proposed by
Queen.? The relation between the Rosenberg and Queen
methods has been discussed more fully elsewhere.!®

The matrix elements of Eq. (3.2) between initial and
final states in channels a and B yield equations ex-
pressing the on-shell amplitudes for all processes in
terms of the on-shell impulse-pickup amplitudes. If the
latter are known it is in general possible to solve the
equations exactly. (An example is worked out in detail
in Sec. 5.) However, it is not usually possible to calculate
the impulse-pickup amplitudes without further approxi-
mation, since they involve the off-shell two-body ampli-
tudes {q,’|#,(s)|q,), which even in partial-wave form
are functions of three variables. We therefore consider
a further approximation of a more practical nature. To
distinguish the approximations, that described above
will be referred to as approximation I, and that to be
described below as approximation IL.

Approximation II is obtained by replacing 1,
(E+ie) in the impulse-pickup bound-to-bound ampli-
tudes by 7., where [cf. Eq. (2.10)]

{ry'q, [ 741 P44)=6(p,'— D)

Xy |50ty (e i+t (d+ig]lay), (3.5)

and ¢ and ¢’ are the two-body relative energies corre-
sponding to g, and q,’. Thus

€= (ﬁz/zl"'r)Q’Vz’
¢'= (7%/2u,)4+",

where u, is the reduced mass of the colliding particles;
for example,

(3.6)

M1= mﬂ'ﬂa/ (m2+m3) . (37)
Here, the two-body energy in Eq. (2.10) is replaced by
the on-shell energy for the initial or final two-body
scattering state. [The symmetric expression in Eq.
(3.5) is adopted to maintain time-reversal invariance.”]
The energy shift is suggested merely to simplify the
calculation, and is a standard procedure with the im-
pulse approximation; indeed, the usual procedure is to
go further, and replace the two-body amplitudes by
the fully on-shell value, with ¢,’=¢,. Though the energy
shift is without justification, we shall show in the
following section that unitarity, in the sense of a con-
straint on the set of bound-to-bound amplitudes, re-
mains satisfied.

12 N. M. Queen, Nucl. Phys. 55, 177 (1964) ; ibid. 80, 593 (1966).

13T, H. Sloan, Phys. Rev. 162, 855 (1967). It should be noted
that the ad koc symmetrization of the impulse approximation in
that paper widens the class of multiple-scattering terms included
in the approximations, but the class remains a subset of that for
the present method.
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4. UNITARITY

We consider first the unitarity relations for T', and
T.,®. From Egs. (2.4) and (2.7) we can write
T,=V,+V,GT,, (4.1)
and hence by the usual argument obtain the unitarity
relation
T,—T,'=T, [Go(E+ie)—Go(E—ie) T, (4.2)
where 7',=T.,(E-+17e). Some care is required in taking
the limit e— 0 if V., supports bound states, because
of the resulting poles in the two-body amplitude [see

Eq. (2.34)7]. With the aid of Egs. (2.10) and (2.34) it
can be shown that the correct limit is'

T,—Tt=—2mT 6(E—H)T,
—2miV,6(E—H,)P,V,, (43)

where the second term arises from the bound-state
poles. It then follows from Egs. (2.33) and (2.27) that
T, @ satisfies the simpler relation

T,0—T,0%= 25T 16 (E—Ho)T,. (4.4)
This result is not at all surprising, since 7",V differs from
T., precisely in that the troublesome part of T, (i.e.,
the é-function contribution to the bound-state pole
term) has been subtracted off.

We turn now to the unitarity relation for the approxi-
mate three-body transition operators Ug,, considering
first approximation I. By algebraic manipulation of
Eq. (3.2), the bound-to-bound operators (87#05ca)
satisfy

Upa—Uagt=—2m1 3 Uss'8(E—H;)P3Usa
86740

+ Z Z (657+ Uvﬂwa’T)

y70 6740

X (L5~ I5y") (8sa+Gs'Usa) . (4.5)

Taking advantage of the fact that the matrix elements
of Uge and Ig, are required only on shell, so that Eq.
(2.17) can be used, we obtain from Eq. (3.1)

Lo—Isf= 2 (TWO—=T\®%)
yH#~NH~S

(4.6)

=—2m Y. T\o(E—Hy)T»,
YHENAD

4.7)

with Eq. (4.4) used in the last step.
The resulting unitarity relation may be simplified by
writing the breakup transition operator Uga, using

1 A rigorous proof of Eq. (4.3) for generalized Yukawa two-
body interactions has been given in Ref. 2.
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Egs. (3.2) and (3.3), in the form
U0a= Z UOa()‘) ) (48)
A#0
with
Ue®™=T 2 (05a+Gs'Usa)- (4.9)
57N

The unitarity relation can then be expressed in the
simple form

Upa—Uag'=—2mi 3 Uss'6(E—H;5)P;3Usa
5540

=271 Y, UpgMT8(E—Ho)Upa™.

A#0

(4.10)

It differs from the correct on-shell unitarity relation
Upa—Uag'=—2m1 3 Uss'6(E—H;)PsUsa
40

— 27U (E—Ho)Use (4.11)

only in the last term on the right-hand side.

Equation (4.10) would be the correct unitarity rela-
tion if there were three distinct three-free-particle
channels, distinguished by the three values of \. It is
therefore clear that the set of amplitudes for bound-to-
bound transitions (8%05%a) satisfy the constraint im-
posed by unitarity—the corresponding submatrix of the
S matrix is a submatrix of a unitary matrix. We can
draw a stronger conclusion by noting that Ug,™ is the
contribution to Uge, in which the pair of particles other
than X interact in the final state. Therefore, unitarity is
essentially exact at energies at which the final-state
interactions of different pairs of particles do not sig-
nificantly overlap. It is also clear from Eq. (4.10) that
unitarity is exact below the breakup threshold.

With the further approximation 7",® =7, (approxi-
mation IT), Eq. (4.4) is no longer valid. From Eq. (3.5)
we deduce instead

vy | 74— 741 | Dy8y) = —2mib (D, — D)}
X [(qv, l lvT (e+ie)d(e— hyt+V )ty (et+ie) ! q'y>
'{'(q‘y, | 2,1 (¢/+1i€)d (¢' =yt V)t (¢ +ie) I a,)], (4.12)

where ¢ and ¢’ are given by Eq. (3.6). On substituting
into Eq. (4.6) and then into Eq. (4.5), it is easy to see
that the main result above still holds: the set of bound-
to-bound amplitudes satisfies the unitary constraint.
However, the absorption processes from the bound-
state channels, contained in the last term of (4.5), no
longer conserve energy. In particular, with approxima-
tion IT unitarity is no longer exact below the breakup
threshold.

5. IDENTICAL PARTICLES AND
NUMERICAL EXAMPLE

We consider specifically bound-state scattering for
a system of identical particles. The symmetry require-
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Fic. 1. Angular distributions at E=—0.914 (corresponding to
a laboratory energy of 1.30 MeV if the two-body binding energy
is the deuteron binding energy). Approximation I satisfies uni-
tarity exactly below the breakup threshold, and is seen to yield
great improvement over the corresponding impulse-pickup result.
(Note the reduced scale of the impulse-pickup curve.) The exact
result is from Ref. 16.

ments for either bosons or fermions lead to a simplifica-
tion, without any need for further approximation.

We denote the on-shell matrix elements of Upg, and
I Ba (Wlth ﬁ;é()?fa) by wkﬂlﬂﬂll T|ozkana) and (ﬁk,g"n,g,l
X I|akats), respectively, where k. is the channel mo-
mentum in channel @, and #, denotes the remaining
quantum numbers. Then Eq. (3.2) gives

(Bkg'ng’| T | ckatte) \
— oty Takon—ix 5. 5, [ ahartens!
— nal’

XI|6ks"ns")6(E—Es")(0ks""ns" | T | akatta).  (5.1)

Following Lovelace,* we adopt the ordering convention
that channel 1 denotes particle 1 plus the ordered pair
(2,3), channel 2 denotes 2+ (3,1), and channel 3 denotes
3+4(1,2), so that it is unnecessary to distinguish between
Bose and Fermi statistics. In either case there are just
two distinct amplitudes for a system of identical
particles, the direct and rearrangement:

(k'n’| T? | kn)={ok'n’| T |akn), (a=1,2,3) (5.2)
(K'n'| T%|kn)=(Bk'n’| T| o), (B70) (5.3)
and the same result holds for the impulse-pickup

amplitudes.

The coupling between channels in Eq. (5.1) can
then be removed in exactly the same way as in Ref. 4.
In particular, the symmetrized or antisymmetrized

amplitude
K'n'| T|kny=(K'n'| T? | kn)+2k'n’| T% | kn) (5.4)

satisfies
(k'n’| T kn)
=(k'n'|I|kn)—ir 2 / dk"(k'n’|I|k"n"")
Xo(E—E")Yk'n"|T|kn), (5.5)
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where (k'#’|I|kn) is the symmetrized or antisym-
metrized impulse-pickup amplitude,

(&'n'| I | kny=(K'n’ | I? | kny+2(k'n’ | T%| k). (5.6)

We perform detailed calculations for a system of spin-
less bosons, with separable two-body s-wave interac-
tions of the Yamaguchi® form

@ V]ay=—(#N/m)g(g")g(q),
g(@)=1/(+8%.

There is then a single two-body bound state at
energy — ey,

(5.7
(5.8)

eo=(72/m)e?, (5.9)

where

A=7"8(8+a)?, (5.10)

so that the label # in Eq. (5.5) is redundant. The bound-
state wave function is

bo(0)=Ng(9)/ (¢*+o?), (5.11)
and the two-body amplitude is
(| t(etie)|q)
/20N )
- (@O[1— (B+a)?/ (B—ix)*Tg(g), (5.12)
where
e= (1*/m)?, argk=0 or w/2. (5.13)

The bound-state pole at k=ia, or e=—e, is seen
explicitly.

Previous approximate calculations on this system,
using symmetrized versions of the Rosenberg and Queen
methods, have been described in Ref. 13. Again we
compare the approximate calculations with the exact
results of Aaron, Amado, and Yam,!® using the units
of that paper (A=2m=1, ¢,=1.5) and 8=35.

The main numerical problem is to calculate the
symmetrized impulse-pickup amplitude [Eq. (5.6)] as
a function of scattering angle. From Eq. (3.1) it may
be written as

(K| 1| ky=2[(1K'| Ty, @ | 1k)
(2K | Tya® [ 1K)+ 2K | Vos| 1K) ], (5.14)

The first term is expressible as a three-dimensional
integral,

W10 18)= [ dpa 6o Ge+IK-+ s

XD (e4-ie) | k+3paipo(3k+ps), (5.15)
16 Y, Yamaguchi, Phys. Rev. 95, 1628 (1954).
1 R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 136,
B650 (1964).
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where

e=E— (372/4m)ps*,
= (#/m) (k+3ps)?,

(approximation I)

(approximation IT). (5.16)

With approximation I some care is necessary in the in-
tegration with respect to p; because of the branch point
at e=0, and the pole at e= —e¢,. We recall from Sec. 2
that the superscript in {® means that the principal
value must be taken at the bound-state pole. No
difficulties arise with approximation II because the
two-body energy is always positive. The second term
of Eq. (5.14) is equal to the first for s-wave interactions,
and the third can be expressed in terms of the bound-
state wave function ¢o.!7

Once the impulse-pickup amplitudes are known, the
integral equation (5.5) may be readily solved with the
aid of the partial-wave expansion

1
(k’II|k>=—-(3h2/81r2m)I;Z QI+-D)IP(R-E), (5.17)

and a similar expansion for (k’| T'|k), to yield

Ti=1,/(1—,). (5.18)
The techniques used for the partial-wave expansion are
described in Ref. 13.

The resulting angular distributions at two energies
are shown in Figs. 1 and 2. (If ¢, is the deuteron binding
energy 2.226 MeV, then the corresponding laboratory
energies of the incident particle are 1.30 and 14.1 MeV,
respectively.) The predictions of the impulse-pickup
approximation are also shown for comparison. At the
lower energy, which is below the break-up threshold,
only the approximation I result is shown, because only
approximation I gives exact unitarity below threshold!8
(see Sec. 4). We recall from Sec. 4, however, that both
approximations satisfy the constraint imposed by uni-
tarity : In partial-wave form,"

ImT;> [Tllz.

In contrast, the s-wave parts of the impulse-pickup
amplitudes are found to strongly violate the con-
straint.

The results show that the approximation methods
described in this paper yield at least qualitative agree-

17 L. Rosenberg, Phys. Rev. 131, 874 (1963), Eq. (4.22).

18 In partial-wave form the approximation-I phase shifts are
easily seen to be real below the breakup threshold, since the im-
pulse-pickup amplitudes are then real. Note that this would not
be the case if T, appeared instead of 7,® in Eq. (3.1), since the
bound-state pole in the two-body amplitude [Eq. (5.12)] would
then give rise to an imaginary term in the impulse-pickup
amplitude.
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F16. 2. Angular distributions at £=4.835 (corresponding to a
laboratory energy of 14.1 MeV if the two-body energy is the
deuteron binding energy). Approximations I and II both satisfy
the unitary constraint, whereas the corresponding impulse-pickup
results strongly violate unitarity.

ment with the exact results, even at such low energies
that the impulse-pickup results are wildly astray. In
multiple-scattering language it is therefore clear that
the methods provide a simple and effective way of
summing an important class of multiple-scattering
terms. Exact results on this model are unfortunately
not available at higher energies, but it is reasonable to
expect improved agreement at higher energies as the
importance of the neglected multiple-scattering terms
diminishes.

Note added in proof. Since the submission of this
paper we have learned of the work of Alt, Grassberger,
and Sandhas [Nucl. Phys. B2, 167 (1967)], in which
formal equations closely related to those of Sec. 2 are
derived by a somewhat different argument.
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APPENDIX

To prove Eq. (2.25) we write Eqgs. (2.20), (2.21), and
(2.23) in the form

Wﬁa= Z Qﬁ7T1 (Al)
yFa
=3 T4Pya, (A2)
B4y
Wsa®=3 Qp,OT,®, (A3)

yHa
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with
Pra=(1=08ya)+GoW ya, (A4)
Qsy=(1—085,)+Wps,Go, (AS)
Qay = (1—085,)+ W5, VGo. (A6)

On using 7, =T, V+4T,® [Eq. (2.22)], Egs. (A1) and
(A3) give

Wge—Wga M= > Qsy VT, @
yFa
+ é (Qﬁv—'Qﬁv(l))Tv- (A7)
yHFEa

With the use of Eqgs. (AS) and (A6), and writing

SLOAN 165

Now, with the successive use of Eqgs. (A4), (A2),
(A9), and (A2) we obtain
2 A5Gy =22 ApyGoTy(Pra—GoW ya)

rHe k4

=Y Ap,GoTy(Pra—Go Y TsPsq)
v

Y78

Z AB'yGOTy)GOTBPSa

y#b

=§ (Ags—

=2 2 0y P Ty OG5 sa

Yo

=2 sy DT PG ya. (A10)
v

The result of substituting (A10) into (A9),
Aﬂt!:Z QBV(I)T7(2)P7a:
el

is equivalent to Eq. (2.25).

Apa=Wpa—Wpa®, (A8)
we obtain
Age= 22 Qay O TP+ 2 45,GoT . (A9)
yFa yFEa
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Low-Energy Theorems, Dispersion Relations, and Superconvergence
Sum Rules for Compton Scattering™
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A derivation of low-energy theorems for Compton scattering from spin-0 and spin-1 targets is given
within the framework of dispersion theory. We work exclusively with physical helicity amplitudes and
utilize the zeros of these amplitudes forced by angular momentum conservation to write unsubtracted dis-
persion relations. The conventional requirement of gauge invariance is replaced in our work by Lorentz in-
variance together with the knowledge that the photon is a massless spin-1 particle. From the dispersion re-
lations we extract a number of sum rules of the superconvergence type, one example of which reduces the

Drell-Hearn result in the forward direction.

I. INTRODUCTION

HE amplitude for the scattering of low-energy
photons by spin-; systems has been given by
Low! and by Gell-Mann and Goldberger.? Using the full
machinery of quantum field theory and, in particular,

* Supported in part by the U. S. Air Force Office of Research,
Air Research and Development Command under Contract No.
AF49(638)-1545 and in part by a National Science Foundation
Postdoctoral Fellowship.

t Present address: Stanford Linear Accelerator Center, Stanford
University, Stanford, California 94305.
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University, Princeton, New Jersey 08540.

1F. E. Low, Phys. Rev. 96, 1428 (1954).

2 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433

(1954).

the gauge invariance of photon emission and absorption
matrix elements, the following theorem was proved:
The Compton amplitude, regarded as a function of the
photon energy, at fixed scattering angle (and given
target-photon polarizations), can be exactly specified in
terms of the static properties of the target (i.e., charge,
mass, and magnetic moment) provided only terms of
zero and first order in photon energy are retained. The
feature which distinguishes this result from a number of
low-energy theorems recently derived from current
algebra?® is that it yields the amplitude in the physical

A thorough exposition of the methods involved in obtaining
such theorems and a critical analysis of the results will be found
in the forthcoming book by S. L. Adler and R. F. Dashen, Current
Algebra (W. A. Benjamin, Inc., New York, 1967).



