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A new approximation for the three-body collision problem is described, which allows practical calculation
of elastic, inelastic, rearrangement, and breakup amplitudes. The approximation is derived from a novel
form of the Lovelace-Faddeev equations in which all two-body bound states appear explicitly. It appears
in practice as a simple modification of the impulse-pickup approximation, and is expected to considerably
extend the useful energy range of that approximation. It is shown that unitarity is satisfied within a certain
approximation, and that the submatrix of the S matrix that excludes the breakup channel satisfies a unitary
constraint. The symmetry requirements for identical particles can be treated rigorously, and lead to a
practical simplification of the method. Numerical calculations of bound-state scattering in an exactly
soluble model show encouraging results.

1. INTRODUCTION

'N recent years the formal understanding of the
- - three-body collision problem has been greatly ad-
vanced through the work of Faddeev and others. '—' On
the other hand, the complexity of the problem still
prevents exact solutions, except for a restricted class
of two-body interactions, those of separable type.
Lovelace4 has shown that the approximation of sepa-
rable interactions is useful if the two-body scattering
is dominated by bound-state or resonance poles, as is
the case with low-energy nucleon-nucleon scattering.
Nevertheless, it is very clear that there are many situa-
tions in which it is necessary to consider more general
interactions, for which approximate methods of solution
are needed.

We here develop"' a practical method for the approxi-
mate solution of the Lovelace-Faddeev equations, with
arbitrary two-body interactions. The method appears
in practice as a modification of the impulse-pickup
approximation (described in Sec. 3), but it is expected
to considerably extend the useful eriergy range of that
approximation. The method allows practical calculation
of all physical amplitudes (except free-free amplitudes)
if the two-body amplitudes are known, and it satisfies
the important constraint of unital. ity in a certain
approximate sense (Sec. 4).

Many theoretical approaches and approximation
methods run into difhculties when more than one of the
three pair interactions supports a bound state. For
example, the Born series fails to converge. ' The present
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method, on the other hand, takes advantage of the
existence of bound states, and uses the knowledge of
bound-state energies and wave functions as valuable
input information.

The Lovelace —Faddeev equations contain the two-
body bound-state information in a concealed form.
In Sec. 2 we therefore recast the exact equations into a
form in which the bound states between each pair of
particles appear explicitly, so that it becomes possible
to approximate without losing the bound-state informa-
tion. Two versions of the approximation are described
in Sec. 3. In this approximation the physical amplitudes
satisfy coupled integral equations, in which the inhomo-
geneous terms and kernels are the on-shell impulse-
pickup amplitudes.

In the final section we consider bound-state scattering
for a system of identical particles, and show that the
symmetry requirements lead to practical simplification
of the method. The method is then illustrated with
numerical calculations on an exactly soluble model.

Vp ——0. (2.1)

The channel in which particle 0. is free and the other
pair bound by V is called channel e, and the channel
in which the three particles are free is channel 0.
Unless noted otherwise, Greek letters run from 0—3.

We require the operators

G(s)=(s—&) '

G-(s) = (s-&-) ',
T (s)= V +V G (s)V,

(2.2)

(2.3)

(2.4)

where Hp is the three-body kinetic energy in the center-
of-mass system,

H =Hp+V, (2 5)

2. EXACT EQUATIONS

The particles are denoted by 1, 2, 3, their masses by
ml, m2, m3, and the pair interactions by V1, V2, V3,
where V1= V23 is the interaction between particles 2
and 3. Following Lovelace, 2 we also dehne
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and H is the total Hamiltonian,

H= Ho+ Vx+ Vu+ Vs

For future reference we note the relations'

G.()T-()=G.()V. ,

T (s)Gp(s) = V G (s).
(2.7)

Lovelace' has derived coupled equations for the
operators Up +, similar to the Faddeev equations, ' and
has demonstrated their superiority over the three-body
Lippmann —Schwinger equations. ~ The Lovelace-Fad-
deev equations are

Up.+(~)= Z VV+ Z Upv+(~)GO(~)TV(~), (21g)

Equations (2.3) and (2.4) define two-body propa-
gators and transition operators in the three-body space.
The corresponding operators in the two-body space are

g (s)=(s—h ) ', (2.8)

H C „(E)=EC.„(E). (2.15)

Then the physical amplitude for a transition from
channel e to channel P is the on-shell matrix element

)= (qt" (E), Ut-'(E+i )C.,(E)). (2.16)

t (s)= V +V g (s)V , (n= 1, 2, 3) (2.9)

where h is the Hamiltonian of the pair of particles
other than 0. in their center-of-mass system. The oper-
ators T and t are simply related in the free-particle
representation. Let Ap be the mornenturn of particle
o. with respect to the center of mass of the other pair,
and let bq be the relative mornenturn within that
pair. Then

(p-'q-'I T.(~) I p.q-&

=~(p-' —p-)(q-'It-(~ —(&'/2~-)P-') Iq.&, (2 10)

where ~ is the reduced mass in channel n, for example,

Mq ——mq(m~+ma)/(m)+m~+ms), (2.11)

and (q
'

I
t (s) I q ) is the off-shell two-body amplitude.

The possible three-body processes may all be ex-
pressed in terms of transition operators Us + (in the
notation of Ref. 2), where

Ut& +(s) = (1—
b(& )V +W(& (s), (2.12)

U ()=(1—8 )V+W „(), (2.13)

Wp (~)= Z VV+K Z VVG(~)V~ (214)
p&7~ py 7 8&a

Let C „(E)be a suitably normalized unperturbed state
in channel n, with quantum numbers v and energy

E, i.e.,

U. (~)=Z V+K T (~)Go(~)U (~) (219)

We 6nd it convenient to express the equations in terms
of Ws, through Kqs. (2.12) and (2.13). With the aid
of Kqs. (2.4) and (2.7) the equations become

Wt&.= Z T~+Z Wt),GOT,
p&V&a V&a

= P T+P TGW...
pgyga pAy

(2.20)

(2.21)

where for clarity the variable s is suppressed. (Iteration
of either equation yields directly the general multiple-
scattering expansion. )

We now recast the equations into a form more suit-
able for approximation. Let T~ be expressed as the
sum of two parts,

T = T o)+T (2) (2.22)

with T7O) and T~&" to be dehned later. We deane
operators 5'p &') and Up ") in terms of T~&') through
equations analogous to Kqs. (2.20) and (2.12):

W ('&= Q T ('&++ Wt) ('&GOT ('& (2.23)
p/7/a yea

Ut) ('&= (1—
(&p )V +Wt) ('&. (2.24)

which is valid for any choice of T~~') and 1'~&') satis-

fying Kq. (2.22). A variety of formulations may be
generated by decomposing T~ in different ways.

We now restrict attention to the physical energies
s =E+i e, and choose

Then it is proved in the Appendix that Kqs. (2.20) and

(2.21) lead to the identity

W() —Wp, ('& =P P(1 t)s,)+W(),(—"Go]T,('&

XL(1—() )+GOW, ], (2.25)

The operators Up + and Up have the same on-shell

matrix elements, as follows from Kqs. (2.12) and (2.13),
and the identity

T, (2& (E+ie) = V,G,'(E)V„

G '(E) = inh(E H„)P, (y—=1,.2, 3—)

(2.26)

(2.27)

(C')" (E),Vuc'-(E)) = (C's" (E),V-C'-(E)), (2 17)

which itself follows from Kqs. (2.5) and (2.15). How-

ever, the off-shell matrix elements of Up + and Up

are different.

and I'~ is the projection operator onto the channel y
eigenstates (i.e., the eigenstates of H~ that include a

' B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950),
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bound state). For notational convenience we also define

Go'(E) =0 (2.28)

The 6rst factor of Eq. (2.27) is the energy-conserving
part of the propagator G„(E+ie) [Eq. (2.3)]. We
define T~"& to include just the energy-conserving part
rather than the full propagator, in order to obtain an
integral equation that involves only the on-shell three-
body amplitudes.

With this choice of T~"i, Eq. (2.25) can be simplified

by using the relations

G,'(E)V,Go(E+i e) =G,'(E),
Go(E+ie) VvGv'(E) =Gv'(E),

which themselves follow from the identity

(2.29)

Go(E+ze) VVC'V. (E)=C'v. (E)+o(e) (2.3o)

With the use of Eqs. (2.12), (2.13), and (2.24), Kq.
(2.25) then becomes

Up +(E+ze) = Up &'i (E+ze)

+Q Up„oi(E+ie)G„'(E)U„(E+ie). (2.31)

s =E—(fzz/2M~) P,z+i e

=e ze. (2.35)

'Thus integration with respect to p, causes s to follow
a contour parallel to and above the real axis, extending
from E+ie to —~+ie Fo.r e positive, the small posi-
tive imaginary term ie in Eq. (2.35) has the effect,
familiar in two-body scattering theory, of specifying
the branch of the function t~(s) But in. the three-body
application the imaginary term has an additional func-
tion: It prescribes the contour in s past the bound-
state poles.

From Eqs. (2.33), (2.10), (2.34), and (2.27) we can
write, in analogy with Eq. (2.10),

&1,'q, 'I T,"'(E+z ) I p,q.&

=~(p '—p.)(q 'It. "'(p+ze) Iq.)

binding energies e~„, and the P~„are the continuum
eigenstates. The last term exhibits the cut for real
positive two-body energies s, and the second term the
bound-state poles at s= —e~„.Now the matrix elements
of T~(E+i e) in the free-particle representation are seen
from Kq. (2.10) to involve t~(s) with the two-body
energy

Now because of the 5 function in G~', the on-shell matrix
elements of this equation involve only the on-shell
matrix elements of Up + and Up, which are both equal
to the physical amplitude [Eq. (2.16)j. It follows
that the equation

Up (E+ie)=Up "i(E+ie)

+Q Up~ &'i (E+ie)G~'(E) U„(E+ie) (2.32)

defines a new set of transition operators Up, whose
on-shell matrix elements are the physical amplitudes.
This is the exact equation that we shall approximate
in the next section. The on-shell matrix elements of
Eq. (2.32) yield coupled integral equations relating the
physical amplitudes to the on-shell matrix elements
of U,.~».

It remains to investigate the operator T~&'), which is
involved in the de6nition of Up "'. From Eq. (2.26)
we have

T~oi (E+i e) =T~(E+ie) V~G„'(E)V~. (2—.33)

where e is given by Eq. (2.35), and

t "'(+')=V+I'Z V I4 )L+ "1 '(4

+ «V.lt..)[e+ze—p~.3 '9 "IV. (2 37)

with E denoting the principal value. That is, t~oi (e+ie)
differs from t~(e+ie) in only one respect —the pole
terms are replaced by principal values. Therefore there
is no special difhculty in calculating the matrix elements
of t~&'&: In fact, in the limit e —+ 0,

&qv'I 4"'(p+ze) I qv&

=(q~'I t~(e+ie) Iq~) for e& —e~„. (2.38)

The practical effect of replacing t~ by t~&" is seen only
in subsequent integration over s=e+ie. With t~ we
have seen that the contour in s passes above the bound-
state poles, whereas with t~ "& the principal values must
be taken at the bound-state poles.

To clarify the meaning of T~('" we first discuss T~,
using the spectral representation of the two-body
operator t„[Eq. (2.9)j;
4(») = V.+2- V. I 47-)[»+p,-j '9"

I V.

+ «V, I4,.&[»—p,.?'(4,.I Vy, (2.34)

where the P~ are the bound eigenstates of h~, with

3. APPROXIMATIONS

The goal of the approximation is to approximate
Up &" [Eq. (2.24)j, and then to solve exactly for the
physical amplitudes using Eq. (2.32). From the
multiple-scattering point of view the exact solution of
Eq. (2.32) provides a simple way of including a wide
class of multiple-scattering corrections. Furthermore,
these corrections are important in connection with
unitarity, as we shall see in the following section.
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Speci6cally, wc retain only the leading terms in the
iterated form of Eq. (2.24), i.e., we replace Ue ~'& by

(3.1)

Equation (2.32) for Utt then becomes (with energy
dependence suppressed)

(3.2)

The operators Ip constitute what we refer to as the
impulse-pickup approximation. The reason for the name
is perhaps made clearer by writing typical operators
explicitly. For the case of particle 1 incident on a
bound state, the operators for elastic, rearrangement,
and breakup processes, respectively, are

where for clarity wc have used the alternative notation
T2——Tgg, etc. The direct operator Igg is seen to be
closely related to the impulse approximation. '' The
rearrangement opcx'RtoI' I2y ls thc sum of two terms, thc
first of which is the Born approximation for the pickup
process, '0 in which 1 collides with 3 to form a bound
state, leaving 2 free, and the second is an irnpulse-

approximation term describing the ejection of 2 by i
through direct collision. The breakup operator Ioj is

RgalQ R vcrslon of the lIDpulsc RppI'oxlmRtlon. In
writing Eq. (3.3) we have used the fact that the on-shell

IDRtl lx clcIDeQts of Iol 1Qvolvc only thc two-body
amplitudes with positive energies, so that it is un-

necessary to distinguish between T~ and T~('&. In
addition, the term V23 has been omitted from Io~, since

Eq. (2.17) with P=O shows that the potential term
does not contribute to the on-shell breakup amplitude.

On taking n= 1 in Eq. (3.2), corresponding to particle
1 incident on a bound state of 2 and 3, we see that U~j,

U2l, and U3~ satisfy a set of three coupled equations,
and Uog is expressed in terms of Ugg, U2g) and Uag. If
V~3 and V~2 do Qot support bound states, so that re-
arrangement collisions cannot occur, then the first set
of equations reduces to the single equation

Ull (2 12+2 12)+ (2 12+2 12)62 Url (3 4)

which is a practical form of the method, proposed by
Rosenberg. "In the general case, however, it is easy to
see by iterating Eqs. (3.2) and (3.4) and comparing

the terms in the expansion of U~I, that the present
method retains a very much wider class of multiple-
scattering terms. If only the terms in which Tq~ and Tqa

alternate are retained in the iterated form of Eq. (3.4),
the result is equivalent to the method proposed by
Queen. "The relation between the Rosenberg and. Queen
methods has been discussed more fully elsewhere. "

The matrix elements of Eq. (3.2) between initial and
final states in channels u and P yield equations ex-

pressing the on-shell amplitudes for all processes in
terms of the on-shell impulse-pickup amplitudes. If the
latter are known it is in general possible to solve the
equations exactly. (An example is worked out in detail
in Sec. S.) However, it is not usually possible to calculate
the impulse-pickup amphtudes without further approxi-
mation, since they involve the OG-shell two-body ampli-
tudes &q~'I f~(s) I q~), which even in partial-wave form
are functions of three variables. Ke therefore consider
a further approximation of a more practical nature. To
distinguish the approximations, that described above
will be referred to as approximation I, and that to be
described below as approximation II.

Approximation II is obtained by replacing T7&')

(E+2e) in the impulse-pickup bound-to-bound ampli-
tudes by r~, where Lcf. Eq. (2.10)j

Rnd 8 Rnd 8 arc thc two-body relative cnclglcs corre-
sponding to q„and q~'. Thus

(3.6)

where p, ~ is the reduced mass of the colliding particles;
for example,

P& = 22222222/(m2+ m2) .

Here, the two-body energy in Eq. (2.10) is replaced by
the on-shell energy for the initial or 6nal two-body
scattering state. LThe symmetric expression in Eq.
(3.5) is adopted to maintain time-reversal invariance. j
The energy shift is suggested merely to simplify the
calculation, and is a standard procedure with the im-

pulse approximation; indeed, the usual procedure is to
go further, and replace the two-body amplitudes by
the fully on-shell value, with g~'= q~. Though the energy
shift is without justi6cation, we shall show in the
following section that unitarity, in the sense of a con-
straint on the sct of bound-to-bound arnphtudcs, re-

mains satisfied.

8 G. F. Chew, Phys. Rev. 80, 196 (1950);G. F. Chew and G. C.
mick, &V@. 8S, 636 (1952).

9 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, /78 (1952).
' G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470

(1950).
"L.Rosenberg, Phys. Rev. 135, 3715 (1964).

"N. M. Queen, Nucl. Phys. 55, 1/7 (1964); ibid. 80, 593 (1966).
'3 I. H. Sloan, Phys. Rev. 162, 855 (1967). It should be noted

that the ad ho@ symmetrization. of the i~pulse approximation in
that paper widens the class of multiple-scattering terms included
in the approximations, hut the class remains a subset of that for
the present method.
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4. UÃITARITY

We consider first the unitarity relations for T7 and
T~o&. From Eqs. (2.4) and (2.7) we can write

Eqs. (3.2) and (3.3), in the form

U —Q U (x)

X&0

with

(4.8)

T~= V,+V,GOT„ (4.1) Uo. '"'= Tx E (4.+Go'Uo. )
bgX

and hence by the usual argument obtain the unitarity
relation

The unitarity relation can then be expressed in the
simple form

Tr T,t=—T~t(Go(E+ic) Go(E—ic)]T—„, (4.2) U U t 2~i g U, tg(E H, )P,U,
6&0

—2mi Q Uop&"&t8(E—Ho) Uo &"'. (4.10)
)go

Up. U.pt= —2ori —g Uopt8(E Ho)PoU—o

6&0
T7 Trt = —27ri T~t o(E— Ho) Tr-

—2miV, o(E, Hr)P~Vr, —(4.3)
2m i Uopt6(E Ho) Uoa (4.11)

where T,= Tr(E+io). Some care is required in taking
the limit e —+0 if V~ supports bound states, because
of the resulting poles in the two-body amplitude Lsee

Eq. (2.34)j. With the aid of Eqs. (2.10) and (2.34) it It differs from the correct on-shell unitarity relation
can be shown that the correct limit is'

where the second term arises from the bound-state
poles. It then follows from Eqs. (2.33) and (2.27) that
1'~&'& satisfies the simpler relation

T,&» T,&»t= 2~—iT,t&(E —H,)T, . —(4 4)

Up Upt= —2ori Q Uo—pto(E Ho)PoUo—
8/0

+ E Z (4r+U.p'G. ')

X (I,o
—Io,') (4.+Go'Uo. ) . (4.5)

Taking advantage of the fact that the matrix elements
of Up and Ip are required only on shell, so that Eq.
(2.17) can be used, we obtain from Eq. (3.1)

I o
—Io '= Z (T~"'—T~"")

y&)t&5
(4 6)

2~i P —T),tb(E Ho) Tg, (4.7)—

This result is not at all surprising, since T~ &'& differs from

Tr precisely in that the troublesome part of T~ (i.e.,
the 5-function contribution to the bound-state pole
term) has been subtracted off.

We turn now to the unitarity relation for the approxi-
mate three-body transition operators Up, considering
first approximation I. By algebraic manipulation of
Eq. (3.2), the bound-to-bound operators (P/04n)
satisfy

only in the last term on the right-hand side.
Equation (4.10) would be the correct unitarity rela-

tion if there were three distinct three-free-particle
channels, distinguished by the three values of P. It is
therefore clear that the set of amplitudes for bound-to-
bound transitions (P/0/n) satisfy the constraint im-

posed by unitarity —the corresponding submatrix of the
5 matrix is a submatrix of a unitary matrix. Ke can
draw a stronger conclusion by noting that Uo &"~ is the
contribution to Uo, in which the pair of particles other
than P interact in the final state. Therefore, unitarity is
essentially exact at energies at which the final-state
interactions of different pairs of particles do not sig-
nificantly overlap. It is also clear from Eq. (4.10) that
unitarity is exact below the breakup threshold.

With the further approximation Tr "~=r„( pparo i-x
mation II), Eq. (4.4) is no longer valid. From Eq. (3.5)
we deduce instead

(p,'q, '~ r, r,'~ p,—q,)= 2~i&(p—,' p, )-', —
&& L&qr'I tr'(e+io)~(e —h,+V.)tr(e+io) I «,)
+(q~'~trt(e'+io)5(e' hv+Vr)tr(e'—+io) ~qr)j, (4.12)

where e and e' are given by Eq. (3.6). On substituting
into Eq. (4.6) and then into Eq. (4.5), it is easy to see
that the main result above still holds: the set of bound-
to-bound amplitudes satisfies the unitary constraint.
However, the absorption processes from the bound-
state channels, contained in the last term of (4.5), no
longer conserve energy. In particular, with approxirna-
tion II unitarity is no longer exact below the breakup
threshold.

with Eq. (4.4) used in the last step.
The resulting unitarity relation may be simplified by

writing the breakup transition operator Uo, using

'4A rigorous proof of Eq. (4.3) for generalized Yukawa two-
body interactions has been given in Ref. 2.

S. IDENTICAL PARTICLES AND
NUMEMCAL EXAMPLE

We consider specifically bound-state scattering for
a system of identical particles. The symmetry require-
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I'xo. I. Angular distributions at E=—0.914 {corresponding to
a laboratory energy of 1.30 MeV if the two-body binding energy
is the deuteron binding energy). Approximation I satisaes uni-
tarity exactly below the breakup threshold, and is seen to yield
great improvement over the corresponding impulse-pickup result.
{Note the reduced scale of the impulse-pickup curve. ) The exact
result is from Ref. 16.

We perform detailed calculations for a system of spin-
less bosons, vrith separable tvvo-body s-wave interac-
tions of the Yamaguchi" form

&q'I i'I q) = —(~W~)g(c')g(v), (5 "I)

g(C) = 1/(V'+P'). (5 g)

There is then a single two-body bound state at
energy —eo,

eo
——(5'/el)n'

ll=z 'P(P+n)',

(5.9)

(5.10)

where (k'n'IIIkn) is the symmetrized or antisym-
metrized impulse-pickup amplitude,

(k'n'I I
I ke) = (k'n'I I~

I
ke)+2(k'e'

I
I"

I kn) . (5.6)

&q'I &(e+l'~) ill&

ments for either bosons or fermions lead to a simpliflca-

tlon, without any need for further approxlmatlon. state ~ave function ls

We denote the on-shell matrix elements of U~ and
I,.(with ps0g~) by &pk, 'n, 'ITIok.n.) and (pk, 'e, 'I &'(q)= g(~)/(~+»
XI Ink n ), respectively, where k is the channel mo-

and the two-body amplituae ls
xnentum in channel 0,, and e denotes the remaining
quantum numbers. Then Eq. (3.2) gives

(5.11)

&pks ns 'I2''Ink n )

=(pkp'ns'IIInk. n.&
I'Ir p g— dkl"&pks'ns'I

y n11&I

A9
g(II') [1 (P+—)'/{P—I~)'] Ig(g), {5.12)

XI I
Ski"nl"&8(E—El")(bkl"nl"

I TInk, n ). (5.1) e= (5/nl)~, argK=0 or z/2. (5.13)

Ilollo~ing Lov{ lace 4 ~e adopt the olderlng convention
that channel $ denotes paltlcle 1 plus the ordeled paIl

(2,3), channel 2 denotes 2+ (3,1), and channel 3 denotes

3+ (1 2), so that It is unnecessary to distinguish between

pose and Fermj. statj.sties. In either case there are just
t~o distinct amplitudes for a system of identical
particles, the direct and rearrangement:

&k'n'IT&Ikn)=(nk'n'I rInkn&, {~=1,2, 3)

(1 'n'I Ta
I
kn)= &pk'n'I TIokn), (p~&) {53)

and the same result holds for the impulse-pickup

amplitudes.
The coupling between channels in Fq. (5.1) can

then be removed in exactly the same way as jn Ref. 4
In particular, the symmetrized or antisymmetri2;ed

amplitude

&k'n'I2'Ikn&=&k'n'I2' Ikn&+2&k'n'I2'Ike& (5.4)

satisies

(k'n'I T
I kn)

= (k'n'I I
I kn) Ar Q —dk"(k'n'I I

I
k"n")

The bound-state pole at I(:=io., or e= —eo, is seen
explicitly.

Previous approximate calculations on this system,
using symmetrized versions of the Rosenberg and Queen
methods, have been described in Ref. I3. Again ere
compare the approximate calculations Kith the exact
results of Aaron, Amado, and Yam, '6 using the units
of that paper (h=2el=1, co=1.5) and p=5.

The main Dumerical problem is to calculate the
symmetrized impulse-pickup amplitude [Eq. (5.6)] as
a fullctloll of scattellllg allgle. Fl'olll Eq. (3.1) lt Illay
be vmitten as

&k'II
I
k&= 2[&1k I

2"„II
I 1k&

+&2k'I2'. OI l1k)+&2k I v„I1k&]. (5.14)

The 6rst term is expressible as a three-dimensiona
integral,

(1k'I 2'»"'I 1k&= dys yo'(-'. k'+y, )&k'+-,'y,
I

X&" (e+ie) Ik+-', y,&p, (~k+yl) (5 15)

V. Vamaguchi, Phys. Rev, g$ f(j28 {$9/4}lIR Aaron R D A ado and Y V Yam phys Rev 136
yb(L. —I.'")(k"n"

I
I'Ikn), (5.5) q6M {t964&.

'
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where

e= E (3))t—'/4m) p32, (approximation I)
= ()'t'/m) (k+x2pq)', (approximation II) .

With approximation I some care is necessary in the in-
tegration with respect to ps because of the branch point
at e=0, and the pole at e= —eo. We recall from Sec. 2
that the superscript in 4I&'& means that the principal
value must be taken at the bound-state pole. No
difhculties arise with approximation II because the
two-body energy is always positive. The second term
of Eq. (5.14) is equal to the first for s-wave interactions,
and the third can be expressed in terms of the bound-
state wave function $0."

Once the impulse-pickup amplitudes are known, the
integral equation (5.5) may be readily solved with the
aid of the partial-wave expansion

00

(k'
~

I
~
k)= —(3h'/8s'm) Q(2-l+ 1)I&P&(k'0) (5.17)

P lM
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FIG. 2. Angular distributions at E=4.835 (corresponding to a
laboratory energy of 14.1 MeV if the two-body energy is the
deuteron binding energy). Approximations I and II both satisfy
the unitary constraint, whereas the corresponding impulse-pickup
results strongly violate unitarity.

and a similar expansion for (k'~ T
~ k), to yield

T,=I,/(1 —iI)) . (5.18)

ImT))
( T) ~'.

The techniques used for the partial-wave expansion are
described in Ref. 13.

The resulting angular distributions at two energies
are shown in Figs. 1 and 2. (If eo is the deuteron binding
energy 2.226 MeV, then the corresponding laboratory
energies of the incident particle are 1.30 and 14.1 MeV,
respectively. ) The predictions of the impulse-pickup
approximation are also shown for comparison. At the
lower energy, which is below the break-up threshold,
only the approximation I result is shown, because only
approximation I gives exact unitarity below threshold'
(see Sec. 4). We recall from Sec. 4, however, that both
approximations satisfy the constraint imposed by uni-
tarity: In partial-wave form, "

ment with the exact results, even at such low energies
that the impulse-pickup results are wildly astray. In
multiple-scattering language it is therefore clear that
the methods provide a simple and effective way of
summing an important class of multiple-scattering
terms. Exact results on this model are unfortunately
not available at higher energies, but it is reasonable to
expect improved agreement at higher energies as the
importance of the neglected multiple-scattering terms
diminishes.

cVote added im proof. Since the submission of this
paper we have learned of the work of Alt, Grassberger,
and Sandhas LNucl. Phys. B2, 167 (1967)j, in which
formal equations closely related to those of Sec. 2 are
derived by a somewhat different argument.
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8'e = Q Q,T„ (Ai)

In contrast, the s-wave parts of the impulse-pickup
amplitudes are found to strongly violate the con-
straint. To Prove Eq. (2.25) we write Eqs. (2.20), (2.2]), and

The results show that the approximation methods (2.23) in the form
described in this paper yield at least qualitative agree-

"L.Rosenberg, Phys. Rev. 131, 8/4 (1963), Eq. (4.22).
'8 In partial-wave form the approximation-I phase shifts are

easily seen to be real below the breakup threshold, since the im-
pulse-pickup amplitudes are then real. Note that this would not
be the case if T~ appeared instead of T~&'& in Eq. (3.1), since the
bound-state pole in the two-body amplitude C Eq. (5.12)) would
then give rise to an imaginary term in the impulse-pickup
amplitude.

= P T,P, ,
PQy

gT o) P Qe (1)T o)
yea

(A2)

(A3)
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with
P, =(1—(), )+GOW7,

Qp =(1—
&p )+W() Go

Qs, ")= (1-~s,)+W~, "'G'
(As) Q A(&,GoT, =Q Ap, GpT, (P„Gp—W, )

(A6) =Q A(&7GpT~(P, „Go Q—TgPg )

Now, with the successive use of Eqs. (A4), (A2),
(A4) (A9), and (A2) we obtain

On using TV= T ('&+T ('& LEq. (2.22)g, Eqs. (A1) and
(A3) give

Wp Wp 0) —Q Qp Q)T (&)

+ Z (Q(,—Qov"))T7 (A7)

With the use of Eqs. (AS) an.d (A6), and writing

=Q (&()~—E &(&,GoT,)GOT(P(,.
=Q P Qp o)T (2)G T)P

gab

=Z Q~v")T~")GoWv' (A10)

we obtain
Ap =8'p —8'p "', The result of substituting (A10) into (A9),

(As)
A p

——Q Q()7")T~(')P„,

~s-= Z Q(v")Tv")+ 2 ~svGoT~.
v&x yea

(A9)
is equivalent to Eq. (2.25).
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Low-Energy Theorems, Dispersion Relations, and Superconvergence
Sum Rules for Compton Scattering"
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A derivation of low-energy theorems for Compton scattering from spin-0 and spin-~ targets is given
within the framework of dispersion theory. We work exclusively with physical helicity amplitudes and
utilize the zeros of these amplitudes forced by angular momentum conservation to write unsubtracted dis-
persion relations. The conventional requirement of gauge invariance is replaced in our work by Lorentz in-
variance together with the knowledge that the photon is a massless spin-1 particle. From the dispersion re-
lations we extract a number of sum rules of the superconvergence type, one example of which reduces the
Drell —Hearn result in the forward direction.

I. INTRODUCTION

HE amplitude for the scattering of low-energy
photons by spin-~ systems has been given by

Low' and by Gell-Mann and Goldberger. ' Using the full
machinery of quantum 6eld theory and, in particular,

~ Supported in part by the U. S. Air Force Once of Research,
Air Research and Development Command under Contract No.
AF49(638)-1545 and in part by a National Science Foundation
Postdoctoral Fellowship.

f Present address: Stanford Linear Accelerator Center, Stanford
University, Stanford, California 94305.

f Permanent address: Palmer Physical Laboratory, Princeton
University, Princeton, New Jersey 08540.

' F. E. Low, Phys. Rev. 96, 1428 (1954).
'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433

(1954).

the gauge invariance of photon emission and absorption
matrix elements, the following theorem was proved:
The Compton amplitude, regarded as a function of the
photon energy, at fixed scattering angle (and given
target-photon polarizations), can be exactly specified in
terms of the static properties of the target (i.e., charge,
mass, and magnetic moment) provided only terms of
zero and erst order in photon energy are retained. The
feature which distinguishes this result from a number of
low-energy theorems recently derived from current
algebra' is that it yields the amplitude in the physical

' A thorough exposition of the methods involved in obtaining
such theorems and a critical analysis of the results will be found
in the forthcoming book by S.L. Adler and R. F. Dashen, Current
Algebra (W. A. Benjamin, Inc. , New York, 1967).


