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and the dipole moment of isospin by

D= / dydz yp=(yz).

The total isospin is of course

Ie= / dydz p*(y,2) .

In conclusion, we point out that Eq. (25) and its
counterpart for g’s pose very deep internal consistency
requirements on the structure of the projections, “J
bubbles,” and expansion functions ¢.(Z) entering into
the operator 7. For T must have an eigenvalue equal
to 1 for each current and this eigenvalue must equal 1
for all values of momentum transfer. It is not, at
present, clear to us, what in the dynamical theory of
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Refs. 2 and 3 guarantees such eigenvalues without
which the currents cannot exist. In particular it may be
that a consistent theory of currents cannot be formu-
lated without including into the theory from the start,
those systems to which the currents couple (photons,
leptons). At any rate, the solution will certainly await
further understanding of the analytic properties of the
inner products and the relation of these properties to
Lorentz invariance and locality.

The theory presented here and in (3) does not
explicitly deal with the problems of spin. Wherever
details depend on spin we have assumed scalar particles.
The complications due to spin are presently being
studied by G. Frye.
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The behavior of the intrinsic size of a bound state as a function of its mass is derived by using an analogy
between nonrelativistic two-dimensional quantum mechanics and the infinite-momentum limit of rela-

tivistic quantum theory.

TTEMPTS have been made to understand rela-
tivistic form factors for bound states in terms
of the use of wave functions.!*? In relativistic physics it
is found that the familiar nonrelativistic behavior in
the limit of loose binding is caused by the existence of
anomalous thresholds in the dispersion relations for
form factors which manifest themselves in ranges of
charge distributions that are larger than the Compton
wavelength of the constituent charged particle. The
range for loose binding depends on the binding energy
and masses according to the formula!

rr=4M2— M4/ m? 1)

where M is the bound-state mass, 7 the mass of the
constituents, and r the range of the distribution of
charge. We choose equal-mass constituents for sim-
plicity only.

* Supported in part by Air Force Office of Scientific Research
Grant No. 1282-67.
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In the limit M — 2m, (Eq. 1) agrees with the range
given by the nonrelativistic Schrédinger equation, which
is

ri=mE, (2)

where E is the binding energy of the state.

As M decreases, Eq. (1) continues to hold until
M=V2m, at which point » equals (2m)~'. As M de-
creases further, Eq. (1) predicts that the range will
begin to increase. However, at just this point the
anomalous singularity undergoes its well-known dis-
appearance into an unphysical sheet,»? making Eq. (2)
invalid. For M <V2m the range is controlled by the
normal singularity, which gives

r2=4m?. 3)

1t is a widely held belief that this behavior at M <V2m
represents very relativistic effects which have no simple
interpretation in terms of wave functions. For this
reason, it is generally believed that nonrelativistic in-
tuitions are useless for the understanding of deeply
bound systems.
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It is the purpose of this paper to demonstrate that
exactly the opposite is true. Both the anomalous and
normal behavior of the range can easily be understood
in terms of a very simple wave-function picture.

In order to do this, use is made of a theorem which
asserts that relativistic quantum theory in the limit
of infinite momentum?? is a special case of Galilean-
invariant nonrelativistic quantum mechanics in two
spatial dimensions. The theorem was suggested by one
of us in Ref. 4.

The quantities of the infinite-momentum description
of relativistic theory are as follows:

Each particle in the system has a mass m; and a 2
component of momentum given by a;L, where L is a
very large positive number. Each «; is positive definite,
since we are using a reference frame moving so rapidly
in the —z direction that all momenta are boosted up
to infinite positive values.* Each particle also carries a
transverse momentum (k).

The identification between the quantities (a,%iz,kiy)
and the quantities of a Galilean-invariant quantum
mechanics is: (1) k;=2-dimensional momentum of the
ith particle; (2) a;=twice the mass of the sth particle
of the two-dimensional theory ; and (3) m.?/a;=1internal
energy of the ith patricle.

The nonrelativistic two-dimensional energy would

then be
[ |
H=Z —

a;

©)

for a system of free particles. It was shown in Refs. 4
and 5 that the Hamiltonian of Eq. (4) correctly des-
cribes the motion of the infinite-momentum relativistic
system if one counteracts the time dilation for systems
moving near the speed of light by defining a time scale
T given by T=¢/L.

We shall apply the above identification to the problem
of the range of the charge distribution for a relativistic
state consisting of a charged and an uncharged particle,
each having mass .

The bound-state mass is M and satisfies

M<2m. 5)

3 S. Weinberg, Phys. Rev. 165, 1313 (1966).
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For a nonrelativistic pair of particles of mass u; and
w2 bound in a state with binding energy B, the range of
the charge distribution in the bound state satisfies

r—1=<—smB)”2(9‘%‘2—)).

(6)

Here po is the reduced mass pius/(ui+ue). The first
factor is the inverse range of the distribution of the
relative coordinate, and the second factor is the re-
ciprocal of the relative distance from the charged
particle (labeled 2) to the center of mass.

Applying the identification 2u1= a1, 2u2=as, and using
the invariance of the infinite-momentum limit under
scale transformations? of the a coordinate to set a;+as
=1, Eq. (6) gives

r(o)=[4Ba(l—a) 2. )

The binding energy B in the two-dimensional theory
is the value of the difference between the energy of a
bound state at rest and the energy of two free con-
stituent particles at rest. In the relativistic theory, the
identification of a particle at rest is a particle with
ko=k,=0. Hence the binding energy can be gotten by
using Eq. (4) for both the bound state and the two-
particle system to give

— B=M'—m/a—m/(1—a)

=M:—m*/a(1—a). (8)
Using Eq. (8) in Eq. (7) gives
r(o)=2[—a(l—a) M>+-m*J2. )

Now, in general, the constituent particles in the
bound state will be in a superposition of states with all
values of o for which both « and (1—a) are positive.
Equation (9) gives the range only for that part of the
state correlated to a given value of & for the charged
particle. Hence the actual range will correspond to the
minimum value of (o) on the interval 0<a<1.

A minimum of r(a) occurs at a=2m?/M?, which
lies in the interval if M >V2m. Then the range given
by Eq. (9) and a=2m?/M? agrees exactly with Eq. (1).
If M <VZm, the minimum of () occurs at the end-
point a=1. Equation (9) then gives a range in exact
agreement with the normal-threshold answer of Eq. (3).
Hence it is possible to understand both the anomalous
and the normal behavior of the form factors of a bound
state very simply.



