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and the dipole moment of isospin by

D„= dyds yp™(ys).

The total isospin is of course

I = dydsp (y,s).

In conclusion, we point out that Eq. (25) and its
counterpart for g's pose very deep internal consistency
requirements on the structure of the projections, "I
bubbles, " and expansion functions e, (Z) entering into
the operator T. For T must have an eigenvalue equal
to I for each current and this eigenvalue must equal 1
for all values of momentum transfer. It is not, at
present, clear to us, what in the dynamical theory of

Refs. 2 and 3 guarantees such eigenvalues without
which the currents cannot exist. In particular it may be
that a consistent theory of currents cannot be formu-
lated without including into the theory from the start,
those systems to which the currents couple (photons,
leptons). At any rate, the solution will certainly await
further understanding of the analytic properties of the
inner products and the relation of these properties to
Lorentz invariance and locality.

The theory presented here and in (3) does not
explicitly deal with the problems of spin. Wherever
details depend on spin we have assumed scalar particles.
The complications due to spin are presently being
studied by G. Frye.
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The behavior of the intrinsic size of a bound state as a function of its mass is derived by using an analogy
between nonrelativistic two-dimensional quantum mechanics and the infinite-momentum limit of rela-
tlvlstlc quantum theory.

TTKMPTS have been made to understand rela-
tivistic form factors for bound states in terms

of the use of wave functions. "In relativistic physics it
is found that the familiar nonrelativistic behavior in
the limit of loose binding is caused by the existence of
anomalous thresholds in the dispersion relations for
form factors which manifest themselves in ranges of
charge distributions that are larger than the brompton
wavelength of the constituent charged particle. The
range for loose binding depends on the binding energy
and masses according to the formula'

where M is the bound-state mass, w the mass of the
constituents, and r the range of the distribution of
charge. We choose equal-mass constituents for sim-
plicity only.
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In the limit M'-+ 2m, (Eq. 1) agrees with the range
given by th.e nonrelativistic Schrodinger equation which
1S

(2)

where E is the binding energy of the state.
As M decreases, Eq. (1) continues to hold until

3f=92m, at which point r equals (2m) '. As M de-
creases further~ Eq. (1) predicts that the range will

begin to increase. However, at just this point the
anomalous singularity undergoes its well-known dis-
appearance into an unphysical sheet, "making Eq. (2)
invalid. For 3f&42m the range is controlled by the
normal singularity, which gives

r 2=4m'.

It is a widely held belief that this behavior at M &42m
represents very relativistic e6ects which have no simple
intel pretatlon 1n terIns of wave functions. Fol this
reason, it is generally believed that nonrelativistic in-
tuitions are useless for the understanding of deeply
bound systems.
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It is the purpose of this paper to den1onstrate that
exactly the opposite is true. Both the anomalous and
normal behavior of the range can easily be understood
in tern1s of a very simple wave-function picture.

In order to do this, use is made of a theorem which
asserts that relativistic quantum theory in the limit
of in6nite momenturn3 5 is a special case of Gahlean-
invariant nonrelativistic quantum mechanics in two
spatia1 dimensions. The theorem was suggested by one
of us ln Rcf. 4.

The quantitics of thc infinite-momentum dcscllptlon
of rc1Rtlvlstlc theory Rlc Rs f0110%'s:

Ea,ch particle in the system has a mass m; and a s
component of momentum given by n;I., where I, is a
very large positive number. Each m; is positive definite,
since wc RI'c using a, I'cfcI'cncc frame Dlovlng so rapld1y
in the —s direction that a11 momenta are boosted up
to infinite positive values. 4 Each particle also carries a
transverse momentum (k;„k;„).

Tile Idcntlflcatlon bctwccll thc quantltlcs (n)~ix, kjp)
Rnd thc quRntltlcs of R GRlllcRQ-lrlvRrlRnt quantuDl
mechanics is: (1) k, =2-dimensional momentum of the
ith particle; (2) n, = twice the mass of the ith particle
of the two-dimensional theory; and (3) mP/n;= internal
energy of the ith patricle.

Thc noIirc1Rtlvlstlc two-dlDlcnslona1 cncI'gy %'ou1d

then be

for a system of free particles. It was shown in Refs. 4
and 5 that the Hamiltonian of Eq. (4) correctly des-
cribes the motion of the infinite-Qmmentum relativistic
systcnl lf onc countcI'a, cts thc time dilRtlon for systems
moving near the speed of light by defining a, time scale
T given by T=1/1..

%C shaH Rpp1y thc Rbovc identification to the problcn1
of the range of the charge distribution for a relativistic
state consisting of a, charged and an uncharged particle,
each having iTiass ss.

The bound-state mass is M and satisfies
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Fol R QonI'clRtlvlstlc pall of pRrtlclcs of Q1ass p, i, RQd

p, ~,bound in a state with binding energy 8, the range of
the charge distribution in the bound state satisfies

(~I+I 1)
r-1—( g~+) I /1

Here po is the reduced mass pill&/(pl+pl). The first
factor is the inverse range of the distribution of the
relative coordinate, and the second factor is the re-

ciprocal of the relative distance from the charged
particle (labeled 2) to the center of mass.

Applying thc identification 2p i =ny, 2p2= G2, Rnduslng

the invariance of the infinite-momentum hmit under
scRle tIRllsfollllR'tloIls of tllc n coordinate to sct nl+nl
= 1, Eq. (6) gives

r-'(n) = [48n(1—n)J".

The binding energy 8 in the two-dimensiona1 theory
is the value of the difference between the energy of a
bound state at I'est and the energy of two free con-
stituent particles at rest. In thc relativistic theory, the
identification of R partic1e at rest is a particle with

k,=k„=o.Hence the binding energy can be gotten by
using Eq. (4) for both the bound state and the two-

particle system to give

—8=HIP —m'/n —m'/(1 —n)
=M' —m'/n(1 —n) .

Using Eq. (8) in Eq. (7) gives

Now, in general, the constituent particles in the
bound state wiH be in a superposition of states with all

values of n for which both n and (1—n) are positive.
Equation (9) gives the range only for that part of the
state correlated to a given va1ue of o, for the charged

partic1e. Hence the actual range mill. correspond to the
minimum value of r '(n) on the interval 0(n&1.

A 11111111nulll of r (n) occllls Rt. n= 2m /M ~
wlllch

lies in the interva1 if M&&2m. Then the range given

by Eq. (9) and n=2m'/M' agrees exactly with Eq. (1).
If M(&2m, the minimum of r '(n) occurs at the end-

polllt n= 1. Equation (9) tllcll gives R 1RIlgc ln exRct

agreement with the normal-threshold answer of Eq. (3).
Hence it is possible to understand both the anomalous

and the normal. behavior of the form factors of a bound

state very slIDply.


