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Questions concerning the hadronic currents are studied in the context of the in6nite-momentum limit
of the theory of self-induced strong interactions. Representations for the matrix elements of currents are
derived from the composite nature of the particles. The kinematic structure in the transverse plane is shown
to be Galilean-invariant, and conclusions for the theory of current algebra are drawn.

I. INTRODUCTION
' "NTERACTIOX currents and densities of the

- hadrons are studied from the point of view of the
infinite-momentum limit of the theory of self-induced
strong interactions as developed by Frye and the
author. ' '

Two Lorentz observers 5 and 8" with coordinates
x, y, s, t and x', y', s', t' observe the system of hadrons
under consideration. The observer S' is an ordinary
Lorentz observer who ascribes to each particle a finite
momentum vector p„p„, p. and a finite energy,

(p,'+p„'+p, '+m')"'. The frame W' is obtained from
5' by velocity transformation in the x direction. 4 It is
assumed that the relative velocity of lV and lV' is so
near to 1 (we take c= 1) that the spacelike hypersurface
t'=0 practically touches the light cone from the point
of view of lV.

The frame W' is not unique, since any Lorentz
transformation in the x direction with e(1 will trans-
form 8" into another observer, g", similar to lV
itself. The assumption that an infinite-momentum limit
exists is the assumption that the description in 5' is
related to that in 8"' by a particularly simple set of
rules and that covariance under such transformations is
manifest. In Ref. 3, the limit was studied in terms of a
set of variables n and k which could be used by 8" to
describe a system. When relevant, a discrete index u

or b will be used to denote particle type and spin state.
The transformations between two observers 8"' and

8"' were shown in Ref. 3 to be equivalent to a change
of scale of a so that from the point of view of 8", an
infinite-momentum limit means that the quantities
of the theory are expressed in terms of ratios of the n.
More generally, the existence of an infinite-momentum
limit requires manifest invariance with respect to the
subgroup F, of the inhomogeneous Lorentz group which
leaves invariant the hypersurface x+]=0.

In this paper the infinite-momentum limit of the
matrix elements representing hadronic currents is
examined.

* Supported in part by AI'-AFOSR Grant No. 1282-67.
'L. Susskind, Phys. Rev. 154, 1411 (1967).
~ L. Susskind and G. I'rye, Phys. Rev. 164, 2003 (1967).
3 L. Susskind, Phys. Rev. this issue, 165, 1535 (1968).
4 In discussing the subgroup P we use the notation of Ref. 3

except for the generator which was called Q in Ref. 3. Here we
call it P. Also the g direction is used as the longitudinal direction
in place of the s direction used in Ref. 3.

The other aspect of hadronic currents which we
discuss is the structure implied by the composite nature
of the hadrons. Briefly, we may expect the matrix
elements of currents between particle states to be
linearly related to matrix elements taken between the
constituents of the composites, the hadrons themselves.
The kernel of the linear relation depends on the ampli-
tudes which describe the particles as composites.

We first consider the case of total charges such as
electronic, baryonic, or SU3 charges. The theory of
charges is then generalized into a theory of currents
and densities.

II. CHARGES

where the notation used is that of the abstract formu-
lation of Ref. 3. We shall assume that when acting on a
composite state li j), e' & acts separately on the two
subsystems i and j:

or
e' @Iij &= U;iU, Ilm)

Qlij&=Q'iltj&+ Q il a&. (3)

Equation (3) defines a strictly additive quantity. The
word "strictly" is added to distinguish between quanti-
ties like Q and quantities like energy which are only
additive for well-separated systems. It is easy to verify
that the commutator of two strictly additive operators
is strictly additive.

The charge as seen by 8"' is an integral over all
x', y', 2' for t' fixed. From the point of view of 8', the
charge seen by LV' is an integral over the hypersurface
left invariant by the subgroup F.4 It is not dificult to
show that for any element of Ji, I F,Q)=0. We shall
demonstrate the method which makes use of the
observer 8". The time component of the 8" current
vector is given in terms of the S' current vector by

ii'= (1—i") "'(ji+j ).

Charges are the space integrals of the fourth com-
ponents of current vectors. As such, their matrix
elements connect only states with equal spatial mo-
menturn. They generate, through exponentiation, Lie
groups which act independently on subsystems.

Suppose ~"
I &)= U'ill&
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FIG. i. Two-cluster representation for the matrix
elements of strictly additive operators.

Integrating j&' over x'y's' can be carried out in 5' by
integration over the hypersurface x+ t= 0. The measure
of x' distance for given distance x on this surface is
Ax'= (1—z')'~'hx so that

Q= dxdydzdt b(x+t)(j,+j,).

The effect of F on Q can be expressed through the
commutators LF,Qj:

3. The operators 0. and k have as their eigenvalues the
sum of the longitudinal ratios for each particle and the
sum of the transverse momenta, respectively.

We also assumed invariance of the theory under the
replacement of each n; by Iil. In; and the replacement of
each k by k,+n;P with A and P arbitrary. Consider
any state which is an eigenvector of 0. and k with
eigenvalues a and k. Applying a longitudinal scale
transformation with 4=0. ' and following this by a
transverse scale transformation with P= —k produces
a state If) with a=1 and k=0 which will be used to
label the original state in the form Ink/). This is
analogous to labeling a state with a set of variables
which describe the configuration as seen by the center-
of-mass observer together with the total momentum
of the configuration. Note that I1,0pP)= If).

A special case of this labeling is to label single-
particle states by their longitudinal ratio 0., transverse
momenta k, and particle type a as in In, k,a). The
matrix elements of Q have the form

QPfIQIW~k)=Q ~b(1 Pi~)—b(k 0—
In (3) it was shown that strictly additive operators

satisfy an internal particle representation shown in
Fig. i.

It is an easy matter to extend Fig. 1 to matrix

I n, Qj= p,+p, , dxdydzdt b(x+I) (j,+j,)
Q j

=i dxdydzdt b(x+t)I ———I(j,+j,)
&ax at)

=0,
FIG. 3. Another representation for a strictly additive operator.

For an m-n particle matrix element these are mn terms of the
type shown.

I A,Q)= L„dxdydzdk b(x+1)(j,+j,) (6)

+ ~ ~ 0

FIG. 2. Many-cluster representation for the matrix elements of
a strictly additive operator. For an m-n cluster matrix element
there are mn terms of the type shown.

=0,
8

Lk„,Q]= dxdydzdt b(x+t)—(j,+j,)=0,
Bp

I k„Q]=0,

I.P.,Qj= I.L.,Qj+I.&.,Qj=o.

We shall introduce a method of labeling eigenstates
of the operators a and k which were introduced in Ref.

elements involving arbitrarily many particles on the
left or right. The generalization is shown in Fig. 2.

Figure 2 may be used as the starting point for an
iteration method of computing mat ix elements. An
n mparticle m-atrix element of Q consists of em terms,
each of which contains an internal matrix element of

Q inserted into the line connecting two external particles.
Figure 2 shows one such term. The single term shown
in Fig. 2 can be reexpressed with the help of the PIP
rules of Sec. 7 of Ref. 2 to give Fig. 3.

Summing all res terms gives

=Z(u'i' ~i i,~i+ i '—ii'n
I + z'z + wg

2

X Izi z; i,z;+i z~)1(Zi, Wi')1(Zi',. Wi)

X (m; I
Zi'Z, )(Wi'W,

I z;)

XE(Zz, W)I(Z; W )(WIQIZ), (8)

where the cluster notation of Ref. 3 is used. Equation (8)
is nontrivial if e or m or both are greater than 1.



HADRON IC CURRENTS

The I coefFicients' are chosen so as to include as
much of the sum as possible in the single-particle part.
To do this, we break the unit operator into the sum of
the projection operator for the space spanned by the
one-particle states and I', the projection operator for
the orthogonal subspace:

dn dPI= —dkd—l
I ok)(Pt I

b(1 a/P—)b(k l)—

+ 2 I (z;w)lz)(wl+ Io)(ol (v)

The notation Pz, w=i means a sum over multi-
particle states starting with two-body states. Ke replace
I(zi, W) and I(W; Zi) in Eq. (8) by the two terms in
Eq (9) giving (wi w-IQIsi «-&» a sum « fo«
terms. The first term contains only single-particle
matrix elements of Q and equals

g(wi ' 'wa —i w~+i waltz~ +wilsi' ' 'si'-i sq+i' ' 'sl )

XI(Zi; Wi')I(zi', Wi)(w, 'I Zi'p)(Wi', s
I z;&

x( I gls) (1o)

In the other terms, matrix elements of Q involving
more than one particle either on the bra side or ket side
or both are contained linearly.

For the matrix elements involving single particles
in both bra and ket, Eq. (8) is trivial, For all other
matrix elements, Eq. (8) is a nontrivial representation
of the internal structure of Q. Therefore it is possible
to regard Eq. (10) as a starting point for an iteration
to obtain the matrix elements of Q. We denote the
single-particle contribution by Qi and represent the
linear operations which are applied to &wlQls) in Eq.
(10) as B~g (wi' ' 'w~i si' ' 's~) so tllat

Qi(wi' ' 'wa j si' ' 'sm)=Iowa (wi' ' 'wa j si' ' 'sm)(w Ig Is)

or more simply
Qi= Il-'&w

I Q Is&.

The three terms involving multiparticle matrix
elements of Q are linear transforms of (wi IQlsi )
which we express as

Bwz~(wi w„; zi s„)(W I Q I Z&.
W, Z 2

The superscript, M, means many-particle contribution.
In terms of these definitions, Eq. (8) becomes

&WIQIZ&=gi(W; Z)+&w', z &W'Iglz'&
or

&WIQIZ) =L1-II"j-'g.
=(LI—Il~j 'Il')(wig! s& (»)

Equation (12) can be used to give a linear homoge-
neous equation for the single-particle matrix element

&w'b IQls a )= T b;;, „b„(w. blQlsa&. (14)

In Eq. (14), the full dependence on the discrete
particle variables has been reinstated through the
indices u and b.

An inspection of the terms entering into an iteration
construction of T shows that T„~, , „~„is of the form

Tb'a'bg(w ,s i ws)b($ —s i w —w ) ) (15)

with T~ ,. y, being an F-invariant function and
b(s —s', w —w') being the F-invariant b function
defined in Ref. 3.

Since the matrix elements of a charge are F-invariant
and momentum-conserving, we have

(wblglsa&=gg. b(w; s).
Inserting Eqs. (16) and (15) into (14) gives

Qy. = T&;.', g. (s's'; sz)dzgb.

The quantity fT&;, i,(s's', ss)dsg&, appears to have
a dependence on s', but it is actually independent of
s' since the only F-invariant function of s' is constant.

Each solution of Eq. (1'/) can be used to begin an
iteration toward an operator whose single-particle
matrix elements equal Q&,. The entire set of such
operators is closed under commutations.

The number of such operators is the number of
eigenvectors with unit eigenvalue of the matrix

T~;, i.(s's', zs)ds, where ds=dadk/n

The dimensionality of this matrix is the square of the
total number of independent particle types. However,
not every solution is actually a charge, where by charge
we mean integrated time component of a four-vector.
For example, 0. and k, the total longitudinal ratio and
transverse momenta, are solutions.

III. LOCAL SCALAR DENSITIES

The most important advantage- of the infinite-
momentum limit is the elimination of vacuum structure
from the theory. ' The infinite-momentum external
particles in the X or X representation cannot connect
to the vacuum structure if the vacuum structure graphs
fall off suKciently rapidly with energy. e assumed
this to be the case for charges also. However, this

by observing that the single-particle states are
expandable. ' '

&w'lgl "&=z"(Z)z- (W)'&Wlglz&
=z, (Z)z (W)*(I 1—&~j '&'&(wlgls). (13)

Collecting the entire set of linear operations on

&wlgls& implied in Eq. (13) into an operator T„,, „,
gives
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j.'io. 4. A vacuum contribution to the matrix
elements of a local scalar. Such terms disappear
when S is longitudinally integrated and trans-
formed to infinite momentum.

and

S(y', s') = (1—~') " s(x',y', s')dx' (18')

zero. In order to avoid this we simply scale up the
definition of S by the factor (1—i') '".We redefine S by

s (x',y', s')dx'. (18)

From the point of view of the observer 5', the
integral in Eq. (18) is

S(y,s) = (1—~')" s(x,y, s, t)b(x+t)dxdt. (19)

The factor (1—v')'" which goes to zero as v —+ 1
is a Lorentz contraction factor.

This factor causes the operator 5 to be zero. It is
possible to understand this as follows. Any physical
system in space time which contributes to a presence
of s will be contracted into infinitely thin distributions
in the x direction. Thus an integral over x' will give

assumption cannot be maintained for the local quanti-
ties such as s(x), a scalar density. The vacuum can
connect to states of arbitrarily large momentum
through s(x), since s(x) is a local scalar. For example,

(p ~s(x)i 0)=e*&*.

Because of this, the matrix element (ptas(0) ~ak) will
contain a vacuum term shown in Fig. (4), in which the
intermediate I bubble carries infinite momentum.
Similar diagrams could not contribute to (pl~uk) or
(Pt(Piuk) because both Qi~H(0) and (|P~O) vanish
unless the momentum of iP is zero and (wiz, s—w)
goes to zero as 0. pgoe—s to zero. However, for local
quantities, Q ~sj0) is independent of the momentum
of P. On the other hand, integration of s over space
will cause those matrix elements (iP~s~0) to vanish if
the momentum of |PWO. An example of this is the lack
of vacuum structure in the integrated charges Q.

One of the reasons we like to eliminate vacuum
sects is that this will lead to strictly additive operators
which will close under commutation. However, we
should like to maintain information about the local
structure of the operators which make up the commu-
tator algebra. The important aspect of the spatial
integration is eliminating the matrix element (iP ~s~0)
for large longitudinal momenta of zP since this will

prevent the vacuum graphs from connecting into the
structure of matrix elements between states of very
large longitudinal momentum. This can be accom-
plished by integrating s(x'y's') over the longitudinal
direction x' in the frame W. We tentatively define the
"transverse scalar current" by such an integration.

S(y,s) = s(x,y, s, t)b(x+t)dxdt.

The transformation properties of g under the group
F are contained in the commutation relations

Pn, S]=0, (20a)

P„S]= —(aS/as), (20b)

Pk„, ,s]= t(OS/B-y), (20c)

[P,S]=0,
LA, S]=iS.

(20d)

(20e)

a=p.+p„k.=p., k =p„
p= qz+qZ) tz= qzi tg= qy

(k'+m')/a=P, —P„(P+e')/P= q& qz z—
(Invariant mass, m, is carried by p and e by q.) Then
simply evaluate

t= (p, qz)' (p, q,)' (p,, —q„)'——(p.——q.)'—, —
which gives

k'+m' P+n'
t = (0'—p) — — —(k—1)'

The matrix element of S between configuration p and
zP with |P carrying momentum nk and g carrying Pl is

(Plztz~ S(y)s) ~nk|P) = b(a P)e'i"—"'&+'&'

X(ply ~s(0) lak4'). (21)

Assuming that the longitudinal integration removed
the vacuum terms from the structure of s, the trans-
verse S is strictly additive and therefore satisfies Eqs.
(3), (8), (12), and (14) and Figs. (1)—(3).

Using Eqs. (15) and (21), Eq. (14) takes on the
following form for the operator S.

(P'l'b'
~
s(0) ~n'k'a')b(n' —P')

= b(u' —P')2' i, , i,(an'k'l'; nakl)

X (nlb
~
s(0) ~akim)b(k' t' k+l) . (—22)—

By concentrating only on the matrix elements of s
which are diagonal in 0,, a certain amount of information
concerning the local structure of s is lost. The in-
formation which is contained in S is exactly the in-
formation contained in the usual matrix elements of s
for spacelike momentum transfer. It is easy to see that
matrix elements of S do not contain information about
timelike momentum transfer. The momentum-transfer
squared between mk and pl is easily evaluated using the
identifications'
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For matrix elements of S, n=P and. l= —(k—l)' and
is spacelikc.

Also it is not difficult to show that for any two states
f and y carrying 4-momenta p and q with spacelike
momentum transfer between p and q, a rotation can be
made which will bring p and q into a new configuration
with pa+pi=qg+qi. Lorcntz transformation 111 flic x
dircctloll will bl'lng lp Rlld p to lllfliiltc-1110Iilc11'tuII1

states with equal longitudinal ratios. Since s(0) is a
scalar, its matrix elements do not change under this
set of operations. Hence it follows that S(y,s) contains
just that information contained in s(x,y,s} for spacelike
momentum transfer.

For scalar particles, the matrix elements of s(0)
depend only on momentum transfer and particle type:

(26')

The transverse currents are defined by longitudinal
lDtCgI'Rtlon;

g„(y',s') = (I—s') ll' j„'(x',y', s')dh',

g.(y', s'}= (I—e') 'I' j,'(x',y', s')dh',

j,'(x', y', s') dx'p(y', s') =- j,'(x',y', s')dx'+
2

(P,lP ~
s(0) ~n,u,o)=F,,.((u —l)1),

which when used in Eq. (22) gives

(24)
In terms of the frame W', the definitions in Eqs. (27) are

&1 .((O'—l')') = &1 .. 1,.(n'n'0'1' nnlIl)
g, (y,s) = j,(x,y, s,l) 8(x+l)dxd&,

Xb(k' —l' —0+l) (dn/n) dlld/F p.((k—l)') . (25)

The right-hand side is independent of 0.' by virtue of
the F-invariance of T.

Hence the homogeneous linear equations for matrix
elements of 5 which derive from the strict additivity of
S are uncoupled for different values of invariant mo-
mentum transfer and leave solutions arbitrary up to
multiplication by any f(t)

This is analogous to theories of currents which make
use of "sidewise" dispersion relations to obtain coupled
linear equations for matrix elements of currents. 5 In
order to determine the function f(t), a more powerful
technique, Inaklng full usc of thc locRl pI'opcI'tlcs of
the currents, is necessary,

IV. VECTOR CURRENTS

As a second example of the use of the infinite-
momentum frame in the study of local currents, we
consider a 4-vector current such as the electromagnetic,
baryonic, isospin, strangeness, or SU3 currents. The
current j has components, j„j~,j„and jt in 5' and

jy p js ) Rnd jt ln W ~ Thc I orcntz tI'RnsfoI'nlatlon
on j glvcs

j'(0)=j.(o),
j'(o)=j (o),
j'(o)=(&-~') '"(j*+sji),
j '(0)= (I-") '"(j+sj*).

In the limit s ~ 1 the last two equations of Eqs. (26)

5 R, Dashen and S. I'rautschi, Phys. Rev. 143, 11l1 (1966),"
in particular compare Eq. (5) in Dashen and Frautschi with
Eq. (25) in the present article.

y„(y,s) = j y(x,y, s,l) 8(x+1)dxdl,

p(y, s) =- [j,+j,g b(x+l)dhdk.
2

[n,g;j=0, l=y, s

Ln,pj=0,
L&~ pj= 1~'p—

LA.,pj=0,
(A,„'l;j=ig;, I,=y, s.
P' pj=0,

L~ 4'j= —1~' p

(29)

The reader who has followed the arguments beginning
with those ln Ref. 3 Rnd concluding with thc Rbovc
commutation 1clRtlons may hRvc dlscovcl cd RD cs-
sclltlRl siIQpli6cation ln going to infinite momentum.
The simplihcation is exactly this: The structure of the
theory with respect to the transverse y-s plane is

The matrix elements have been scaled in order to
make their value 6nltc at infinite momentum. As with
the scalar density, it is expected. that the longitudinal
integration will eliminate the vacuum structure froID

the matrix elements of g and p. We assume as with S
that the transverse currents l„and g. and th««ns-
verse density p are strictly additive quantities and
that tllcy SRtlsfy RI1 equation silllilal' to Eq. (25).

The transformation properties of the g's under the

group F can be derived most easily by Tnaking the
idcnti6cation with the relevant transformations ln W.
They are



LEONA R D SUSSKIND

completely nonrelativistic and Galilean-invariant. First
of all, consider the effective single-particle energy
IIltroduccd 111 (3):

H = (k„'+k.')/n+nP/cx.

Interpreting o. as twice the effective transverse mass
(wl11ch dcpc11ds 011 tile stR'tc of longltudlnai motIon)
and m'/u as an internal energy, we see that the trans-
verse motion is given by the nonrelativistic formula
H=p'/2m+8. As is well known, Galilean invariance
requires total mass conservation which here means
conservation of e6'ective transverse mass —,'n. The
motion of single particles is therefore nonrelativistic
motion in two dimensions with each particle possessing
an additional degree of freedom —its mass.

Formally the group F together with II contains the
two-dimensional Galilean group as a subgroup. ' The
identification is

H —+ time displacement,

k —+ space displacement,

z rotation ~ p z rotation

P„~velocity transformation in y direction,

P, —+ velocity transformation in z direction,

n ~ 2+mass.

From this it follows that

(30)

The commutation relations given in (3) can be directly
checked to see that this subgroup is the Galilean group.
Simply stated, I' generates a change in k proportional
to the effective transverse mass a. This is just what a
nonrelativistic velocity transformation does: momen-
tum ~ momentum+mass Xvelocity.

The lack of vacuum structure at infinite momentum
is demanded by a nonrelativistic interpretation. The
currents lose their vacuum structure by longitudinal
integration which removes the longitudinal dependence
of the currents and produces local transverse curren. ts.
In fact, there are only three components of the current
vectors at in6nite momentum, g„, g„and p, which serve
as the two-component current and the density in the
two-dimensional analog. Suppose, for example, that
j(x,y,s, t) is a current satisfying a differential conser-
vation law 8'j;=0 or

to the matrix elements of currents in nonrelativistic

quantum mechanics and, unlike relativistic form
factors, does not depend on energy differences. As in
IlolllclRtlvls'tlc pllysIcs tb.c matrix elements of $ p
and 5 are de6ned only for 1&0.

A final remark concerning the nonrelativistic behavior
of g and p is that nonrelativisticaiiy we think of a
current as a density p times a local velocity vector u;.
Under a velocity transformation I; becomes I;+e;
and the current changes by pe;. Hence the commutator
of a current with the generator of velocity trans-
formation must be —ip. Furthermore, under velocity
transformation, densities do not change nonrelativistic-
ally and so the commutator of velocity transformation
with p should be zero. These physical requirements are
rejected in the last two commutation relations of
Eqs. (29).

The nonrelativistic behavior of the transverse plane
should not be looked upon as a mere curiosity. It is
possible that it can be helpful in guessing properties
and relations by analogy that could only be understood
from conventional methods by laborious calculation.
A possible application is to the theory of current
algebra. '

Since the transverse currents contain no vacuum
structure, cornmutators between such currents should
not have the vacuum problems of "Schwinger's disease. "
'tA'e suggest therefore that extensions of current algebra
which are attempting to go beyond integrated commu-
tation relations be carried out in terms of the transverse
currents g(y, s) and p(y, s). While the determination of
commutation relations of such currents may require
a model, these relations must be consistent with non-
relativistic commutation relations. It is certainly easier
to work with a nonrelativistic two-dimensional model
than a relativistic three-dimensional model. For
example, commutation relations for the isotopic-spin
vector currents may be based on a simple model of
nonrelativistic fermion or boson quarks of isospin —.
The results are

G (y,s),p'(y', s') j=~~-pvp'(y s)&(y y')~(s s')— —
.s Lp (y )4"(y", ')j= 8"(y, )~(y—y')~( —').

The usual moments of currents can be calculated
from the g and commutation relations can be worked
out. For example, the magnetic moment in the x
direction is given by

p, = dydsLsg„—yg. j.

Equation (31) is the local conservation law in two
dlQlenslons.

Ke note that the invariant upon which the matrix
elements of the transverse currents g, p, and g depend
is t= —(k —l)2, the square of the two-dimensional
spatial momentum transfer which bears close analogy

The radius squared of the isospin distribution is

given by

(") =2 dy«p (y,s)(y'+")

6 M. Gell-Mann, Physics j., 63 I',1964).
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and the dipole moment of isospin by

D„= dyds yp™(ys).

The total isospin is of course

I = dydsp (y,s).

In conclusion, we point out that Eq. (25) and its
counterpart for g's pose very deep internal consistency
requirements on the structure of the projections, "I
bubbles, " and expansion functions e, (Z) entering into
the operator T. For T must have an eigenvalue equal
to I for each current and this eigenvalue must equal 1
for all values of momentum transfer. It is not, at
present, clear to us, what in the dynamical theory of

Refs. 2 and 3 guarantees such eigenvalues without
which the currents cannot exist. In particular it may be
that a consistent theory of currents cannot be formu-
lated without including into the theory from the start,
those systems to which the currents couple (photons,
leptons). At any rate, the solution will certainly await
further understanding of the analytic properties of the
inner products and the relation of these properties to
Lorentz invariance and locality.

The theory presented here and in (3) does not
explicitly deal with the problems of spin. Wherever
details depend on spin we have assumed scalar particles.
The complications due to spin are presently being
studied by G. Frye.
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The behavior of the intrinsic size of a bound state as a function of its mass is derived by using an analogy
between nonrelativistic two-dimensional quantum mechanics and the infinite-momentum limit of rela-
tlvlstlc quantum theory.

TTKMPTS have been made to understand rela-
tivistic form factors for bound states in terms

of the use of wave functions. "In relativistic physics it
is found that the familiar nonrelativistic behavior in
the limit of loose binding is caused by the existence of
anomalous thresholds in the dispersion relations for
form factors which manifest themselves in ranges of
charge distributions that are larger than the brompton
wavelength of the constituent charged particle. The
range for loose binding depends on the binding energy
and masses according to the formula'

where M is the bound-state mass, w the mass of the
constituents, and r the range of the distribution of
charge. We choose equal-mass constituents for sim-
plicity only.
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In the limit M'-+ 2m, (Eq. 1) agrees with the range
given by th.e nonrelativistic Schrodinger equation which
1S

(2)

where E is the binding energy of the state.
As M decreases, Eq. (1) continues to hold until

3f=92m, at which point r equals (2m) '. As M de-
creases further~ Eq. (1) predicts that the range will

begin to increase. However, at just this point the
anomalous singularity undergoes its well-known dis-
appearance into an unphysical sheet, "making Eq. (2)
invalid. For 3f&42m the range is controlled by the
normal singularity, which gives

r 2=4m'.

It is a widely held belief that this behavior at M &42m
represents very relativistic e6ects which have no simple
intel pretatlon 1n terIns of wave functions. Fol this
reason, it is generally believed that nonrelativistic in-
tuitions are useless for the understanding of deeply
bound systems.


