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It is postulated that the theory of self-induced strong interactions possesses an infinite-momentum limit.
This limit is dered and its consequences are examined. It is found that some important simpli6cations
occur if the limit exists. The limiting form of the theory is shown to have Galilean invariance with respect
to motions transverse to the direction in which the momentum is in6nite.

I. INTRODUCTION
' 'N two recent articles, '' the author, ' with Frye, '
~ ~ proposed a theory of "self-induced strong inter-
actions. "The form of the theory is greatly complicated
by the presence of vacuum structure effects. Further-
more, because the theory is not manifestly covariant,
in each approximation the input form of the energy-
momentum relation

E(p) = (p'+m') '"
will not be reproduced in the output.

Stimulated by Weinberg's' observation that vacuum
effects disappear in perturbation theory, when the limit
of infinite momentum is taken, I have examined the
possibility of taking the same limit in the theory ef
"self-induced strong interactions. " Besides eliminating
vacuum e6ects the limiting process is found to have the
additional advantage that the form of the energy spec-
trum is manifestly reproduced at each stage of
approximation.

In Sec. II we introduce the infinite-momentum
method in terms of a system of free scalar bosons. A
remarkable analogy between two-dimensional Galilean
invariance and the invariances of the infinite-momen-
tum limit is demonstrated.

In Sec. III the infinite-momentum limit is defined
for the theory of "self-induced strong interactions, "
and it is shown that in the limit the transformation
properties of the theory are the same as for free particles
for those transformations which were discussed.

The limiting forms of the dynamical equations of Ref.
(2) are developed in Sec. IV.

In Sec. V, a formulation of the theory is given in
which the search for solutions is reduced to a search
for a set of infinite-dimensional matrices satisfying cer-
tain algebraic properties.

II. FREE PARTICLES AT INFINITE MOMENTUM

There are two types of reference frames from which
we shall describe a system of particles. "Ordinary refer-
ence frames" (ORF) are frames in which each particle
has a finite-momentum vector. Limiting reference frames
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and

s'= (s+st)/(1 —s') '",
t'= (t+st)/(1 —iI')'"

P~ P»

pv pw&

p.'= (p.+sp~)/(1 —s')'",
p, '= (p,+sp, )/(1 n') '"—

We consider a scalar particle moving with momentum

p as seen by an ORF. From the point of view of the
LRF, the s' component of momentum given in Eq. (1')
becomes infinite. Therefore, the description of the
motion in the s' direction shall be in terms of the
"longitudinal ratio" n, defined by n =p.'(1—s') '"which
tends to a finite limit as e ~ i.

Scaling the momentum by the factor (1—s')'" is
equivalent to stretching the s' axis by a factor (1—s') "'
which is necessary in order to see any structure in the s'
direction for systems which have Lorentz contracted by
the factor (1—n') ' '. In terms of the ORF, n= p,+op„
which becomes

as 8~ 1.
When considering the state of a system of free par-

ticles from the point of view of ORF, we shall use the
notation

I
pi' ' 'p ).

The description of the same state from the LRF is

l(~~)i " (k~).)

(LRF) are frames which move along the s axis in the
negative s direction with velocity close to the speed of
light (which we take to be 1) relative to the ORF. Of
course, for fixed v&1 such a frame is also an ORF.
However, we are interested in the limit v —+ 1. A LRF
then is one whose velocity is sufmiciently near 1 that the
limit of all the quantities under consideration have al-
most been attained.

Quantities measured in the LRF will be primed, and
those in the ORF will be unprimed. The connections
between primed and unprimed quantities are given
below.
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where k is a 2-vector in the x,y plane equal to (p„p„),
and 0.; is the longitudinal ratio for the ith particle,
n;= (p,)~+(pz);. We note that n) 0. Whenever possible
the combination (n,k); will be replaced by a single
symbol z;. Hence a typical state in the LRF is

Expressed in terms of n and k the transformation is
given by k„~k„,

k, -+ k,+nQ„ (3)

81 z

%e are interested in the transformation properties
of the ~zq s„)under the inhomogeneous Lorentz
group.

Let us 6rst consider (6nite) boosts in the s direction
with velocity e. For such boosts each free-particle
momentum transfornls as follows:

where in the limit e ~ j., e has been allowed to go to
zero so that e/(1 —v2)'~'-+ Qz z

Since these transformations are rotations in the LRF,
the theory must be manifestly symmetric under them.
Similar considerations apply to the rotation about x
which mixes p', and p'„,so that Eq. (3) can be gen-
eralized to

p, -+ (p.+up()/(1 —u') '",

p, ~ (p,+up )/(1 u2)ii2

where k and Q are 2-vectors.
In terms of the ORF the transformation (3) is given

by
P ~p.+Q*(p+Pi)

pz+pb ~ pz+pzz

P.+P ~z(P.+Pz).
(1—u')'~'

Or, from the point of view of LRF:

k~k,
n-+ X(u)n,

),(u) = (1+u)(1—u) '"

This transformation is a homogeneous Lorentz trans-
formation generated by R„+I.„where R„is the ro-
tation generator about y and I-, is the x-direction boost
generator. We shall refer to this combination as Qz.z

The motion of the particles in the LRF is generated

(2) by Pz which equals a sum over Particles:

Pz'= Z E(p'')'+~"j'"
Boost transformations are therefore scale transfor-

mations on the n with positive scale factor X(u). De-
6ne A to be the generator of such boosts so that the
unitary boost operator U(u)=e'&~' "& && gives

U(u)i(n, k), (n,k) )=i( n, k)&. . .()n,k)„).
Translations in the x,y plane are as usual generated

by the x,y components of momentum which are
conserved

2"(a) ~s& s„)=exp(ia gk~) ~s~. s„),
where 2'(a) is the unitary translator along the 2-vector
a. Also, since pn; is proportional to p,

' it is conserved.
Rotations about the z' axis in the LRF are repre-

sented in the obvious manner, k forming a 2-vector and
0. being invariant.

Two interesting symmetries are derived as follows.
The direction in which the momentum is in6nite in

a state ~nk) may be changed in6rutesimally. Consider
an in6nitesimal, rotation of the system through angle
q about the p Rxls. This 1nduces R transformation among
the p' components.

I I
Pz Pvz

Pz ~pz+epz ~

Pz ~ Pz epz ~

=P In /(1 v')+k +—~n g"'

1 k;2+e;
— Z n+2 (1—s')'"

(1—v')'I' ' ' 2n;

+higher order in (1 s')'~' —(5)

Consider the possibility of a coherent superposition
of two states with diR'erent total o.. The leading terms
in the energies of the states are n~/(1 —w')'" and
as/(1 —v')'" Hence, as v ~ 1 the relative phase of the
two terms in the superposition will change infinitely
rapidly so that this relative phase is meaningless. There-
fore, in the limit w —& 1 one should introduce a super
$8kcAos 'fsl8 foI' totRl 0„In doing so thele 18 no loss of
generality.

For interacting particles, which we have not yet in-
troduced, the amplitude for a real transition need only
be computed for eigenstates of e. Using the Lorentz
invariance of the scattering amplitude we automatically
obtain the transition amplitude in an ORF. If the state
in question happens to be a coherent superposition of
diGerent 4-momentum in the ORF, we can superpose
the GRF amplitudes in the customary manner.

Since the leading term gn;/(1 —e') '" only multiplies
the state vector by an uninteresting phase for eigen-
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In terms of the ORF's momenta

H= 2' L(p*)"+(p.)''+~"7/[(P*)'+(Pi)'7
= (Pi)*—(P*)' (7)

Thus we have found the following combinations of
the elements of the Lorentz algebra of interest:

(1) k,=p„k„=p„;the generators of transverse trans-
lations.

(2) n=p, +pi, the su'm of the generators of trans-
lation in the s direction and I directions.

(3) R„the generator of rotations about the z' axis.
(4) tl, the generator of boosts in the z direction.
(5) Q, (Q„),the sum of the generators of boosts in

the x (y) direction and rotations about the y (x) axis.
(6) H, the difference of the translation generators in

the time and z directions, p,-p, .
This set of eight generators forms a subalgebra of the

10-element Lorentz algebra. The commutation relations
can be obtained from the usual Lorentz algebra by
making the above identi6cations and are given below:

[zz,k7= [u,HJ= [n,Q7= [k,F7= [k,H7
= [z„~7=[tq„H7=0,

[n,A7= —zn,

[tt,Q7=iQ,

[Q,HJ= 2ik,

[k,Q7= in, —
P,H7= —zH,

[Z„k,7=z.;,k;,

[&*Q~7= ze'9 .
The seven generators excluding B also form a sub-

algebra which we call P. In fact, it is easy to show that
P generates the subgroup of the Lorentz group which
leaves invariant the hypersurface z+t=0 in Minkowski
space. This hyperplane is tangent to the light cone and
is the limit of the surface I,'=0 for the LRF as v ~ 1.
Hence one may think of the LRF as a reference frame
in which "space" is tangent to the light cone. The sub-
group F plays the same role in the inhnite-momentum
limit as the rotations and translations do in an ORF in
which they leave invariant the surface t= 0.

states of Pn, we subtract it out of the expression for
the energy in the LRF. Transitions among states of the
relative coordinates and transverse x,y motions of the
system are generated by the rest of the energy which
goes to zero as (1—z')'" corresponding to the fact that
all such motions are slowed down by a corresponding
factor due to time dilation, Hence it is natural to in-
troduce a new time scale T for the LRF, defined by

itl(1 pz)1/z

In order to compensate for this, the generator of
motion must be multiplied by 2/(1 —z')'i'. Hence, we
dehne an effective Hamiltonian by

k z+zzzP
(6)

The geometrical significance of the generator H= pi—p, from the point of view of the ORF is that it gen-
erates motions along the lightlike direction given by

dx/dt = dy/dt =0, dz/dt = 1.

Hence the effective Hamiltonian II generates motions
of the surfaces x+t=c ~ x+t=c+b.

Unlike the subgroup of rotations and translations in
the ORF which cannot change the magnitude of the
spatial momentum of a particle, the subgroup Ii can act
on any particle state ~n, k) to give a state of motion of
the same particle with any other values of 0. and k.

Finally, we wish to call attention to a remarkable
analogy between infinite-momentum transformation
properties and Galilean invariance.

Consider a two-dimensional system of nonrelativistic
particles invariant under the Galilean group consisting
of the following transformations:

(1) translations generated by the two components of
linear momentum called q and q„;

(2) rotations in the x,y plane generated by L; and
(3) velocity boosts (Galilean, not Lorentzian) gener-

ated by G, and G,.
The energy is

~=2 (zf'/2t ')+2 z"(Ir'—rtI)

where p, ; is the mass of the ~th particle.
A velocity boost with velocity u translates the mo-

mentum of each particle by pe. Hence the unitary oper-
ators representing the boosts are

e*~*=exp[zz P tz,x;7

e'~~ =exp[i' Q zi;y, 7,

where x; and y; are the spatial coordinates of the ith
particle and the generators are

Gz= Zi tzixig

Gw =Z i t4yi ~

From this we deduce the commutation relations for
the Galilean group:

[q G 7=zg tz'

[q„,G„7=zP tz;,

[q~ Gv7= 0,

[G.,G„7=0,

[G„L7=iG„,
[G„,L7= iG„—
[E,G,7=iq„

[q,L7=0,

[L,F7=0.
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These commutation relations are identical with those
of Kq. (8) if weidentifyq with k, G with Q/2, L withe„
E with H, and /I; with /2, /2. Thus the infinite-momen-
tum limit is Galilean invariant with I2/2 playing the
role of effective transverse nonrelativistic mass and Q/2
replacing the generator of Galilean boosts.

The origin of this symmetry is not dificult to under-
stand. The expression for the Harniltonian in the LRF
is p, (k 2+2/2, 2)/I2, . The term k2/, I2i,s formally identical
to the q2/2/i of nonrelativistic physics, and the 222;2/I2,

can be regarded as internal binding energy. The trans-
formations k —& k+nQ, generated by Q, are formally
identical to momentum ~momentum+mass Xvelocity.

Thus any relativistic theory, if it has an infinite-
rnomentum limit, must satisfy all the general require-
ments of Galilean invariance in the LRF. It is therefore
in the LRF, not the center-of-mass frame, where our
intuitions from nonrelativistic quantum theory may
have their most useful analogs.

III. INTERACTING PARTICLES

In Refs. 1 and 2, multiparticle state vectors

l pi . p ) were introduced. The
l pi . p ) are not en-

ergy eigenvectors for interacting systems. In a conver-
gent field theory, if IitP were the polynomial in Fock-
space creation operators which acts on the physical
vacuum l0) to produce the single-particle momentum-

energy eigenvector
l p), then

lpi "p-)=a'P " a'P. I0).

Unless the field theory is noninteracting, the
l pi . p„)

cannot be expected to be energy eigenvectors since they
do not contain the "scattered wave. "They are, however,
momentum eigenstates.

Under Lorentz transformations the lpi p ) for
m& 1 generally become very complicated superpositions
of rnultiparticle states involving different numbers of
particles as well as di8erent values of total and sub-
momenta. The physical reason for this is that Lorentz
transformations which move the surface t=0 (this in-

cludes boosts and time translations) leave a region of
space-time between the surfaces of simultaneity of the
two observers. Interaction, absorption, creation, and
scattering of particles can take place in this region caus-

ing the connection between the descriptions in the two
frames to be complicated. In particular, since the pres-
ence of one system will aGect the behavior of another in
the region between the two spacelike surfaces, the
Lorentz transformation will not act as a product trans-
formation on the subsystems of a system.

Those Lorentz transformations which leave invariant
the surface t=0, namely rotations and spatial trans-
lations, act separately on the coordinates of each sub-
system.

YVe again introduce two frames ORF and LRF mov-

ing with relative velocity v along the z axis. Although
the states lpi p ) are not energy eigenvectors, we

still define (P,);=—Llp;l'+2/I']'". Primed variables are
related to unprimed by

pm pm'

I
P2 P2t

P'= LP.—+~p j/(1 ")—'",
P = LP +I/p*j/t(1 II')'" ~

We are interested in states lpi' .p„')as seen by
LRF. These configurations, as observed by ORF, are
not simPly lPI. . .

Pm) but are U(I/) 'lPI' P„'),where
U(II) is the unitary operator connecting ORF with LRF.
Define lpi p„;I/)by U i(i/)lpi' pm')= lpi p;II).
Bydefinition lpi. p;0) equals lpi p ) and for free
partii2les lpi p )= lpi p„;I/) for all II. Our basic
assumption, which we introduce as a postulate, is that
lim„ I l pi p„;v) exists and that in the limit the struc-
ture of the vector space spanned by the limiting vectors
and the relations of these vectors are unchanged. The
meaning of this latter qualification will become clear as
we proceed.

The limiting vectors lim, I lpi p„;II) we denote
by l(nk)I (nk)„), where as before, I2;=(p,),+(p/);
=lim p (1—v2)'" and k, ,„=p,„.

According to the assumptions of Ref. 2 the

l pi p; II) are complete for any value II. As an example
of the meaning of our basic postulate, we assume that
the limit vectors

l (ni, kI) . (n„,k„))are also complete.
We shall now prove that the action of the sub-

group F, introduced in the previous section, on the
l(ak)I. .(I2k)„)is identical to the action of the free-
particle transforrnations. This is obvious for the gen-
erators of transverse translations and rotations about
z', k, k„,and E,.

The generator P,+I/PI is (1—II2)i/2P, '. Hence it acts
on lpi ~ p„;v) to give

0-")'"2 (p')'I pi".p-; r).

In the limit v —+ 1 this gives

(P.+PI) lzI "s-)=Z~'I«" s-)

where we have used the notation s; for (I2k), .
The 2-direction boost by velocity

l
22

l
(1 takes a state

which is seen as lpi'. . p„')by an observer moving
relative to ORF with velocity —v into the state

l
pi' ~ p„') as seen by an observer with velocity

—22/= (—N —II)/(1 —uiI) relative to ORF. By definition,
this state is

Pz+NPI
~~ u)

' '
i ~ ~

(1 N2) I/2

Now as II ~ 1 so does II/, so that the boost of
l (n, k)i .)

1s

Pi+NPI
I m (p.,p„, ;m).
m I (1 N2) I/2
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p, ~xp,
k, ~ kg+n, o
l; —& 1;+p,Q

(10)

Hence the action of the s boost (called A) is again a
rescaling of all the n;.

The generators Q„Q„canbe handled by recognizing
that they are inhnitesimal rotations about the y and x
axes, respectively, in the LRF. Their action is therefore
identical to the free-particle case.

In Refs. 1 and 2 the lp~ .p ) were not an ortho-
normal set because of the extended structure of the
physical particles. The inner products were shown to
possess a cluster decomposition, identical to that of the
5 matrix except that since the vectors iu~. u ) for
e& t are not energy eigenvectors, the inner products are
not diagonal in the sum of p, . This allowed nonvanishing
of inner products between single- and many-body states
and vacuum and many-body states. This is forbidden,
of course, for the 5 matrix.

The connected parts of the inner products are con-
tinuous functions apart from an over-all multiplicative
8 function of initial less 6nal total momentum which
we called C(g~ q; p~ .p„).

In the present development the unhealthy "vacuum
pollution" represented by nonvanishing of inner prod-
ucts between the vacuum and multiparticle states is
absent because the multiparticle states have n&0 and
are therefore orthogonal to the vacuum. Actually one
must be more careful about this point because the phase
space "blows up" at n~0. However, it is plausible,
especiaOy in view of Keinberg's' result in perturbation
theory, that the vacuum structure effects do disappear
as'v~ j..

It follows immediately from the invariance of the
inner product under the subgroup Ii of the Lorentz
group that the inner products {(pI)q. (pl)„l(u,k)~

(e,k)„)are unchanged by the following substitutions:

k,—(n;/A)K, where A=+;n; and K=+; k;. The F
invariant 8 function is de6ned to be

The requirements of (n, k) conservation are expressed
by the connected parts C being proportional to
b(w .

; s ). For example

(wis)=C(w; s)=8(w; s)=b(1—n/P)b (k—l).
Q"e also know about the C's that

C(0; s .)=0

C(w ~ ~ s ~ )=C(s ~ ~ ~ w ~ )+ (16)

In Refs. f and 2, the postulated composite nature of
the particles was represented by each single-particle
state being a superposition of multiparticle states:

lu)= Z e.(u~ "u-) lui" u.&~"u.

The linear dependence of the single- and many-
particle states is postulated to go over in the limit
s —+ 1 to a relation similar to Eq. (17):

ls&= Z
%=2

e.(sr .s„)is) s )d"s. (18)

In Eq. (18), d"s= dsr . ds. and ds= dk.dk„d~/u. The
differential volume element ds is P- invariant.

Projecting Eq. (18) into (wr . w„l gives

d"se.(sr s )

X(wr w isg . .s.). (19)

Prom Eq. (19) and the F invariance of the inner
product we conclude that e, (s~ s ) must be an F
invariant function of s and s;.

Q'e shall also require a set of coeKcients which resolve
the identity. We call them I(s . ; w . .).

Conservation of total n and k requires the inner product
to be diagonal in these quantities.

Assuming the inner products have the same cluster
structure in the LRF as in the ORF, the connected
parts

must have the same invariances as the inner products.
The notation w, is used in bra vectors to denote (p,l)i;.

A function, invariant under the transformations (10),
(11), and (12), which conserves a and k is called
an F invariant. It can be expressed in terms of the
invariant coordinates n;/A, P;/A, l;—(P;/A)K, and

m, ,n=o
d"sd"wisp. s &(wr. w. i

XI(s& s;w, w„)=I.
Taking matrix elements of Eq. (20) gives

m, n=O
rE"sd"w(w'

i s, s„)

XI(sg s; wg w„)

X(wg w is'. ). (21)

The F invariance of the inner product and differential
Ck require the I to be F-invariant functions of m; and
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s;. We have formally included the vacuum projection
operator into Eq. (20) by summing over 22=222=0. The
coefficients I(0; 0), I(s; 0), and I(0,w) equal 1, 0, and
0, respectively.

In Ref. 2, the inner products satished an internal
particle "X"representation. We postulate the correct-
ness of the representation in the limit. Since the vacuum
projections (0~si. . z ) are zero, the X representation
is not complicated by vacuum terms, We use the follow-
ing cluster notation:

Z or 5' stands for an entire cluster of particles. For
example,

Z=(si s„), W=(wi . .w„).
The total transverse momentum of Z(W) is K(L)

and the total longitudinal ratio is A(B). The vacuum
is formally included in the cluster notation as in Ref. 2

by a "null" or "empty" cluster. Hence we have in
symbolic notation that

g iZ)I(Z; W)(Wi=I,

where gtrz means summation and F-symmetric inte-
gration over the clusters Z and 5'.

The X representation is given by

—g (wi~Z21, Z22 Zi., (w. ~Z.i Z. )

the total s' momentum we can subtract any function
of p,

' and p,
' at the expense of doing nothing more

drastic to the time development of the state than multi-

plying it by a time-dependent phase factor. We shall
therefore subtract from pt' its infinite part, p, '. We st.ress
that this does not prevent us from considering systems
which contain subsystems with indefinite p, as long as
the total p,

' is well defined. In terms of ORF variables,
the "effective Hamiltonian" p,

'—p, ' for LRF is given by

pt+ &p. pt+ ttpt
t p

(1 P2) 1/2 (] 212) 1l2

which for v ~ 1 becomes

(P -P*)(1-")'"/2.
This is the "real" transition-producing part of pt'

which goes to zero as e —+ 1 in a manner consistent with
the time dilation for internal processes of a system with
velocity near j.. As for free particles, a change in time
scale eliminates the factor (1—212) '"/2, leaving the LRF
effective Hamiltonian

H pt pt

We define the total mass squared invariant p, '—p, '—p„'—p, ' to be S. Using the definitions of 12 as p,+pi
and H as p,—pt, the invariant S may be expressed in
the LRF as

S=Hn —k',

X(W12 W„i~st) (Wi W (s )
XI(Zii, Wii)I(Zi2, W12) I(Z„„;W„„).(22)

which gives

II= (k2+5)/t2

We state a theorem which is proved by inspection.
Theorem: The right-hand side of Eq. (22) is It in-

variant if the single-particle projections, (w;
~
Z . .) and

(W . ~s;), and the I's are. Hence an iteration method
may be used to obtain the multiparticle overlaps, which
at each stage yields F-invariant projections. The first
step of the iteration is to replace the sum over inter-
mediate I s by vacuum and single-particle contributions.

The resulting overlaps imply a set of I functions
which can be obtained by the method of Ref. 2. The
new I functions can be used in the second iteration
to improve the projections through theX representation.

In 6rst approximation

I=
i 0)(0i+ is)(w i

ti(1 tx/p) 1'2—'(k l) — .(23)

IV. DYNAMICAL EQUATIONS

The generator of time translations in the LRF is
related to the components of 4-momentum in the ORF
by

Pt'= (Pt+sp. )/(I s') '". —(24)

This energy becomes infinite as e —+ j.. However, the
leading term in the energy is proportional to p, '. If we
are working with a system which is in an eigenstate of

Note the similarity between Eq. (26) and Eq. (6).
In fact for a system of free particles, Eq. (26) reduces
to Eq. (6).

Since S is Lorentz invariant it follows that it is also
F invariant.

In terms of matrix elements, Eq. (26) takes the form

(W[H)Z) = (W[Z) ( K) '/A+S(W; Z)/A. (27)

In Eq. (27) S(W;Z) are the matrix elements of the F
invariant operator S and are therefore F-invariant func-
tions of the 2;; and m;.

In Ref. 2 it was proved that the matrix elements of
the Hamiltonian satsify a cluster decomposition which
follows from the cluster decomposition of the unitary
time development operator. The cluster rule for energy
is based on the cluster decomposition of the inner
product. For each term in the cluster decomposition of
(W

~
Z) containing Ã disjoint clusters, there are iV terms

in the decomposition of (W~ H~ Z), each one obtained
by substituting for one of the C clusters a connected
function H,(w; s ), leaving the other E—1 factors
as C functions.

We shall use just such a cluster structure for the
matrix elements of the effective Hamiltonian in the
LRF.
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The justification for this is that both the operators

p, and p, satsify this cluster rule. In terms of the func-
tional methods introduced in Ref. 2, a set of functions
T(qi. ~ q-; yi ~ .y„)satisfies the cluster structure pro-
posed for H if the generating functional ct" of T satis6es

E= '7, expLC),

vrhere 9", is a connected functional and 8 is the gener-
ating functional for the C(W; Z). Hence, since pl' and

p, ' are the energy and momentum in the LRF, the func-
tionals @which generate their matrix elements satisfy

(P,'= ((Pg'). expe,
(P,'= (P.').exp8,

and therefore

X= ((Pl' —(P,') =K. exp8.
(1 pl)1/I

The structure of the functions H, (W; Z) can be clari-
f'ed by considering the fully connected part of Kq. (27).
This gives

H (W Z)={X'/A)C{W Z)+S (W'Z)/& (28)

Given that H satisfies the cluster structure
K=X, exp6, Eq. (28) is necessary and suKcient for

Eq. (27).
In Eq. (28), S.{W;Z) is the momentum-conserving,

F-invariant, connected part of S(W; Z).

I'"or the single particle

&~
~

H
~
s)=H, (w; s) = &(u; s)(k'+ll')/n, (29)

from v hich it foBows that

S,(m; s) = 8(w; z))III'. (3O)

A significant feature of Kqs. (29) and (28) is that the
structure of Eq. (29) is reproduced under the expansion
of the single-particle states:

&w iHis)=8(m; s)(k'+os')/n

=Q e.(Z)e (W)*(WiHiZ). (31)

In Eq. (31), Qs~ means summation and F-sym-
metric integration over the variables describing Z and
W. In order to prove Eq. (31) consider the particular
terms in the cluster expansion of H which contains X
connected C clusters and one II,. Such a term gives a
colltl'lblltloll to tile 11ght-hand side of Eq. {31)of tile
forIQ

Q e,(ZI ~ Zg+I)e„(WI WN+1)*H, (Wl, Zl)
g t perm SW

XC(Wu,' Zl) C(WN+I, Zlv+I) ~ (32)

The sum over permutatlons means a sum over every
diGerent partition of the s; and m; into the clusters
gg —Zg+g and 8 g

—lVg+g.

Inserting Eq. (28) into Eq. (32) gives

IK&+II'
&u )H(s)=-p p Q s.(ZI %+I)~ (Wl W)r+I)* + + C(WI', Zl) . .

~ e (++1)lyerm sw AI/n 2 ~+I/n

XC(WN+IjZP+I)+ 2 p 2 ss(ZI'''ZX+I}&w(WI'''WZ+1) Se(WIqZI)C(Wl&Z2)'''
N g f perm zw' Ag

XC(WN+i', Ar+I) (33)

In Kq. (33), n is the longitudinal ratio for the external particle s. Smce each quantity in Eq. (33) has a transverse-
momentum- and longitudinal-ratio-conserving 5 function, the entire expression is proportional to g(u; s). The
entire second term which multiplies 1/a can easily be seen to be F invariant, and, therefore, has the form gib(~; s),
~lth gy just a number

In the 6rst term, P; P+I
i K;

~
1/(A;/n) is written as

-~+I JK;fl
lirlly Z

' —l&ll,
A; n

%+I
k=g K;,

and is, in fact, the transverse momenta associated with s. The )k~ term gives a contribution to Fq. (33) of the
forIQ

Q e,(ZI .Zg)e (Wl ~ .Wg)*C(WI., ZI) C(Wg, Zg)
N +f perm gg

(Z) -{W)*&WIZ)=ill l'& f )=-'JRJ'&(; ). (34)
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The term involving g I
K, l'/(2;/n) —

I kl ' is Ii invariant since g (n/A~) I
K, l' —

I kl ' is Ii invariant. The in-
variance under A transformations is obvious since the only longitudinal dependence is in the A,/n, which are F
invariant. Under Q transformations we have

K IK'I'/~' —Ikl'/nj LZ I«+~'~l'/~' —Ik+n&l'/nj=nLZ 1K*I'/~' —Ikl'/nj

Hence this term is Ii invariant and gives a contribution to Eq. (33) of the form (g,/n) b(w; s). The entire right-
hand side of Kq. (33) is

I:Ikl'/n+(g+g )/nlrb(w; s),
which proves the assertion.

The Schrodinger equation for the single-particle state ls) is

III &=(lkl'+ ')i
I )

Fxpandjng Is) jn mujtjpartjcje states and takjng matrix elements gjves

fkl'+m'
Z &WIIIIZ&e (Z)= Z (WIZ)e*(Z).

Using the cluster decomposition of II as in Eq. (33) gives

(36)

(eZ) Zpr+g)II. (H'» Zg)C(WI, Zm) C(W~+g,.Z~+ )g!perm z

Iklm+m'
Q e*(Zi Zn)C(Wz, ' Zi) C(Ws; Z~),

z perm
(37)

which by Eq. (28) becomes after some rearrangement

-IKgf' IK~I'
(Zeg. Zn) + + —Ikl' C(Wg, Zg)+SS,(W), Zg) C&W2, Zg) C(Wn. , ZN)

~ Q!perm 8'z A g/n 3 tr/n

I=m' Q —P g e.(Zg Zu)C(Wg, .Zt) ~ C(Wn,.ZN) . (38)
X g!perm W'Z

Both the left-hand side and right-hand side of Kq. (38) are Ii invariant. The equation is a linear eigenvalue,
eigenvector problem for the eigenvalue m and eigenvector (es~ s ). The Finvariance of the equations means that
the problem can be solved for a particular choice of n and k say n= 1 and k= 0, and the solution can be continued to all
n and k by Ii transformations.

The X representation for LIt postulated in Refs. 1 and 2 is assumed in the present model:

&wtlIIIZ~ "Zt.)
( " .IIII '-&=2 Z II( 'IZ" Z'-)

1

™-I(Z';;W';)&W; "W-;I J&
t lw, s $9 =&wt IZt ' 'Zt )

ns &W„W„W„,I
II

I s,)
+Z Z II&w*lZ* "Z'-&I(Z';W'~) &W"" W- ls&—Z Z rr

t-i ws '~ (Wr„W2, W„,I s&.&
~s w'w. ss'

I(Zpt, W')II(W; Z')I(Z', Wg()
X&w, IZ, & Z; )I(Z,;;W;,)(W»" W, ls;&—

I(Ai; Wai)
(39)

-- fK, I' - I1;I2
+Z +Z —+g—

1 nz I P& i n~ j P

X(wx . .w. lsg. .s ).
The third term is approximated by including onIy the

Substituting Kq. (28) for II produces a set of matrix the 6rst two terms of Kq. (39) give
elements whose connected structure is given by Eq. (28).
Hence the X representation is consistent with the trans-
formation properties of IJ.

The matrix elements of H may be calculated by an
iteration method proposed in (1) and (2). Since

(wlH fs)=(w

IZ)(Ill�'+m')/n,
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effect of the single-particle configurations in the inter-
mediate sum over B.The resulting H may be used in the
X representation to give an improved approximation.

From the discussion beginning with Eq. (31) and
ending above, we see that the manifest F invariance of
the equations guarantees that the form of the energy
spectrum used as input into the cycle of equations is
reproduced in the output.

V. ABSTRACT FORMULATION

In this section we assume the space of states to be a
Hilbert space with a countable orthonormal basis. The
vacuum IO) is chosen as one of the basis elements and
the remainder of the space is spanned by the vectors
Ii), i being an integer. The basis vectors satisfy

(jli&=b', (Oli)=0, (olo&=1

Each state Ii) is a superposition of multiparticle states
and is generated by a creation operator A;t, which is a
polynomial of particle creation operators.

li&=A, IO&=P d sf,(s, "s )Is, "s„&,

d™sf;(si s )atsi ats

Since the
I i) are complete, A „tAjt can be expanded as

A0"A jtl0)=P„j'A;slO)
or

Ii) each operator a„t. a, ,t can be written as a linear
sum of A"'s. Hence

A,t =e;(j,k)AjtA0s. (42)

B. Symmetry

For boson systems (i I jk)= (i I kj) so that the matrices
P' are symmetric. Also A;~A;~A&~=P "9'&& A t. Hence

P. .lP m P .lP. m P .LP. m (44)

C. X Representation

Since the
I
jn) are an orthonormal basis for the space

orthogonal to IO), we can evaluate (ijlkl) in terms of
the P's:

(ijl kt&=(ijl ~&(~ I
kt&= Q,;"P.i". (45)

A second formula for the same quantity follows from
the 2-cluster X representation.

The condition (t I i)= b;j gives

(OIA&A;s)=(OIA&AjtA0tl0)e;(j, k) =e;(j,k)P;0'=b;i. (43)

Let us consider Pj0' to be the t component of the (jk)
column vector Pj0. Equation (43) says that the vectors
P;& are complete since any basis vector 8;& can be ex-
panded. Hence there is no vector orthogonal to all P,~,

which means that there does not exist a vector R with
components R' such that P.~'E.'=0 for all j, k unless
R'=—0. Eqnisalentty, the matrices P' with (jk) element P;0'
are linearly independent

with
A g,tA)~=Pg, )'A;~,

P0j' ——(0IA;A0sAPIO) =(ilkt).

(41) (ijlkt&=Z (ilZ »Z &)(j'lZ »'Z t)''
x (w;0, wj0 Ik)(w, i,wzi I t)I(z;0,' w'0) (I'z~; wa)

The complex conjugate of P&&' will be denoted by
&l ~

In general we define A;tA0t. Apl0) to be Ii,k t&.

The P's satisfy the following conditions.

A. Exyandability

Each Ii) can be expanded in the
I kj) in a nonunique

manner. This follows since

Z S Sg' ' 'Srb Zg' ' 'StrS S 8 8 ~

2

Expanding the single-particle contribution into two and
more particles allows an expansion containing no linear
terms in the at.

A t=gF;(si s s+i s )(a t a t)
2

X(azf+P' 'az ) ~

Each product of at in the expansion of A;t has been
partitioned into two factors. By the completeness of the

XI(Zjj, ; W;0)I(Z0; Wi;), (46)

pjjz Pjk z

pj00= 0,

P00

for i,j,4&0
for j&0 or k&0

pj0 p0j bij

and their complex conjugates q;0', Eqs. (47) and (45)
give

qmp m Trl"p jq/p jqk), (48)

If we denote p0j (q;jm) graphically by a bubble with

p(q) in it and use the convention that internal lines are
summed over, Eq. (48) takes the graphical form shown
ill Fig. 1.

where the Z's run over all particle configurations in-
cluding the null con6guration.

The intermediate sums over IZ)I(Z; W)(WI can be
replacedby li)(jib'+Io)(oI gi»ng

(ijI kl)= b,0bj&+b, ibj0+P jjQ,'+P j'Q, "

+Pim Qmj +Pm1, Qmi +Pmzz Qmr Prz Qzrz ~ (47)

Defining a set of new matrices, p', by
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~P

FIG. 1. The X representation for &ij [kl)

D. Existence of Space-Time Generators

The space-time group generated by n, the total longi-
tudinal ratio; k, the total transverse momentum; A, the
generator of s boosts; Q, the generator of transverse
"Galilean" transformations; E„the rotation about the s
axis; and H, the Hamiltonian, must be reAected in the
space of states. The generators are to satisfy certain
n;-type representations and commutation relations.

Consider first rr, R„k,A, and Q. When not distinguish-

ing between these we shall call them F. The transfor-
mations generated by F act independently on the sub-
systems of a composite system. Suppose e"~

l i)= U;, l j).
Then e"~

l
i k)= U z Usl tjl). In terms of F itself

Flik)=F, , ljk)+F,slij),
where

We shall derive a representation for the matrix ele-

ments of F which rejects the special way in which F
acts.

Fro. 4. Resu1t of expanding Fig. 3 using
the X representation.

In terms of the p's, Figs. 4 and 5 read

&'jlF 1k'&

=Tr[P'q'P'q'Ã. s+TrLP'q'P'q'jF «
=TrLP'q'P'q'F j+TrLP'q"P'Fq'j

+TrLP'q'FP'q'J+»LP'Fq'P'q'j (5I)

Consistency relations for F are obtained by equating

the expression implied by Fig. 5 to (ij/zzz)F „(zzlkl).
This is shown in Fig. 7.

Let us now evaluate the commutator of two F-type
operators F and G:

(ijl[F,Gjlki)=(ijlFGlki) —(ijlGF lki).

The first term is evaluated by inserting a complete set

of states between F and G giving the expression in Fig. 8.
We use Fig. 1 in Fig. 8 to get Fig. 9.

Fto. 2. Representation for &i~ Fj~k)

We start with the matrix element (l l
F

l ij):

(ilF lij&= «I qj&&qlF li&+&iliq) «IF lj&
= «lqj)F„+(iliq&F„. (5O)

This is shown in Fig. 2.
Next, consider (ijl F

l
kl) which equals

(ii I qi)F.s+(6 l
kq)F. z

as in Fig. 3. Using the X representation for (ij l q/) and

(ijl kq) gives Fig. 4 for the matrix elements of F
The combination (zzzzz

l q)(q l
F

l k) appears and is equal

to (zzzn
l
F

l
k). Using Fig. 2 gives the symmetrical repre-

sentation of Fig. 5.
A reversal of the above argument leads to a repre-

sentation with the F bubbles to the left analogous to

Fig. 4. See Fig. 6.

Fro. 5 Another representation for &zj~ F
~
kl).

Using Fig. 2 for both F and G gives 16 terms, each

containing a single F and G bubble on internal lines.

Four such terms will have F and G on the same line

with F to the left of G. One such term is indicated in

Fig. 10. The other terms have F and G on diferent

lines as in Fig. 11.
When evaluating the product GF the terms analogous

to Fig. 10 will have G and F in opposite order while the

terms in which F and G are on diGerent lines are ident-

ical for both orders of multiplication. Hence only the

terms like Fig. 10 will survive the commutation. The

result is given in Fig. 12.

FIG 3. Represent. ation for lzj~ F
~
kl) Fro. 6. Yet another representation for &ij~ F

~
kl)
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FIG. 10. A term in )F,Gj with P
and G on the same internal line.

FxG. 7. Consistency requirements on the matrix elements of Ii.

In Fig. 12 the E bubble stands for

Hence the commutator of two operators satisfying Eq.
(51) is another such operator.

The matrix elements of H satisfy a generalization of
Eq. (51) obtained directly from the K representation.

Define H;;=(i H~ j) tobe the j~element of a matrix
H. Also let (i~H jk) =H;rP;&' H, &' b——e the jk element

From Eq. (8) we see that the commutator of any pair
of F's is an F and the commutator of A with II is an II.
The last commutation relation between Q and H gives
an F.

By working in a representation in which 0 and k are
diagonal, as in the previous section, the existence and
commutation relations of the P's are assured.

Hence the study of solutions of the theory may be
reduced to a search for sets of LieearLy tedePemdeeL
matrices P' satisfying Eqs. (44) and (48) and admitting
the existence of the matrices H;; and F;; with the correct
X representations and commutation relations.

An interesting question is whether the group struc-
ture puts enough constraints on the spectrum of II, n,
and k to limit solutions of the abstract problem to those
with a physically realistic particle description such as
the description we started with.

E'ro. 11. A term in PP,G] with F and G
on different lines.

Fro. 8. The commutator of two F-type operators.

which for consistency must equal

qr& Hm"per" (53)

An easy calculation shows that commuting any oper-
ator satisfying Kq. (52) with any operator satisfying
Eq. (45) produces an operator satisfying Eq. (52). Since
operators satisfying Eq. (51) also satisfy Figs. 4 and 6,
they also satisfy Eq. (52). This is seen by adding Figs.
4 and 6 and subtracting Eq. (51).Hence commuting H
with an F produces an operator with structure similar
to II or F.

of the matrix H' whose adjoint is O'. Then

(Lj(H~ uL)

=Tr[H'"q "p'q' j+Tr[p'H~p'q']
+TrLP'q'H'q' 3+TrLP'q'P'H' j
—»LP'q "P'q'H j TrLP'q'P'Hq't—

TrLP'q'Hp'q' j—»LP'Hq "P'q'3—, (52)

Two more generators must, be added in order that
the full I.orentz algebra be represented. We can take
them to be the rotations R, and R„which mix the longi-
tudinal direction with the transverse directions in the
ORF. Invariance with respect to these rotations is a
very nontrivial requirement which we shall not discuss
here except to remark that R must have the X structure
of the Hamiltonian and not the simpler structure of the
F operators. This follows from the commutation relation

Lz„k„j= -', i( —H).

Since k has the P-type structure, if R also was an P-
type operator, the commutator would also be F type.
However, the presence of H on the right-hand side of
Kq. (54) gives the commutator the more complicated X
structure which can only be if R has X structure. Note
also that like II, R generates transformations which
displace the surfaces (x+t) =c

FlG. 9. Expansion of Fig. 8 using the X representation. Fic. 12. Representation for L&'= pE,G).
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VI. ABSENCE OF VACUUM STRUCTURE

In Rei. (2) the presence of vacuum structure pre-
sented grave complications to the structure of the inner
products and Hamiltonian. In the present model we
have ignored vacuum structure altogether. This is con-
sistent with a theorem of Weinberg, ' which states that
in field-theoretic perturbation theory, vacuum structure
effects go to zero for infinite-momentum observers.

Qualitatively, the reason is that each constituent of
any state in our model carries a positive longitudinal
ratio corresponding to a positive fraction of the infinite
momentum. It is not possible to avoid having at least
one line coming from a vacuum bubble connecting into
one of the lines carrying in6nite momentum. If the
vacuum clusters fall off to zero as the momentum of the
legs becomes infinite, then the vacuum terms will not
be able to connect into the X or X structure. A careful
analysis of the approach to infinite momentum of the
equations of Ref. 2 would be worthwhile. In particular,
it seems likely that the vacuum Schrodinger equation
will require the vacuum clusters to fall off at least as
fast as E ', where E is the sum of the kinetic energies
of the particles in the cluster.

An interesting question which we are presently in-

vestigating is whether the Galilean invariance of the
transverse motion is more than a curiosity. The author
has found that several questions concerning the struc-
ture of currents are greatly illuminated by considering

them in the limit of infinite momentum where much of
the theory of nonrelativistic currents can be taken
directly over into a relativistic LRF description. 4 A
somewhat amusing point which will be discussed else-
~here concerns the normal and anomalous threshold
singularities of relativistic form factors. ' The anomalous
singularities are usually associated with nonrelativistic
or semirelativistic wave function effects while the
normal singularities are generally assumed to originate
in truly relativistic effects which have no analog in terms
of wave functions.

We have found that by going to the LRF, both the
anomalous and normal singularities can be understood
very easily in terms of the simplest wave-function ideas
for the transverse motion.
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