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Sequential Decay Theory and Sequential Transitions*
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A theory of sequential decay of an unstable system is presented using the projection-operator algebra sug-
gested by the recent projection-operator approach to reaction theory. The formulation is an attempt to
provide an alternative to perturbation theory. While exact, the theory is cast in a phenomenological form
that is suggestive in its interpretation and may be extended so as to apply to sequential transitions in general.
Examples treated include the transition between unstable states of an atom induced by an intense electro-
magnetic field as well as a problem in resonance fluorescence. Higher-order corrections to the more familiar
theory are a natural consequence of the description of sequential decay and sequential transitions pre-
sented here.

1. INTRODUCTION

'HE theory of the decay of unstable states has
recently been presented on the basis of the re-

solvent operator and has been applied to a number of
simple models with some success. ' The formulation
itself has been modified and somewhat simplifiecP
through the use of the language of nuclear reaction
theory in the form presented by Feshbach. l As a step in
the further development of the techniques, we apply it
to the problem of sequential decays as well as to se-
quential transitions.

As an extension of the Goldberger-Watson operator
formulation of decay theory, the theory of sequential
decays has recently been presented by Goldhaber and
Watson and applied to simple cascade models as well as
to a modification of the Lee model. 4 In this paper, we
simplify the formulation and illustrate its applicability
to types of problems not normally included in the con-
cept of sequential decay. The value of the formulation,
of course, is that while it is exact, it still may be cast
in a phenomenological form that is suggestive in
interpretation. As a Grst illustration of the extended
concept of sequential decay theory, we treat the problem
of the transition between unstable states induced by an
intense electromagnetic Geld. Here the additional
broadening due to the induced transitions follows
naturally from our formulation and does not require a
separate transformation to decouple the states of
interest from the remaining background spectrum of
states. The sequential decay theory presented here
eGectively removes the virtual transitions and leaves
only real transitions present. The resulting formulation
clarifies a discussion of the intensity shifts in atomic
beam experiments.
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As a further illustration of the versatility of the
concept of sequential decay, we treat the problem of
resonance fluorescence under double resonance condi-
tions. Here again, the additional broadening as well as
shifts due to the induced transitions follows naturally
from our formalism. By using the language of projection
operators, we retain sufBcient generality to treat
induced hyperfine transitions in either the excited or
ground state manifold of states.

In the following section we review briefly the theory
of decay theory based on the projection theory language
of Feshbach. For details concerning the handling of the
poles of the Green's function, reference is made to either
Goldberger and Watson' or to the author's work where
additional references will be found. Following this brief
review, the concept of sequential decay is introduced
and treated using a sequence of projection operators.
For use in the actual applications of this method, a
number of formal relations between the level shift
operators associated vith this sequence are derived.

where the Hamiltonian of the system in the presence of
the perturbation is given by H,

and
H—=K+V

ItIu)=E, Iu),

and we have set h = 1.The transition amplitude at time
t between the states

I o) and
I b) of the spectrum of E

is given by

2. FORMAL DERIVATION

As a brief review, we consider a system that is initially
in a given state. In the presence of a perturbation, the
system may become unstable and make a transition
from the original state; the transition probability may
be calculated if we can follow the evolution of the system
in time. If initially the system was in the ath eigenstate
of the Hami&tonian K, then through the presence of the
perturbation V, at time f the system will have evolved
to the state
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which may be expressed in terms of the resolvent
operator or Green's function for the system as

To facilitate the subsequent analysis, we note that the
following identity holds:

P.(E P,—HP ) 'P, V=P (E K—) 'P,R(E), (12)

where

I~.(1)= (2iri) ' dE e 'x'Gg (E) which follows from a simple expansion of R(E) given by
(11).Thus, we rewrite (10) as

P,G(E)A, =P,(E K)—'P,R(E)AaG o(E),
Here, the contour c runs from + Oo to —~ above the
singularities of G(E) on the real axis. For the problem
of interest, the spectrum of II will not be discrete, but
will be a mixture of a discrete and a continuum with
several discrete states in the continuum. Hence, the
evaluation of I&,(t) by contour methods requires the
method of analytical continuation to separate out the
singularities from the continuum. For the techniques
used in this separation, reference is made to Goldberger
and Watson. To facilitate this separation, we introduce
the following projection operators of the unperturbed
Hamiltonian E:

A,+P,=1; A,P,=P,A =0, A, =A„(6)
where A, is the projection operator for the initial state.
If the initial state is an isolated state, then A, is a simple
projection operator,

A.= iu)(u! . (7)

How ever, if the initial state is in a manifold of closely
separated or closely coupled states, then A may be the
sum of simple projection operators projecting onto the
manifold of initial state.

In terms of these projection operators, it is clear that
for the calculation of the transition amplitudes we need
to known two projections of the Green's function:
AoG(E)A, and PoG(E)A, . The first projection includes
only those matrix elements within the initial state
manifold, while the second projection gives the matrix
elements between the initial states and any other state
of the spectrum of the unperturbed Hamiltonian E. To
determine these projections, we start with the identity

(E H)G(E)=1- (g)

and first multiply from the right by A, and then from
the left successively by A, and I', . The two operator
equations that result,

I.(E I.HIt.)It.G(E)It. I.H—P.G(I;)~.=I.,
—

P,HIt,G(E)A,+—P,(E PoHP, )PoG(E)It—,=0, (9)

may be formally solved for the two projections desired.
On the assumption that P,(E P,HP, )P, has an-
inverse, the two projections are given by

P G(E)A, =P (E PHP, ) 'P HA G(E)A„—
A,G(E)A, =A, (E—K—A.R(E)A,) ', (10)

where we have introduced the level shift operator R(E)
defined by

R(E)= V+ VP (E PoHP ) 'P V—

where

G„(E)—=A G(E)Ao. (13)

P.=1—X.,
P,= (1—X.) (1—~,)=1—X.—X„

P,=(1—~.)g (1—X,)=1—Z.—g Z, .

fi P.-O. Lowdin, J. Math. Phys. 3, 969 (1962); 6, 1341 (1965);
and the earlier references listed there.

If the initial state is isolated, then the subsequent
analysis for the determination of Ib (t) or I„(t) follows
that of Goldberger and Watson. ' On the other hand, if
transitions between coupled unstable states are desired,
then the analysis follows that of the author. ' Here,
howsoever, we are interested in developing a formalism
for the transition amplitude when the system is known
to pass through a number of states (possibly unstable)
in making the transition from the initial state

~
a) to the

final state
~
b). One method of taking these steps into

account would be simply to increase the size of the
original manifold of states spanned by A, . Such a
method w'ould treat all the states in the transition
sequence on an equal basis and would eventually
involve the inversion of a matrix whose rank would
depend upon the number of states in the sequence. As
an alternative procedure, in the next section we intro-
duce a modification of the method of Goldhaber and
Watson based on a sequence of partial projections. 4 This
method seems to be a natural extension of the partition-
ing technique. s

Theory of Sequential Decay

If in the transition between the initial and final state
the system has a possibility of passing through a number
of intermediate states, then this fact must be made
evident. If the expressions for the projections of G(E)
as given by (13) are exact, then the information desired
must reside in the level shift operator given by (11).To
make these statements transparent, we introduce a
sequence of projection operators h.; corresponding to
each of the i intermediate states. Again, the states may
be isolated, in which case the associated projection
operator is simple, or they may be degenerate or closely
coupled, in which case the associated projection operator
spans a manifold of states. We will also find it useful to
introduce the following projection operators related to
the A;:
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What is now necessary is the explicit factorization of
R(E) to make clear the steps involved in the transition
sequence. To realize this, a step-by-step analysis will
be followed.

If in going from the initial state
~
a) the system may

pass through an intermediate state, then we are actually
interested only in a part of the projection P,G(E)A„
namely,

P&G(E)A =Pi(E—K) 'PiR(E)AoG. .(E) . (13)

The remaining part, namely, A&G(E)A„ is a measure of
t.he transition amplitude between the initial state ~a)
and

~
1) as a final state. Hence, we need the projection

of R(E),

PiR(E)A, =P&VA, +P&VP, (E P,HP—,) 'P, VA . (16)

The subsequent analysis will be considerably simplified
if we write out the various projections of

P (E PHP, )—'

onto the two subspaces spanned by A& and P& making
up the total space spanned by P„:

Pg+Ai=- P„.
The algebra necessary to find the four projections of

P,(E P,HP ) '—desired is similar to that used to
derive (9) and is a special case of a more general deriva-
tion to be given shortly. We shall find that the level
shift operator may be reexpressed as

R(E)=R&"(E)+R"&(E)A&G"'(E)A&R«'(E)
=R&'& (E)(1+A&G"& (E)A&R&" (E)&, (18)

where R'(E) is defined by

R&'&(E)—= V+ VPi(E P&HP, ) 'P&V—. (19)

The new Green's function G&"(E) is defined by the
expression

A,G&" (E)Ai=—Ai(E —A&K—A&R&'& (E)A&)-' (20)

An inspection of the definitions of both R"&(E) and
A&G&'&(E)Ai, shows that in the relationship between
R(E) and R"'(E) as given by (18) we have achieved the
desired factorization: The dependence on the two pro-
jectors Pi and Ai is both explicit and separate (that is,
not in the form Pi+ Vi). Thus, the desired projection
of the Green's function is given by

P&G(E)A, =Pi(E—K)P&R&"(E)
XLl+A&G~'& (E)A&R&'& (E)$A,G„(E). (21)

We see that the first term on the right describes the
direction transition between the initial state and the
final state, while the second includes ~1) as an inter-
mediate state. This interpretation follows from an
inspection of (19) where we see that the matrix elements
in P~E.("A, do not include any contributions from state

~
1) as an intermediate state.

P~ ——P.+A2 (23)

between the projection operators. On noting the explicit
form of Kq. (21) and the interpretation we gave for it,
we see that we need to focus attention on the first
factor R&"(E) which includes the interaction energy
between the first intermediate state and all subsequent
states. Hence, we proceed to factor R"'(E) in much the
same way that we did with R(E). Again, in the factori-
zation procedure of the level shift operator R&'&(E)
as given by (19) we need the four projections of
Pi(E P&HPi) —'P with Pi related to P~ through (23).
We find that R&"(E) may be factored as

R&'& (E)=R&'& (E)A2G" & (E)A.2R&'& (E) (24)

= R&'& (E)L1+A~&" (E)AiR&" (E)], (25)

with the level shift operator R") defined as

R"'(E)=—V+ VP2(E P2HP2) 'P—gV (26)

and the Green's function G&"(E) defined by

AQ&" (E)A2 ——A.„LE—A2K —A2R&2& (E)A27 '. (27)

Hence, the desired projection of the complete Green's
function describing transitions between the initial state
~a) to a final state with the possibility of passing
through two intermediate states is given by

P2G(E)Ag ——P2(E—K) &P2R&2& (E)
X$1+A2G" & (E)A2R"' (E)g
XL1+A&G"' (E)A&R"' (E)jA,G~~. (28)

To provide some measure of physical interpretation
we expand the above expression:

P2G(E)A, =Pm(E K) 'P2-
X t

R&'& (E)+R&'& (E)A2G&'& (E)A&&'& (E)
+R"' (E)A&G"' (E)A&R&" (E)
+R&2&(E)A2G"'(E)AsR&'&(E)A&G&'&(E)

XA&R"&(E))A,G, (E) . (29)

An inspection of the form of both R"'(E) and R&'&(E)
allows for the following interpretation. In (29), the first
term in the square brackets has matrix elements be-
tween the initial and the final state for direct transitions
only. The second term describes transitions that pass

Now, if in going from the initial to the final state the
system must pass not through one intermediate state
but through two intermediate states, then we simply
repeat the above analysis. Here the projection P&G(E)A,
contains two contributions,

P&G(E)Ao =P2G(E) A~+A,G(E)A. , (22)

where the first refers to that portion of G(E) that has
matrix elements between the initial and the final states
while the second has matrix elements between the
initial state and the second intermediate state only. The
above expression follows from the relation
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P,G(E)A, =P;(E K) 'P ji!&'(E)—

Xg (1+A,G& &(E)A,R& &(E)jA.G..(E). (30)
j~l

This result is found by simply repeating the steps lead-
ing up to Eq. (28). The expression for the projection of
the Green's function includes not only the contribution
arising from the sequence of i steps ordered from 1 to i,
but also the contribution from all other nonordered
sequential transitions as well. The former consists of the
single term remaining after dropping the 1 in each of the
i factors in the above expression. Here, the Green's
functions G&'& (E) are given by

A,G&&&(E)A;=A;(E A;K A'R'"(E—)A;) ',—(31)—

with the associated level shift operator given by

R"'(E)=—V+VP;(E—P,BP,) 'P;V. (32)

through the second but not the first intermediate state;
the third term describes transitions that pass through
the first intermediate state and possibly the second.
Finally, the last term describes a transition passing
through both intermediate states in the sequence 1, 2.
Clearly, if we replaced the remaining two factors of
R&'&(E) in terms of R&'& as given by (25), the extension
to (29) would include a term describing a transition that
passed through the first intermediate state, but not the
second, as well as a term describing a transition passing
through both intermediate states in the sequence 2, 1.
In addition there would be a term describing a transition
passing first through state 2, then through state 1, and
finally passing through state 2 again. The presence of
this last term destroys the otherwise symmetric
character of Eq. (29). However, one should note that
the Green's functions G"' and Goo(E) contain R"'(E)
and R(E) explicitly and are therefore implicit functions
of R"'(E). If the two states were discrete, then the
further factoring of the Green's functions and subse-
quent manipulations would result in a transition
probability exhibiting a symmetry in the paths involv-
ing states 1 and 2. However, if continua are associated
with the states 1) and 2), then the further manipulations
must be handled with cue.

Clearly, in at tempting to generalize the above
factorization so as to include the possibility of i inter-
mediate states or steps, we want to avoid the complica-
tions introduced by the presence of alternative paths.
Hence, we turn our attention to Eq. (28), which is a
statement of the projection of the complete Green's
function for transitions between an initial state

~
u) and

a final state with the possibility of passing through at
most two intermediate states. In this factored form, the
generalization so as to include the possibility of i
intermediate states or steps in the transition process is
straightforward. The pertinent projection of the Green's
function is

The general relationship between R(~" and E&" is
derived in the Appendix and is given by

R&~» (E) R(j& (E)+R(i& (E)A G(i&(E)A R(.i& (E) . (33)

As pointed out earlier, (18) and (25) are special cases
of the above general expression.

The transition amplitude follows from the insertion
of the above expression for P;G(E)A, into (5) and the
subsequent evaluation of the integral over energy. If
the final state is stable, then for t sufficiently large we
may ignore the possibility of complex poles and pick up
only the contribution from the final-state pole at
E=E~. For this case the transition amplitude is given
by

I,.(()=. 's -(f ~R& &(E,)

Xg f1+A,G&'&(E&,)A,R&~ &(E&,)jA.'G(Eb) i a), (34)
j=l

where i intermediate steps are assumed. Here, we have
ignored terms which damp out exponentially with time.
Apart from slight diAerences in notation, this is the
result of Goldhaber and Watson arrived at by a diferent
factorization method. 4 If, however, the final state is not
stable, then the pole at E=E~ is spurious and does not
occur. Indeed, in this case it is necessary to keep all
contributions from the poles in the continuum in order
to find the correct transition probability. ' In the first
application of this formalism we shall see that the pole
at E=E~ is removable.

%e note that in the general form for the projection
operator given by Eq. (30), we have made use of the
idea of sequential transitions. Nowhere, however, did
we make explicit use of a decay of the initial state as
popularly understood. Thus, we have neither postulated
a specific form for the Hamiltonian nor have we specified
the form of the spectrum of H. Hence, the results we
have found are quite general and may be applied to a
cascade-decay problem, ' for instance, or may be applied
to problems in which a number of sequences are sugges-
ted by physical observation. It is with this latter point of
view in mind that we have chosen our illustrations. In
each illustration we shall find that higher-order cor-
rections in the perturbative sense appear easily. Indeed,
the value of the present formulation seems to be the
ease in which higher-order perturbations may be
obtained.

3. TRANSITIONS BETWEEN UNSTABLE STATES

As a first illustration of the formalism just developed,
we consider a particularly simple problem, namely, the
transition between two unstable states. These states
may be isolated, they may be members of two diferent
sets or manifolds of states, or they may be states of the
same manifold. The specific form of the projection
operators actually used will depend upon our iater-



165 SEQUENTIAL DECAY THEORY

pretation of the location of these states. One of the
purposes of this illustration is to show that care must
be exercised in evaluating the expression for the transi-
tion amplitude occurring in (34). In the case to be
considered, the pole on the real axis at E=Fb is re-
movable and hence does not contribute to the transition
amplitude. In all cases mentioned above, the transition
amplitude is given by

Ia.(t) = (2s i)-' (b
~
G (E) i,a)e 'e'dE

=(2sri) ' (biA (E—K) '

Gaa&'&(E) =Aa(E—K—A ji!&a&Aa)—'

R&a&(E) = V+ VPa(E PaHPa) '—PaV,
Pa ——(1—A,) (1—Aa) = 1—A, —Aa. (37)

If we combine these expressions to form the integrand
in (35), we have the formidable expression

Aa(E K) 'AaR—(E)AoGoo(E)A
=Aa(E—K) 'Aa[R'a (E)+R a'(E)

XAa(E—K—AaR&'&Aa)-'AaR&" (E)j
XA [E K AR&»A ——A —R&a&

XAa(E —K—AaR'"Aa) 'AaR&a&A j ' (38)

which serves to point out the importance of noting the
energy dependence of the diagonal and o6-diagonal
matrix elements of R(E). In the case that states

~
&a) and

~ b) are otherwise isolated or are in the same manifold of
states the above expression reduces simply to

i b) {Ra.'"[(E—E.—R..&'&) (E—Ea—Raa&'&)

—R., 'R,. y')(o~, (39)

where we note the disappearance of the pole at E=Eb
Hence, for this case, the transition amplitude reduces to

Ia.(t) = (2sri) ' e 'e'R .&'&(E)-
X[(E—E.—R..&'&) (E—Ea—R»&»)

—Roa&a&Ra, &a&gdE, (40)

which apart from an error in sign is identical to the first
of Eqs. (33) in Ref. 2. The integration over time may

XAaR(E)A, G«(E) I a)e 'e'dt (35).

Now, the level shift operator R(E) has complicated
matrix elements in and between both manifolds spanned
by A and Ab. %e may simplify this situation by writing
R(E) in terms of R&a& through (19) with state ~1)
representing

~
b) Thus w. e have the expressions

R(E)=R&'&+R& "AaG&" (E)AaR&a&, (36)
with

&a=-', (E.+Ea+(R,R, "&+&R,Raa&"),
b= 'v2[(-A'+B')'"+A]'"
c= —-,'Im(R. .&a&+Raa&a&),

d = iaV2[(A'+B')'" Aj"—' sgnB, (42)

A = (E —Ea+&R,R„&a&—&R,Raa"&)'
—-,'(ImR„'a& —ImRaa&")'+4

i
R~a&a& i',

B=2(E. Ea+—&ft R &a& —&R Raa&a&)

X (ImR„'a& —ImRaa&'&)

Here we have assumed that the energy variation of
R'"(E) was so slight that little difference would be
realizedbyevaluatingR„&a&(E) atE=E andR»&a&(E)
at E=Eb. It is important to note also that both states

~
&a) and

~
b) are essentially discrete; neither has a

continuum of states associated with it. Through the
coupling via V only does the continuum arise.

As a specific example of the above simple problem we
consider the shift of the transition frequency as ob-
served (possibly) in an atomic beam experiment. For
simplicity, we assume that the two states are members
of the same hyperfine multiplet and hence have the
same lifetime. The atoms in the beam are assumed to be
prepared in a given state,

~
&a) and then passed through

a cavity where an rf Geld is allowed to induce transitions
from the state

~
&a) to the state

~
b), say. The particular

state of the atom is detected after the atoms in the beam
pass through the field region. The states

~
a) and

~
b) are

particular states of the unperturbed Hamiltonian E,
where E is

K=H,&+H,a+H,~. (43)

Here H, f is the Hamiltonian of the rf electromagnetic
field, H, t, is the Hamiltonian of the unperturbed atom,
and H,~ is the Hamiltonian of the radiation Geld
(decay photon). In the number representation for both
II,f and H,~ the eigenvalues of E are

K
i a; n; 0)= (neo+ Wo) i &a; n; 0),

K
~
b; n+1; 0)= [(n+1)a&+ W aJ ~

b; n+ 1;0), (44)

where n is the number of photons with frequency co in
the radiation Geld, IV, is the energy of the ath un-
perturbed state of the atom, and there are 0 decay
photons assumed present in state a.

The energy of interaction between the atom and the
radiation Gelds may be simpli6ed when the dipole
approximation is assumed. ' For simplicity we assume
that V has the form

V= Hi+B2,
' E. A. Power and S. Zienau, Phil. Trans. Roy. Soc. (I,ondon)

A251, 427 (1959).

be performed as in (2) with the result that

Iao(t) = [—Ra, & "/2(b+id) j(e 'a'+ ' e—'" ')e+'" "
(41)

where
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where H~ is the energy of interaction between the atom
and the rf field and II2 is the energy of interaction
between the atom and the radiation (decay photon)
field. To lowest order in the interaction energies we
write the level shift operator given in (37) as

R(s) (E) R,(a) (E)+R,(s) (E) (46)

where the first term depends solely on the rf field. The
second term has diagonal matrix elements only and
describes the shift and width due to the vacuum radi-
ation field:

We turn now to the evaluation of the matrix element ts
of R(b) involving H~, the interaction energy between the
rf radiation field and the unperturbed atom. For ease of
comp@,rison, we introduce the notation used by Mizu-
shima. ' The matrix elements of Hj are nondiagonal in

the rf photon number and diagonal in the decay photon
number and are given by (5=1)

(n; alH|lb; n+1)= i—(e)&VG) (alM Ib)
X[(n/1)/2MeQV]'"

(n; afH) fc; n+1)=i(kG&ale), M,.fc)
X[(n+1)/2(eeoV))(' (50)

R".("=R2bb(b) =D—F-,I' (46')

The diagonal matrix elements of R~(b' are taken to be
equal as the two states are in the same manifold. For
simplicity the matrix elements are also assumed to be
insensitive to a va, riation in energy and, hence, are
evaluated at

Here, a and b may be the same electronic state, but c
must diEer from c. The M's are the total magnetic and
electric dipole moment of the atom while ~ is the direc-
tion of polarization of the rf 6eld. G(r) is essentially the
amplitude of the single mode field at the location of the
atom. It is normalized such that the integral over the
volume V satisfiesTo lowest order in IJi the diagonal matrix elements of

R)("(E) are real; as a result of this observation and the
form of the matrix elements of R2, we may simplify the
constants in Eq. (42). In particular, both B and d
vanish, and the transition amplitude reduces to

I(, (t) = i (R(, '~—'/b) sinbte+*"" '(.47)

Hence, the transition probability is the familiar
expression

(1/V) IG(r) I'd V=1.

We use mks units throughout.
An inspection of form of R~, b& ) shows that to the

lowest order in the rf field, the matrix element is given

simply byP(„(t)= IR)(~(a)/bf sin'bte 2"

Here, in terms of the matrix elements of R(b),

2c=l

(48)

R).s('& (n; al H~
I b; n+1)—=H), (,. (52)

b2 =-,'[(W.—W(,+(R,R)..("—(R.R)(,(,(")'
+4IR (&& I2]

Similarlv, an inspection of the form of the diagonal
matrix elements of R~( ' shows that the contributions

(49) of H) to R((" to lowest order are given by

c&a, b

I &a nlH|lc; n+1) I'

W —W,+co

R)bb
cuba, b

I &b;n+1IH)l', n) I'
I &b;n+1IH)l', n+2)l'

+
Wb —W,+co Wb —W,—o)

Here the above energy corrections diBer from the usual
expressions for the second-order correction to the
energy found by the usual perturbation theory in that
the projection operator I'b has restricted the sum to
states other than la) or lb)."Hence, the energy de-
nominators do not vanish except in the case of acci-
dental degeneracy.

The time-dependent transition probability, which can
now be written as Here

Q=Q,+0 (56)

no longer has a maximum at the Bohr frequency for a
given time t, but at the frequency

a&= W, —W)&+0, (55)

where the selection rules for dipole transitions allow us
to decompose the shift 0 into an electric and a magnetic
contribution:

(5 ) ft,—= (n(oCP/ Ve)&) P l(afe), M, fc) I'P"(t)=(IH"
I /C ]) C ]t-",

C ]=a[(W.—W(,—(e+'D)'+4IH). (l'],
where cuba, b

X[(W,—W —(o) '+(W —W +co) ']
—(nM2/2 Ve ) P I

&b I e), .M,
I c)

I

'
cuba, b

Xc(W(,—W.+(0) '+ (W(,—W,—(o) ']. (57)

' See, for example, K. Gottfried, Quantum 3fechanics (W. A.
Benjamin, Inc. , N. Y., 1966), Sec. 45.2.

'A. Dalgarno in Quantum Theory, edited by D. R. Bates
(Academic Press Inc., N. Y., 1961),Vol. I, pp. 171-209.
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If we now identify (ncvG'/2 V«) with the energy density
of the electric field at the atom, p =—

g 60K', then we may
write the electric-Geld shift as

fl =(l«E') Z l(ale'M. lc)l'
cga, 5

XL(W.—W.—~)—'+ (W —W +~)—']
—(l«E') Z l(ble'M lc)l'

XL(Wg —W+co) '+(Wg —W.—~) 'j. (58)

Similarly, the shift in frequency arising from the
magnetic dipole coupling may be written as

0„=(-,' nDH) P [(a[eg M„[c)['
cga, b

XL(Wo—W,—(o) '+(W, —W,+co) 'j
—(2noH') Q l(b[e), M„lc)l'

cga, 5

X L(Wg —W,+(o)—'+ (W,—W —cg)
—'$ (59)

We note that if either the rf electric or the magnetic
field may be measured accurately, the induced shifts
provide a means for measuring the electric and mag-
netic dipole moments. Thus, if the hyperfine manifold
containing [a) and [b) is reasonably separated from
nearby electronic levels, the number of terms con-
tributing to 0 is finite and small. By measuring the
shift and the rf magnetic field intensity, the magnetic
dipole moment may be calculated directly.

These expressions, apart from notational differences,
are identical to those found by Mizushima. We diGer,
however, in our approach as well as in our interpre-
tation. If we had not used either the decay theory
outlined here, or that in Ref. 2, in order to treat this
problem it would have been necessary to introduce a
unitary transformation to decouple the states of interest
from the remaining spectrum of states. '~" The use of
the projection-opera, tor technique eGectively removed
the virtual transitions with an accompanying redef-
inition of the energy levels involved.

It should also be pointed out that the results of
Mizushima follow directly from a general perturbation
theory developed by Salwen. "While developed specif-
ically for transitions between stable states induced by
rotating fields, his approach itself may be extended so
as to apply to arbitrary electromagnetic fields. It
ignores, however, the finite lifetime of the states and
a,ssumes that the states of interest are separable. The
projection-operator approach presented here recognizes
the instability of the states due to the presence of the

' M. Mizushima, Phys. Rev. 133, A414 (1964).' J.-M. Winter, Ann. Phys. {Paris) 4, 745 (1959).
~' H. H. Nielsen, Rev. Mod. Phys. 23, 90 (1951).
LI' W. Heitler, Qeuehcns Theory of RaChAioe (Oxford University

Press, London, 1954), Secs. 15 and 16.
~ H. Salwen, Phys. Rev. 99, 1274 (1955).

vacuum radiation field, and hence, is inherently more
powerful than the perturbation theory approach.

4. RESONANCE FLUORESCENCE

As an illustration of the step-by-step process of
sequential transitions, we consider the problem of
resonance fluorescence of an atomic system. "We assume
that initially the atom is in a sublevel of the ground
state and is exposed to a beam of photons with a spec-
tral energy distribution that is peaked about the energy
separation between the ground state and the first
excited state. The width of the spectral energy distri-
bution of the beam is taken to be large compared to the
width of the excited states. Once the atomic system is
excited, it may decay by either spontaneous or stimu-
lated emission. To add to the interest of the process, we
assume that a second field or bath of the photons is
present. (To distinguish this from the first, we shall
refer to the beam as optical photons and the second
bath as rf photons. ) The rf photons induce a transition
from one excited state to another. As a result of such a
transition, the angular properties of the emitted optical
radiation will diGer from the initial beam of optical
photons, thus facilitating detection.

The energy of the noninteracting system of atom plus
fields is described by the Hamiltonian

+0 at+80 rad y (60)

where the first term on the right is the Hamiltonian of
the atomic system unperturbed by the fields. To
distinguish between the various sublevels of the ground
state it may include, for example, a dc magnetic field.
The remaining term is the Hamiltonian of the radiation
fields, including the optical, the rf, as well as the vacuum
radiation field.

We describe the states of the unperturbed Hamilton-
ian that are of interest to us as follows. The initial state
of the system consists of the atom in the uth sublevel of
the ground state in the presence of n rf photons of a
given single mode of frequency ~. There are in addition
n~ optical photons with wave number k~, e2 with wave
number k2, etc. Finally, the initial state is assumed to
be in the ground state of the vacuum or decay radiation
field. The initial state is specified by the ket

[a„)=—[a; nq, n2, na, , 0; n). (61)

The excited states of the system difI'er from the
ground state with respect to the atomic state, the
number of rf photons present, and also with respect to
the number of optical photons present. For simplicity,
we shall consider among the states of interest the two
states

[b„; —k;)—= [b; n, , n2, n;, , n; 1, n;+~, —. , 0; n),
[c~; —k;)—= [c;n&, n2, n; r, n; 1, n;+~, , 0;—n')

(62)

Here, the number of rf photons in the first state is the
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same as in the initial state. Both states differ from the
initial state in that a single optical photon of wave

number k; has been absorbed from the beam.
The final state of our system to be considered

explicitly differs from the initial state in being in a
different sublevel of the ground state. In addition, the
number of rf photons differs from the initial state.
Finally, we assume that an optical photon has been
absorbed in the excitation process, while an optical
(i.e., decay) photon with wave number k. and polari-
zation 0 has been emitted in the decay process. The
state is specified by the ket

~

a„'; —k;; k.)—= ~

a'; n&, n~, n; &, n; 1, —
. ; k. ; n'). (63)

As eigenstates of E, the energies of these unperturbed
states are given by (k=c=1)

E~a.)=E...&a„)=[H.+P, n~k, +n(o]&a.),
rat b. ; —k;) =E.. ., ~

b. ; —k;)
=[W,+P, 'n, k, +«]~b. ; -k, ),

Kic. ; —k, )=E,,;,. k,.ic. ;
—k;)

—= [W,+Q, '
n;k, +n'(u]~c„; —k.,),

&~a'. (
—k;; k.)=E. ,. ~„~.~a'. ; —k;; k.)

=—[W, +Q, '
n, k,+k,+ n'(u ]i a' ~; —k, ; k, ). (64)

Here, the prime on Q designates the omission of one
photon with wave number k;. The number of photons
is assumed to be so large that we may replace the sum

P over the photon number by the integral

V=Hi+Her, (65)

where Hi refers to the energy of interaction between the
atomic system and the optical and radiation field, while

H2 refers to the corresponding interaction energy
involving the rf field. We restrict attention to single
photon transitions and treat both Hi and H2 in the
dipole approximation only.

The transition amplitude between the initial and the
final state is given by

transformation. '~" The net result of this transforma-

tion, in addition to restricting all transitions to energy-

conserving direct transitions, is to decouple the states
of interest effectively from the remaining states of the
energy spectrum of the unperturbed system. This
decoupling process results in the appearance of a shift
in the energy of the states of interest. In thee prsence of
induced optical and rf transitions, these shifts would be
proportional to the intensity of the optical and rf
magnetic fields, respectively. The transition theory
presented in Sec. 2, by embodying the concept of a
sequence, effectively provides the above decoupling.
This decoupling is achieved through the introduction
of the projection operators P; which limit the area of
Hilbert space available for transitions. Thus, while the
states of interest are only four in number, in principle
through the projection operators P, we are able to take
into account the contributions from the interactions of
these states with the remaining states of the system.

The interaction energy may be represented simply as

U(k)(//~, = (2&ri) ' (a' ~ —k;(k, ~G(E) ~a„)e ' 'dE (66)

where U(k) is the spectral energy distribution with
width A(k). The description of the optical photons as a
beam implies that the vector wave numbers k; are
peaked in a particular direction, say k;. We shall ignore
the spread about this direction.

The presence of the interaction between the atom and
the optical and rf photons introduces virtual as well as
real transitions: the ground state of the atomic system
is no longer stable as the optical photons may induce the
atom to jump to one or more of its excited states. Of
these transitions, the most likely to occur are the real
transitions satisfying energy conservation conditions.
The virtual transitions which may occur between the
ground state and an excited state are a result of an
indirect path involving several optical transitions.
Similarly, the presence of the rf radiation field induces
transitions among the various intermediate states and
may also involve real as well as virtual transitions. The
virtual processes again differ from the energy conserv-
ing, real processes by introducing additional, indirect
processes involving several rf transitions. In both cases
of optical and rf radiation-induced transitions, the
virtual transitions may be removed by a canonical

While we may treat the transitions through the two
excited states as two steps in a sequence in the sense of
Sec. 2, it is somewhat simpler to consider a sequence
passing through a single manifold of states. Thus, the
matrix element in the above transition amplitude is
given by

(a'„; —k, ; +k, i G(E) i a„)
=(E—E. , ; ~,;~.) '(a'"; —k;k. j

)&R(E)A.„G(E)A.„~a.)
= (E—E. ...

, &, ,;&, )-'(a'. ;
—k;; k,|[R"&(E)

+R"'(E)A G&'&(E)A R&'&(E)]A.„GA.„ia„), (67)

where we have used (18).Here G&'& (E) is given by (20)
and the level shift operator R&'& is given by (19) with
the specific projection operators:

Pi=1—Ai —A,„,
A.„—=

/
a„)(a„],

A& =—g fb. ;
—k;)(—k, ;b,

f

+g i c„,; —k;)(—k, ; c„,
i
. (68)
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From the form of the level shift operator E(') as given
by (19) with the above projection operator, we see that
the first term in (67) involving R&'&(E) describes direct
transitions only and not transitions passing through the
intermediate states. As such, it vanishes unless n'=n,
and is otherwise insensitive to the properties of the rf
field; hence, we may safely ignore it. The remaining
component,

(a'. ; —k;; k.
~
G(E)

~
a.)

= (E—E...„., k, , k.)-'(a'„. ; —k;; k.~R&'&(E)

XAiG«&(E)A&R«&(E)A. „G(E)~an), (69)

has the following physical interpretation: The atomic
system while in the initial state interacts with the radi-
ation fields, and is excited to the states spanned by A&

by absorbing a photon through E('). While in this
manifold it interacts with the radiation fields, primarily
the rf field, and then drops down to the ground state at
the same time emitting a photon through E"). If we
limit ourselves to one-photon processes, the above
matrix element reduces to

(a'; —k;; k. ~G(E)
~
a„)

=(E—E. „,, k, , k.) '(a'; —k;; k, ~H&A&G&»(E)

XA&H&A, „G(E) i
a„). (70)

By restricting ourselves to one-photon processes, we
see that I'=n&1 if the resulting amplitude is to be
sensitive to the intensity of the rf field. In writing (70)
we have apparently considered real processes only. Thus
n'=n —1 ~ould then apply to the case 8~,&5 &, etc.
The presence of the projection operator I'j in both
G"'(E) and G(E) ensures us, however, of retaining the
effects of the virtual processes.

Calculation of 6("{E)
The contributions to the matrix elements of

A&G&'&(E)Ai involving K we may write down immedi-
ately from (64); the contributions from R"' require
more care. If we recall the statement made earlier
concerning the efI'ect of the vacuum radiation field, we
see that we may write the contribution A&E'(')A& as

A&R &'& (E)Ai ——A&R„&'& (E)Ai+A&Ri &"(E)Ai, (71)

where the first term has diagonal elements only which
represent a level shift and width:

(b. ; —k;; ~R, ' (E)~b„; —k )—= (D, iF—,/2)8 „.. .
(c. ; —k,

~

R„"(E)
~
c. ; —k, ')—= (D,—iF,/2)bk, ., k,

(72)

We have assumed that the matrix elements are rela-
tively insensitive to the energy of the system and have
been evaluated at the energy E&, E, of the excited
states. (In a more careful calculation, this energy
variation must be included. It would appear as a
renormalization factor. ') The contribution to A&Ri&'&A,

to lowest order in H2 and nondiagonal in n, is simply

(b„; —k;~R&&'&(E) ~c.. ; —k &

= (b. ~H2~c. &b~, ~~ibk;, k y (73)

while the contributions to lowest order in IJj and H2
and diagonal in n are given by

(b„; —k;i R,&'& (E) & b„) —k,')

I &b. IH, I
d„.&

I'
~ks, ks'

d Wa, b,c E—Edn~
n' =n~g

1&b.; —k, IH,
I ~„&I'

+ Z ski;, k,', (74)
v«. &. ~ E—E~„

with a similar contribution from
~
c„;—k,). Here, the

olf-diagonal contribution (73) describes direct transi-
tions induced by the rf field. The contributions to E."'
diagonal in I, (74), arise from virtual transitions
induced by the rf and optical fields, respectively.

On closer inspection, we see that we should write the
matrix element in (70) as

(a' ~; —k;; k, ~G(E) ~a )
= (E—E„., k, , k.) (a'. ; —k;; k. ~H&A&, ~

XG«&(E)A&, H&A. „G(E)ia ), (70')

where we have noted by the additional subscripts on A&

that H~ does not involve the creation or destruction of
an rf photon. The form of LA&, G "&(E)Ai „) ' is given
below:

cn—1

b

Cn+ i

Cn —i

i+ &gt'.
—&b„iH, ic„ ,)

0

—(c. &~H2~b. &

Eb, n; —k; ~b, n+~2I 5—&c-+& IH2 lb-&

C n+1

0
—(b. lH21'+i&

E—+.,~i;—k;—A. , +i+ill ~

Here the tilde indicates the natural level shift has been
included in the energy of the atomic level:

TV,—=W,+D, . (75)

The energy-dependent shifts A~ „and b, „. are given
by (74). From the form of the sequence assumed, the

matrix elements of h.' G"'A& of interest are given by

(c„.; —k, iG"&(E)ib, —k )

cof«tor(AiG"'Ai) 'b.
, bk, k,'

(76)
Dett (A&G&'&A&) ']
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with

&c„~&, —k;IG&'&(E)lb„; —k )

( -. IH. lb-&(E-E.,-. -~., '+i!1.)b., .
det[(A&G&'&A &)

—'j
with the determinant given by

The decoupling that we have introduced may be made
exact by choosing the sense of the rf field such that only
one of the two matrix elements (c„.IHk I

b„) with
n'=n~i differs from zero at a time. %hen this is not

(77) possible, the double resonance should be treated using
a coherent representation for the rf field.

det[(A&G &'&A&)-'g

= (E E,,„,—, ~... ,+i,r.) (E—-E.. .,

+bn+&,kI k)(E Ec,n+&;—k, +c,n ++&& pkc)

—l(b. lHklc. &&I'(E—E...+&, k,—A, ,.~ &+i-,'I'.)
—

I &b-IH lc-+ &I'(E—F,=;—.—~ .. +l-l' ).
(78)

In writing the matrix elements of Aq „.O'A~ „ in the
form given by (76) we have allowed for a coupling
through the state

I b; —k;) of the processes of absorp-
tion and stimulated emission of rf photons. From an
analysis based upon perturbation theory, ' the inclusion
of this coupling will result in an additional resonance
yielding a transition probability of order IHkl'/coaP
times the primary contribution. Here IH, I

represents
the matrix element of the rf interaction energy between
states

I b„; —k, ) and
I
c„.; —k;), while a», is the energy

difference. By limiting ourselves to the two simple
decay channels involving n'= n~i rf photons emanat-
ing from the initial state with n rf photons, we have
already ignored terms of this magnitude. Hence, to be
consistent, we consider the inverse of (h&, G'(E)A&, ~)
to have the simpler form

The Green's Function 6 „,,„
The matrix element of interest is diagonal in the rf

photon number and is given simply as

G-,-(E)= LE—F.,-—&a- IR(E) I
a.)l ' (»&

But the level shift operator contains a contribution from
the excited state through the sequence

(a I
R (E) I a„)= (a I

R &'&
I
a.)

+(a-IR"&4& G&»(E)A&, R la„), (80)

where the first matrix element vanishes, as la„) is
assumed to be stable in the absence of the optical field.
[It should be noted that the optical photons also
contribute to (a IR"'la ). However, for U(k) peaked
about a wave number given by the energy difference
Wk —W„ it should be negligible compared to (81).]
The second term may be calculated by noting first that

(a~l R&"h.&,
~G&'& (E)h.&, ~R&"

I a~&

= (a„lH &A&,.G "& (E)A&,.H & I a.) (81)
or

(a„lR ' ~ G ' (E)~, R '
I
a.)

Cn'

c„. E—E, „., g,.—A, „+2-,'I',
b —(b IHklc„&

b

&c- IH—Ib-&
+b, n; —k; ~b, n+22F b

=P (a„lH&lb„; —k;)(—k;; b„lG&'&(E)

X
I
b; —k )(—k; b„lH&la„&. (82)

The matrix element of A&, „G&'& (E)A& „for the two decay
channels considered then has the simple form

(c ~; —k; I
G &'& (F) I b; —k )

= (c ~
I Hkl b.)b, ~&bk, , k, ./det, (76')

with

But

(—k;; b„lG&'&(E) lb„; —k )

(E—8,„,—~...+i-', r,)b., .
det

(83)

det=—(E Ec,n'; k; +c,a—'+f'kI c)—(E Eb, a; k; w—here det is given by (78'). Hence, the matrix element
6k „+i,'I'k) —

I (c ~ IHkl -b„) I'—. (78') in question is given by

I (.„IH, lb„; -k, &l (E-E..., „-~.„„+'-,I.)
&a-IR(F) la.&=Z—

det
"U(k, )dk;

I (a„lH&
I b; —k;)

I
'(E—E.... ,,—Z. ,..+i-,'r.)

det

The integration here must be performed with care as E may involve k; implicitly. In the limit that we can ignore
I (c ~

I Hk I b„)I' in (78'), we see that the above matrix element reduces to

& 'IR(E)I .)= " U(k, )dk;I (alH lb. —k ) I'

E ~k; k; ~a+, ~-kI'k,
(85)

(86)
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where for
I (c„ I Hsl b„)I' negligible as compared to 4r,r,

" II(t ~)db'I &aIHilb; —k'&I'(E —Es, -;—.;—~s, -)

(E &—s; ,a,—~s)',+4l's'

"Lt(b;)db'I& IH Ib; —k*&I'I'

(E—Es, ;-a;—~s, )'+sl's'
(87)

The expression (86) for (a„lE(E) I a„) serves also to define 6, and I', for the case
I (c ~

I Hs lb„) I' non-negligible.

In the form given by (87) above we recognize the intensity-dependent shift and width discussed by Heitler" as
well as by Barrat and Cohen-Tannoudji. "Using (86) we see that the matrix element of the Green's function in

(79) is given by
G,o =tE E, ,„—6(E—)+isl', (E)] '.

Transition Amplitude

Before calculating the transition amplitude,

I;„...„(t)=(2si) ' dEe 's'(a'„; —k;; k, lG(E) la ), (66)

we note first that the matrix element
(a' ~; —k, ; k. lHiAi, .G~" (E)At, ~tla )Go, o

(a'. ;
—k;; k, lG(E) la„)=

must be rewritten using the explicit form for the projection operators Ai „given by (68). Thus, we find

(a' ~; —k,", k. lG(E) la„)= P (a'„.; —k;; k. lHilc; —k )(c ~; —k, 'IG"'(E) lb„; —k;")

X (b; —k,"IHil a.)G.„,.„(E)(E—E. ,;., )„., a,) '

=2 (a '' k''k IHilc„; —k;)(c„;—k'IG"'(E)lb- —k'")

X(b„;—k;"IHila. )G.„,.„(E)(E—E.. „,. g, , a.) ', (89)
where we have used the relation

(a' ~; —k, ; k. lH, lc„.; —k )= (a'„;—k;; k. lHilc. ; —k;&ba, , a,

If we now introduce the matrix elements of the two Green's functions given in (76') and (88), we find, on per-
forming the sum over i", that the transition amplitude is given by

dEe 'e'&a'„; k;ik, lHilc„. ;——k;&&c ~ IHslb )&b i k'IHila &

(27ri) (E—E;. .. ;, s.) (E—E, „—A, (E)+i-',I', (E))det
(90)

with det given by (78'). Here e' is restricted to n&1 The expres. sion for det is in the form (E E+) (E E),wher—e-
lmE~&0. Hence, for times long compared to I' ' and (ImE~) ', the major contribution to the above integral
occurs at E=E...„' ~,, &.. (Here, we ignore the contribution to I;„...„ that shows nonexponential dependence. )
In ignoring the contributions to the above integral that damp out in time, it must be noted that the time scale used
is in te~ms of the periods of the pertinent frequencies, here the optical and rf frequencies. With this in mind, the
transition amplitude, for times long compared to I', ' and Im(E~) ', is given by

(a „.; —k, ; k. lHilc ~; —k;)(c„.lH, lb„)(b„;—k, lHila„)e ' o' s"—a':""I.„„,.„(t)- (E;, s,-, a,—E, „—6,'+i-'I', ')det'
with det' given by

det'=—(E..„...—E„„,, —Ii„„.+i ',I.)(E;,a~., I„-,t.—Eb, n, k,—+1, +sbs)s—
I (cs IHslbe) I

(9I)

(92)

"See Ref. 12, Sec. 20."J.P. Barrat and C. Cohen-'Tannoudji, J. Phys. Radium 22, 329 (1961),
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The energy differences are given by

Ec',c+1;—k;; kc Ecc+, 1; k—; Ea' +c+kc i

Ea', ++1;—k;; k~ Eb, n;—k; Ea' +b+ky&~ p

Ea', ag1;—k;;k~ Ea,n= Ea,& Ea+k~ ki~ ~ (93)

dk'U(k ) II".....(&) I' (94)

Here we have anticipated the similarity to the transition
probability for stimulated emission from the state

I b„)
by changing the subscript. If we drop the extraneous
factors in the description of the states in the first matrix
element in (91), we find

f''. .c.(~) =!&o'-; 4IHil ~- &&' IHklb-&/«t'I'

X I'(k &dk'I &b-; —k*lHil o.& I'/

DI'.; E,+k, k;+(n' ——n)pp —d„—)'+ice,'). (95)

By assumption, U(ki) varies slowly in the vicinityof

k;= kp—= (k,+E, +n'pi) (E,+npc+6;), (9—6)

where ko is equal to the difference in energy between the
final state and the initial state. In addition, in the dipole
approximation the matrix element

I (b„; —k;I Hi! u„&l'
varies as k;+' Lsee (50)), which is essentially constant
in the immediate vicinity of k;=ko. We assume that
U(k;) falls sufficiently fast near k;=0 to avoid any
singularities at zero energy. The major contribution to
the transition probability occurs for those photons
satisfying the energy conservation condition, (96), and
is given by

P'.. ., k.= l(o'- k. IHil~- &&~" IH. lb-)/«t'I
x!2 U(k;)/F. '(k;))l&b. ; —k;IH

I „)I'I, , .
(97)

The transition amplitude as given by (91) may serve,
for instance, as a first step in a more complete descrip-
tion of the magnetic resonance in an excited state
observed using optical pumping techniques. " The
major changes that would result from this approach
would be in the appearance of an intensity-dependent
shift of the resonance frequency. Under near saturation
conditions, this eGect could be important.

When the spectral energy distribution of the beam of
photons is quite broad, the shape of the emission line
becomes independent of this distribution. To see this
we sum the probability for the transition a„—+ a'„,,
over the distribution of absorbed photon:

P".., .(&)—=2 II".....(&) I'

For a final photon k, satisfying the energy conservation
condition (96), the transition probability per unit time
I', '(k, ) for absorption of a photon from the initial state
is determined by (86):

I','=.I',(E=E;,„.k. k.)
= —pi 1m&a„!R(E=E;„., k, .k)la„). (98)

An evaluation of the above matrix element as given by
(84) involves an integration over the spectral energy
distribution of the initial photons. The integrand in

(84) depends on k; only implicitly through the final
photon k, . This dependence is made explicit by the
energy conservation condition (96). By repeating the
analysis leading up to (97) we find that

r, '(k;) = 2 U'(k;)
I (u I

H
I b; —k;) I

', (99)

where k;= kp by (96). Finally, if we integrate over the
angle of the emitted photon k„we find that the transi-
tion probability per unit energy range for the stimu-
lated emission of a photon k„ is given by

P;„,k„= (r,/2pr) I &c„+i!Hpl b )/det'I', (100)
where

I
det'I '= L(E..—E,+k.—Ac, „~i)

X (E; 8k+k—,&pi Dp)— ,

—lr r —
I & -+ IH Ib-&I')'

+ ,'[r.(E.. E,+k-.~~ ~—, .)
+r, (E..—E.+k.—~...„))'.

Apart from notational differences, this result is in
close agreement with the second part of Eq. (85) or
Ref. 2. The subsequent analysis given there can be
followed if we note that the rf resonance no longer
occurs at the Bohr frequency, but is shifted by the rf
and optical intensity-dependent terms included in
5b „and 5,,„pg.
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APPENDIX

The relationship between the level shift operators
that appears in the step-by-step analysis given in the
text is easy to come by. We start out with the definition
of the level shift operator for the j—1th step in the
decay process:

Rt~'~(E)—=V+VP; i(E P; iHP& i) 'P, ,V. —(A1).
The projection operator P, & acting on any of the previ-
ous j states (I a&, I 1), , I j—1)) yields no contri-
bution —it in eGect couples to the remaining portion of
the spectrum. From its definition we see that"J.P. Barrat and C. Cohen-Tannoudji, J. Phys. Radium 22,

443 (196i). P~i P,+A; . ——(A2)
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Hence, if we take the four projections of

P; i(E P;—iHP; i) '

where we have introduced the definitions

AG&i&(E)A, =A, &&E K —A;R—&i&(E)A,j
R"'(E)—= V+VP, (E PH—P ) 'P V (.A6)

P; i(E P, —iHP; i) 'P, i
=—(Pi+Ai) (E Pi iHPi-i)—
=P;(E P;H—P,) 'P;

+[P,(E P,HP—,) 'P HA—+A, ]G&&'&(E)

X PX,+A,HP, (E P,HP—,) 'P, 'j. -(A7)

(E P, i—HP; i)P; i(E P; &—HP; i) P, i=P, i (A3)

and multiply from the left first by P; and then by A, .
The two operator equations that result,

P, (E P,HP—,)P, (E P, iH—P; i) 'P& i

P,HA;—(E P, iH—P; i) 'P, i P, ,
——

A,HP,—(E P& iH—P; i) 'P, i+A;(E A,HA,—)
XA;(E P, iHP—, i) 'P, i=A;,

The substitution of this relation into (A1) yields the
following expression for R' '(E):

(A4) R &~i& (E) R&i—& (E)
+VLPi(E PiHPi) 'PiHAi+AilG&" (E)

X PA, +A,HP, (E P,HP, )—'P, ]V (AS)may be formally solved for the projections desired. If
we assume that the inverses of A, (E A,HA, )—
P, (E P,HP, ) e—xist, we find

R&i-»(E) = R(iE)+ R&i(&E) Aa &i(&E) A,
R& i(&E), (A9)

A, (E P; iHP;—i) 'P) i.
=AG&& &(E)&&A+A',HP, (E P,HP, ) '—P;],

P, (E P, iHP; —i) 'P; i P, (E P;——HP, ) '—P,
+P (E PHP ) 'P—HAG&'&(E)

X PA)+A, HP&(E P&HP;) 'P&]—,

onto the various subspaces spanned by the combinations
of P, and A, , we will be able to relate R~'(E) to R'(E) lf we combine these two expressions, we find
Ke start with the identity

(AS)

which is seen to be identical with the expression (33)
given in the text. In arriving at (A9) we have made use
of the definition of R"&(E) given in (A6) and the fact
that by definition E has no matrix elements between
the subspaces spanned by A; and P;.


