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Determination of the Quantum State by Measurements*
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A question raised by Pauli as to whether or not the probability densities in space and momentum deter-
mine the wave function is answered negatively. The assertion by Kemble that the probability density and
its time derivative determine the wave function is shown to be not generally true. It is shown that measure-
ment of the probability density and the probability current determine the wave function of a spinless
particle. The measurement of the probability current is discussed. Measurements which determine the spin
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state and the density matrix of a mixture are also considered.

I. INTRODUCTION

IN this paper we are concerned with what measure-
ments may be made on an ensemble of systems
representing the same quantum state, to determine that
state. In the first two sections, we consider the case in
which the system is in a pure quantum state, and in
the third section we consider mixtures.

This is a matter of some interest, yet we have found
very little discussion of it in the literature. Pauli, in
his famous Handbuch article,! says that it remains an
open question (this still appears in the reprinted ver-
sion) whether or not the distribution function in r,
p(r)=|¢¥(r)|% and the distribution function in momen-
tum, p(p)=|S¢(x)Xexp(—ip-r)dr|? serve to deter-
mine ¥(r).2 That p(r) and p(p) do not determine ¥ gen-
erally is easily seen. For example, if we take

¥(r)= f(x) Pi~(0)e™™?, @)

p(r) and p(p) are obviously independent of the sign of 7.

Kemble, in his well-known text book,? considers this
problem, but he errs in extending considerations of
Feenberg on one-dimensional motion to higher dimen-
sions. He makes the statement?® that p(r) and 4(r) are
sufficient to determine . That this statement is not
generally true is also clear from the example (1), be-
cause, if f(r) is real, 5(r)=0 and p(r) is independent of
the sign of .

It is immediately apparent that in order to determine
¢ it is sufficient to determine the probability density
p(r) and the probability current j(r) by measurements

* Research supported in part by U. S. Atomic Energy
Commission. .

+ National Science Foundation Fellow. .

1W. Pauli, Encyclopedia of Physics (Springer-Verlag, Berlin,
1958), Vol. V, p. 17. . .

2 For simplicity, we consider the state of a single particle. All
of our considerations are nonrelativistic, and are based on the
Copenhagen interpretation of the existence of classically described
measuring instruments. . .

3 E, C. Kemble, Fundamental Principles of Quantum M echanics
(McGraw-Hill Book Company, Inc., New York, 1937), p. 71.
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carried out on the ensemble of systems in the same pure
state. If we write

()= f(x) exp[iS(n)%~1], (2)
where f and S are real, then
p(r)=[Y(0) [¢(r) [2= f2(x) ©)

and

i(0) = #/2m) PVY—yvi) =p(OVS(Om.  (4)

Equations (2)-(4) serve to determine y (to within a
constant phase) if p and j are determined by measure-
ments.*

Although the Born relation [Eq. (3)] is fundamental
for the physical interpretation of the mathematical
formalism of quantum mechanics, the measurements
required to determine the probability current have re-
ceived relatively little discussion. A gedanken experi-
ment to determine j(r) by measuring the average velo-
city of the particle at a point, (v(r))=V.S(r)/m, is dis-
cussed in Appendix A.

There is no difficulty in principle in extending this
method for determining ¢ to a system containing several
particles: one determines p(ry,- - -,r,) and ji(ry,- - -,1,)
=p(rs, - 1) (Vi)=p(r1- - - 1) VES(x1- - - -10) /101

II. SPIN STATE

In the preceding section, we neglected spin. If the
particle has spin and if the spin state depends upon r
then the analysis of that section becomes somewhat
more complicated, but in an uninteresting way. It is of
some interest, however, to give brief consideration to
the determination of the spin state when spin-orbit
coupling can be neglected. This can be done (in prin-
ciple) by means of the modifield Stern-Gerlach appa-

4 One might be concerned about how to determine the relative
signs of f on the two sides of a nodal surface of /2 when ¢ is real, say.
The relative sign is negative (if y is real), or more generally ¥
changes sign when passing through a nodal surface since its normal
derivative is continuous and nonzero.
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ratus as described in Feynman’s lectures,’ which we call
a Feynman filter. We refer the reader to Ref. 5 for de-
tailed explanation. Briefly, the apparatus consists of
three Stern-Gerlach magnets in series. The two end ones
are identical and of the same polarity, whereas the
middle one is twice as long as an end one and of the
opposite polarity. A parallel beam of particles entering
along the axis of the apparatus is separated into (25+1)
spatially separated beams within the apparatus (S
=spin) and will be brought back into an unseparated
parallel beam upon leaving the apparatus. The advance
in phase along each path in the apparatus is the same,
so that, for example, if a particle entering the apparatus
is in an eigenstate of an arbitrary component of the
spin, it will be in that same spin state upon leaving the
apparatus. The apparatus is also provided with gates
which may be opened or closed, passing or stopping
chosen separated beams within the apparatus.

Let S be the spin of the particle and let | #,m) be an
eigenstate of the # component of the spin with eigen-
value m,

#-S|#m)y=m|#m). (5)

An arbitrary spin state may be written

W)= £ _Culh)ltm), ©

|¢) is determined only to within a phase factor, of
course, and fixing its normalization leaves 25 moduli
and 2S5 (relative) phases of the C’s to be determined
by measurement. This determination can be done very
simply (in principle) with Feynman filters.

Let the Stern-Gerlach magnets separate the |2m)
states internally; then closing the gates and counting
the particles collected at each gate gives us the | C..(2)]2.

To determine the relative phase of C(2) and C.(3),
say, we close all the gates except those corresponding
to S.=m, n. The spin state of the particles passing the
filter is then

[‘V) =¢%( [ 2;m><‘%’m| + [éxnxé)n‘ ) [ll’)
=Cn(®) l gm)+Ca®)|2m) (7)

except for a normalization factor and a common phase
factor. We now analyze the spins of the resulting parti-
cles in the x-y plane and determine the relative phase
of Cy, and C,. If particles in state (7) are analyzed by a
Stern-Gerlach magnet which separates the components
of S-#, where # is in the x-y plane and makes an angle
¢ with the x axis,® then with the standard choice of

5 R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics (Addison-Wesley Publishing Company,
Reading, Mass., 1965), Vol. III, Chap. 5.

6 For these measurements, the beam would have to be bent
from its original x direction, say, to the z direction; we assume this
done in such a way that the spin state is unaltered.
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phases’

I G’PW/)[ 2= ]dpmS(T/Z)Cm(é) I 2+ Idpns(ﬂ'/z)cn(é) [ 2
+2 | Cn(®)Cn(®) | dpmSdpaS cos (m—n)p+0n— 6.1, (8)

where 0, and 0, are the phases of C,, and C, and the
d’s are the rotation matrices.” By choosing (m—mn)¢=0,
—3%m, say, we determine 6,,—0,.

Of course, there are many other ways to determine
the spin state. It can be shown that it generally is not
sufficient to determine the distribution functions of .S,
Sz, and Sy [an insufficiency somewhat similar to that
of the determination of p(x) and p(p) for the space part
of the wave function]; however, as Fano® has pointed
out, the determination of the mean values of the non-
vanishing multipole components of the spin distribution
is sufficient to determine the spin state.

III. MIXTURES

In the preceding sections, we supposed that we had a
system in a pure quantum state, and we discussed means
of determining this state by measurements carried out
on an ensemble of systems all in this state. A concrete
ensemble generally does not consist of systems all in the
same quantum state; it is a mixture, and the state of the
ensemble is represented by a density matrix.® We dis-
cuss measurements on the ensemble which may serve
to determine the state of the mixture, first for the spin,
then for the cm motion.

Spin. The density matrix for the spins may be
written

= Z pnml27n><27m| (9)

n,m

in terms of the eigenstates of S-2, Eq. (5), where the
matrix p» is Hermitian, has positive eigenvalues, and
has unit trace.® The sums in (9) run from —.S to S.
For a pure state pun=Cn(8)Cn'(8) [Eq. (6)] and only
4S real numbers are required to determine the state of
the ensemble. In the general case, however, 45(S+1)
real numbers are required to determine the state.10

By means of Stern-Gerlach magnets and Feynman
filters, the pnm are determined by the methods discussed
in the last section; py, is the probability of finding S,
having the value #. If in the Feynman filter discussed
in the last section only the gates # and m are left open,
then the density matrix for those systems which pass
through the filter is®

p'=0ps/Tr(opo), (10)

o=|8n)gn|+ |8m)@m|. (11)

7 See, for example, M. E. Rose, Elementary Theory of Angular
Momentum (John Wiley & Sons, Inc., New York, 1957), Chap. IV.

8V. Fano, Rev. Mod. Phys. 29, 74 (1957).

). von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, N. J., 1955),
Chap. 6. See also Fano, Ref. 8.

10 A particle of spin S may have nonvanishing multipole mo-
ments up to order 225, The average values of the 45(S+1) multi-
pole components determine the spin state (see Fano, Ref. 8).
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Analyzing the mixture (10) by a Stern-Gerlach appa-
ratus in the x-y plane [see discussion preceding Eq. (8)],
we obtain for the probability of finding S-# to have the
value p:

Tr( l ?,PX*,P l P,) = N{ (dpms)2pmm+ (dzms) %pun
+2dpmsdpnslpmn ’ COS[(m“”)¢+¢mn]}: (12)

where N=1= pyum~+pnn and pmn= | prn | €Xpi0mn. Measure-
ment of the diagonal elements (pmum and p.,) together
with the measurements represented by (12) at two dif-
ferent ¢’s determine |pm»| and ,n.

Space. The method analogous to that above when
applied to the density matrix in space is of course ex-
tremely impractical, but it does furnish a method which
could in principle determine the density matrix. We
sketch the method in Appendix B.
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APPENDIX A: MEASUREMENT OF CURRENT

There are several ways to measure the probability
current. The probability current of an electron in an
atom, say, is proportional to the electrical current, and
the electrical current may be detected by means of its
effect in scattering charged particles or neutrons, or in
photon emission or absorption. Rather than considering
such realistic methods of current determination, it is
interesting to consider a simple gedanken experiment
which in principle can be used to determine j(r) by a
measurement of (v(r)).

To determine j(ro), we first determine that the particle
is in a small volume w containing ro. We then measure
its subsequent velocity. Upon repeating the experiment
on many members of the ensemble, we obtain (v(x)).
The current is p(ro){v(xo)).

When we determine that the particle is in w, then,
according to Heisenberg, we will give the particle an
undeterminable impulse on the order of [((Ap)2)]V/2
=13, There is no principle of quantum mechanics,
however, which prevents us from carrying out the posi-
tion measurement in such a way that (Ap)=0. If such
measurements are made for successively smaller w’s,
then the subsequent velocity distribution curve will
become increasingly broader, but the mean velocity
will approach a limit.

Mathematically, if

¥(r)=R(x) exp[iS(r)%] (A1)
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is the wave function before the position measurement,
then the wave function after the measurement will be

¥'=Nfo(t)R(x) exp(iS%~Y), (A2)

where N is a normalization factor, and f,(r) is a real
function which vanishes except for r in w. It then follows
that

W' [ply)=VS(r) (A3)

if w is sufficiently small that S=.S(r)+ (r—ro) -V.S(7,)
in w. But W'|p|¢)=m(v(ro)); thus the probability cur-
rent j(ro) = p(ro)m=1V.S(ro) = p(xo) (v(ro)).

APPENDIX B: METHOD FOR DETERMINATION
OF THE DENSITY MATRIX

The method utilized in Secs. II and III for deter-
mining the density matrix by first filtering out two com-
ponents of the Hilbert space, then making a measure-
ment wherein the two states interfere, is one which may
generally be employed.

In order to determine the density matrix p(x,x’) of a
system consisting of a single spinless particle we could
first determine that the particle is either at x; or x» with-
out determining which. (This could be done by illumi-
nating all space except for small regions containing x;
and x; and eliminating all cases in which the particle
is discovered in the illuminated region.) Subsequent
detection of the particle on a closed surface surrounding
x; and X,. with measurement of both position and time,
serves in principle to determine p(x;,x;). If before the
position measurement

= [ asixotxx) 0w (B1)
where |x) indicates a position eigenket, then after the
measurement the density matrix would be

p,= C{p(Xl,Xl) I X,)(X, | +p(X2,X2) l X2><le
+p(x1,%2) | X1)(X2 |+ p(%o,X1) | x2)(x1] }.  (B2)

In (B2), C is a normalization constant which we shall
neglect hereafter since we are only concerned with the
relative density distribution. Now the probability den-
sity for finding the particle at x after a time ¢ if (B2)
holds at =0 is

P(x,0)=p(x1,%2) | G (X, %1) |2+ p(x2,X2) | Go(x,%5) | 2
+2Rep(X1,X2)G¢(X,X1)G—t(X,X2) ) (BS)

where G.(x,y)=(x|e~*#t|y) is the Green’s function for
propagation from y to x in the time £ It is clear that
measurements of P(x,£), p(x,X), together with the knowl-
edge of the Green’s function, would in principle furnish
ameans of obtaining the amplitude and phase of p(xy,xs).



