
PHYSICAL REVIEW VOLUME 16S. NUMBER S 25 JANUARY 1968

Vierbein Field Theory of Gravitation
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The sixteen components of the vierbein field which factorize the metric tensor are used to construct a
simple nonlinear field theory of gravitation which, although it is shown to be equivalent to Einstein's
theory physically, is based on a scalar action function of first order, replacing the Riemann scalar which
serves as a second-order action function in the conventional approach.

1. INTRODUCTION 2. TRUE GRAVITATIONAL FIELDS
' "N 1928 Einstein, aiming at the acquisition of addi-
' - tional field variables for the purpose of grasping both
gravitation and electromagnetism in a unified field
theory, introduced into the geometric theory of gravi-
tation the use of a sixteen-component "vierbein field"
from which the ten components of the symmetric metric
tensor can be constructed as bilinear forms. Although
the mathematical properties of vierbein fields were
made available to physicists soon afterward in two lucid
papers by Weitzenbock and by Levi-Civita, and
although the advantage they present for the formulation
of a quantuIn field theory of gravitation was recognized
by Rosenfeld' in the very first paper on this subject,
they are not widely employed in the current literature
on general relativity, except in conjunction with
attempts' at understanding gravitation as a compen-
sating field in the sense of Yang and Mills, " where their
use is, in fact, indispensable.

The purpose of this paper is to revive interest in these
vierbein fields as variables eminently suited for the
description of gravitation, even if one does not aim at
any so-called unified field theory, by showing their
usefulness for the distinction of true gravitational fields
from pseudogravitational fields (Sec. 2); by exhibiting
invariance under reorientation and under gauge trans-
formations as the requirements that lead uniquely to the
linearized theory of Einstein for the case of weak fields
(Sec.3);by extending the uniqueness proof to Einstein's
full theory; and by giving a simple, properly invariant,
nonlinear vierbein field theory of gravitation which,
although it is equivalent to Einstein's theory physically,
is based on a scalar action function of first order (Sec. 4).
The transformation properties of the Weitzenbock in-
variants under coordinate-dependent reorientations of
inertial frames, which are essential to the main argu-
ment put forth in this paper, have been collected in an
Appendix for ready reference.
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The distinction between pseudogravitational fields,
such as the Coriolis and centrifugal fields encountered in
rotating noninertial frames, and true gravitational
fields, such as the Newtonian field of the sun, classifies
inertial acceleration fields into those that can and those
that cannot be transformed away globally. Thus,
Coriolis and centrifugal fields vanish everywhere when
one undoes the rotation with respect to the Newtonian
inertial frame that gave rise to their appearance,
whereas one cannot find an inertial frame in which the
sun's gravitational field has the value zero everywhere.

Since one can always find an inertial frame y~ in which
an inertial acceleration field given in terms of the metric
properties of an underlying coordinate continuum x has
at least locally the value zero, the so-called vierbein
field components, consisting of the sixteen transforma-
tion functions h' (x) connecting the displacements dy"
and dx by

dy'=h' (x)dx,

present themselves as a most convenient device for
making the distinction between pseudogravitational and
true gravitational fields formally precise. Indeed, if the
vierbein field components are integrable, i.e., if It „~p
=h"ti~ (where h"

~ii means Bh" /Bxi'), one can trans-
form everywhere from the underlying continuum to an
inertial frame y~ =y" (x ), and the metric field described
by the h~ can be recognized as a pseudogravitational
field in this case. ' Nonintegrability of the h" is charac-
teristic for presence of true gravitational fields. There-
fore, the functions

(2.2)

which vanish for pseudogravitational fields, will be
given the name "true gravitational field strengths. "
This definition also suggests looking upon the com-
ponents h~ of the vierbein field as "gravitational
potentials, " in analogy to the electromagnetic po-
tentials A from which the electromagnetic field
strengths F p=A ~p

—
Ap~ are derived by diAerentia-

tion. The ana1og to the gauge transformations A ~ A
+h.

~
of electrodynamics are the "gravitational gauge

This implies that the notion of distant parallelism can be
retained in metric fields describing pseudogravitational effects
I see Einstein (Ref. 1)j.

1420



165 VIERBF IN FIELD THEORY

transformations"
lit ~ /gk +i1ib( (2.3)

which leave the true field strengths G~
p invariant.

The observation that for given vierbein 6eld the
metric tensor is uniquely determined by

gap h ahkp p (2 4)

Qlg ~ 'h~k gk .Qi (2.6)

The reciprocals f & of the vierbein Geld, deGned by

fa Qkp gap h—i fa& gi& (2 7)

transform accordingly as a set of four contravariant
four-vectors under transformations of the coordinates
x", and permit unique construction of the contravariant
components of the metric tensor by

whereas for given metric tensor the factorization into
vierbein 6eld components is not uniquely possible,
provides additional motivation for treating the vierbein
field components as basic field variables with which to
apprehend gravitation in a 6eld theory.

The components of the vierbein field are not tensors. '
Under transformations of the coordinates x they trans-
form as a set of four covariant four-vectors with com-
ponents labeled by the index 0,, whereas under re-
orientations of the local inertial frame generated by an
orthogonal matrix E~; so that

(2.5)
they transform as

tational fieM ought to be essentially nonlinear, in
contradistinction to the classical field equations of
vacuum electrodynamics which are essentially linear
because of the electric neutrality of the electromagnetic
fieM. However, the extreme weakness of the gravita-
tional coupling has prevented, to date, experimental
verification of that proposition for the case of the
gravitational field. In particular, the tests of Einstein s
theory verify that theory only for gravitational fields
that are described sufFiciently by equations linear in the
6eld variables. " Thus, any deviations y p from the
pseudo-Euclidean metric 8 p, defined by

gap=~ap+Vap ~ (3.1)

have not been observed beyond a linear approximation
permitting terms of quadratic and higher order in the
small quantities y p to be neglected.

All experimental knowledge about gravitation ex-
isting at present is therefore compatible with any theory
that coincides for weak 6elds with the linearized version
of Einstein s theory. In particular, a vierbein 6eld
theory of gravitation is sufFiciently supported by experi-
ment, provided the field equations written in terms of
the variables q', defined by

(3.2)

reproduce in an approximation linear in these variables
the physical content of Einstein's linearized theory.

Substitution of the definition (3.2) into the expression
(2.4) for the metric tensor yields the connection

gaP fa fPi: (2 8) y.p=g p+gp +0(g'), (3 3)
Similarly, the true Geld strengths G~ p are not tensors.

Accordingly, the name "true gravitational field tensor"
will be reserved for the mixed tensor

(2 9)

which is antisymmetric in the indices n and P and has
thus 24 components. They may be written alternatively
as S& p=h& p

—d&p with the tensor

~'-p=f'~Ii"-i p (2.10)

which can be used to express the derivatives of the
vierbein 6eld.

3. WEAK-FIELD APPROXIMATION

If one believes in the universal validity of the propo-
sition that energy in any form is gravitating, then any
theory of gravitation permitting introduction of the
concept of field energy must recognize the gravitating
eGect of gravity. Since in all customary field theories
that are derivable from an action principle the energy
density is not a linear function of the field variables, the
Geld equations governing the dynamics of the gravi-

9 B.S. DeWitt, Dynansica/ Theory oj Groups and Fields (Gordon
8t Breach Science Publishers, Inc., New York, 1965), p. 114.

I5 gaPl yppal y j I6 baal y'QPPl y j

I8= &apl ygyal p t Ig = &apl ygypl a 7

I11

'QaPlP'/agley

j I12 'QaPlPPyal y p

I13=gaPla'gyPly &
I14= gaaly~yPlP '

Iv= '/apl''gavlP ~

I1o= 'gaaly'/peal p i

(3 4)

Since I11, I12, I13, 114 differ from Iv, I8, Ig, I1o, respec-

R. H. Dicke, in GravI'tation and Relativity (W. A. Benjamin,
Inc. , New York, 1964},Chap. 1.

which shows that in the weak-field approximation the
sixteen functions g p may be treated as a tensor 6eld,
and that in the lowest order only the symmetric part of
the tensor p p contributes to the symmetric metric
tensor.

Just as Maxwell's vacuum field equations A,
~

—A, ~,
=0 are the only I.orentz-invariant linear equations of
second order for a vector field A that satisfies the re-
quirement of gauge invariance, so the linear field
equations governing the tensor field p p follow uniquely
from the requirements of invariance under the gauge
transformations (2.3) and (2.6), as follows.

One can form fourteen linearly independent invariants
bilinear in the 6elds g p and their first derivatives,

I1=gapgap j I2= gap&pa ) I3= gaa'gpp y I4 haply'/apl y p
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tively, by divergences only, the linear combination

10

L=gcj;

with arbitrary coef5cients c; is the most general
Lagrangian that yields linear Geld equations of second
order. Turning first to the requirement of orientation
invariance it should be noted that the coefficients R~;
introduced in (2.5), which connect equivalent local
inertial frames, must be written

gk .—bk .+0k . (3.6)

with ~I,;=—e;g, regarded as small so as not to violate the
linear approximation. The transformation law for the
g p is now obtained from that of the h~ by writing,
keeping only terms of zero and first order in small
quantities,

P&k gk +~~k gk

hagi

gk . +~k +0k (3 7)

which reduce in the Fierz" gauge to wave equations, and
which have, on account of the identification (3.3), the
same physical content as those obtained by linearization
of Einstein's theory. By contraction of (3.13) one
obtains the additional relation

~v~l v~ &vol «0 ~

which can be used to cast (3.13) into the form

(3.14)

G,p.i.+G...w =o.

4. FIELD EQUATIONS

(3.16)

In keeping with the traditional aim of field theory, the
field equations governing gravitation ought to be
derivable from an action principle

Pap'l aa Va~l p&'+'Q«l ap zjpal aa= 0. (3.15)

These equations contain information about true gravi-
tational fields only, as they may be written

yielding the result

'9 aP= ZlaP+ &aP y (3.8)

Cd@=0, (4 1)

I= I4 I8 2(Iz Iik), — — —
yielding the Geld equations

(3.12)

Vaplaa+ Vaalap 'gaa[pa Qp'a'laa'
+~-p(~y. ly. ~yyl-)=o (3 13)

' W. Wyss, Helv. Phys. Acta 38, 469 (1965).

which shows, on account of the antisymmetry of the
~ p, that rotation of the local inertial frame changes only
the skew part of the g p. The scalars I3 and I6 are
obviously invariant under (3.8), and so is 8(Ii0+Ii4)
which differs from I&0 only by a divergence. Requiring
the remainder of I, to be invariant under (3.8) yields the
condition

2(ci C8)0 pg
—p+[2(C4 ck)» piy-

+(2cz c8)kay—)p+(c8 2c0)0py)a]ylap(7=0) (3.9)

leading to the constraints

ci= C8 j c4—ck, 2cz c8 2c0, (3.10)

which have the effect of letting p p appear in L only in
the symmetric combination y p=g p+gp . The most
general orientation invariant Lagrangian is therefore

CiI1+C8I8+C4I4+C0I—0+CzI7+C10I10 (3 11)

with the understanding that only the symmetric part of
the tensor p p is considered. Apparently, the skew part
of the vierbein field can play no dynamical role in the
linear approximation.

The Lagrangian (3.11) is identical with the one con-
sidered by Wyss" who showed that imposition of
invariance under the gauge transformations (2.3) re-
duces (up to an unimportant common factor) the
Lagrangian to the linear combination

with a Lagrangian density

(4.2)

composed of the determinant k=det~hk
~

and an
invariant action I which is a function of the field
variables h and their derivatives. When casting for a
suitable action among the invariants that can be formed
with these variables one is constrained by the desire to
land an expression which is also invariant under coordi-
nate-dependent reorientations of the local inertial
frames, and which in the limit of weak fields will again
yield the field equations (3.13).

Now, there exist" three invariants of first order con-
taining the true gravitational 6eld tensor (2.9) bilinearly,
namely,

8'g=g ~S&,S p~,

8'g=g pg& g&'S»S&
„

8'B=g &S~ ~S p„

(4.3)

(4.5)

4

I.= Q C~W; (4 7)

with arbitrary coe@cients c;.
~ M. Fierz, Helv. Phys. Acta 12, 3 (1939).
'3 R. Weitzenbock, Ref. 2, Eqs. (20) and (24).
'4 Adding a constant, which is the only invariant of order zero,

leads to Geld equations containing the so-called cosmological term.

and one invariant of second order containing the
derivatives of the true gravitational Geld tensor linearly,
namely,

8'4 ——(g S py) i,+g A',S"py. (4.6)

Compatibility with the weak-Geld approximation re-
stricts the most general Lagrangian to the linear
combination"
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Insistence on invariance under coordinate-dependent
reorientation transformations (2.6) leads by a straight-
forward calculation (see Appendix) to the conditions

4cl+c4= 0; 2c4+c4= 0;
2c2—el=0; 3cl—2c4+c4+c4——0, (4.8)

P' p=kf'I I
f"(Il.pG"-+&. G".p)

+14 p( +II (pj, (4.10)

Rlld thlls 'this del'lvatlorl of 'thc Lagl'RIlglR11 (4.9)
amounts to a proof for the contention that restriction to
reorientation invariant tensor 6eld equations of no
higher than second order leads uniquely to Einstein's
theory.

Another beneGt stems from the observation that hS'4
divers from hS'3 only by a divergence,

which select, up to an unimportant common factor, the
linear combination

L,g ——28 4
—8'g ——,5 2

——,5 g (4.9)

as the only Lagrangian with the desired invariance
properties that leads to 6eld equations of not higher
than second order. This expression happens to be
identical with the Riemann scalar E, as can be shown
easily by computation'5 using the representation of the
amenities in terms of the vierbein 6eM

completely by two variables,

f' =f' =f' =A(r) f' =8(r)
all Other fa4 0——; 1'4=A '8 ' (4.13)

corresponding to a metric

g11—g42 gN —
A 2 (r) ~ g44 82 (r) ~

gaP=0 for n/P. (4.14)

Tile LagI'RIlglRI1 density (4.12) becomes

g =A-'8—'$A —'(VA)'+2A —'8-'(VA VB)$ (4.15)

and the field equations are

V A —(3/2A) (VA)2=0;
V'8 (2/8) —(VB)'—(1/A) (VA VB)=0.

They are easily solved and yield, with the boundary
conditions (A,B)-4 1 as r —+~, the well-known

Schwarzschild metric in rectangular coordinates"

A=[1+(M/2r)] '„'
8=L1+(M/2r) $/Li —(M/2r) j.
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hlF4= (hg PS&p,)) +hlF4, (4.11) APPEHDIX

so that the Geld equations Qowing from the Lagrangian
density

Z =IIX=hfW4 —
4 Wm —1WI) (4.12)

are equivalent to Einstein's Geld equations'6 which Qow
from Zg=hLg. The Lagrangian I is a proper scalar'~
and has the advantage of being of 6rst order, resulting
in considerable simpli6cation. In particular, there is no
need here to cast the action principle in Palatini form,
which is such an encumbrance when one wants to
translate the conventional approach, based on Ig using
the metric tensor and the amenities as variables, into the
language of quantum 6eld theory.

As an example of the ease provided by the Lagrangian
(4.12) consider the case of a vierbein field described

"R.Weitzenbock, Ref. 2, Kq. (23). The Geld tensor used here
differs from that used by Weitzenbock by a factor 2.

'6 That this linear combination leads to symmetric Geld equa-
tions was known to Einstein t Sitzber. preuss. Akad. Wiss. ,
Physik. -math. Kl. 1929, 157 (1929}j.For that very reason he
rejected it at the time, because he was intent on acquiring more
than ten equations for the purpose of obtaining a uniGed Geld
theory. Note added in proof. Dr. P. Rastall kindly pointed out two
papers by C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. Bl, No. 10 (1961);34, No. 3 (1964); who uses the same
Lagrangian, expressed in terms of covariant derivatives, as basis
for a discussion of the energy-momentum complex."The corresponding quantity 6, obtained by partial integration
from the Riemann scalar in the conventional approach, is not a
scalar. See L. D. Landau and E. M. Lifshitz, Classical Theory of
Fields (Addison-Wesley Publishing Co., Reading, Mass. , 1962),
Sec. 93.

Wl' Wl+2A 8+3C, —— —
Ws'= Ws+28 —2C,

W4'= W4+C+2D,
W4'= W4+ ',A+D, -

(A2)

(A3)

(A4)

(As)

A —Ri Ria
~

fir faaSP. (A6)

8=gaP(2R' R"I)pfa,6~ .+R"g R~ (p) (A7)

c=R',i.R".ipf.;fP",

D—Ri Ria fP fa asa. (A8)

The condition that the linear combination (4.7) be
frame-invariant leads now at once to the relations (4.8).

"R. C. Tolman, Relativity Thermodylumics gmd Cosmology
(Oxford University Press, Oxford, England, 1934), Eq. (82.14).

%hen the coeKcients R'~ which describe reorienta-
tions of the local inertial frame are dependent on the
coordinates, the true gravitational Geld tensors S~ p

introduced in (2.9) do not remain frame-invariant and
transform as

S'i p=S~ p+R' f&;(R~ ipI4 R" i,h"p). —(A1)

Consequently, the Weitzenbock invariants (43)-(4.6),
which are true scalars under coordinate transformations,
are not frame-invariant either and transform as


