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Itis proposed that the electromagnetic interaction in the Lagrangian formalism for the Bargmann-Wigner
fields should be introduced in such a way that the number of linearly independent components of the aux-
iliary fields is minimized in the resulting field equations. {In this way a consistent formulation of the electro-
magnetic interaction of the Bargmann- Wigner field with spin $ is obtained, and its equivalence with the

Rarita-Schwinger formulation is established.

I. INTRODUCTION

Y using the generalized Bargmann-Wigner field

equations,! it is possible to combine the baryon
octet of spin 3 with the baryon decuplet of spin £ and
the pseudoscalar-meson nonet with the vector-meson
nonet in a simple manner.? Although the U(6,6)
hadron model, obtained by the above procedure, is still
in a preliminary stage, there seems little doubt that
the Bargmann-Wigner form of field equations offers
a very promising approach for the description of
strong-interaction symmetries. While these multi-
spinor field equations are equivalent to other forms of
field equations in the absence of interaction, such
equivalence is no longer apparent in the presence of
interaction. Indeed, it is known that the usual pre-
scription of replacing 6, by D,=d,—ied, for the
electromagnetic interaction, when applied to the multi-
spinor field equations, leads to inconsistencies.

Unless a consistent theory of the electromagnetic
interaction of the multispinor fields is developed, the
use of such fields in any theory of strong interactions
will be looked upon with suspicion. Therefore, in an
earlier paper® we have investigated the electromagnetic
interaction of the multispinor field with spin %, and we
shall now extend our treatment to the field with spin
4. For this purpose we shall first discuss the Lagrangian
formalism for the multispinor field with spin § in the
absence of interaction, which requires the use of
auxiliary fields. We shall then show that the usual
prescription of replacing 4, by D, for the electro-
magnetic interaction leads to undesirable results, and
propose an alternative prescription. Finally, we shall
discuss the equivalence between the Bargmann-Wigner
and Rarita-Schwinger? formulations in the presence of
the electromagnetic interaction.

The present investigation shows that the usual treat-
ment of the electromagnetic interaction by means of
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the replacement of 4, by D, is suitable only when the
Lagrangian formalism does not involve auxiliary fields.
But, when auxiliary fields appear in the Lagrangian
formalism, the electromagnetic interaction should be
introduced in such a way that it is not only gauge
invariant but also minimizes the number of linearly
independent components of the auxiliary fields in the
presence of interaction.

We shall, as before,® denote the space-time coordinates
as x,=(%s,5%,), and take the v, as Hermitian matrices
with vuy,+vvu= 26, and v,v,—¥»Yu= 2ic,. An asterisk
will be used to denote the complex conjugate of a
number or the Hermitian conjugate of an operator.

2. LAGRANGIAN FORMALISM FOR THE
BARGMANN-WIGNER FIELD WITH
SPIN £

According to Bargmann and Wigner,' a field with
spin § is described by a totally symmetric multispinor
Yy satisfying the field equations

('Ya)aalll’a’ﬂ'y= (73)5'9’%!/&5'7: (76)77"1’0137’: — Mgy - (1)

In order to obtain the above field equations from the
variational principle, it proves necessary to introduce
two auxiliary fields X.g, and Qqs,, where the field X,s,
of mixed symmetry satisfies the relations

xaﬁ1+xﬁa7+x'mﬂ =0,

@

while Q,, is totally antisymmetrical. As originally
presented by Guralnik and Kibble,® the Lagrangian
formalism for the Bargmann-Wigner field with spin 2
contained an error which, when corrected, makes the
derivation of the field equations excessively complicated.
This complication can be avoided by the reformulation
presented below.
By choosing the Lagrangian density as

L=—y[(vd)1+mW+3x[ (v0)1— (v8)s+3mx
H+OL(v8)s—m 10— (V) [x (v8) W+ (v0):X]
+3[x(v3):2+2(vd)sx], (3)
5 G. S. Guralnik and T. W. B. Kibble, Phys. Rev. 139, B712
(1965) ; 150, 1406 (E) (1966).
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with

[(Ya)llblaﬂ'y: ('Ya)aa,‘pa'ﬁ'y ’
YeBr=y*e'BY () w*(v)p P (va) 7, etc., (4)

we obtain by the variations of ¥, %, and & subject to the
appropriate symmetry constraints:

(at+m)y+3 (X' +ex)=0, ©)
—3(BX+eX')+mX—jep+362=0, 6)
3(BX'— eX)+mX'— 3By —5e2=0, (7
(a—m)Q+3(BX—ex')=0, ®)

where X'ng, is related to Xos, by

X' apy=—(V3)" (Xgya—Xyap)
or 9)
Xapy= (V3) (X sya—X'yap) ,

which enables us to express the field equation, obtained
by the variation of X, in the form (6) or (7). We have
also introduced the operators

a=3[(v3)1+ (v0)e+(v9)s],

B=3[2(y9)s— (vd)1— (vd):],

e=(2V3)7"[(vd)1— (v9):1,
which commute with each other and satisfy the relations

ae=Be, F—e=—2o8, F+E=—3(—0% (11)

(10)

and
(12)

B(9a2—[19)=0, e(9a2—12)=0.
Elimination of  from (6) and (7) yields
—BeX+} (B X Hm(SHBY)—} (=0,
or, in view of (11),

(a—m)(BX'+ex) =% (*— D%,

which gives, on using (5),

(90— 2= 8m2p. (13)

It follows from (12) and (13) that not only
By=0, &=0, (14)
but (5) reduces, after multiplication by (9a*—[%), to
(a+m)y=0. 15)

The field equations (14) and (15) are identical with
the Bargmann-Wigner equations (1).

Similarly, elimination of ¢ from (6) and (7) gives,
with the help of (11),

(at+m) (Bx—exX)=1(a*—DO7Q,

or, on using (8),

(92— O%)2=8m™Q. (16)
It then follows from (12) and (16) that
g2=0, =0, 17
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while, after multiplication by (9a2— [12), (8) reduces to

(a—m)2=0, (18)
so that, according to (17) and (18),
(¥9)12= (v9):2= (v3)sQ=mQ2, (19)

which cannot be satisfied by the totally antisymmetrical
€ unless®

0=0. (20)

In view of (14), (15), and (20), the field equations
(5) to (8) reduce to

BX'+ex=0, (21)

BX+eX'=2mX , (22)

BX/— eX=—2mX' (23)

BX—ex'=0. (24)
Since (21) and (24) yield the relation

B+x=0,
while (22) and (23) give
(B*+ )X =2m(BX+ex') = 4m’X ,
we conclude that
X=0. (25)

3. TRANSFORMATION OF THE LAGRANGIAN
DENSITY TO THE SPINOR-TENSOR FORM

We can carry out a transformation of the multispinor
Lagrangian density (3) to the more familiar spinor-
tensor form. By using the symmetrical matrices (v,C)ag
and (0,,C)as, the multispinor ¢,gs, can be expressed in
terms of the spinor-tensors ¥, and y,,= —,, as’

Vapy= %[ (’Ync)aﬁ (‘p,,) 'r+% ("nvc)aﬂ (\l’uv) '7] )

where the further requirement that the right side of
(26) be also symmetrical with respect to the indices 8

and v gives

(26)

Tu¥w=0. @27

Similarly, Xz, and Q,s, can be expressed by means of
the antisymmetrical matrices (C)ag, (474v5C)as, and

(75C) 2f AS
Xapy= %\/3[ (C)aﬂ (n) kG

Y= 'i"fv\l/;w ’

Fi(175Cap(Xi) 4t (15Cas ()11, (28)
Qapr=1V3[(Cap(w)y
+i<71475c)aﬂ (Qll)’¥+ (75C)a43 (Q) 7] 3 (29)

6 With the usual representation of the Dirac matrices in which
4 is diagonal, the vanishing of @ due to (19) becomes especially

transparent in the rest frame.
7The matrix C satisfies the relations C-1=C* and Cy,C

= —1v,7, where v, is the transpose of v,.
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where the symmetry properties of X, and Q,s, imply
(30)
(31)

According to (27), (30), and (31), ¢, 9, w, and Q, can
be expressed in terms of ¥,,, X,, X, and ©, which are to
be regarded as independent field variables except that
the components of y,, are interrelated through the
condition ¢, =0.

The above relations enable us to transform the
various terms in (3) to the spinor-tensor form as

n= ’Ys(x"‘ i’vav) ’

w=—vy2, Q,=1iy,0.

‘/-’aﬁy (’Ya)aal‘pa’ By= ixl-/,.a,,sb,,,.—— %i‘;uv (an‘l’v" av‘pu) ’ (32)
VoY agy = u— W s
X8 (70)a* Xarpy =11 (X,0,X+X3,X,) ,
X281 (70) 5" Xapy = — §L (X—iXuyu)vd (X—iv,X,)
+XuydX,—Xyox], (33)
%P Xapy =L (X— iXuv) (X—17,X,)
— XXy +XX];
0287(79) 5" Qapy = — 30702, (34)
Qaﬁygam =300;
VL CT) R o 8r=3V3 ('/-’M'YBanX - 27:1/;,‘756“7,)(,.
+i\;n757 9 Xu‘l"l—/MV'YSa#XV) ’ (35 )
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X8y ('Ya)aa,‘pﬂ“/a' = %\/3 (7-(756#‘##— 26X,vwY59¥s
— Xy YsYOWu— XuYsOW ) ;
Q67(y9) v Xagy =% (@yox— iﬁO“X,,) ’
)—(a67 ('76)77’90157’ = % ()2’769— 7')2116#9) )
where we have permuted the indices of y,g, and $=67
in (35) to obtain simpler terms in the spinor-tensor
orm,

It is convenient to combine the auxiliary fields X and
X, with ¥, and ¢, by defining

(36)

Sw=vw— (1/18)0uysX, (37)
b=V t+50ysXu T VY5,
which give
Yur=p— Tl‘z"f wIADrp 5
'Y5xu =—2 (i¢n+7v¢nv) ) (38)

YsX=— %U)\ﬂ¢)\ﬂ .

It should be observed that, although ¢,, shares the
antisymmetrical property of ¢, its components are
not interrelated through any condition, and therefore
¢w and ¢, contain the same number of independent
components as y,,, X,, and X,

By substituting the relations (32) to (36) into (3),
and applying (38), the Lagrangian density can be
expressed in terms of the independent variables ¢,,,
¢u, and Q as

L= 2‘5# (765#1' —YwY0Vt+3mbu+3mry v,) o — i(d;uaymy-l—d;wa@u) —1 ((5‘,,767@“,—!—(5,,,,7,,764)“)
- (13/ 1 2) (‘i;nana)\pd’)\p - ‘[’)«po')\paud’n) - (7/6) ($ﬂ7M766Ap¢Xp - t.ﬁ)\po‘)\,,"ya'y#qs“) — Zi(q;,,'y“a){ypd))‘,,-{-(ﬁy\p‘ypa)\'yuq&”)
+amPubut-Smbuwrvindn— (97/24) md;“”al“’o"‘ﬂ(b)\ﬁ —6im($uv,buw+ Buysbu)+3m (817400000 — Prs02s Y shs)
—3Q(v0+3m)Q—3 (Qv59,ut+u,vsQ) +5i @vsd,y Wt buw¥,0,752) + (9/8) (v 5y 00 s — Puwowy0Ys2) . (39)

The field equations, obtained from (39), can be
reduced to the form

(76+m)¢u= 0, ¢p=— (1/7”') (6u¢r— av‘ﬁn) ’ (40)
Yub:=0, 0wdw=0, ¢,— i'Yvd’nv: 0, (41)
Q=0, (42)

where (41), when substituted into (38), also implies
the vanishing of X, and X.

We observe that ¢, satisfies the Rarita-Schwinger
field equation

('Ya+m)¢’u=0 ) (43)
with
Yubu=0. (44)
It follows from (43) and (44) that
9,$,=0, (45)

and, for u=4, (43) gives on multiplication by 74
(m—2-V)yspstdaps=0

or, in view of (44) and (45),

(m—-V)yidrt 9rdpr=0. (46)

Since the relations (44) and (46) do not involve time
derivatives, they are to be regarded as the interdepen-
dence relations, which reduce the independent com-
ponents of ¢, to eight as required for the field of spin .

4. INTRODUCTION OF ELECTROMAGNETIC
INTERACTION

If we ignore the Lagrangian formalism and introduce
the electromagnetic interaction merely by replacing 9,
by D, in the field equations (1), we immediately arrive
at an inconsistency, because then in the identity

LOyD)o® (vD)g¥ — (¥D)6* (YD) o® Werpry
= —1eF 1 (Y)a® (V) 6" Varpr v

the left side vanishes owing to the field equations, while
the right side remains nonvanishing unless Yqg,=0.
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This inconsistency can be avoided by using the Lagran-
gian formalism.

When the electromagnetic interaction is introduced
in the Lagrangian density (39) by the usual replace-
ment of d, by D,, we find that corresponding to (40)

and (41) we now have
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Su— 17w =5 (6/m*)[iF by t502F rou
- %’YM'YIJF Y AP — TIE'YMF AoPro
AT L AR (A L A oW
+(5/12)vureFr0enden].  (S1)

Moreover, the auxiliary fields no longer vanish, and
while X, and X are given by (38), @ is given by

V5= —%0rPn (52)

which shows that Q=X, but no other linear relation is

(yD+m) Gu=—3m(¢p—1V,w) — (YuyD+Dy)vrér
+amyér— (vuyD+2D,)orebrs

+omvuorntre, (A7) found to exist between the auxiliary fields. Thus, not
— _ only the field equations become excessively complicated,
ow= (i/m) (.D wbr—Dbs) . butythe interdg)endence relations are also destroyed by
—2Lxu(—indn) = v (b= imad) ] the appearance of ¢,,, which contains the time deriva-

+ (1/ m) (D#'Yv’_ Dv’Yﬂ)'YMb)\_za'w'Y)\d))\ tive of b in (49) .
+1G/m) (Duvy—Div)ordro In order to overcome the above difficulties, we pro-
—(8/3)0woretre, (48) pose the following prescription, which is suggested by
. our earlier treatment® of the spin-} case: The electro-
with magnetic interaction in the Lagrangian formalism for the
Bargmann-Wigner fields should be introduced in such
vudu=(1/27) Fe/ m )L O/ areFrs i a wtfy that the iumbfr of linearly independent components
— 3V Pul o —ANNF XY of the auxiliary fields is minimized in the resulting field

—2F 1wt (25/24) 02\ Friodun], (49)  equations.
. For this purpose, we take the Lagrangian density for
Tuur= (1/27) (¢/ 1) 207, 8uF w11 F ix¥sbur the spin-3 field interacting with the electromagnetic
+3F bt (1/12)0r Frowbw], (50)  field as

Liota1= L0+L'+am§p0 )\p¢MF )\p+id2q;u¢’vF nv+a3d;n7n0' )\p7v¢vF Xp+ia4(¢;#’yﬂ79¢)\—$X7p7u¢ﬂ)p o
+bl(¢#’Yua')\p’y5g+Q’Y5”Xp'YM¢F)F)\p+ib2(¢#’YV75S2—Q'YE'YV¢V)FW+ CQUWQF;W,
where Lo is the Lagrangian density of the photon field, L' is obtained from (39) on replacing 9, by D,,

and we have added all possible magnetic-moment-type interaction terms involving ¢, and Q. The real parameters
a;, bj, and ¢ will be chosen in a manner which produces the largest number of linear relations with con-

stant coefficients between the auxiliary field components.
The field equations, obtained from (51) by the variations of ¢, ¢4, and &, are
%m¢uv+ %m (’Y/fy)\¢v)\ - 'YV'Y)\d)M)\) - (97/24) mo’yva)\p‘ﬁ)\p"’-%i (Dn¢v_ Dv¢’u) + %/L (7#7D¢v_ 'Yv'de’y)
+ (13/12)0uDrgr+ (7/6) 0 oy Dyagn— i (D wyy— Dyy ) via+3im (v uby— vuiby)

(83)

- %’mduv‘Y)\QS)\'f‘%i (Du'Yv— Du'Yu)'Y5Q_' (9/8)0',"/}’1)’)/59 =0 , (54)
2yD¢,— 27#'YD'YV¢'V+ 6m¢#+ 6mry vy — 1D py— iy D o (13/ 12)D WA DN — (7/ 6)'YM'YD VW
- 2’[:‘)’,,1))\‘7‘,()5)\,, - 6im'Yv¢Mv+ %m')/uo')\p(ﬁ)\p - %Dp759+010xppxp¢u+ ia2FuV¢v+a3’Y}L0')\pF)\p'yV¢v
T a0y ¥, DN Ny — 1017 F At 017000 Fry 59 +102v, F ysQ=0,  (55)
- % (‘/D + 3m) Q— %’Ys (D,,d),,— ’iD,,'y,,qS,,,,— %TDU Mv¢uv) +bryso pr A Yubu— byy 5’Yv¢nF wtco ,wF wil= 0. (56)
Multiplying (54) by — (5/12)iv.ys, (55) by 3v., and (56) by 3vs, and then adding, we obtain
—(27/2)ymysQ— (81/4)mowdwt (3142033044 301) 0 F sy udu—1 (2014 a2 — 204+ 362)vibuF s
+ (2b61:—3b2+36) 0w F wys2=0, (57)

which is free from the space-time derivatives of ¢,,, ¢,, and Q. Moreover, the interaction terms in (57) vanish
if the @;, b;, and ¢ satisfy

(301+2a5+3a4+3b1) =0,
which reduces (57) to the form

(2(11+%ag—2(l4+362) =0, (2b1—%b2+36) =0, (58)

'YﬁQ = %o'wd’nv . (59)
Further, by multiplying (54) by
2i8Dy+ 58,3y Dyst (17/36)iDyy,eys— (11/36)iyxy Dy iy —5imyxy vy,
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(55) by mb,, and (56) by —2myyys, and then adding and simplifying with the help of (59), another relation

without space-time derivatives is obtained:

6mPpy— 6im>y,pry— 12m>y\yubu— (87/2)m*r0 ubyv— i (6— M) Frspyt (mar—5€)0 uF up
+i (ma4+ 2mba+ e)’YX'YVd’nF w—IMasY, Py ubut (m%'— 2mby+ G)VXO'MPF wYoPp

The interaction terms in (60) vanish, provided we
take

— 31 (Getmbo)y Fano uwbu—§ (mb1—2mc—3e) 110wl woenden=0.  (60)
while a further multiplication by #, yields
Dyp,=—(23/16)yDyubut (27/8)my . (68)
a=3(e/m), m=e/m, @=0, b=—}(e/m), (61) - o
s—2by=—(¢/m), bi—2c=2(e/m), It then follows from (67) and (68) that
which reduces (60) to (YD+m)$u+8Dvups+ (13/16)yu¥Dvips
. —(31/16 ,=0, (69
Ou— 17w =271t (29/ 4)7#‘7>\p¢)\p . (62) ( / )m’y“%d, ( )

This relation can be simplified by multiplying by v,,
which yields

O pbu= _%'Yl@n ’ (63)
and thus enables us to express (60) as
¢u_i')’v¢nv= - %Yua'kpd’)\p . (64)

The relations (56) and (59) are compatible and found
to determine a;, b;, and ¢ uniquely as
ai=%(e/m), ay=(e/m), as=—%(e/m),
a4=0; b1=%(6/m) ) b= —%(e/'m) )
c=—%(e/m),

while it follows from (38), (59), and (64) that X,, X,
and Q are now related by

(65)

X=Q. (66)

Thus, by introducing the electromagnetic interaction
by means of the Lagrangian density, given by (53)
and (65), we are able to reduce the number of linearly
independent components of the auxiliary fields X,, X,
and @ to four, which appears to be the minimum
possible number according to our formulation.

Xy= i‘y,,X )

5. FIELD EQUATIONS WITH THE ELECTRO-
MAGNETIC INTERACTION

We shall now consider the simplification of the field
equations resulting from the treatment of the electro-
magnetic interaction given in the preceding section.
Multiplication of (54) by %1y, gives, in view of (59),
(63), and (64), a field equation solely in terms of ¢, as

(yYD+m)¢u+35D vvby—3vuDuby— (43/32)y Dy .y

+ (50/16)mryvvpy=0, (67)

while (54), when simplified with the help of (59), (63),
(64), (68), and (69), becomes

buw=— (i/m) (Dup,— Dspy)
+(13/16) (i/m) (D v, — Dy ) 1rér
- (7/12)0’;"'7)4))\ .

By means of the transformation
¢u— du— (13/36)v,740»
O — Gt (7/27)0'#1:7)\(]5)\ y

the field equations (69) and (70) can be expressed in
the simpler form

(YD+m)pu— Dy, +3my v, =0,
bup=— ('L/ m) (DM¢V"D1'¢M) ’

and the interdependence relations, which follow from
(72), are given by

(70)

(11)

(72)
(73)

(74)
(75)

Yupu=— (/3m®) (217, F yy— 02, F 0¥ )b
(m—+-D)yipr+Dibr=0.

Finally, our field equations with the electromagnetic
interaction are in agreement with those obtained by
Moldauer and Case® by means of the Rarita-Schwinger
formulation, which does not involve any auxiliary fields.
This agreement confirms that while the usual procedure
for introducing the electromagnetic interaction is
adequate in the absence of auxiliary fields, it is necessary
to follow the procedure of Sec. 4 when the Lagrangian
density involves auxiliary fields.

8 P. A. Moldauer and K, M. Case, Phys. Rev. 102, 279 (1956).



