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We study the probability for multiphoton absorption processes induced by both laser and thermal light
acting on an atomic system. When the thermal radiation, suitably filtered, has the same frequency spectrum
and the same total energy as the laser packet, we find that the ratio between the relative probabilities for

s-photon absorption can be expressed by

(4n) 12D 1S12 (7, /)5,

where 7 is the time during which the atomic system is illuminated by thermal radiation with coherence
time 7.. This shows that multiphoton absorption processes depend on the statistical properties of the in-
cident light, and that the probability induced by the laser packet is certainly greater than that induced by

the thermal light if s <7/7.

1. INTRODUCTION

N the last few years three-photon absorption in
both naphthalene!? and anthracene? crystals and
four-photon absorption in naphthalene crystals? have
been observed. A fair amount®-5 of theoretical work has
been done with regard to multiphoton processes.®
A very interesting problem is to determine if and
how much the multiphoton absorption probability de-
pends on the statistical properties of the light used. So
the goal of the present work is to evaluate the multi-
photon absorption probability both for laser and thermal
light within the framework of quantum electrodynamics.
This is a natural extension of our previous work on one-
and two-photon absorption processes.”

*This research was supported by the Consiglio Nazionale
delle Ricerche, Gruppo di Elettronica Quantistica e Plasmi.
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In all the experiments carried out up to now, very
short wave packets have been used. We find it is im-
portant not to suppose that the light is monochromatic,
and consequently, we carry on our analysis taking into
account the phase of the different Fourier components.

We describe a laser packet of duration 7; and co-
herence time 7. (defined as 1/A»)® as a pure coherent
polychromatic state with 7;=7,. For the thermal light
we use blackbody radiation which is represented by a
density operator diagonal in the occupation numbers.
This radiation is then supposed to pass through an
appropriate linear filter® in order to obtain the same
spectrum as that of the coherent packet.

In a recent paper, Guccione-Gush, Gush, and Van
Kranendonk!® find for two-photon transitions induced
by laser packets the same probability obtained by us
in C.F.P., but they find a slightly different probability
for two-photon transitions in the case of thermal light.
The difference is of a factor (2r)'/2 and is due to the
different form of the chosen spectra (rectangular for
Guccione-Gush ef al., and Gaussian in C.F.P.). In the
same paper, the authors say that we treat the case of
thermal light by putting the atom in a cavity containing
blackbody radiation for a length of time  approximately

8 1. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).

9 A linear filter is a filter that changes the spectral response but
not the statistical properties of radiation.

0 R. Guccione-Gush, H. P. Gush, and J. Van Kranendonk,
Can. J. Phys. 45, 2513 (1967). We compare Eqgs. (29) and (38)
of this paper with Egs. (31) and (25) of C.F.P., respectively.
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equal to the duration of the laser pulse 7;. Starting from
this point they arrive at the conclusion that our com-
parison between the probabilities induced by thermal
radiation and that induced by coherent pulse is ques-
tionable. They suggest a comparison of the probability
induced by laser pulse with that induced by a thermal
pulse (which cannot be represented by a density matrix
diagonal in the # representation, since it is not station-
ary). We observe that the starting point is due to a
misunderstanding; in fact, in C.F.P. and in the present
paper, we compare the absorption probability induced
by thermal light with that induced by a laser packet
when the two radiations have the same spectrum and
the same total energy. Therefore, the duration 7 of
thermal light must be much longer than 7. to compen-
sate for the different spectral intensities available.

With the purpose of determining if and how much the
multiphoton absorption depends on the statistical
properties of the used light, we study the two extreme
cases; thermal light and laser pulse. We think that a
thermal pulse may be represented, in first approxi-
mation, by a density matrix diagonal in the # represen-
tation because = must be much longer than r..

With these assumptions we find that the s-photon
transition probability for coherent light is

(dar)= WD (D )51/2( 7, /7)1

times the probability for thermal light.

2. PROPERTIES OF LASER AND
THERMAL RADIATION

For convenience we rewrite in this section some
formulas from C.F.P. which will be useful in the sec-
tions which follow.

The annihilation operator associated with the vector
potential of the field at r, ¢ in the Heisenberg picture is
expressed by

2rhe \1/?
A‘+)=(L T ) > E V2 e, explitk-r—cki)], (1)
142443

k,p

where 1, is a unit vector of polarization x and k is the
propagation vector. Ly, Le, and Ls give the dimensions
of the quantization volume in the #, y, and z directions.

A laser packet is characterized by a density matrix
pi which has the following expression in the Glauber P
representation!!:

1 2%
pr=— / 48] {01 exp(i8)} X {010 exDD)} |, (2)
21r 0

where . i
| {vr,u €xp(i8)})=TT,u | v%,u exp(i0)},
and i
l 7)],;'" eXP(io))

11 R. Glauber, Phys. Rev. 131, 2766 (1963).
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is a pure coherent state defined by the relation
@ Vb, €xp(i8)) =, exp(i) | v, exp(ih)).

For the sake of simplicity we suppose vk, to be real,
i.e., all the components of the wave packet have the
same phase. We recall that (vj,,)? is the mean number
of photons (#,,) on the k mode and polarization .
The 6 integration in (2) is necessary because a high-
frequency field never has a definite phase; however, it
must be pointed out that such integration does not
affect the following results, as may easily be understood.
By introducing the Fock states, the expression (2)
becomes

= 2 (3a)

{n}.(m

}g({n},{m})l{n}x{m}l ;

where
1 27
nhimh)= / 48 T expl—oe p>4-i (g u—ms )]

(3b)

X (U ) ot (e oy 1) V2

The laser packet is supposed to be nearly monochro-
matic with central frequency cko, and to consist of plane
waves travelling along the z axis, linearly polarized
along the x axis. With this assumption, and by expres-
sing the mean density of the photons in the different
ck frequencies with

N(E) =712 nl exp[— B(k—ko)*], @)

where [ is much higher than 1/ky and » is the mean
number of photons in the laser packet, we obtain for
the total energy per unit area

Ip="Hickono ) (5)

where no=#/L:Ls is the total number of photons per
unit area. The expression (5) has been obtained by
going into the continuum in the usual way:

1 1
_ Z oo —) — dk’
L3 k 2T
(n) -+ — (2m/Ly)N (k). (6)

The thermal-light density operator p, in the Fock
representation is diagonal and has the following form3:

pF(Z) (P [{n}){n} !, (7a)

where

f({n})=kH LA+ () (A41/(ne )2 171, (7h)

and {n,,) is the average number of photons in the ku
mode. If now the thermal radiation, after the linear
filter, has the same spectrum as our laser packet,
we can use Eq. (4) and obtain for the radiation intensity
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(energy per unit area and time)

I 7= %% ) (8)
where
ni= ’ﬂ/LngLg

represents the average photon density.

3. INTERACTION HAMILTONIAN

A system of particles in the presence of a radiation
field can be described by a Hamiltonian

H=Hp+Hr+Hint=H0+Hint )

where H, refers to the particles, H, refers to the radi-

ation field, and Hy¢ represents the interaction between

the particles and the field; Ho is defined as H,+H..
The nonrelativistic interaction Hamiltonian is

Hine=—(e/mc)A-p+(e2/2mc?)A?, 9)

where the symbols in this expression have the usual
meaning. The Hi,: operator can be rewritten in the
following form?2:

Hine=—(e/c)r-(9A/3t)+ (e/mc)p- (VA-r)
+(e2/2mc?) (VA 1)2,

where VA is the dyadic d4./9x;.

We expand Eq. (10) in power series of r about the
point r=r,. The term in the first power of r comes only
from the first addend of (10) and expresses the electric
dipole interaction; only this term was used by Géppert-
Mayer®® in her study of two-photon processes. No
linear term in r actually comes from the second addend
in (10) since

(10)

(Pz) nn’ = imwnn’xnn’ .

The bilinear terms, which come from both the first and
the second addend, express the magnetic dipole and the
electric quadrupole interactions.!* All other terms
express interactions of a higher order. Also, the third
addend of (10) gives a bilinear term in r, but this term,
quadratic in A, does not contribute to one-photon
transitions. Taking into account the parity selection
rule, we find that the lowest-order transitions that this
term can give rise to are (E1E3+M1M1). We observe
in addition that, the power-series expansion of the
second term of the Hamiltonian (9) contains the first
power of r which contributes to (E1E2+E1M1)
transitions.!?

The above considerations show that the contribu-
tion to the multiphoton transition probability given
by (e%/2mc?)(VA-1)? is negligible when compared to

12 P, I. Richard, Phys. Rev. 73, 254 (1948); E. A. Power and
S. Zienan, Nuovo Cimento 6, 7 (1957).

13 M. Goéppert-Mayer, Ann. Physik 9, 273 (1931).

4 R. Guccione and J. Van Kranendonk, Phys. Rev. Letters
14, 583 (1965).

16 We neglect the zero-power term which contributes only to
Rayleigh scattering.
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that given by (e?/2mc?)A2 This same conclusion was
reached by Wallace? in a more complicated way.

In a work of Cohan and Hameka!6 it is asserted that
in evaluating the probability for multiphoton (more
than two photons) transitions, all contributions of H"
to the transition probability cancel; in such a statement,
H” is the quadratic term in A which appears in (9),
A being assumed constant in all the atomic volume.
This last assumption, however, is justified only for E1
transitions; in fact, for other transitions (£2,M1,:--)
we must expand A in a power series of r.

Let us now consider plane waves incident along the
z axis and linearly polarized along the x axis. To
simplify the formulas even more, we suppose the atomic
system to be localized at the origin of the coordinate
system. Consequently, the contribution of the linear
terms in r (E£1 transition) in (10) is, recalling (1),

2whe \'/?
D= ( > DY k%,
L1L2L3 k

(11a)

in which
D=ex, (11b)

and the contribution of the bilinear terms in r (E2+M1
transitions) is

2rhe \ V2
EF=( ) > kYV2E(R)ay, (12a)
L1L2L3 k
with
F(k)=e[(i/mc) p.x— kaz]. (12b)

We introduce now the time evolution operator
U(t; 1) of the system and the S operator, which in
the Dirac picture is related to the U(tz; t;) operator by
the formal expression

S=U(+o; —x),
By using the definition
:}Cint-_— eXp(iHot/h)Hint exp(— H()l/ﬁ) y

where Hi,, is the Schrodinger interaction operator, we
can write the U operator in the following way!7:

U=14-U+Ues+---+Us+---,
with

AN 71 T2 Ts—1
Usts; )= (——-—) / dry / de/ dry -+ [ dr,
h u t t Ju

chint(Tl)gcint(TZ) . 'Jcint("'s) . (13)

Thus it is evident that the term U,(i»; #1) gives a con-
tribution to the s-photon transitions, if we neglect the
term bilinear in A of Hiy:.

(1;66%' V. Cohan and H. F. Hameka, Phys. Rev. Letters 16, 478

ad Se.e, for instance, S. Schweber, Relativistic Quantum Field
Theory (Harper and Row Publishers, Inc., New York, 1954),
Secs. 11.C and 11.E.
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Now, in Eq. (13), we should replace the 3Cin¢ operator
with the D4 F operator, but, for the sake of simplicity,
we omit the contribution given by &, which has opposite
parity. In this way we analyze (E1)® transitions. When,
however, the (E1)® transition is forbidden by parity
selection rules, we must study the [(E1)*1(E2+M1)]
transition, and this can easily be done by replacing any
D operator with an & operator. This procedure is the
natural generalization of the work by Guccione and
Van Kranendonk!* on two-photon absorption. For a
further generalization of these formulas to multiphoton
processes of higher order, it is useful to consult Kielich’s

paper.®

4. MULTIPHOTON ABSORPTION WITH
A LASER PACKET

Let |7) and | f) be two stationary states of the atomic
system having the energies E,; and E,y.

Before the interaction the atom and the field are
uncoupled and, consequently, one can assume that

PTi= PiPpi,

where p,;=|4){¢| is the density operator of the atom
on the initial state |7) and p; is the density operator of
the field, which we suppose to be the laser packet de-
scribed by (3).

| Broytn}) = i"‘“‘lh‘"1< 2mwhe

L1L2L3 =1 ki
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In order to study the rate at which s-photon absorp-
tion induced by a laser packet takes place, the total
density operator prs after interaction can be related to
the matrix pr; by the following expression:

PTf=SsPTiSsT y (14)

where S,=Uy(+«; — o). The transition probability
of the atom to the state |f) is given by

Pi ;@ =Tr{ors| /){f]}.

So, recalling (3a), we have

Tr{prs| fX/] }={ }Z(m)g({%},{m})(ks.!m) [ha ), (15)

where |k,,(x}) is defined by the expression

lhs,rn;)=(flSsl{ﬂ},i>=<—%>s [ :w an ﬁ di -

X/ - dis <fl eXp('iHoh/h)iD eXp[’iHo(lz~i1)/h]

—00

XD+ D exp(—iHoto/ 1) | {n},),

and (ks im}| is defined in a similar way. A straight-
forward, but somewhat lengthy calculation, yields

s/2 4 8 s
) 1 x (nk;kl)1/2]<f|DR(l§2 kz)DR(E3 k)D---DR(ks)D|i)

o0 s s
X / dt exp{i[ Eps— Epi— /ec(l‘é1 k)Y B} {n,,—lgl oru)), (16)

where

R(F)= (Hy— E yi—fick)".

Therefore, from (15) and (16) we have

28

{n},{m

1/ 2nhe
Tr{pwlf)(fl}:%(L L.L

X DR(k;)D|i){i| D'R"(kss) D'- - - D'R( 5 k) DIR1( 5
j=s+3 =5

) 5.0 o IL T T om i) (1| DREE RODRCE k9D

=1 j=s+1 kikj 1=

k;)Dt| f)
+2

j=s+1

+o +o0 s 23
X f iy / by exp{L Epg— Epim (S ki) o/ hmi[Epg— Epi—ic( 3. 1)1/ 1)
o o =1

Recalling (3b) and that v, = (#;)'/2 we have
8 28

{n},(m) 1=1 j=s+1

X(mi— 3 Son} | (=3 Sexd). (17)
J=s+1 =1

= lms ) TT T Gumtmi— 5 o0} | ead)=TT (m .

j=s+



165

MULTIPHOTON ABSORPTION AND COHERENCE

1395

If we take into account this result, and if we go into the continuum by means of Eq. (6), we rewrite Eq. (17) in

the following form:
28

Tr{prs| ){f]}= (2m)*(ke) “_Z(Lle)_s[H /dkzkth”z(kz)]B[kﬁ“ (ZZ; ky) Jo[ ke yi— (lii-l k)]

=1

X(fIDR(lZ;kz)DR(lZ.akz)D' .- DR(k)D|i)i| D'R!(ka) D' - - DIRY( 5 koD*R*(Ii ENDHf), (18)

with
Ckﬁ=wf,'=‘h'"l(Epf—Ep,').
Now we introduce (4) in (18) and perform the inte-

grations recalling the results presented in the Appendix.
So Eq. (18) becomes

Tr{prs| Xf1}=(2/5)(1/hc)*(mlzy~de+1
X (2when/sLiLs)*ks:® | (f| DR[ (s—1)kyi/s]
XDR[(s—2)kys;/s1D- - - DR[(1/s)ks1D|4)|?
Xexp[— (1/s)(ksi—sko)*].
By using Eq. (5) this equation can be rewritten as
P, ;O =(2/s)sHadt 125 Aw)*~2(kysi/ ko) I rs*

Xexp[— (i%/s)(kyi— sko)®]| { f| DR[(s—1)ksi/s]
XDR[(s—2)kysi/s]D- - -DR[(1/5)k;:1D|3)|2, (19)

where Aw=c¢/1is the spectral width of the laser packet.1®

We point out that the expression (19) is valid when
the bandwidth Aw of the incident radiation is much
larger than the width éw of the absorption line. But if
the upper level belongs to a band and sAw<< 8w, we must
introduce the energy distribution function p(w—w.)
which we suppose normalized,

]

/ plo—w)dw=1.
0

In this case we get for the s-photon absorption proba-
bility
P;_,f(s) = 28+18—1/27ré(s+3l)h*26_s(Aw) s_lp(é‘wo"‘ wc)ITl“

X [{f| DR[(s—1)koJDR[(s—2)ko]D" - -

XDR(ko)D|3)|2.  (20)

=513

If there is a spectroscopic line between the ¢ and f
levels, we can assume

plw)=g(w),
where g(w) is the line-shape function.

5. MULTIPHOTON ABSORPTION WITH
THERMAL LIGHT

If we consider the radiation field as consisting of
thermal radiation, then the density operator pr; of the
atom and the field before interaction is diagonal, and
is given by

pre=eul i)l =E SEDmN

where f({n}) is defined in Eq. (7b). We suppose that
the atom interacts with the field in the time interval
(0—7) which is large compared to characteristic time
of atomic transitions and to the coherence time of
radiation.

Now the density matrix after interaction is related
to pr; by

pPTS= UapTiUsT )

where U,, expressed by (13), is valued for #=0 and
fe=7. According to this assumption, Eq. (17) will
still be valid, provided that we replace S, by U.(0; 7)
and Xta),tm) g({12},{m}) by Ztahytmi f({})3(n);(m). The
latter substitution is necessary because of the different
structure of the density operator of the field. Therefore,
the s-photon transition probability is given by the
expression

2whe \* 28 3 s
Tr{ors | Xf1}= h_2<L 3 L;) g;’ f({"})[gl >k: (mie)) 2 I f | DR(Z kz)DR(Eskt)D‘ -+DR(ks)D|)

1=2

X (i| DRI (ka) D'+ DIRI( 5> B)D'RN S B)D! f){msm 3> Soac} | {mems Seead)
a2 1=st1 =1

l=8+3 =

l=s+1

X/1d11/7d52 exp{i[E,,,—Ep;—kc(i kz)]tl/h"‘i[Epf—Epi—hC( § kl)]tﬂ/h}' (21)
0 0 =1

18 For s=1, Eq. (19) becomes the well-known formula

Pisy @ Qr /)2 {f| D]3) ] (kss),

where, according to the Eq. (10) of C.F.P.,

I(R)=7"Y%(k/ko) exp[ —I1*(k—ko)*]I 1.
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If we recall the equality

{.\:l f({n}) lljl (nk')ll2<{nk_z§-1 Skki} | {”k—lz; Ok k1))

s 8
=2 I1 dkira(rr)
=1 l=1
then, after going into the continuum, Eq. (21) becomes

Tr{pzs| fXf] }=Z’Z(L‘iZ‘;)’[g / dk,N(k,)kl]

sch?

Xolks— (S N(/] X [DR(E &)+
i#l
XDR( _X:Z_Ik,-)DR(E%I k)---DIliY2. (22)
il

In this equation we used the approximation, generally
employed in perturbation problems, that

/ " gt explil Byy— Epie mlg: k)11

2T ’
275[/%‘— (gl k) ].

We recall that we suppose the spectrum of thermal
radiation to be equal to that of the coherent packet.
So from (22) and (4), making use of the results in the
Appendix, the s-photon absorption probability induced
by thermal light can be expressed in the form

Py ®=(2/sc) s 1122121 7570 Ry i/ ko) .0
X |{fI DR (s—1)kss/sIDR[(s—2)ky/s1D- - -

X DR[(1/5)ks:]D| )|
Xexp[— (1%/s) (kyi— sko)?],

where I, expresses the energy irradiated in time 7.
I,, can be written, with the help of (8), as I,,=7/7..

Now it is convenient to introduce the radiation band-
width Aw and its coherence time 7.; this allows us to
write the s-photon absorption probability, expressed
by (23), in the form

P ;O =43 255 HUD f=26=5(Aw) 27,/ 7) Wk si/ ko)
X [{fI DRL(s—1)k;i/sIDR[(s—2)kys:/s]D- - -

XDR[(1/5)ks:]D|4)|?
X exp[— (1%/s) (kpi—sko)* M -*.  (24)

Equation (24) gives the transition probability when
dw<KAw, i.e., when the absorption linewidth is much
smaller than the width of the incident radiation.

On the other side, if sAw<Kdw we can easily perform
calculations as in the preceding section for the similar

conditions.

(23)
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Fi6. 1. Energy-band diagram of crystalline anthracene.

6. DISCUSSION AND CONCLUSIONS

If we compare Egs. (21) and (24), which express,
respectively, the s-photon absorption probability for
the laser light and for the thermal light, we see that this
probability depends on the statistical properties of the
light employed; in fact, the ratio B, between the s-
photon absorption probability for the thermal light
and that for the laser light is given by

By=Pi /Py = (4mr) 4 -Dss12(7, /7)1,

In order to analyze (25) it is useful, now, to introduce
the ratio B,/ Bs—1, which is

B,/Bs_1=2"12s(7,/7). (26)

From (26) we see that the ratio B,/B,_; increases when
s increases, but because normally it is s< 7/, this ratio
remains smaller than one. This shows that normally
the highest value for the s-photon absorption proba-
bility is obtained with laser rather than with thermal
light.

The presence in (24) of the multiplicative factor s!
is to be attributed to the fact that all Gaussian processes,
like the fields produced by thermal sources, are entirely
described by their first and second moments. In other
words, this factor has the same origin and expresses
the same properties as the V! factor which is present
in Eq. (4.36) of Mandel and Wolf’s paper.®

(25)

7. DISCUSSION OF EXPERIMENTAL RESULTS

In this last section we attempt to compare the theo-
retical expressions we have obtained with the experi-
mental results by Pradére et al.? and by Singh and
Bradley.! They focused laser beams on crystals and
observed three-photon absorption by measuring fluor-
escent emission. They studied in particular the
14,— 1B, transition in anthracene (Fig. 1) with
neodymium laser light (5y=9430 cm™!) and the !4, —
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FiG. 2. Energy-band diagram of crystalline naphthalene.

1'A°

1Bs, transition in naphthalene (Fig. 2) with ruby laser
light (59=14400 cm™). The experimental results of
Pradére et al.? are

Pp=2X10"57,3 (27a)

and
Pr=1X10-6,3 (27b)

for anthracene and naphthalene, respectively. The
experimental result of Singh and Bradley for naphtha-
lene is

Ppr=1.5X10"313. (27¢)

In Egs. (27), P is the fluorescence in photons/cm? sec
and I is the intensity of the incident radiation in
photons/cm? sec. The uncertainty of all measurements
is of an order of magnitude.

Indicating with indices 1 and 2 the intermediate
virtual states,'® we obtain from (20)

Py ® = 27312142 /) 3c=9(Aw) o for fri
X[ (Foi—250) 2(551— 90) % reborins | g(Bwo—we) [ ?

where the f are the oscillator strengths. Introducing
Ppand I, we get

P p=2713"121(2/m)3¢™" f 2 for f1: IV oi0®
X [(ai— 250)2(Pri—50) % pobarprs ] 1g(Bwo—we)I1?, (28)

19 Of the infinity of possible paths to pass from band 7 to band f
by three steps, we consider only the z— 1 — 2 — f path. We use
the Hamiltonian (10) and we recall that F. V. Bunkin {Zh.
Eksperim. i Teor. Fiz. 50, 1685 (1966) [English transl.: Soviet
Phys.—JETP 23, 1121 (1966) ]} proved that the use of the Hamil-
tonian in the form — (e/c)r-dA /9t rather than — (e/mc)p-A gives
a better approximation if, among the intermediate levels with the
oscillator strength not small, only the nearest levels to the initial
state are taken into account. Actually, Bunkin proved this as-
sertion only for two-photon transitions; yet it is reliable also
for s-photon processes.
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where N, is the number of scattering centers per unit
volume.

In anthracene, the molar extinction coefficient at
77;=28 300 cm~! was found? to be e=2X10* cm™!
X (mole/liter)~!, from which we get?! frg(3wo—we)
=2X10"17 sec. This result is in agreement with meas-
urements in solution.?? On the other hand, Wright?}
found the value K=0.25 for the absorption index,
from which we get frig(3wo—wc)=1.4X10"1¢ sec. For
the '4,— B3, — '4,— By, path, using the two
different fy:;g(3wo—w,) values, we obtain P p=1.8X10762
XI3and Pr=1.3X107%1] 3 respectively. These results
compare rather well with (27a) considering the experi-
mental uncertainties, and that moreover, the optical
constants change from sample to sample.?*

We wish now to consider three-photon absorption in
naphthalene. Bree and Thirunamachandran? found
e=11X10% cm™! (mole/liter)~! at #,;=43 200 cm~!, and
so we have frg(3wo—w;)=1.1X10"1 sec. For the
14, — 1By, — 14, — !By, path, Eq. (28) gives

Pp=0.9X10"63] .3, (292)

in good agreement with (27¢). To calculate the transition
probability through the '4,— B3, — '4,— B3,
path we need to know fy; and f;;g(3wo—w,.). Bree and
Thirunamachandran?® defined fso1= fo+ fo+fe, but
nevertheless they found experimentally fo1=1.21,
fofo, f6=0.132, and f.=0. If we assume fr;=1, we
have for the '4,— 'B;, — 4, — B3, path

Pr=1.71X10-52[ ;3. (29b)

This result is in good agreement with both (27b) and
(27¢). On the other hand, if we choose f7;=0.132, we get
for the same path

Pp=0.3X10-53 ;3. (29¢)

However, we must observe that (29a) and (29¢) are of
the same order of magnitude, and so if we choose
f7i=0.132 the contributions due to the different path
can give rise to interferential terms.

Pradére et al.? studied in addition four-photon ab-
sorption in naphthalene; unfortunately for these tran-
sitions, the known data about the band structure are
not sufficient to carry out reliable calculations.

20 H. C. Wolf, Solid State Phys. 9, 52 (1959); Z. Naturforsch. 13a,
414 (1958).
21 We recall that

=10~ M5l = 202X 10~%2(mc) " Nay fyig(wsi—as),

where M is the molecular weight, § the density, « the absorption
coefficient, and N,y the Avogardo’s number.

2W. L. Peticolas, J. P. Goldsborough, and K. E. Rieckhoff,
Phys. Rev. Letters 10, 43 (1963). Actually the authors measured
the absorption cross section at #=28 800 cm™1.

23 W. H. Wright, J. Chem. Phys. 46, 2951 (1967). The author
deduces the absorption index from refractive-index measurements.

24 M. S. Brodin and S. I. Pekar, Zh. Eksperim. i Teor. Fiz. 38,
1910 (1960) [English transl.: Soviet Phys.—JETP 11, 1373
(1960); W. H. Wright J. Chem. Phys. 45, 874 (1966).
( 2% A) Bree and T. Thirunamachandran, Mol. Phys. 5, 397
1962).
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APPENDIX can rewrite (A1) as
In this Appendix we evaluate the following integral:
/dklfdkz- . -/dkn(k1k2~ - k)2
/de/dkg- . '/dkn(klkz' k)2
Xbri—br—ky - —kn) 2 f (ks ks + 5 k)
X(bri—ki—ke— -+ —ky) 2 f(kas ko + - s kon id
( i 1 2 ) f( 1y 2 ) Xexp(__lz{z[kl_;_%(z kj)_%kfi:P

Xexp{—1P[(k1—ko)*+ (ka—ko)*+ - - - + (kn—k0)* =

hore Tk bkl (A1) Filkyi— (5 B)— 20T (im ko)D),
7=2 J=2
l>>ko-1,

Performing the integration over k;, we have to a good
and f(ky; ks; -« +; ky) is a slowly variable function. We  approximation,

1/m\ /2 n n n
Z(E) / dka- - - / dkn(ka: « o) *[3kyi— 3 (X k)] exp(—12{3[kat3(Z &) —¥piPP+5ksi— (X ki) —3ko T
i=2 i=8 i=8

LX) NS = k= 5 )T s 5 )

By performing likewise the integration over ks and so on to the integration over %,—1, we obtain

1 1 1D p+1 1 » 1 2
T%(p—l)l—pﬂj,—l/z/dkp. . '/dk,.(k,,- o bg)1i2 [—kﬁ—-(Z kj)] eXp(—lz{——l:kp-l--———( > kj)———-—kﬁ]
P p i=» P p+1 s=pt1 p+1

1 n n 1 n
b lh= (5 =Gt ORPHLE Gk )] bimbem oo Th G BT s b}
p+1 1 1 P 7=p

j=p+ J=pt+

When we perform all the integrations, this expression becomes
w2 (1) Gy = B -+ = ko= g/ (- D)/ (nH )10 expt = [/ () Jlss— (et DTS . (A2)

We observe that Eq. (18), after saturating the Dirac functions, can be written as a product of two (A1) integrals
of order n=s—1, where

(f[DR(é k). DR(n)D|iy= fls bas -+ - Fu)

Eq. (22) can be written introducing only one (A1) integral with

(ks i+ k13 (/| [DR(E k)-+-DRC 35 k)-+-D1i)|2= fless ks =5 o)
ini o

To suppose the f(ki; ks; « - - ; ka) function to be slowly variable is well justified if no virtual levels are resonant.



