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Multiphoton Absorption and Coherence*
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Istituto di Fisica dell Unk ersitd, Pisa, Italy
(Received 2 August 1967)

We study the probability for multiphoton absorption processes induced by both laser and thermal light
acting on an atomic system. When the thermal radiation, suitably filtered, has the same frequency spectrum
and the same total energy as the laser packet, we find that the ratio between the relative probabilities for
s-photon absorption can be expressed by

i4xl 1/s s-1)s tsl/2 (r /r) s-I

where T is the time during which the atomic system is illuminated by thermal radiation with coherence
time r, . This shows that multiphoton absorption processes depend on the statistical properties of the in-
cident light, and that the probability induced by the laser packet is certainly greater than that induced by
the thermal light if s &r/r, ,

l. INTRODUCTION

''N the last few years three-photon absorption in
~ - both naphthalene" and anthracene' crystals and
four-photon absorption in naphthalene crystals' have
been observed. A fair amount' ' of theoretical work has
been done with regard to multiphoton processes. '

A very interesting problem is to determine if and
how much the multiphoton absorption probability de-
pends on the statistical properties of the light used. So
the goal of the present work is to evaluate the multi-
photon absorption probability both for laser and thermal
light within the framework of quantum electrodynamics.
This is a natural extension of our previous work on one-
and two-photon absorption processes. '

*This research was supported by the Consiglio Nazionale
delle Ricerche, Gruppo di Elettronica Quantistica e Plasmi.' S. Singh and L. T. Bradley, Phys. Rev. Letters 12, 612 (1964).

2F. Pradbre, J. Hanus, and M. Schott, Compt. Rend. 262,
1207 (1966);263, 372 (1966).

3P. Nelson, Compt. Rend. 259, 2185 {1964); F. Floux, P.
Nelson, and P. Veyrie, i'. 261, 4366 (1965); M. C. Teich and
G. J. Wolga, Phys. Rev. Letters 16, 625 (1966); H. F. Hameka,
Physica 32, 779 (1966); S. Singh and J. E. Geusic, Phys. Rev.
Letters 17, 865 (1966); H. Barry Bebb, Phys. Rev. 153, 23
(1967); E. M. Logothetis and P. L. Hartman, Phys. Rev. Letters
18, 581 (1967).' R. Wallace, Mol. Phys. 11,457 (1966);Phys. Rev. Letters 17,
397 (1966}.' S. Kielich, Acta Phys. Polon. 30, 393 (1966).

6 In this paper we limit our study essentially to processes with
more than two photons, and so we neglect the bibliography on
two-photon transitions.' S. Carusotto, G. Fornaca, and E. Polacco, Phys. Rev. 157,
1207 (1967). In the following we refer to this paper as C.F.P.
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In all the experiments carried out up to now, very
short wave packets have been used. Ke find it is im-

portant not to suppose that the light is monochromatic,
and consequently, we carry on our analysis taking into
account the phase of the different Fourier components.

We describe a laser packet of duration T~ and. co-
herence time r, (dined as 1/hr)' as a pure coherent
polychromatic state with T)=T ~ For the thermal light
we use blackbody radiation which is represented by a
density operator diagonal in the occupation. numbers.
This radiation is then supposed to pass through an
appropriate linear filter' in order to obtain the same
spectrum as that of the coherent packet.

In a recent paper, Guccione-Gush, Gush, and Van
Kranendonk' find for two-photon transitions induced

by laser packets the same probability obtained by us
in C.F.P., but they find a slightly diferent probability
for two-photon transitions in the case of thermal light.
The difference is of a factor (2sr)'/t and is due to the
different form of the chosen spectra (rectangular for
Guccione-Gush et gl. , and Gaussian in C.F.P.). In the
same paper, the authors say that we treat the case of
thermal light by putting the atom in a cavity containing
blackbody radiation for a length of time T approximately

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
' A linear filter is a filter that changes the spectral response b«

not the statistical properties of radiation.
'OR. Guccione-Gush, H. P. Gush, and J. Van Kranendonk,

Can. J. Phys. 45, 2513 (1967). We compare Eqs. (29) and (38)
of this paper with Eqs. (31) and (25) of C.F.P., respectively.
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equal to the duration of the laser pulse v ~. Starting from
this point they arrive at the conclusion that our com-
parison between the probabilities induced by thermal
radiation and that induced by coherent pulse is ques-
tionable. They suggest a comparison of the probability
induced by laser pulse with that induced by a thermal
pulse (which cannot be represented by a density matrix
diagonal in the e representation, since it is not station-
al'y). Wc obsel'vc tllat tile s'tRrtlllg polllt, ls duc to a
misunderstanding; in fact, in C.F.P. and in the present
paper, we compare the absorption probability induced
by thermal light with that induced by a laser packet
when the two radiations have the same spectrum and
the same total energy. Therefore, the duration v of
thermal light must be much longer than v, to compen-
sate for the dif'ferent spectral intensities available.

With the purpose of determining if and how much the
multiphoton absorption depends on the statistical
properties of the used hght, we study the two extreme
cases; thermal light and laser pulse. We think that a
thermal pulse may be represented, in 6rst approxi-
mation, by a density matrix diagonal in the e represen-
tation because v must be much longer than v, .

With these assumptions we find that the s-photon
transition probability for coherent light is

(4T) (I 2) u-1)$)$1/1(t /r)~ I

times the probabihty for thermal light.

2. PROPERTrES OZ r.ASER AND
THERMAL RAMATION

For convenience we rewrite in this section some
formulas from C.F.P. which will be useful in the sec-
tions which follow.

The annihilation operator associated with the vector
potential of the GeM at r, I, in the Heisenberg picture is
expressed by

/ 21rhc )I)2
AI+)=I

I Q k "'a et, uexPti(l, r r ckt)j, —(l)
(LIL2Lg) &.u

where SIc,p ls a unit vector of polallzatlon p and k ls the
propagation vector. I.~, J-2, and 1.3 give the dimensions
of the quantization volume in the x, y, and s directions.

A laser packet is characterized by a density matrix

p~ which has the following expression in the Glauber I'
representation":

2x'

«I f»..Cxp(I' t)))&(f»,u exp(te)) I, (2)
2Ã 0

is a pure coherent state defined by the relation

et), ,uI», ue xp(i8))= »u, exp(i8) I »u,exp(i8)&.

For the sake of simplicity we suppose el, ,„ to be real,
i.e, , all the components of the wave packet have the
same phase. We recall that (» „)' is the mean number
of photons (Nt„u& on the iI mode and polarization t.
The 8 integration in (2) is necessary because a high-

frequency 6eld never has a definite phase; however, it
must be pointed out that such integration does not
aGect the fo11owing results, as may easily be understood.

By introducing the Fock states, the expression (2)
becomes

p = & g(f ) f ))lf )&&f )I (3 )| 2

g(f) f11 ))=-
27i p

«g cxPL—I)I,„+I(su,„mp,„)0—j
X (I)t. ,u)"'u+"' u(nt„u!mt, ,u!) "'. (3b)

The laser packet is supposed to be nearly monochro-
matic with central frequency ckp, and to consist of plane
waves travelling along the s axis, linearly polarized
along the x axis. With this assumption, and by expres-
sing the mean density of the photons in the diferent
ck frequencies with

E(k) =s-I" Nl expL —P(k —ko)'j,

where t is much higher than l/ko and e is the mean
number of photons in the laser packet, we obtain for
the total energy per unit area

lr~= &c&ohio,

where eo ——e/LIL2 is the total number of photons per
unit area. The expression {5) has been obtained by
going into the continuum in the usual way:

~ ~ -+— dk
k 2x

&N~& ~ (2~/L1)X(k) .

The thermal-light density operator p& in the Fock
representation is diagonal and has the following form'.

I f»,.Cxp(1t))))=II~,.I»,.Cxp(10)),

I »,„exp(18)&

xx R. Glauber, Phys. Rev. 131, 2/66 (1963).

and (et,u) is the average number of photons in the k, tI
mode. If now the thermal radiation, after the linear
filter, has the same spectrum as our laser packet,
we can use Eq. (4) and obtain for the radiation intensity
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(energy per unit area and time)

Ip) =Ac'koeg,

III=n/LILIL3

represents the average photon density.

3. INTERACTION HAMILTONIAN

A system of particles in the presence of a radiation
field can be described by a Harniltonian

H=H, +H,+H I=HO+H. I,

where H„refers to the particles, H„refers to the radi-
ation 6eld, and H;„& represents the interaction between
the particles and the field; IIO is defined as H„+II,,

The nonrelativistic interaction Hamiltonian is

that given by (c'/2IIIc')A'. This same conclusion was
reached by %allace4 in a more complicated way.

in evaluating the probability for multiphoton (more
than two photons) transitions, all contributions of H"
to the transition probability cancel; in such a statement,
H 18 tile clllacl1'atlc 'teIII1 111 A whlcll appeal's 1I1 (9),
A being assumed constant in all the atomic volume.
This last assumption, however, is justided only for E1
transitions; in fact, for other transitions (E2,311,. )
we must expand A in a power series of r.

I et us now consider plane waves incident along the
s axis and linearly polarized along the x axis. To
simplify the formulas even more, we suppose the atomic
system to be localized at the origin of the coordinate
system. Consequently, the contribution of the linear
terms in r (Ei transition) in (10) is, recalling (1),

H I
———(c/mc)A y+ (e'/2mc')A',

where the symbols in this expression have the usual
meaning. The H;„~ operator can be rewritten in the
following form1. 2

in which

( 2Irhc
iD+k 112as,

ELILgL3

D= ex,

(11a)

H; I= (e/c)r (B—A/Bi)+(c/mc) p (VA r).
+(c'/2IIIc')(vA r)', (10)

where VA is the dyadic BA,/Bx;.
We expand Eq. (10) in power series of r about the

point 1=ro. The term in the first power of r comes only
from the first addend of (10) and expresses the electric
dipole interaction; only this term was used by Goppcrt-
Mayer" in her study of two-photon processes. No
linear term in r actually comes from the second addend
in (10) since

The bilinear terms, which come from both the first and
the second addend, express the magnetic dipole and the
electric quadrupole interactions. '4 All other terms
express interactions of a higher order. Also, the third
addend of (10) gives a bilinear term in r, but this term,
quadratic in A, does not contribute to one-photon
transitions. Taking into account the parity selection
rule, we 6nd that the lowest-order transitions that this
term can give rise to are (E1E3+M1M1).We observe
in addition that, the power-series expansion of the
second term of the Hamiltonian (9) contains the 6rst
power of r which contributes to (E1E2+E13II1)
transitions. "

The above considerations show that the contribu-
tion to the multiphoton transition probability given
by (c'/2IIIc')(V'A r)' is negligible when compared to

"P.I. Richard, Phys. Rev. 73, 254 (1948};E. A. Power and
S. Zienan, Nuovo Cimento 6, 7 (1957}."M. Goppert-Mayer, Ann. Physik 9, 273 (1931},

'4R. Quccione and J. Van Kranendonk, Phys. Rev. Letters
14, 583 (19'}.

"VVe neglect the zero-power term which contributes only to
Rayleigh scattering.

and the contribution of the bilinear terms in r (E2+Mi
transitions) is

with

( 2Irhc
Q k"'F(k) aI. ,

V-ILIL3
(12a)

7 3
~ ~ ~cf

XX;.1(rI)X;.1(r2) . X;.1(~,). (13)

Thus it is evident that the term U, (4, tI) gives a con'-

trlbutlon to thc s-photon transitions, lf wc neglect thc
term bilinear in A of H; ).

'6 N. V. Cohan and H. F. Hameka, Phys. Rev. Letters 16, 478
(~96'}.

lv See, for mstance, S. Schweber, E84gN'$$$$c QQQQPNrrI Field
Theory (Harper and Row Publishers, inc. , New York, 1954},
Secs. Ii.c and 11.K.

F(k) = cP(i/roc) p.x—kxsj. (12b)

Wc intI'oducc now thc time evolution opcI'atoI'

U(i&, iI) of the system and the S operator, which in
the Dirac picture is related to the U(t2, iI) operator by
the forrnal expression

g= U(+ ao; —oo).

Sy using the definition

XI~I= exp(iHot/h) H;~I exp( —Hot/h),

where H;„& is the Schrodinger interaction operator, we
can write the U operator in the following way'~:

U=i+UI+U2+ . +U.+
with
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Now, in Eq. (13), we shouM replace the X; ~ operator
with the X)+P operator, but, for the sake of simphcity,
we omit the contribution given by F, which has opposite
parity. In this way we analyze (E1)' transitions. When,
however, the (E1)' transition is forbidden by parity
selection rules, we must study the L(E1)' '(E2+M1)]
transition, and this can easily be done by replacing any
X) operator with an 8 operator. This procedure is the
natural generalization of the work by Guccione and
Van Kranendonk'4 on two-photon absorption. For a
further generalization of these formulas to multiphoton
processes of higher order, it is useful to consult Kielich's
paper.

4. MULTIPHOTON ABSORPTION WITH
A LASER PAGKET

Let
l i& and

l f) be two stationary states of the atomic
system having the energies E„;and E„f.

Before the interaction the atom and the 6eld are
uncoupled and, consequently, one can assume that

Prs= PZP&s &

where p„;= li&&il is the density operator of the atom
on the initial state

l i& and p~ is the density operator of
the held, which we suppose to be the laser packet de-
scribed by (3).

(jan@+
Ih, , ( )&= &fIs*I{n}i&=

l
A2 ~ ~ ~

di, (f l exp(iHoti/h) n expLiZO(t, —ii)/h]

&& n .n exp( iIIot./h) l
—{n},i),

and &h„l~}l is defined in a similar way. A straight-
forward, but somewhat lengthy calculation, yields

In order to study the rate at which s-photon absorp-
tion induced by a laser packet takes place, the total
density operator pT~ after interaction can be related to
the matrix pT; by the following expression:

PTf ~SPTiSS

where 8,= U,(+~; —~). The transition probability
of the atom to the state lf) is given by

~'-r"=Tr{~rrl f)&fl }.
So, recalling (3a), we have

Tr{ rflf)&fl }= 2 g({~»{~})&h*.l-ilh. .f.)&
(n} f tm}

where
l h, ,l„l) is defined by the expression

27rhc ) 't' 8 S

LIIP( k)'"](flDR(P k)DR(g k)D DR(k.)Dl')
Lij2jal l 1 l=2 l=8

Ch exp{i[Epf E„; hc(g k&)]i/—h} l {ep—g 8i,i,}), (16)
l=l l~j,

Therefore, from (15) and (16) we have

R(k) =(H~ E~; hck) '. — —

2+he S 2s 8 8

T 6 r lf&&fl }=— Z g({ };{ })II II 2 (, k k~)'"&f'lDR(Z k )DR(Z k )D"-
h2 LgL2L3 5=2 l=2

XDR(k )Dli&(ilDtRt(k, )Dt DtRt( g k,)DtRt( P k~)Dtl f)
j s+3

dim exp{iLEpr Ey hc'(Z k'h)]il/h 2 jEyf Ey' hc( Q k')]i2/h}

Recalhng (3b) and that ei ——(N ~)'"we have

X({~~—Z 4,i,}l {~i—E4,~,}). (1&)
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If we take into account this result, and if we go into the continuum by means of Eq. (6), we rewrite Eq. (17) in
the following form:

28 8 28

Tr{prfl f)(fl }=(2pr)'(hc)' '(LgLo) ' g dk(kp'~'E't'(kp) BLkf —(g kp)]hLkf —( Q kp)]
l~1 l=l l e+1

8 8 28 28

X(flDR(Z kt)DR(g kp)D DR(k, )Dli&&ilDtRt(ko, )Dt DtRt( P k&)DtRt(P kt)D I f), (18)
l=2 l=3 l=2

with
ckf; =&of;= h (E~f—E„;).

If there is a spectroscopic line between the i and f
levels, we can assume

Now we introduce (4) in (18) and perform the inte- p(~) =g(~)
grations recalling the results presented in the Appendix.
S K . (18)bo q. ~ j ecomes where g &o is the line-shape function.

»{prf I f)(fl }= (2/s)(1/hc)'(prl') k'+'

X (2~hept/SLiLo) 'kf"
I &f I DRI (s—1)kf '/s]

XDR[(s—2)kf;/s]D DR[(1/s)kr;]Dli)
I

'
Xexp L

—(to/s) (kf;—sko)'].

Ily using Eq. (5) this equation can be rewritten as
' =(2/s)p+l~kp+lh 2c p(p~)e —o(k ./k)pg p

XexpL —(to/s)(kf' sko) ]I(fIDRI (s 1)kf'/s]
XDR[(s—2)kf;/s]D DR[(1/s) kf;]D I i) I

' (19)

where &op = c/t is the spectral width of the laser packet. »
We point out that the expression (19) is valid when

the bandwidth hen of the incident radiation is much
larger than the width Bco of the absorption line. But if
the upper level belongs to a band and sh~(&Ru, we must
introduce the energy distribution function p(&o—oo,)
which we suppose normalized,

p(&o &op)l&o= 1,

In this case we get for the s-photon absorption proba-
bility

P &'=2'+'$ '"pr&&~'&h 'c '(h&o) 'p(sopo —&op)lr '
X l&flDRL(s 1)ko]DRL(s 2)ko]D' ' '

XDR(ko)D
I i) I

'. (20)

5. MULTIPHOTON ABSORPTION WITH
THERMAL LIGHT

If we consider the radiation Geld as consisting of
thermal radiation, then the density operator pz; of the
atom and the Geld before interaction is diagonal, and
is given by

»'= plip&&il
= & f({~})li {}&&i,{~}I

(n)

where f({pp}) is de6ned in Eq. (7b). We suppose that
the atom interacts with the Geld in the time interval

(0—r) which is large compared to characteristic time

of atomic transitions and to the coherence time of

radiation.
Now the density matrix after interaction is related

to pz;by
pry= UeprsUe,

where U„expressed by (13), is valued for t&=0 and

to
——r. According to this assumption, Eq. (17) will

still be valid, provided that we replace S, by U, (0; r)
and g(„),(~) g({po},{ppp}) by P(„~,{~)f({pp})bt„~,(~). The
latter substitution is necessary because of the di6erent

structure of the density operator of the Geld. Therefore,

the s-photon transition probability is given by the

expression

) 2prhc )' 28 8 8

Tr{prflf&&fl }=h-'I
I p f({pt})lH 2 (po k~)" ]&fIDR(& kg)DR(~ kp)D DR(k,)Dli)

l=l l~2 l~3

X&iIDpRt(ko. )Dt DtRt( Q kp)DtRt( Q kp)Dtl f&&{ppo +4.p&} I
{p—to—2 tto op}&.

i~8+3 l=e+2 l 8+1

X
T 8 2e

&tto exp{i[Fof Eo; hc(Z kt)]t&lh —its—f Eo; hc( 2 —kp)]to/h—}. (—21)
l 1 i~8+1

"For s= j,, Eq. (19) becomes the mell-known formula
P f&'& (2p /hc)P

I (f I
D

I p) I
PI('kf*)

where, according to the Eq. (10) of C.F.P.,
I(k)=w '"t(k/kp) expL —tP(k —kp)P)Ip&.
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If we recall the equality

2 f({~})II (~»)'"&{~.—2 &..»}I {~.—2 ~.,a)}&
fn) l~l les+1 l~g ixLLLLLL%~

i=1 /~I

then, after going into the continuum, Eq. (21) becomes

2xr 2mB '
a

»{P /if)(fl }=
shah' LIL2I-3

F//Ã7/ll/7z~F/z~
25.000

x~Lk„-(& k) jl&fl 2 I»(& k;)" ~

i&i

x»( g k,)»(p k,)" Djl~)l'. (22)
i=i+1

In this equation we used the approximation, generally
employed in perturbation problems, that

ds xp{ LE„,—E„—k (p k,)j&/k}
l=i 2

27rr
bPkr, (Q kg) j.—

%e recall that we suppose the spectrum of thermal
radiation to be equal to that of the coherent packet.
So from (22) and (4), making use of the results in the
Appendix, the s-photon absorption probability induced

by thermal light can be expressed in the form

P; {~)= (2/sc)~+1$!SII2$ 2m~+1 t2()it~ l))(k ~/ko)

x I &fl»Hs l)kf'/sj»—L(s 2)4'/sjD—".
x»L(I/s)4~jD I ~& I

'
Xexpl (f2/s) (—kg; sko) 'j—, (23)

where I,& expresses the energy irradiated in time v.
I„can be written, with the help of (g), as I«= rIrt;

Now it is convenient to introduce the radiation band-
width Ao) and its coherence time v„ this allows us to
write the s-photon absorption probability, expressed

by (23), 111 'tile fol'111

I', ft'=4Ã'"s!s '+'")I1 'c '(DM)' '(r /r) '(kr /ko)'

X I(fl»L(s I)kr/s7D~L(s 2—)ks'/s jD"—
xD~I 0/s)k, ,]BI'&I'

x expl —(P/s) (kf,—sko)'jI„'. (24)

Equation (24) gives the transition probability when
8~&&6,~, i.e., when the absorption linewidth is much
smaller than the width of the incident radiation.

on the other side, if sh~&&Ro we can easily perform
calculations as in the preceding section for the similar
conditions.

'0~= Q 430 em

Fij rg/7/JA/~/li!. A,

FIG. j.. Energy-band diagram of crystalline anthracene.

5. DISCUSSION AND CONCLUSIONS

If we compare Kqs. (21) and (24), which express,
respectively) the s-photon absorptIon probabIlIty for

the laser light and for.the thermal light, we see that this
probability depends on the statistical properties of the
light employed; in fact, the ratio 8, between the s-

photon absorption probability for the thermal light
and that for the laser light is given by

P. (a)/P. (s) —(4~)
—3~(s—1)s)s112(r /r)s —) (23)

In order to analyze (25) it is useful, now, to introduce
the ratio 8,/8, 1„which is

8,/8, 1=2 '"s(r,/r). — (26)

From (26) we see that the ratio 8,/8, 1 increases when

s increases, but because normally it is s& r/r. , this ratio
remains smaller than one. This shows that normally
the highest value for the s-photon absorption proba-
bility is obtained with laser rather than with thermal
light.

The presence in (24) of the multiplicative factor s!
is to be attributed to the fact that all Gaussian processes,
like the 6elds produced by thermal sources, are entirely
described by their 6rst and second moments. In other
words, this factor has the same origin and expresses
the same properties as the Ã! factor which is present
in Eq. (4.36) of Mandel and Wolf's paper. 8

'F. DISCUSSION OF EXPERIMENTAL RESULTS

In this last section we attempt to compare the theo-
retical expressions we have obtained with the experi-
mental results by Pradere et al. ' and by Singh and
Bradley. ' They focused laser beams on crystals and
observed three-photon absorption by measuring Ruor-

escent emission. They studied in particular the
'A~ —+ '82„ transition in anthracene (Fig. I) with

neodymium laser light () o=9430 cm ') and the 'A„—&
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FIG. 2. Energy-band diagram of crystalline naphthalene.

BO„ transition in naphthalene (Fig. 2) with ruby laser
light (vo ——14400 cm '). The experimental results of
Pradere et al. ' are

and
Pz=2X10 6oI

P,=1X10-6~I,3

(27a)

(27b)

for anthracene and naphthalene, respectively. The
experimental result of Singh and Bradley for naphtha-
lene is

Pp= 1.5X10—63IJ.'. (27c)

'9 Of the inanity of possible paths to pass from band i to band f
by three steps, we consider only the i —+ 1-+ 2 —+ f path. We use
the Hamiltonian (10) and we recall that F. V. Bunkin IZh.
Eksperim. i Teor. Fiz. 50, 1685 (1966) I English transl. : Soviet
Phys. —JETP 23, 1121 (1966)j I proved that the use of the Hamil-
tonian in the form —(e/c)r BA/Bt rather than —(e/mc)p A gives
a better approximation if, among the intermediate levels with the
oscillator strength not small, only the nearest levels to the initial
state are taken into account. Actually, Bunkin proved this as-
sertion only for two-photon transitions; yet it is reliable also
for s-photon processes.

In Eqs. (27), P v is the fluorescence in photons/'cm' sec
and II. is the intensity of the incident radiation in
photons/cm' sec. The uncertainty of all measurements
is of an order of magnitude.

Indicating with indices 1 and 2 the intermediate
virtual states, "we obtain from (20)

P; f&2&=2 '3 '"n4(e'/mA)'c ". (i44o)'jr2j21
—j„.

XL(V2' 2VO) (V41 VO) Vf2V21V1'] g(3440 Ot)IT1',

where the j are the oscillator strengths. Introducing
P p and Il, , we get

PV=2 '3 ' 22r(e2/tl)'c 'j~2j21f14¹iO'

X L(V24
—»2)'(V1;—VO)'Vf2V21V1'] 'g(34OO —4O.)II.', (28)

P p =1.7X10 62II.'. (29b)

This result is in good agreement with both (27b) and
(27c). On the other hand, if we choose jf,=0 132, we get.
for the same path

P p=0.3X10 63II,'. (29c)

However, we must observe that (29a) and (29c) are of
the same order of magnitude, and so if we choose

jy, =0 132 the cont. ributions due to the different path
can give rise to interferential terms.

Pradere et ul. studied in addition four-photon ab-
sorption in naphthalene; unfortunately for these tran-
sitions, the known data about the band structure are
not sufhcient to carry out reliable calculations.

«0 H. C. Wolf, Solid State Phys. 9, 52 (1959);Z. Naturforsch. 13a,
414 (1958).

«' We recall that

a=10 M8 '+= 2' X10 e (mc) gavffig(~fi (y )
where M is the molecular weight, 8 the density, n the absorption
coefficient, and Ea the Avogardo's number.

"W. L. Peticolas, J. P. Goldsborough, and K. E. Rieckho8,
Phys. Rev. Letters 10, 43 {1963).Actually the authors measured
the absorption cross section at v= 28 800 cm '.

"W. H. Wright, J. Chem. Phys. 46, 2951 (1967). The author
deduces the absorption index from refractive-index measurements.

'4 M. S. Brodin and S. I. Pekar, Zh. Eksperim. i Teor. Fiz. 38,
1910 {1960) LEnglish transl. : Soviet Phys. —JETP 11, 1373
(1960)j; W. H. Wright J. Chem. Phys. 45, 874 (1966).

"A. Bree and T. Thirunamachandran, Mol. Phys. 5, 397
{1962).

where Eo is the number of scattering centers per unit
volume.

In anthracene, the molar extinction coeS.cient at
vy;=28300 cm ' was found' to be q=2X10 cm ~

X(mole/liter) ', from which we get" jf g(34oo 44—4)

=2X10 '" sec. This result is in agreement with meas-
urements in solution. " On the other hand, Wright"
found the value K=0.25 for the absorption index,
from which we get jf;g(34oo io—,)=1.4X10 " sec. For
the 'A, —+ 'J33„—+ 'A, —+ '82 path, using the two
different jf;g(3oto ot,)—values, weobtainPv=1. 8X10 22

XII.' and P& ——1.3X 10 "IL,', respectively. These results
compare rather well with (27a) considering the experi-
mental uncertainties, and that moreover, the optical
constants change from sample to sample. "

We wish now to consider three-photon absorption in

naphthalene. Bree and Thirunamachandran" found
4 = 11X 102 cm ' (mole/liter) ' at vr;= 43 200 cm ', and
so we have jf,g(3ioo io,)=—1.1,X10 " sec. For the
'AO —+ 'B2„—4 'At —4 'Bt„path, Eq. (28) gives

P p=0.9X10 "IL,', (29 )
4

in good agreement with (27c).To calculate the transition
probabyhty through the 'A

~
—+ 83„—& A g ~ 83„

path we need to know jf, and jf,g(34oo—oo,). Bree and
Thirunamachandran" defined j„1=j,+jo+j„but
nevertheless they found experimentally j.,1= 1.21,
j,((jb, jo=0 132, and. j,=0. If we assume j~;=1, we
have for the sAg ~ rg3~~ iAg~ cgsm pa
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APPENDIX

the following integra:we evaluateIn this Appendix w

dk dk2. . dk (kik2 . ) I/21

ki ——
km .——k )'/'f(ki, kg, ~ ~, k )

Xexp{—l'! (ki—q
—kg '+(km —kg '

+(kfj ki ks ''' » (i

where

3&&kp ',
„ is ariable function. Kek„) is a slowly varia eand f(ki, k2, , „ is

can rewrite (Ai) as

kk kdki dk2 dk (kik2 k

k„—)I/2f(ki, ku, ', k )&((kf—ki—km —k»

ge p(—P{2Lki+-,'(g k;) ——,kr;

—2ko]'+ fP (k,—ko)'j}).+-'Lkr; —(Q k;)—2ko

we have to a good
' t ration over kq, wPerforming the ln egr

approxlll1atlon)

1)mq '"
i &2)

3»)—akr'j + 3
2 -' k;—(g k,)—3k,'" l4' ——:Z k/) 1 exp( —1'{-:Lk

=-' k;— k,)];4;;k }.+ k/—ke)'j}U{ki=2Lk/'—
3

he int k j we obtainvert ein e
' erkgandsoontotheintthe integration overBy. pel forn1lng llkewlse

1 1)'" -k/' —(Z k/)g ~s(u-&~ (n-I )1—n+Ip-I /2 dk (k, k

egratlon o

2

ex —' — k, -( Q k,)—=k/;p-pl
—1' — k, —,—=k,

=—k/; —(Q k/) j; ki,;;kki=k = =ki I=—[k/; — /, I„k
)f I= 2= — — k/,k,)—(p+1)koj'+L (k;—ko)'j+ Lkr;—

p+1 /=i+I

ression becoIIlesions this exp eco

k(+ ) p{—Dm "/2l "(n+1) '"f(ki=k2=

E . ~18), after saturating the DiracKe observe that Eq. 1,a

kg, , k ).DZ(k„)D!i)=f(ki,(flD&(Z»)".

en in
'

nl one (A1) integral withen introducing only oneEq. (22) can be written in
'

nl one

Dj!i) l

'= f(ki., kI, , kDR( P k) i = . , k-),— — — -k-) l(f) .— — —"—-'" Z LD&(Z .) "
nt.is ed If no virtual leve sunc

'
ow

'
bl is well justi6e i nowl varia e iso e I,' 2,

' ~,' ) function tobe slowy
'

is
'

e i nTo suppose the f( I, 2, ~, unc
'


