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Hylleraas-type trial functions with up to N=120 terms are used in a variational calculation of several

bound S states of muonic molecules. The convergence of the energy levels with increasing N is investigated.

I. INTRODUCTION

'HE form of trial function used by Hylleraas' and
Pekeris2 on the helium-atom ground state has

been applied to the ground states of two muonic mole-

cules by Kolos, Roothaan, and Sack' who used a 32-
term trial function. Their results for ppp and d33d were

far less accurate than a calculation of the He ground
state with a comparable number of terms. Partly
because of this difficulty, most of the more recent
variational calculations of the S states of muonic
molecules4 ' have been performed using other, radically
diferent trial functions in place of the Hylleraas type.
An exception is the calculation by Frost, Inokuti, and
Lowe, 4 who used Pekeris's series method' with an 84-
term trial function similar to that of Ref. 3.

In the present work, we investigate the convergence
of variational calculations of several muonic molecule
S states, with increasing number of terms N. We use a
well-defined sequence of Hylleraas-type trial functions
(described in Sec. II) as advocated by Schwartz. ' This
is in contrast to the procedure of determining by
trial-and-error which terms are most important for a
given N. The point is that we are interested in the
asymptotic behavior for large E (for which the former
procedure has fewer pitfalls) rather than the question
of how well we can do with a given small value of N.

A generalization of the Hylleraas type of trial func-
tion was used in Ref. 3, and a diGerent generalization
was attempted by us. Both are described in Sec. II of
this paper, along with the trial functions which we

finally adopted. Our numerical results are also pre-
sented in Sec. II.

Section III contains a discussion of the convergence
of our computed energy levels with increasing N, and
a comparison with previous calculations in the literature.

P~(r32, r33,r23) =
i+j +k& e

s)0, g)0, k)0

X Jkr12 r133r23 . (3)

The number of terms in the sum above is

iV = ', (33+1)-(33+2) (23+3) .
The problem of optimizing the X's of Eq. (3) leads to
an eigenvalue problem involving N by N matrices, as
is well known. In computing the matrix elements re-
cursively, care must be taken' to avoid large roundo6
errors.

The Hamiltonian of our problem is, in atomic units,

II. TRIAL FUNCTIONS AND ENERGY LEVELS

The Hylleraas type of trial function' is

exp( e3r13 &r23)PN(r12 r13 r23) (1)

where r;, is the distance between particles i and j, and
P& is a polynomial. Equation (1) was generalized in
Ref. 3, where the trial function employed was

exp( &12r12 &13r13 &23r23)P(r12 r13 r23) ~ (2)

Nevertheless, the best results quoted in Ref. 3 for ppp
and d33d were of the form of Eq. (1), where particles 1
and 2 are the nuclei. 7

We have tried replacing the exponential in Eq. (2)
by a sum of two exponentials, since such a sum gives a
good fit' to the two-center problem. The result was a
slight improvement over Eq. (1) when the polynomial
P had 10 to 20 terms, but the improvement rapidly
becomes negligible with increasing N. For this reason
we shall restrict our attention to trial functions of the
Hylleraas type (1) in what follows.

There is still some leeway in the choice of the poly-
nomial P~ in Eq. (1). A standard choice, which we
shall follow, is

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' E. A. Hylleraas, Z. Physik 54, 347 (1929).' C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1217 (1959).

'W. Kolos, C. C. J. Roothaan, and R. A. Sack, Rev. Mod.
Phys. 32, 178 (1960).

4 W. Roy Wessel and Paul Phillipson, Phys. Rev. Letters 13,
23 (1964); A. Froman and J. L. Kinsey, Phys. Rev. 123, 2077
(1961); S. Fliigge and U. Schroder, Z. Physik 162, 28 (1961);
A. A. Frost, M. Inokuti, and J. P. I owe, J. Chem. Phys. 41, 482
(1964).' B. P. Carter, Phys. Rev. 141, 863 (1.966).

6 C. Schwartz, in Methods in Computational Physics, edited by
B. Alder, S. Fernbach, and M. Rotenberg (Academic Press Inc. ,
New York, 1963), Vol. 2, p. 241.
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which depends, of course, on the masses (233~) and
charges (e;) of the particles. The values of these

'According to Ref. 3, some advantage was gained in going
from (1) to (2) for the cases of the hydrogen molecular ion and
the helium atom.

C. Schwartz, Phys. Rev. 123, 1700 (1961), Appendix II.' S. Cohen, D. L. Judd, and R. J. Riddell, Jr., Phys. Rev. 119,
384 (1960); V. Guillemin, Jr., and C. Zener, Proc. Natl. Acad.
Sci. U. S. 15, 314 (1929).
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TmLE I. Masses and charges used in computing energy levels.

Particle

Proton
Deuteron
Triton
Muon
Electron
He nucleus

Symbol
used 1Q
text'

Mass
(a.u.)

1836.12
3670.4
5496.8

206.77
1

in6nity

Charge
(a.u.)

+1
+1
+1—1—1
+2

a These symbols are also used in Table II. The designations ppp, etc. for
muonic molecules are the ones most frequently found in the literature.

quantities which we have used are sho~n in Table I.
The masses (in units of the electron mass) are known
to Gve or six decimal places. Various values have been
used4'; hence a correction must be made in comparing
the accuracy achieved in diGerent calculations. The
values in Table I agree with those which we have used

previously. '
A program was written to compute the matrix ele-

ments of the Hamiltonian and of unity, and to solve the
eigenvalue problem for the energy levels. The program

System

He

Vibrational Number of
quantum terms in trial
number function

V

10
20
35
56
84
10
20
35
56
84

120
10
20
35
56
84
10
20
35
56
84
10
20
35
56
84
10
20
35
56
84

120
10
20
35
56
84

120

Binding energy
iE/ (a.u. l

2.902 966
2.903 627
2.903 713 514
2.903 720 328
2.903 722 991

99.1899
101.3307
102.0340
102.2028
102.2188
102.2215
102.85
105.0124
105.7046
105.9693
106.0030
106.4233
108.6308
109.2221
109.6830
109.7879
66.5992
91.7076
96.3343
98.5606
99.0751

107.7247
110.0439
110.5982
111.1563
111.3164
111.3257
68.0439
93.5731
98.1167

100.1500
100.7610
100.8475

Tmxz II.Energy levels of some S states of three-particle systems.

was run on two computers (IBM 7094 and CDC 6600).
The results are shown in Table II.Besides the molecular
states, the helium ground state was also computed for
various E as a check on our program. The exponential
parameters were chosen arbitrarily to be a=2 for
helium, and n= 200 for muonic molecules. No attempt
was made to optimize these values of e.

III. DISCUSSION OF RESULTS

For each S state which we have calculated, Table II
includes a sequence of values (corresponding to dif-
ferent 1V) for the binding energy ~E~. Each such se-

quence is monotonically increasing and presumably
converges to the absolute value of an eigenvalue of the
Hamiltonian, Eq. (4). From the differences between
successive terms in each sequence, some conclusions
can be drawn about the convergence rate.

(i) The convergence rate for muonic molecules is
slow compared to the rate for the He ground state, at
least in the region E& j.00.

(ii) The convergence continues to get slower as the
reduced mass of the two nuclei increases.

(iii) The convergence is faster for the ground states
than for the first vibrationally excited states of muonic
mole cules.

(iv) As Ã increases up to about 100, the differences
are alternately large and small. For He, large differences
are found between X=20 and 35, and again between 56
and 84. For muonic molecules, the eGect is more pro-
nounced, and large diGerences are found at the same
steps in E that yield small diGerences for He. The
eGect is most extreme from 35 to 56, where the diGerence
is greater than that from 20 to 35 for the dpt ground
state. (With this one exception, the differences in the
last column of Table II are monotonically decreasing
with X.)

(v) From the irregularity of the differences, we con-
clude that the values of S in Table II have not yet
reached the asymptotic region, where predictions can
be made as to the behavior of further terms in the
sequence. Nevertheless, each "large" difference is greater
than the sum of all the subsequent diGerences that we
have calculated. If the large diGerences really are
greater than the sums of subsequent diGerences for all
cV, then our X=120 result for ppp should be accurate
to within 0.0027 a.u. , or about 0.07 eV.

Although the aim of this paper was not primarily to
compute energy levels with extreme precision, the
binding energies in Table II are generally greater than
those of previous variational calculations, 4' with one
exception: Wessel and Phillipson computed a dissocia-
tion energy" of 254.3 eV for the ppp ground state

' The dissociation energy is the difference between the energy
of the ppp molecule and that of the pp, atom. The latter is 2S28.4
eV according to Table I (and substituting 1=27.21 eV). The pp,
energy given by Wessel and Phillipson is consistent with m„
=206.8 and 1=27.21 eV.
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Corresponding to our ppp binding energy in Table II
is a dissociation energy of 253 eV. The difference of 1.3
eV is too large to be explained by the difference" in

values assumed for the muon mass. A satisfactory ex-

planation wiH have to await further calculations.

For the case of ppd, the difference between our results

and those of Frost, Inokuti, and Lowe4 may be due to
their use of a nonorthogonal set of basis functions. It

has been pointed out" that the series-recursion method
is not always equivalent to a variational calculation, for
such a basis.
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The level-crossing technique has been used to measure the hyperfine structure constants of the Cu6g nucleus
jn the (3$)»4p 2I'yz state. To extract a value for the nuclear quadrupole moment, configuration interaction
effects are allured for by performing a least-squares fit to the energy levels. The value obtained is in serious
disagreement arith a value for Q inferred from the (3d)'(4s)' configuration. The copper moment may there-
fore serve as a test for Sternheimer or other polarization corrections that must be invoked to explain the
discrepancy.

INTRODUCTION

HE phenomenon of configuration interaction has
continually plagued eRorts to extract values for

nuclear moments from hyperfine structure (hfs) data.
The problem is especially severe for excited atomic
states. Thus, much of the precision of data obtained by
modern techniques of optical spectroscopy, including
optical and electron pumping, is lost as far as the
nuclear moments are concerned. However, the problem
is by no means restricted to excited states. Nuclear
quadrupole moments deduced from ground-state hfs
measurements must be subjected to the so-called
Sternheimer correction. ' This correction and other
limited configuration interaction approaches, which we

may call polarization corrections, remain in vogue
because of the absence of accurate unrestricted Hartree-
Fock functions for the great majority of atoms and ions.
Polarization corrections are often cast in the form of a
perturbation expansion. As such, they may be gradually
refined. One such refinement is inclusion of excitations
to states of the continuum. ' Needless to say, unambig-
uous tests of the various polarization correction schemes
would be highly desireable. A determination of a
nuclear quadrupole moment from its interaction in two
dissimilar electronic configurations, for instance, could
constitute a stringent test. Moreover, certain forms of

configuration interaction are not tractable in a perturba-
tion approach, or can be treated in a more consistent
way by other techniques.

To illustrate these ideas, we discuss below the extrac-
tion of the quadrupole moment, Q, of the Cu~ nucleus
from the measured value of the hyperfine interaction
constant in the (3d)"4p configuration. We first show
that standard Racah techniques can be used to take
the configuration interaction of (3d)"4p with (3d)'4s4p
into account. The procedure is to deduce the configura-
tion interaction from a least-squares fit to the energies
of the observed levels. With the improved electronic
wave function so obtained, a value for the nuclear
quadrupole moment is inferred. Using this procedure,
we find that our measured value B=—28.75(70) Mc/
sec implies Q= —0.315(12) b. In a recent optical
measurement, the quadrupole constant for Cu" was
determined in the (3d)s (4s)s configuration. ' The relevant
energy levels are shown in Fig. 1. When this is scaled

up by the known ratio of the moments, 4 a value

Q = —0.176(5) b is obtained. The size of the discrepancy
suggests that copper may provide a sensitive testing
ground for polarization corrections to quadrupole mo-
ments. It also emphasizes the importance of d"~ d" 's

configuration interaction for hfs. This is neither of the
angular nor of the radial type considered by Stern-

'R. M. Stermenheir, Phys. Rev. 105, 158 (1957), and earlier
papers.

I H. Molter, in La Structure HyperfIne des Atomes et des Molecules
(Comite National pour les Recherches Scien&ifique, Paris, 1966).

'%. Fischer, H. Huhnermann, and K.-J. Kollath, Z. Physik
f00, 158 (1967).' H. L Cnx and D. Williams, J. Chem. Phys. 32, 633 {1960).


