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A violation of time-reversal invariance of the nuclear Hamiltonian results in a violation of the reciprocity
relation connecting the magnitudes of nuclear reaction cross sections in which initial and 6nal states are inter-
changed. The development of reaction theory in the absence of T invariance is outlined, and the connection
between T violation and reciprocity violation is calculated for the cases of direct reactions, isolated reso-
nances, average compound-nucleus cross sections, and fluctuating cross sections measured with good energy
resolution. It is found that in a direct reaction the magnitude of the reciprocity violation is proportional to
the matrix elements of the T-odd part of the Hamiltonian connecting different competing residual states,
divided by the energy separations of these residual states. In isolated resonances and average cross sections
the effect depends entirely on the presence of a competing direct reaction. In fluctuating cross sections the
rms value of the reciprocity violation is proportional to the rms absolute value of the matrix elements of the
T-odd part of B connecting different "compound states, " divided by the geometric mean of the average
spacing and the average width of these "compound states. " Thus the effect is favored in fluctuating re-
actions over direction reactions by a factor of the order of the ratio of the mean spacing of residual levels to
the geometric mean of the average widths and spacings of compound levels. An additional strong enhance-
ment of the fluctuating effect appears in the presence of competing strongly absorbed channels. Various
aspects of possible experimental tests of reciprocity violation are discussed.

INTRODUCTION
'T was shown by signer and Eisenbud, ' and in

~ ~ greater generality by Coester' that invariance of the
nuclear Hamiltonian under the time-reversal operation
(T) results in a symmetric S matrix

S,g=5t„.

metry relation
(3')

and the magnitude of reciprocity violation is given by

~0'ah =&ab &ba

EXPERIMENTS

Since the cross section for the reaction proceeding from
an initial asymptotic state a to a Anal state 6 is given by

Possible experiments to test the validity of (3) were
discussed by Henley and Jacobsohn' who emphasized
the fact that (3') may hold for reasons other than T
invariance. Thus, if only two independent competing
reaction channels are open, Kq. (3) must be satis6ed
by flux conservation as expressed in the unitarity of the
S matrix. Henley and Jacobsohn called this fact the
"Two-State Theorem. "Also, if 0. f, and 0.~, can be cal-
culated by means of the plane-wave Born approximation,
Kq. (3) will be satisfied, independent of T invariance.

There are, however, two additional reasons why
8o. b may vanish or be undetectable in a particular ex-
periment even in the absence of T invariance. First, the
interaction responsible for a certain reaction may be un-

affected by the T-violating part of the Hamiltonian. To
give one example, it is at least conceivable that matrix
elements of collective excitations in heavy nuclei might
be insensitive to T-violation sects. Second, a particular
experiment may satisfy Kq. (3) merely because of an
"accidental" cancellation in the contributions to the
antisymmetric part of the 5 matrix element. Such
situations are expected to occur. As we shall see later,
zero is an entirely possible value of bo-

& when B is
T-violating. In the absence of a detailed dynamical
theory of violation it is not possible to predict in which
experiment such a zero value will occur.

In view of these considerations, a reliable test of T

0'ab= z'~a 'gs
~
~ab Sab

~

' p—

it is clear that the symmetry relation (1) implies the
reciprocity relation for cross sections

~a &sb/ga ~b &bo/gb s (3)

where k is the relative asymptotic momentum of the
two reaction fragments and g, is the statistical factor
in state a.

The discovery of indications of T violation in the
decay of E mesons' has caused interest in experimental
tests of T invariance in nuclear physics by measure-
ments of the validity of the reciprocity relation (3),b '
among other methods. Furthermore, one would like to
be able to interpret any violation of Kq. (3) in terms
of properties of the T-violating part of the nuclear
Hamiltonian. For the purposes of this paper, we shall
assume that all cross sections r, ~ are measured in
units of ~g k ' so that reciprocity becomes the sym-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' E P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).

2 F. Coester, Phys. Rev. 89, 619 (1953}.' J. H. Christenson, J. W. Cronin, V. L. 1 itch, and R. Turlay,
Phys. Rev. Letters 13, 138 (1964).

W. von Witsch, A. Richter, and P. von Brentano, Phys.
Letters 22, 631 (1966); Phys. Rev. Letters 19, 524 (1967).' S. T. Thornton, C. M. Jones, J. K. Bair, M. D. Mancusi and
H. B. Willard, Oak Ridge National Laboratory Report
ORNL-4082, 1967, p. 2 (unpublished).

7

No. 'Ernest M. Henley and Boris A. Jacobsohn, Phys. Rev. 113
225 (1959).
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violation requires several experimental measurements of
80 ~. These couM. be either direct-reaction experiments
or fluctuating-cross-section experiments. If direct-
reaction experiments, or even average-cross-section ex-
periments, are performed, one should choose several re-
actions having very different dynamical characteristics
in order to avoid the above-mentioned possible
T-violation insensitivity of some processes. In high
resolution experiments of Quctuating cross sections, it
may be assumed that several measurements at different
energies in the same reaction will be su%.cient. Such
energies should, of course, be separated by more than
the "correlation width" appropriate to the reaction.

Advantages of high resolution tests of Kq. (3) in

fluctuating cross sections were pointed out by von
%itsch e$ al.4 They showed how the problems of deter-
mining the relative normalization of O, q and 0~ could
be solved by comparing ratios of these two cross sec-
tions measured at di6erent energies E~ and E~. The
quantity

.(E)
R,b(Et, Eb) =

~.b(E2) ~b.(Eb)

shouM be unity if T invariance holds, Assuming T
violation, we obtain to 6rst order in the asymmetry 50 q.

bo.b(Et) bo.b(EI)
R,b(Et, Eb) —I=

(r.b(Et) cr.b(Eb)

To avoid CGccts of energy instability, it is advantageous
to choose Ej and E& to lie at stationary values of the
cross-section energy dependence. Von Witsch et ul.
chose E~ to be a cross-section minimum and E~ to be a
maximum. Then, if one assumes that the value of
bo, b(E) is uncorrelated with the value of o.,b, and if
the ratio of o,b(E&)/o, b(Et) is sufficiently large, one
may expect that the second term on the right-hand side
of Kq. {6) is negligible and that a measurement of
R,b(Et, E2) determines 5o. b/o b at the cross-section mini-
IQum Ey.

One might be tempted on the basis of the above
arguments to test T invariance in reactions whose

fluctuating cross sections exhibit very large maximum-
to-minimum ratios. This could be dangerous for the
following reasons: signer has shown that a reaction in
which there are only two independent competing chan-
nels has cross-section zeroes, while in the presence of
three or more such channels there are no cross-section
zeros. ' If the experimental energy resolution is in-
suf6clcntq vc1'y deep closs-sec tlon mlnlma may bc
indicative of the presence of actual zeros and con-
sequently of a situation in which 50 must vanish because
of the two-state theorem. Alternatively, the occurrence
of very high cross-section ma, xima (compared to the
average cross section) may be indicative of isolated

' E. P. WiSttcr, Proc. Natj Acad. Sci. U. S. 32, 302 (1946).

1'csonancc structure wh1ch as w'c shall scc ls oldinarlly
not expected. to be favorable for the observa, tion of
T-violation effects.

Finally, in experiments with fluctuating cross sec-
tions, the angle of observation should be chosen so as to
minimize the number of independent reaction modes
(often called the number of "degrees of freedom" in
cross-section-fluctuation analysis' ). In reactions re-
sulting from the addition of many incoherent processes,
the relative asymmetry (4) will tend. to be reduced by
canccllations of the various contributions.

REACTION THEORY V@TH T VIOLATION

In order to relate the cross-section asymmetries 80

to the properties of the T-violating part of the nuclear
Hamiltonian, we shall employ signer's R-matrix
formalism. ' ' Other methods for discussing this problem
have been used. by Ericson'0 and by Mahaux and
%eidenmuller. "

As usual, we divide configuration space into an in-
terior region where aD nucleons interact strongly and an
exterior one where only the nucleons within each of two

fragments A and 8 intera, ct strongly. In the exterior or
channel region the relative motion of the two fragments
is governed by a completely solvable two-body
Schrodinger equation (involving ordinarily only the
Coulomb interact, ion of 2 and 8).We write the Schrod-
inger equa, tion for fragment A as

(&~ ~.)f-(r.;.)=o

where I and v are the spin and spin-magnetic quantum
numbers of the (discrete) eigenstate f Then the .wave
function describing the motion of the fragments A
and 8 in the exterior may be written

~. &"'&=K&.()e.(,e,~),
(Sa)

b'I'~ (eA)
4.(r,~A)=Z (olJ~) %As,

where r, e, P are the relative spherical coordinates of
fragments A and 8, I'g is a spherical harmonic, and
the subscript c stands for the collection of quantum
numbers I, m, I,~, Ip, and vp coupled to total momen-
tum J and M by means of the angular-momentum
coupling coeAicicnt indicated by the abbreviation
(o~ JM). The reaction amplitude, or the 8 matrix, is
determined by the asymptotic forms of the radial func-
tions R,(r) as r ~~.The E-matrix method is to express
this asymptotic form erst in terms of the value R,(a.)

8 J. Bondorf and R. B. Leachman, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 34, No. IO (I965).

9 A. M. Lane and R. Q. Thomas, Rev. Mod. Phys. 30, 25'7
(1958).' T. E. 0. Ericson, Phys. Letters 23, 97 (1966)."C. Mahaux and H, A. Weidenmiiller, Phys. Letters 23„100
(1966).
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whcI'c 5, and I, RI"c knowQ Rs the shift Rnd pcnctI'R-
tion factors and @, is the hard-sphere plus Coulomb
phase shift associated with the radius a,. Next, the
wave fuQctlon ln the lntcI'lox' ls expanded 1Q thc dis-
crete eigenstates of the complete Hamiltonian which
satisfy real boundary conditions 8, at the channel
I'Rdll Go.

~(interior) —~ ~ X
p (10a)

and the derivative R.'(a,) of the radial function at the
boundary r=a, between the exterior and interior re-
gions. This is done by integrating the solvable Schrod-
inger equation for the relative motion of A and 8 in
the exterior. This integration yields the foIIowing two
coIDplex coQstRnts:

the fact that the yq, are here not assumed to be real. .
The latter property is a result of T invariance. The
evident Hermiticity of R stiQ guarantees the unitarity
of the 8 matrix (12).However, unless R is also real and

symmetric, S will not be symmetric.
To investigate the crucial reality properties of the

'yy, when T ls violated, wc consider 6rst thc propcr-
tlcs of thc HamlltonIRQ H of Eq. (10b) wltll Iespcct
to time reversal. The antiunitary time-reversal operator
8 has the properties" that for any two states f and $

and for SQy cIgcnfunctlon 1//g Ir of R T-Invariant s'calar

operator X vrith eigenvalue b

(3C—h)eg, II——0, PC,ej=o,

Kq. (10) that dynamical assumptions and models
are introduced.

Using thc contlnulty condltlons Rt f= sg RQd applying
Green's theorem to the interior region, one may express
R,(u,) and E,'(a.) in terms of. the eigenvalues EI, and
the values of the radial parts of X},on the channeI sur-
faces a,. The latter, suitably normalized, are usually
wllttcn Rs

y),c= (h'/23'. a.)I~' y,*XIdsga

44m, I=I( 1)' ~—4z, Ir (14c)

%e noser divide the Hamiltonian H uniquely into a
T-conserving part B' and a l'-violating part IJ':

where IJO is "T-even" and commutes with 8 and II'
is "T-odd" and anticommutes with tII.

In RH that foIIows, wc shall assume that the matrix
elements of H' are smaB compared to the matrix ele-

ments of II', so that wc may use 6rst-order perturba-
tion theory to write the eigenvalues of Eq. (10b) as

(11) where

where M, is the reduced mass of fragments A and 8,
and the integration is carried over Rll coordinates except
r which is set equal to e,.

Having thus calculated R,(a,) and E,'(u, ) in terms of
the dynamical properties of the interaction embodied
in Kqs. (10), we are able to determine the S-matrix
elements by the procedure discussed below Kqs. (8).The
resulting 5 matrix in the representation of Eqs. (g) has
the form

&- =Z vx.vI"*/(&x-&),

Thc diagonal. 1TlatI'lees +, P, I, Rnd I have c~cID

~ay +py Lpp +g~ Rs dc6ncd above. Thcsc cxprcsslons
dlEcr froIQ thc USURI E-ITlatrlx forlnujas ' onjy through

Because they are real, the boundary conditions 8, do
not RGect the time-reversal properties of the Xq,

The Inatrix elements B„q' of the T-odd part of II
wiD constitute our measure of T-violation in nudear
interactions. These matrix elements have purely
imaginary vahlcs Rs can be sccll by Rpplylllg Kqs. (14b)
and (16):

II„I'—= (X„',O'Xg') = (8X„0,8H'XI, ')*

(ex„',B'ex ')~—
( 1)27-RM(X 0 +&X 0)4

where we have used the fact that the matrix CICQMQts of
thc scalar H RI'c lndepcndent of thc sign of tIlc magnetic

quantum number M.
Applying Eqs. (14c) and (16) to an eigenvalue XI,

"A full discussion of the properties of the time-reversal opera-
tor has been given by Eugene P. Wigner, Grogp Theory, trans-
lated into English by J. J. Gri%n (Academic Press Inc., New
York, I959), Chap. 26.



with total angular-momentum quantum numbers J
and M, we obtain the time-reversal property of the
eigenfunctions of H:

8+)c(z, 1lr) =8(x )(c7, jr) +X@(zN),)'

=( 1—)™(&p(~~,)-' X—p(~~, -') (2o)

The same considerations that apply to the complete
Hamiltonian H are now applied to the intrinsic Hamil-
tonian H~ of the fragment A and to Hg of fragment B.
The Hamiltonian of the relative motion in the channels
will be assumed to the T-even, We then have

H~ =H~'+H~',
PHg', 8]= (H~', 8) =0

and similarly for Hl). Then from Eqs. (7) and (gb), we
have by perturbation theory

(22)

i'Y „1( 8y)o=P (cIJM) p 'pg',

(23)

The states c, c', etc. are the "residual states" of the
reacting system.

Using the method. of Eq. (19), it is easily shown that
both the yq, o and the y)„' are real. This fact is also con-
sistent with the purely imaginary character of the
matrix elements of H', H~', and H~'.

We see therefore that the R matrix (13) can be written
as the sum of a symmetric T-conserving part and an
antisymmetric T-violating part, which to 6rst order are

R'=i 2 (v' Xv.' v'~v')—(&. E) '—
where y„' and y„' are vectors with components y„,o and

y„, , respectively. Substituting this into Kq. (12), we
obtain the symmetric and antisymmetric parts of the
5 matrix from which we can calculate the degree of
violation of the reciprocity relation (3). By means of

Kq. (25), we can then express this result in terms of the
matrix elements of the T-violating part of the Hamil-
tonian and the parameters (E&„px,o, etc.) describing
the T-conserving part of the interaction.

and where

(Hg' —e )$,0=0,

HAa'a

a ga I

(24)

and similar expressions for ()is.
Putting Eqs. (17) and (22) into Kq. (11), we find

that to 6rst order in H' and H~'

We perform the calculation of the 5-matrix elements

by means of the level-matrix formalism, ' 9 6rst under
the assumption that in the energy region of interest only
a finite number of terms of the sums in Kq. (26) con-
tribute to R. After that, we shaB state the modifications
required when this assumption is not justi6ed.

In the usual manner, it can be shown that when

'Ylc Vic +&7ic
where

Vx.'= (4.',Xx'). ,

iyx. '= (y.',X ).x+(y, ', Xl')„

(25a)
the following identity holds:

(1—Rl') '=1++ y XL'y*A (2g)

where the level matrix A with elements A„„ is given by
HAa'a

v..'—2 YXC' (a')
P+)E g g at~a g g

y)

A= (e—E—()—' (29)

H&p'p
vx" 0) )' (25b)

P'~P ep —ep~

where c'(n') differs from c(n) by having fragment A in
state n' instead of state n In apply. ing Eq. (25b), we
will ordinarily assume for simplicity that only one of the
fragments, say A, has internal structure and write

HyX IIXc' c

ivy. '= Z — v.'' —Z vx' " (25c)
j4+X g) —P C =C fC—QCi

ll=—(I—RLO)-'R=P & Xz*a (32)

From (28) follows the relation

Ag —(gA)" = (A—A" ) (e—K), tr. = transpose. (31)

Substlf lltlllg (27) 1nto tile expressloll (12) ali(l uslllg
Eq. (31), we obtain the result that
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where
A = (e—E—go —ig')-i Ao+;Aog Ao

0—Q I o~ op 0

(33)

(34a)

4.'= Z L.'(V..'V-' —V..'v-') (34b)

A'=(e —E—(') ' (34c)

Substituting (33) and (34) back into Eq. (32), we
obtain the following first-order expression for the 0
matrix

8= Ho+8',

Ucc' Q |Ylvc Yvc' +Ivv
JllV

(35)

The contributions of the T-conserving and T-violating
parts of H to the y„, have already been discussed. We
treat the T-violating part of A„„by 6rst-order matrix
perturbation theory

+Ace' +Ac'c
JIAc'c

=0 C=C ~

(40)

The result of Eq. (38) is formally similar to the anti-
symmetric part of the collision matrix given by Ericson. "
This can be seen from the fact that according to Eq.
(34c), the matrix A' is essentially a resonance denomina, —

tor. See also Eq. (67b) below. We note, however, that
while the formula in Ericson's paper' arises only from
the effect of H' on the resonance pole positions, Eq.
(38) results from the perturbation of both the pole
positions and the y„.. In fact, the derivation of Eq. (38)
involves the cancellation of large contributions from
the two sums in Eq. (36)."

The assumption (27) is generally not satisfactory.
Rather one must write

ll- '= z Z (~.'v-' v. ''v-—') &s'- R= R&'&+R&"&, (41)

+z Q y„,oy„,.oA„oL, '
JILV K)t C

X (Yic Vvc YXc Vcc Jvc Kv

where R(') contains the contributions of nearby states
E„ that strongly affect the energy dependence of R in
the energy region of interest

(36)

Since A' is symmetric, Q' is clearly symmetric and Q' is
antisymmetric. The contributions of the 6rst sum in 'Q'

arises from the e8ects of T violation on y„and y„ in
Eq. (32), that is, from the effects on the resonance pole
residues of S. The contributions of the second sum in g'
arises from the effects of T violation on A, that is, from
the effects on the resonance pole positions. The dis-
tinction between these two contributions has already
been noted by Mahaux and Weidenmiiller. "

These two contributions to Q' are however not in-
dependent, but are in fact strongly correlated. " By
substituting Eq. (25c) into Eq. (36), one obtains a
separation of Q' into an "internal" part 'g" which de-
pends on the matrix elements of H' between different
compound states, and an "external" part g" which
depends on the matrix elements of HA' between diferent
channels or, better, between di8erent residual states.
If one is justified in assuming the, t the matrix elements
of H' and HA' are dynamicaHy independent, then V"
and U" are independent parts of V'. They are given by"

g, li) = Q y y„,o(g —p)—i (42)

dE' p(E')
E'—E

(43)

where p(E') is the density of states E„at the energy E'
and the symbol ( )z indicates an average over indices

p for which E„ is the vicinity of 8'. Clearly R("' will
consist of a real symmetric part R~"&s and a purely
imaginary antisymmetric part R~"'A

while R(") contains the contribution of more distant
poles which do not contribute appreciable energy varia-
tions in the limited energy region of interest but which
nevertheless have an appreciable effect on the R matrix.
The contribution of these distant poles is particularly
important for the diagonal elements of the R matrix. "
Their contribution can in general be evaluated by means
of the principal-value integral

II' ——u"+u"
Ucc Q Y/vc Yvc v4 Ill Lr XK vf cv

PV

(37)

(38)

, (oo)$ P dI' p(J')(y "y ')s (8'—E)—' (44a)

d&' p(E')z(V.'V."o V.'V" ')E—
PVC"

+ Ysc Yvc' ~vsi 'Yic" "Ycc v4vv &~Ac c"'"0 03 0 0 IrpOA Onn X(E E') ' (44b)—
PCVK'h C"C"'

X(L, '—Lcc ), (39)

"The correlation between the two sums in the second Kq. (36}
and the resulting simplification of Eq. (38} were pointed out by
T. Fricson (private communication}.

The resulting II matrix consists of a smooth part g~'~

and a fluctuating part H'f', where the latter contains

"For a recent example showing the errors produced by ignor-
ing R&") in elastic scattering, see C. Mahaux and H. A. Weiden-
muller, Nucl. Phys. A97, 378 (1967).
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H(s) 0 (g R(ao) SL0)—lR (ao) S (46a,)
'H(s) ' —(g R (ao) SLO)—1R (ao) A (] LOR (ao) S)—1 (46b)

Sy means of the level matrix inversion method, It.(~'

consists, to first order, of one symmetric and two anti-
symmetric terms analogous to those of Eq. (36).

the explicit pole terms

H= H"+H'".
The off-diagonal elements of g~'), when substituted into
the S matrix (12), provide the proper description of
direct-reaction amplitudes within the framework of the
E.-matrix formalism. Ordinarily this description of direct
reactions is not very useful except insofar as it provides
a unified picture of the correlations and interferences of
resonance and direct-reaction amplitudes. "We shall,
however, be able to draw useful conclusions about
Z -violation effects in direct reactions from the R-matrix
formalism.

To first order in the Z'-odd part of the Hamiltonian,0"has the symmetric and antisymmetric parts

tion between the two sums in Eq. (46d) by using
Eqs. (25c) and (47) to express H(f' in terms of the
matrix elements of II' and II~.. This time we obtain
three independent contributions: an "internal" part
H'f&" which depends on H', and "external" part H(f&"

which depends on II~', and a "direct" part g&f'" which
depends on R&")~. These are given by the following
expressions:

H(f)'= H(f)'a+H(f)'s+H(f)'d

H(f'*= —Q n„oXA, ),oui', s'A oa o

(49a)

(49b)

—n„'XL' 'XR "('"L'
e,') +g a„'Xn,'

X(Ao on o. LoR( ALoe)aoAi o) (49d)

H(f&"=Q A„, (n„oXBCge„BCs—n„Xe, )+ Q n„Xe„o
PVK)l

LA oe„o Lo(X '3C& —3C&X ')Loa)0A, oj, (49c)

H(»'= P A „„'(L~'XR("'"L'eo'Xa '

H(f)o p n„oXn oA, o

H( '=i Q (ei'Xn„' e)0X—e„')A i„'
Xp

(46c) The matrix Rg has been defined in Eq. (40).

CROSS-SECTION ASYMMETRIES

Denoting the symmetric and antisymmetric parts of
the S and'g matrices by S

y
S and Q, Q. , respectively,

we see from Eqs. (2) and (4) that the cross-section
asymmetry is given to first order by

+i Q eioXa„'A&,.04,"A,„o, (46d)
XPKV

where

0 —(j R(ao)SLO) —1+ 0 (47a)

(j. R(~&L0)—1(~ +R( )~Lonoo) (47b)

4.'= v.' Xv.', (47c)

(„„"=i (y„~Xy„'—y„' ~ Xy„)+y„~ XR(")"Xy„. (47d)

Here A' is as given in Eq. (34c) and with $0 as given by
Eq. (47c), and the symmetric matrix X is defined as

X=L'(1—R("& L') '=(1—L'R("& ) 'L'. (4g)

The first-order expression for Q consists of the sum of
the five contributions in Eqs. (46). The contribution
Q&')' is the usual direct-reaction amplitude as derived
in R-matrix theory, and Q(')' is the antisymmetric part
of the direct amplitude due to T violation. The expres-
sions for Q&f) are entirely analogous to the resonance
amplitudes of Eq. (36), except for the effect of the back-
ground matrix R&") on the resonance terms. This
illustrates the correlation that always exists between the
parameters specifying the direct- and resonance-
reaction amplitudes. ""The antisymmetric part of the
resonance amplitude also has contributions from R&")~,
the antisymmetric part of the background R matrix.

As in the case of Eq. (36), we eliminate the correla-

'5 P. A. Moldauer, Phys. Rev. 157, 907 (1967}.' K. F. RatcliG and N. Austern, in I'erspectiees in Modern
Physics, edited by R. E. Marshak (Interscience Publishers, Inc. ,
New York, 1966},p. 57 and Ann. Phys. (N. Y}.42, 185 (1967).

l)(r,.=(f„—0, ,=4 Re(S„sS.."*)
= 16I'.I', Re(11..s11.."*).

We consider in turn the cross-section asymmetries in
three diferent kinds of situations: direct reactions with
no resonances, isolated resonances, and fluctuating cross
sections arising from contributions of many resonance
pole terms with no competing direct-reaction amplitude.
Other cases can be discussed equally well but tend to
lead to complications without further clarification of
the essential features of the results.

Direct Reactions

In the direct-reaction case with no nearby contribut-
ing pole terms, we take

QS Q(a) 0 QA g (8) '
(52)

as defined in Eqs. (46a) and (46b), and we evaluate
R("& by means of Eqs. (44a) and (44b). From Eq.

We shall compare this asymmetry to the mean cross
section which is given to first order by

(foo' Q((foo +(ro o) ~Sao

=4~,Z, . ~U,.'~ 0,

c+c .
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(25c), we have the result that

Hg„'
ph 0,0i~Ppc +pc' /@' Yh, c +pc'

XII gg g&

/+Ac"c

(pic" %ps' )@' ~

c Hc 6c 6c"
(53)

The first term on the right-hand side is expected to
vanish for a variety of reasons: Each of the factors II»',
(E„—E),) ', and y),.'y„, 0 ()((8X) has an expectation value
of zero, and there is no reason to expect the signs or
values of any of these factors to be correlated. There-
fore only the second term on the right of Eq. (53) con-
tributes, and we have by Eqs. (44a) and (44b)

R(")"=[R(")s,K~]. and therefore

~- '"=vo.so"*/(&o—~), (57)

one has in mind. The two simplest definitions of the
direct-reaction amplitude are 6rst, the above definition
in terms of the contributions of distant R-matrix pole
terms and second, as the contribution of the energy
average of the Q matrix, which includes an average over
nearby pole terms. It is easy to see that the relation
(54) will also hold for the second definition of a direct-
reaction amplitude, and therefore the same conclusions
follow.

Isolated Resonances

A commonly discussed simple situation is the case
where the energy dependence of Q is affected ap-
preciably only by one pole Eo of the R matrix (13). In
that case, Eq. (42) reduces to a single term

Putting Eq. (54) into (46b), we obtain

11"= [11"'&~]+11"'[~~I ']ll'" where

A'= (Eo—8+So——,'iFO) ',

—So+ pi&0= $00'.

(5g)

which is to be inserted into Eqs. (50) and (51) in ac-
cordance with the definitions (52) in order to obtain
the symmetric and antisymmetric parts of the direct-
reaction cross section. We note the following properties
of this result.

i. The asymmetry 60,. of a direct-reaction cross
section depends linearly on the matrix elements of the
T-odd part of the Hamiltonian between states of the
residua/ nucleus, divided by the energy separation of
these states.

2. The asymmetry 60-., depends in a complicated
way upon all matrix elements HA, , "' between residual
states c// and c'" that are coupled to c or c' by direct-
reaction amplitudes such as Q„&".In fact, bo.„may
be nonvanishing even though the T-odd matrix element
HA, . ' between c and c' vanishes. Therefore the dy-
namical interpretation of direct-reaction cross-section
asymmetries may be somewhat involved.

3. It goes without saying that as indicated in Eq. 50
the existence of an asymmetry 8o., depends on a non-
vanishing direct-reaction amplitude Q„"0.Also the
two-state theorem holds. On the other hand Q„.("can
have a nonvanishing value even if 11.. (')' is diagonal.
For example, in the case of a single nonvanishing T-odd
matrix element 3cA„we have

'Q (s) s((s ['Q (s) 0 U, , (*)0

+ (I- '—I- ')l1 "'0 ~ "'j (56)

The possibility exists that such an amplitude can be ob-
served through interference sects in angular correla-
tion or polarization experiments.

In the presence of nearby resonance pole terms con-
tributing local energy variations in Q, the concept of a
direct-reaction amplitude is not clearly defined but
rather depends on the particular type of direct reaction

In the absence of competing direct reactions, that is
when R'"'=R(") is diagonal, the expression (47d)
vanishes, and we have from Eq. (46)

cc'

'/ 0 / /—GOs O'Os +Z((XOs (XQs' GOs Oos' )
(59)

E—Ep—Sp+-,'iI'0

Using Eqs. (25c) and (47b), we find that

(Xpc g cQpc
0

where

(6o)

zy / p 77 / 0
pp +pc HAc'c (pc'

(61)
+0 +p +pc + &c &c' +Oc

From this, it follows that

(63)

We see, therefore, that in the absence of a competing
direct reaction an isolated resonance cross section does
not violate the reciprocity relation to first order in the
matrix elements of the T-odd part of the Hamiltonian.
This result has already been stated by Mahaux and
Weidenmuller. "The conclusion (63) is, of course, not
valid in the presence of any competing reaction mode
such as a direct component or the overlapping "tail"
of a distant resonance. The cross-section asymmetries
for such cases can be calculated by means of the above
formulas. They involve a large number of parameters,
including, of course, parameters which refer to at least

In consequence of the purely imaginary values of H„„'
and HA„', the q, are real and

~080,0"0
11ss' (1+i'. ig;) . (62)—8—&p—So+-,'ipp
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one third competing channel as in the case of Eq. (55)
and as required by the two-state theorem. '~

we find from Eq. (46c) that

gI/(cgI/(c

S..s= —ig, cW(.",
~ E—h„+-,'il'„

and from Fq. (49) we see that the antisyrnmetric part
of the 5 matrix contains an internal Rnd an external
coQt1 lbutlon.

sA.—sag+ she

gpc pv gvc'

' (8—h„+-',iF„)(E—h„+-,'iF„)

gpc+Ac'c"g pc" Acc"g yc"ac'
,8e—i P

E 8+-,'iF—

(67a)

(6'/b)

g&cgvcI g&cIs+g cr t ca r rg ca i ct s &gvct z t

(67c)
pre«e»' (E 8„+',iF„)—(Z 8,-+piF,)—

y, o I 0+g oJ,O(g, , (~)8 g, (~)s) (69)

In the case of overlapping resonances, that is when

the I'„Rre larger than the spacings of the 8„, the energy
variations of cross sections are conveniently discussed
in statistical terms such as their energy averages,
average squares, correlations, etc. %'c shall calculate
such averages by the method of the statistical 8 matrix
which was de6ned in Ref. 18 and which represents the
5 matrix in R 6nite energy interval hE by a, uniform

'~ We note that the calculation of Mahaux and KeidenmiiHer
(Ref. jI.I) for the case of two interfering resonances yields an ex-
pression for the cross-section asymmetry that is not clearly con-
sistent with the requirements of the tvro-state theorem.

's P. A. Moldauer, Phys. Re@. 1BS, 3642 (1964).

Fluctuating Cross Sections

In order to discuss the cGects of several or many
R-matrix poles upon the energy dependence of a cross
section, it is useful to express the 5 matrix as a series
of resonance pole terms of the type given in Eq. (59).
The general method for doing this has been discussed
in detail elsewhere. e '8 In the present application, we
diagonalizc thc coIDplcx syIDmetric IQRtI'1x A by IDcans
of the complex orthogonal matrix T,

2"„„g„„or,„=S„,(S„—',iF„-Z)-l, (64)

and, assume R(") to be diagonal (no direct reactions)
so that R(")"vanishes. Then, if we de6ne

g„,= (2P,)'(' exp( —iy, ) P 2"„~.,0,

randolll function of the type given in Fqs. (66) and
(6/). These random functions are specifie by s,n ap
propriate ensemble of resonance parameters g„„
g„... ~ ~ ., I'„, 8„. %C shall assume that the ensemble
averages over the index p of g„, vanish.

&g„.)„=0, ail.
and that RH. channel-channel correlations vanish

(70)

We first calculate the energy averages of Eqs. (66)
and (67) by means of Eqs. (B3) and (811b) of Ref. 1g
and obtain, using Eqs. (70) and (71),

8cg~ 0 (72)

,Ai (73)

8'- "'=( i&)3' - (&g..'&.—&g,"').)
i~'& '(g.-'&.&g-'&~~- &.;, (74)

where S is the mean spacing of the 8„.%e see that in
general the antisymmetric part of the average 5-matrix
element 8„vanishes only if Hg;, ' vanishes or if both
(g„,')„and. (g„, ')„vanish. Of course, the nonvanishing
Of 8cc~+ hRS QO 1IDPOI'tRnt COnsequences~ S1QCC RCCOrd-

ing to Eq. (72) 8,.s does vanish according to our as-
sumption, and hence the contribution of the average
g IQRtI'1x to thc closs-scctlon asymmetry vanishes,

A~erage Cross-Sec&'o@ Asymmetry

The simplest observable statistical property is the
avexage cross section. The symmetric part of the aver-
age cross section has been calculated in Ref. ts„where
it was shown that in the limit F=—(F„)„&)S

~-'= (2~i»&I g" I
'I g."I'iF,&,.

The assumptions (70) and (71) imply that the energy
variations of the antisymmetric part (6'/) of the 8
matllx RI'c uncoI'I"clRtcd with those of thc synlnlct11c
part (66) and that therefore the energy average of the
cross-section asymmetry (50) vanishes:

&()(roc')= 0
p (no «i)rect 1'eactlolls) (76)

This result may be confirmed by performing the
avera, ge with the help of the methods of Ref. 18 and
applylllg 'tile conditions (70) and (71).

%c must therefore study the Auctuations in 80.„..
The simplest description of the magnitude of these
Quctuations is given by the QorIDalized mean square

&g"C."&.= (g"*g.").=0 «~' (»)
This latter assumption is possible only as long as all
o8-diagonal elements of E(") vanish. "'6
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value

6„=&80,. '&/0 ..', (77)

which is useful for the interpretation of the cross-
sectipn ratios measured in the experiment of von
Witsch et at.'; see Eq. (6).

E—h,+-,'iF„

gpcgpc'
2-

&~A cc"gvc" gvc' gvc&~A c' c"gvc"
8g ZZ

g—g„+ijF„"(
c"

The substitution of expressions (66) and (67) into
the square of So.„as given in Eq. (50) yields a great
many terms which must be averaged. By considering
again the limiting case I'))S and applying the assump-
tions (70) and (71), the number of terms contributing
to the average of (80..)' is reduced to the following:

vg

g// (jg//// ~///////g// ~g/// /i/// ///////g//// )gg//

(Z—h„+-,'F„)(J..—h„+-,';F„) (78)

To average this expression, we einploy the result of Eq. (817) in Ref. 18 and the following generalization which is
derivable in the same way:

(
g (i „2

~—& +2iI'„

We obtain then the result

(79)

48m' G„.G„.Gv,G„
&g'"'&= (IH- I'+ 2 G--G-- I&~" "-&' I')

I'„Ivt'„ C C
/l Av/ @WE

32m 2 G„,G„,.
+ I& G-"(l~~-- I'6'"+ l~~. .- I'G,.)—I~&.. I'(g„'g„,." +g„,*2g„„2)g

where
G"—=

I g"I'.
To obtain 5„,we must divide (76) by

(81)

F))5), no direct reactions, (80)
In order to estimate the magnitude of h., ', we assume

that the values of the matrix elements H„„' are random
in p, and v and have zero means. Then from the defini-
tion (68), we find that

4 ' G„,G„.
p 2—

$2 I'„
(82& I».'I'=2 (f T"I'I7'.xl' —T"2'.i*2.»"*)Ill.x' f'

s to =s„iv„(
I H„i'I'&„)„ (84)

where we have made use of the expected zerp average of
the T„v and the definition of the important resonance
nprmalizatjpn factor g„' ':

ssuming the number of independent open channel
e large, we can neglect the effects of correlations be-

tween the values of the G„, and the I'„and replace the
averages pf the functions of these resonance parameters
in Fqs. (80) and (82) by the functions of their averages.
For example,

~,.=~cc'+~c"',
~..'= » (I».'I')-/F»

nn
CC "c"'

(83a)

(83b)

+.8L- g &G,.-(I3.~-- I'/G-+ l&~ " I'/6 "))
c/ I

I2&(g,.2g.;"+, g,.*'g,"2)/G-&' &.j
(no direct reactions, many open channels, F/S))1).

4~ 6". 6'.'
(~,0)2 (many open channels) . (82')

$2 r2

ith this assumption, we find that after separating the
internal and external contributions 6,. becomes

The average value pf Ã„ is close to unity when the
transmission coe@.cients T, of all competing channels
is less than about 0.3. But this average may become
very large when one or. more transmission coe%cients
approach unity. In the single-channel case, a lower
limit is given by"'9

&—=9',),& 2'(1—T) '"
I
ln(1 —T)

I (86)

where T is the transmission coefficient. In multichanne
cases the estimation of Ã still depends on numerical
statistical-model calculations. "

' P. A. Moldauer, Bull Am. Phys. Soc. 12, 27 (1967); (to be
published).
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We find then that

~...'=12~@2(~H'
) 2)/r n, (87)

where (~ H'~ ') is the mean absolute square value of the
matrix elements of the T-violating part of the Hamil-
tonian taken between different compound nuclear
states (or more precisely, between R-matrix states).

To estimate the value of 6„",we note first that in the
many-channel case the sum P. u,.0 is approximately
equal to the transmission coefficient T, and that g, T,
can be written as nT, where e is an effective number of
competing open channels and T is the average trans-
mission coefFicient for these channels.

The sum P,. (G„,"/G„,)„may be estimated. to have
the value eT/T„" and the last term in Eq. (83c) may
be neglected, as it may be either positive or negative
and involves no sum over channels. As a result, we ob-
tain the estimate

8'' 1 1
~& —+ +i(I&I') 1(IH~'I')/D- ' (88)

3 T. T;
Here D„,is the mean spacing of residual nucleus levels,
()H~'~') and ()g)') are the averages over residual
levels of the absolute squares of the matrix elements of
II&' and of Z, respectively. We have assumed that the
values of the II~„.' are uncorrelated with either the
residual level spacings e,—e, or with the 2„.The
numerical factor in Kq. (88) corresponds to the case
where the e, are equally spaced. It will diRer slightly
for more realistic spacing distributions.

In order to estimate the relative magnitude of the
external and internal contributions to 6„,we assume
that the magnitudes of the matrix elements of H' do not
depend strongly on the excitation energies of the states
and that hence ( (

H'
)
')= ( )

H~'
[ ').

We also take T,= T, = T and estimate (~ 2
~

') to be
of the order of unity. Then

(89)

At low energies where there are no strongly absorbed
channels, the ratio (89) is of the order of (I'/3m)
X (S/D...)', which in medium- and heavy-weight
nuclei is of the order of 10 to 10 '. At higher energies
this ratio may increase, but it is still expected to be
small at energies sufFiciently low that resonance
fIuctuations can be observed experimentally.

We conclude that in the absence of direct reactions
and in the limit 1')&S the normalized mean-square
cross-section asymmetry 6„ is given by Kq. (87).'0

"Actually the relationship between (G„.)„and T. is quite non-
linear, as indicated by the inequality 2~(G„),/D& T.(1—T,) '",
see Refs. 18, 19. This means that a considerable enhancement of
~«" compared to d., ' can be obtained in experiments where 1'
is large (many strongly absorbed competing channels), but either
T, or T,. is small.

3symmetry-Cross-Section Correlations

One can go on to calculate more complicated coef-
6cients describing the distribution and correlations of
the cross-section asymmetry 80-„. %e have calculated
the correlation coefFicient between the cross section
r.; and the square of the asymmetry 08„, neglecting
the effects of Hz'. With the help of Kq. (79) we find
that

The brackets indicate energy averages. The small
positive correlation is not surprising since the cross-
section asymmetry arises from the interference of the
antisymmetric and symmetric parts of the S matrix.
It indicates that the magnitude of the asymmetry has
a very small tendency to be larger at cross-section
maxima than at minima. The correlation is not large
enough to affect the argument of von Witsch et al.4 in
applying Eq. (6) to the measurement of the cross-section
asymmetries at cross-section minima.

Discussion

We have shown that cross-section asymmetries
80.„'=0.„—0, , measure different aspects of the
T-violating part of the Hamiltonian, depending on the
mechanism responsible for the reaction.

In direct reactions, the asymmetry depends on those
matrix elements of the T-odd part of II that connect
different states of the residual nuclei divided by the
energy separation of these states. Moreover, matrix
elements involving a11 possible competing residual
states contribute to every direct cross-section asym-
metry. Since compound-nucleus effects were shown to
contribute no asymmetry to average cross sections, we
conclude that only the above direct-reaction effects
contribute to asymmetries of cross sections measured
with energy resolutions that are broad compared to
Quctuation intervals.

An isolated compound-nucleus resonance should dis-
play no cross-section asymmetry except insofar as the
resonance interferes with a direct-reaction background.
In that case, the magnitude of the asymmetry is again
governed by the same matrix elements and energy
separations that govern the direct-reaction cross-section
asymmetry.

Cross sections which fluctuate with energy because
of the simultaneous energy-dependent contributions of
a large number of compound resonance poles (I'))X))
exhibit a fIuctuating asymmetry whose average value
vanishes in the absence of direct-reaction competition
and whose rms value is estimated to be

rms(80)/0=2(3%. )'"N(~H ~')'"/(I'n)'~2

in the case when many competing decay channels are
open. In Eq. (91), (~ H'~ ')'~' is the root mean absolute
square of the matrix elements of the T-odd part of II
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that connect different compoled states (as dehnedin
R-matrix theory), I" is the mean width, and X) the mean
spacing of resonance poles. The average resonance
normalization factor E is unity when all competing
open channels are weakly absorbed (have small trans-
mission coeKcients). In the presence of strongly
absorbed channels (T,=1), the factor X can become
very large, thus enhancing the observable cross-section
asymmetry. Estimates of the values of E can be ob-
tained from Kq. (86) and Refs. 15 and 19. Except for
the factor 1V, the result (91) is formally almost identical
to that of Ericson. "

We do not go on to interpret Eq. (91) in terms of a
"fraction of time-reversal-odd force, '" or of a relative
"strength" of T-violation. "These concepts involve the
comparison of the matrix elements of H' with those of
another measurable but T-even part of the Hamiltonian,
say H&0). Such a comparison would only be useful if
these matrix elements were proportional to one an-
other except for easily ascertained kinematical factors,
for otherwise the value of such a "strength" or "fraction"
might vary strongly from one experiment to another.
But the selection, or even the existence, of such a
dynamically proportional H&'& depends on properties
of B' which are presently unknown, that is on whether
H' is related to the strong interaction, to the elec-
tromagnetic interaction, to a super-weak interaction,
or to none of these. The disagreement between Ericson"
and Mahaux and Keidenmuller" in their estimates of
an "enhancement factor" originates in their diferent
choices of H&'~, neither of which appears presently to
be justi6ed as clearly superior.

In order to clarify these remarks, we point out that
the "strength" of the parity-violating interaction has a
6xed value relative to the strength of the parity-
conserving part of the weak. interaction because they
are related by a simple kinematical proportionality
operation (i.e., a constant times 7g)." Had parity
violation been discovered in a way that did not link it
with the weak interaction, no particular insight would
have been gained by comparing the amounts of parity
violation with, say, the magnitudes of the shell-model
residual interaction matrix elements in a variety of
experiments involving respectively weak, electro-
magnetic, and strong interactions. The deduced value
of the "strength" would have varied over many orders
of magnitude.

A second reason for avoiding the use of ratios of the
matrix elements of H' to those of an appropriate H' to

"In the ease of T violation, it is not even clear that one can
6nd an analogous operator a which does not depend on relative
momenta or other dynamical variables and which transforms a
Hermitean T-even interaction into a Hermitean T-odd one by
H'=nH+&.

parametrize the magnitudes of reciprocity violation
sects in nuclear reactions is the fact that measured
cross-section ratios tend to be complicated functions
of such matrix-element ratios and depend on other
relevant parameters besides. Thus, as we have seen, the
order of magnitude of the effect in direct reactions de-
pends also on the spacings of residual levels, and in
Quctuating reactions, it depends also on the spacings
and widths of compound levels.

Thus, in the absence of any clearly superior and
meaningful dimensionless parameter, we prefer to leave
the result in the form of Eq. (55) for direct reactions
and Eq. (91) for fluctuating cross sections. The problems
to be investigated experimentally are then 6rst, whether
reciprocity violations can be observed and second, what.
the magnitudes of the matrix elements of H' are in
diGerent cases of reciprocity violation. The latter infor-
mation would then have to be interpreted in terms of
models and theories of T violation and of nuclear
structure.

%e conclude that the best way to detect cross-section
asymmetries due to T violation is in high-resolution
experiments of Quctuating cross sections, though cross
sections with very drastic fIuctuations require further
checking for possible applicability of the two-state
theorem or isolated resonance difhculties. Particularly
advantageous are reactions having many strongly
absorbed competing channels which must not, however,
give rise to direct reactions and which can be measured
under conditions where very few independent alterna-
tives, or "degrees of freedom, " contribute to the
measured cross section. Combining all favorable aspects
would be a reaction with small residual nucleus spins
that can be measured at forward or backward angles
at moderate energies where, however, many diferent
competing composite particle channels have energies
above their Coulomb barriers.

On the other hand, theimterpretukioe of cross-section
asyrnmetries in terms of the dynamical properties of
the T-odd part of H would probably be easier in the
case of direct reactions, particularly if it should be
possible to measure the asymmetries in many of the
reactions coupling one set o'f competing direct, -reaction
channels. In that case, it might be possible to solve the
set of simultaneous equations which result from sub-
stituting Eqs. (55) into (50) and thus obtain the values
of the various matrix elements of Hg' —the T-odd part
of the Hamiltonian of the residual nuclei.
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