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The nature of the two-body interactions in many-fermion systems is studied from the viewpoint of meson
theory. An exactly soluble model is formulated for the linear coupling of a meson field to fermion density
fluctuations, in which meson degrees of freedom are treated exactly, and fermion motion is treated within
the domain of the random-phase approximation (RPA). Instability conditions for the RPA ground state
are established. More generally, the effective two-body interaction is deduced via a Green’s-function tech-
nique by eliminating the meson degrees of freedom. This interaction is shown to be frequency-dependent,
i.e., retarded in time. The resulting interaction is then applied to the calculation of the Hartree-Fock (H.F.)
field and of the collective modes of the system via a generalized Landau equation. In the H.F. approxima-
tion, one obtains an unambiguous separation of renormalization (self-energy) effects and the nucleon-
nucleon interactions themselves, the former reducing to the correct mass renormalization of the nucleon in
the static limit. For reasonably small momenta (p <pr), the retardation corrections to the H.F. field can
be characterized by a small parameter (er/u)? (~0.1 for actual nuclear densities), where er=Fermi energy
and x=meson mass. The corrections become more important at high momenta and densities. In the long-
wavelength limit, the frequency-dependent corrections to the collective mode energies are found to be of
order (w/p)?, where w=collective mode energy. For a static Yukawa interaction, a value A*~5 (consistent
with the usual shell-model values) is found for the neutral scalar coupling constant by requiring that the giant
dipole collective state appear at the experimental energy. For pseudoscalar coupling, the usual renormalized
coupling constant f2/4x=0.08 is shown to yield a “breathing mode” in heavy nuclei consistent with crude
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estimates based on nuclear compressibilities.

1. INTRODUCTION

HE problem of trying to construct the interaction
energy between two nucleons from basic prin-
ciples is an old idea that dates back to the pioneering
work of Yukawa! in 1935. In the Yukawa theory, the
interaction between two nucleons is brought about by
the exchange of (virtual) mesons between the two par-
ticipating nucleons, which act as a source and a sink,
respectively, for the exchanged meson. As is well known,
this simple one-meson-exchange process can be con-
sidered to give rise to a class of interaction potentials
(usually referred to as OPEP) which are instantaneous
in time and thus depend only on the relative separation
of the two nucleons and possibly their spin and isospin
coordinates. The specific spin and isospin dependence of
these potentials is determined by the type of meson that
one considers to be exchanged. However, the range in
coordinate space is always of order 1/u, the inverse rest
mass of the exchanged meson (we use units Z=c¢=1
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throughout). A complete review of the present status of
such an approach to the two-nucleon interaction is to
be found, for example, in Moravcsik and Noyes.? For
our purposes, it will be sufficient to comment that pres-
ent data on two-nucleon scattering systems are consist-
ent with interactions having a long-range character of
the type produced by m-meson exchange (1/u~1.4 F),
but showing considerable deviations from such poten-
tials as the nucleon separation approaches the “hard
core” radius (~0.3 F) associated with the structure of
a nucleon itself.

By contrast, the properties of interacting systems of
nucleons containing many nucleons (nuclear matter) is
a distinct problem and invites a different approach.
Here one usually assumes the two-nucleon interaction
to be given a priori, either by some version of the meson
theory discussed above, or by a suitably parametrized
two-body interaction. The force parameters are then
either adjusted in an attempt to reproduce expected
properties of the many-body system, e.g., saturation at
observed nuclear densities, or adjusted so that charac-
teristics of the two-nucleon system are reproduced as
accurately as possible. The properties of the many-body
system are then calculated in some approximation with
a given two-body interaction. The latter approach has
been the subject of considerable recent discussion in the

2 M. J. Moravcsik and H. P. Noyes, Ann. Rev. Nucl. Sci. 11,
95 (1961).
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literature.?=5 It has been found that multiple scattering
effects in the many-body system, that modify the effec-
tive interaction of nucleons embedded in nuclear matter,
have to be taken into account. The resulting “effective”
two-body interactions derived in this manner using free
two-body parameters are found to give very reasonable
results when used to calculate spectroscopic properties
of low-lying nuclear states from the nuclear shell model.

It is also clear, however, that the problem of the inter-
action between a pair of isolated nucleons, and a pair
embedded in a nuclear system is connected in a further
dynamical way in a meson-theory framework of nucleon-
nucleon interactions. The mere presence of the other nu-
cleons modifies in an essential way the motion of the
pair under study. For example, since one is dealing with
fermions, exclusion effects due to particle identity ex-
clude scattering states that would otherwise be available
to an isolated interacting pair, leading to modifications
in the interaction between the embedded pair. One is
therefore led to the alternative point of view of studying
the properties of the interacting system: nucleons plus
mesons without introducing the concept of nucleon-
nucleon interactions directly. These interactions are
now mediated entirely by the meson exchange between
nucleons. Such a point of view is not new. Besides the
Yukawa theory mentioned previously for two nucleon
interactions, the interaction between electrons in metals
is drastically modified by a similar process, the exchange
of phonons (describing the motion of the ionic lattice)
between electron pairs, leading as is well known to the
phenomenon of superconductivity.$

The subject of this article is the study of Fermi sys-
tems where the interactions arise from the exchange of
massive particles. For the most part the discussion will
be quite general. The applications we have in mind how-
ever are to nuclear systems, in which case the fermions
are nucleons, the exchanged particle one of the mesons
that are thought to be associated with nucleon-nucleon
interactions. We emphasize that if we are considering
a nuclear system, then we certainly cannot hope to de-
scribe the actual characteristics of nucleon-nucleon in-
teractions by the exchange of only one type of meson.
For example, the “hard core” structure of the interac-
tion at small distances cannot be reproduced in this
manner. However, we can study the long-range part of
the nucleon-nucleon potential (the OPEP part) by con-
fining our attention to the exchange of = mesons which
are the lightest mesons of interest for nucleon forces.
Our discussion could be immediately extended to include
the single quantum exchange of heavier mesons, such as
the p, 7, and .

In order to see what features are important in study-

( 3Kj A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
1958).
‘S.)A. Moskowski and B. L. Scott, Ann. Phys. (N. Y.) 11, 65
(1960).

5T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).

6 H. Frohlich, Phys. Rev. 79, 845 (1950).
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ing such systems of fermions plus exchanged particles
let us couple the fermions via the exchange of a neutral
scalar particle described by the real field ¢(x,£). The sim-
plest type of interaction in this case is (ns identifies the
coupling as neutral scalar)

Hns’=>\/dx p(x,0)0(x,0) . (1.1)

A is the coupling constant and p(x,#) the nucleon density
at (x,). If the fermions are nucleons, the simplest ver-
sion of Yukawa’s theory considers the nucleons as
sources at fixed points in space that exchange the par-
ticle described by ¢(x,£). The nucleon motion (or lack of
it) is prescribed through the density distribution p(x,f)
and only the field ¢(x,?) is determined dynamically. For
two fixed nucleons at a relative separation 7 one finds
the second-order perturbation result

__>\2 )\2 Vald

—iker—

(1.2)

Eint(’)=z
k u2-k2 4 r

for the interaction. The sum on k is over all momenta of
the exchanged particle of mass u. The result (1.2) is the
well-known Yukawa interaction between two fixed
nucleons.

It hardly need be pointed out that the above calcula-
tion is inconsistent for the following reasons. The motion
of the nucleons is ignored in determining Eini(r), and
the motion of the exchanged particle is ignored in turn
when (1.2) is employed to study the nucleon motion. In
principle, we have to consider the equations of motion
of the coupled nucleon-meson system. Such equations
are simple to obtain, but have a nonlinear structure and
are consequently prohibitively difficult to use. For the
two-nucleon system one therefore resorts to approximate
schemes like that leading to Eq. (1.2) that neglect the
nucleon recoil motion as a first approximation; this is
called the static approximation. For such an approxi-
mation scheme one expects the controlling parameter to
be the mass ratio u/m, where m is the nucleon mass.
Such recoil corrections have been extensively investi-
gated for m-meson exchange between nucleons.? In this
case u/m=~1/7 and the approximation appears to be
reasonable. Of course this approximation worsens as
the mass of the exchanged particle increases.

We now make the point that an essential simplifica-
tion occurs when we use a coupling of the form (1.1) to
describe the interactions in a dense system of fermions.
In such systems a linear coupling to the density as given
by H,s gives rise to density fluctuations about the
equilibrium density distribution of the fermion system
which can be regarded as small under conditions to be
discussed later. The point is that the equation of motion
determining the fluctuation in density can then be lin-
earized so that linear coupled equations result for the
density-fluctuations-meson system, and recoil effects
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need not be treated perturbatively. However, another
effect enters in the many-body system which is absent
in two-body systems. Because of the exclusion principle,
the fermions in such a system possess a zero-point mo-
tion characterized by their Fermi energy er even when
there are no interactions present. The exchange of a
meson between nucleons in motion will register effects
coming from the time-delay between emission and reab-
sorption, i.e., the interaction will no longer be instan-
taneous in time as in the static approximation, Eq. (1.2).
The parameter controlling such time-delay effects is of
order ep/u since 1/u and 1/ep are characteristic times
for meson and fermion motion in the Fermi sea. How-
ever, ep depends on the fermion density; correspond-
ingly we expect a density dependence in the effective
interaction between an embedded pair that is also ab-
sent from Eq. (1.2). Further, since the average spacing
between fermions decreases slower (~1/pr) than ep
increases with increasing density we expect the time-
delay effects to become more important at higher
densities.

Let us return to the question of the characteristic
density fluctuations in the fermion system. One knows
that such fluctuations represent excited states of inter-
acting systems. Microscopically, this approach considers
the excitation of particle-hole pairs out of the Fermi
sea that characterizes the noninteracting Fermi system,
and the resulting interaction of these pairs due to the
exchange of a massive particle. The linearization pro-
cedure then amounts to keeping a certain class of
particle-hole excitations which are then treated exactly.
This is just the “random-phase approximation” (RPA)
that has been widely applied in nuclear and metallic
electron systems.”8

Our specific problem is complicated by the time-delay
effects that enter into the particle-hole interactions.
Such time-dependent interactions are awkward to han-
dle, and we will prefer to work with the Fourier trans-
formed version of the interaction which then becomes
frequency-dependent. Particle-hole systems interacting
in this manner are most naturally treated by the use of
Green’s-function methods® that have been developed
for similar problems in electron-phonon systems. In
this manner a Bethe-Salpeter'®:!! equation, or ladder
equation, is obtained for the motion of interacting par-
ticle-hole pairs.

In the following, we will restrict the discussion to
fermion systems of infinite extent, which for definiteness
we take to be nuclear matter. The nuclear matter ap-
proximation is not necessary. However, it does serve as

19763. M. Lane, Nuclear Theory (W. A. Benjamin, Inc., New York,
8 P. Nozitres and D. Pines, Quantum Theory of Liquids (W. A.
Benjamin, Inc., New York, 1966).
9 L. P. Kadanoff, Lectures on the M any-Body Problem (Academic
Press, Inc., New York, 1964), Vol. IT, p. 77.
W E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
1YV, M. Galitskii and A. B. Migdal, Zh. Eksperim. i Teor. Fiz.
34, 139 (1958) [English transl.: Soviet Phys.—JETP 7, 96 (1958)].
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a very convenient vehicle for studying the effects of
particle exchange between the participating nucleons,
and how these effects depend on the nuclear density etc.,
without getting involved with the details of nuclear
structure.

For such infinite systems the Bethe-Salpeter equation
is known to possess two types of solutions: single-
particle scattering solutions, and “bound” solutions cor-
responding to collective oscillations of the medium,
characterized by a frequency w(k) with wave number &.
For long wavelengths these oscillations are described by
a simplified version of the ladder equation mentioned
above that is identical with the Landau equation for
the propagation of “zero sound” in Fermi liquids. We
show that a Landau-like equation also results for the
case of retarded interactions. The solutions of such equa-
tions and their ability to describe stable oscillations in
nuclear matter is discussed in detail in Sec. 4. Results
are presented for neutral scalar and pseudoscalar meson
exchanges. In the latter case one is dealing with the
more realistic situation of 7w-meson exchange between
nucleons; the coupling constant is known and hence a
comparison with effective interactions obtained by other
means is possible.

The method of Green’s functions is also used to study
the propagation of a single nucleon in nuclear matter.
In this case, the exact treatment of a certain class of ex-
citations leads as is well known to a “Dyson equation”!?
for the single-particle propagator. The lowest-order
solution of this equation allows one to identify the self-
energy 2, of a nucleon of momentum p. In the many-
body system, 2, contains contributions from the mesons
being emitted and reabsorbed by the same nucleon
(mass renormalization effects) and contributions from
emission-absorption by different nucleons (the average
interaction energy). We show that in a neutral scalar
theory such effects are approximately additive and sug-
gest the point of view that nucleon “dressing” processes
can be identified independently from nucleon-nucleon
interactions in the Fermi sea. Since we only consider
point nucleons, such renormalizations are infinite. We
have not attempted to outline a “renormalization pro-
gram” in these considerations beyond pointing out how
such effects might occur. After removing renormaliza-
tion effects, 2, is just the Hartree-Fock potential for
nuclear matter. We show that the determination of 2,
leads to a self-consistency problem, even in nuclear
matter, contrary to the case when the interaction be-
tween nucleons is instantaneous.

2. STATEMENT OF THE PROBLEM

We consider a large system of N nucleons, mass ,
interacting by the exchange of mesons of mass u. The
words “nucleon” and “meson’ are used as a convenient
nomenclature only. Most of the following discussion will

12 P, Nozieres, Interacting Fermi Systems, (W. A. Benjamin, Inc.,
New York, 1964).
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apply to arbitrary fermion systems interacting via the
exchange of a massive boson. We introduce the notation
a,' and @, for nucleon creation and destruction operators
in the nucleon state p (momentum, spin, and isospin);
B! and By play the same role for a meson of momentum
k. The nucleon operators anticommute, {a,,8,} = 85y,
while for the meson operators we have the boson com-
mutation relations: [ By,By]= i, all other commu-
tators being zero.

The total Hamiltonian is taken to be the sum of three
terms: the free-nucleon field, the free-meson field, and
a meson-nucleon coupling term H’:

H=Z Gpoapfap','% Z (PkTPk""QkZQkTQk)—}—H,. (2.1)
P k

We have introduced the notation e,°=p?/2m for the
kinetic energy of a nucleon and the linear combinations

(canonical coordinates)
Qx=(Bi+B_")/(2%)"%,  Pi=1(Q/2)"*(B'— B_x)

for a meson of momentum k and energy Qx= (u2+k2)1/2,

We will only be interested in forms for H’ that are
linear in the meson field. Specifically, we consider (i)
the neutral scalar interaction already given in Eq. (1.1)
which now reads

Hlns': A % Pka (22)

(px=2_p @p4xta, is the Fourier transform of the nucleon
density), and (ii) the pseudoscalar interaction

lElp.s’=Z 2 api’ (- k) (- Qu)a, (2.3)
M Pk

(6" and @ are now row and column vectors in spin and
isospin space) that couples the nucleon spin ¢ and iso-
spin ¢ to the meson momentum and charge states, re-
spectively. Qy is an isovector in Eq. (2.3), and introduces
mesons in three different charge states. Equation (2.3)
leads in the static limit to the charge-independent cou-
pling interaction used by Chew and Low in their dis-
cussion of pion-nucleon scattering'® and we will there-
fore refer to it as the “Chew-Low interaction.” The
coupling constant f is dimensionless in the form (2.3).
We will carry out most formal considerations using the
simpler neutral scalar form for H' and simply supply the
analogous results for the pseudoscalar interaction.

For the reasons given in the Introduction we will for
the most part employ a Green’s-function treatment of
the ground and excited states of the Hamiltonian H.
However, it is useful to consider the following idealized
problem first in order to gain insight into some proper-
ties of systems described by H. We start with the ob-
servation that the nucleon motion is only coupled via
their density px to the meson field in the neutral scalar

13 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
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theory. We therefore consider the equations for the mo-
tion of Qx and the nuclear density component py, pix
= {ay4x'ap) characterizing the motion of a particle-hole
pair. The average is taken with respect to the exact
ground state of H. Treating all operators as time-
dependent, we derive the Heisenberg equations of

motion

a
[i“‘_ (epo_ ep+k0) ]Pp.p+k
ot

=N Q-x(pptxr, prx—pyp, pri—kr) , (2.4)
k’

62
<""+9k2>Q—k= —Mx=—NZ pp, ptk-  (2.5)
o2 )

These equations are exact. We now make the essential
point: For large fermion systems a well-defined approxi-
mation exists for treating the motion of pp, p4x Which
then represents fluctuations in the nucleon density in
momentum space about the Fermi distribution #, which
is established in the noninteracting ground state by the
exclusion principle. If we write pp, prx=%p=+pp, px?,
where pp, p+x® is the density fluctuation and ignore
momentum transfers Q_x for k’>%k on the right-hand
side of Eq. (2.4), we obtain

le]
<7:"a—t+wpk0>Pp, ot V=A"p—1p) Q. (2.4

We have used wy?= €,1x°— €, for the excitation energy
of the particle-hole pair in pp, p4x‘? and », is the Fermi
distribution function #,=1 for |p|<pr, and #,=0 for
|p|>pr where pr is the Fermi momentum. Equation
(2.4") is one version of the “random-phase approxima-
tion” (RPA) that has been extensively investigated in
nuclear and electron gas problems.”® In Eq. (2.4'),
Pp, p+xV consists only of particle-hole excitations for
which |p+k|>pr and |p|<pr and vice versa, ie.,
one index must refer to a particle state when the other
index refers to a hole state. This approximation renders
the pair of equations (2.5), (2.4") linear in the unknown
amplitudes Q_x and py, p41. V. We can therefore ask for
normal modes made up of linear superpositions of these
amplitudes. A normal mode of frequency w and wave
vector k exists if w=w(k) satisfies the dispersion relation

)\2 Zwl,k"

(2.6)

1=5 Ny .
D=0 7 (wp?)?—w?

We have extracted the spin-isospin degeneracy of the
fermions in g (g=4 for nucleons); the sum on p is there-
fore only over all momentum states in the Fermi sea.
Apart from the frequency dependence in the coefficient
in Eq. (2.6), i.e.,

Vi(w)=—N2/(Q2—w?) 2.7)
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this equation is identical in form to the dispersion
relation for collective oscillations in an electron gas™
(plasmons) when Vi(w) is the repulsive Coulomb inter-
action 4me?/k?, or to the dispersion relation for Landau’s
zero sound waves'® to which it reduces when Vi(w) is
a positive, frequency-independent constant.

A brief discussion of the solutions of Eq. (2.6) is useful
for our further work. As in the case of the electron gas,'®
the free particle-hole frequencies wy? are still eigen-
frequencies of the coupled system, corresponding to the
fact that the particle-hole pairs have no self-energy in
this approximation. We can investigate the possibility
of additional collective solutions of (2.6) by passing to
the continuum limit and performing the sum over p as
a principal-value integral. We obtain

2wpx® mp
3 == B(k),
P

(wpk0)2_w2 22

sy 2]

w+kY2m—kop pp[<w—k2/2m>2 1:|
n D ————UUS [PSS— —_— —_—
w+k2/ 2m-+kopl 4k kvp
w— k2 2m—kvg

w—k%/ 2m+kop

X1n , (2.8

where B(k,w) is a universal function for Fermi systems
depending only on the fermion mass 7, Fermi momen-
tum pr and velocity vp=pp/m. B(k,w) is obviously a
complicated function of its parameters. We will mostly
be interested in B(k,w) as a function of w for small & at
fixed density of the system. Then B(k,w) is a smooth
function, apart from a deep minimum in the vicinity of
the maximum particle-hole pair excitation energy
wp=Fkvp+k2/2m. For long wavelengths, £t — 0, B(k,w)
becomes

k
, 2.9)

wtwz

w
B(kw)=14+—1In

Wi

where wy="Fkvp gives the maximum excitation energy
for small k. The minimum at w=w; now appears as a
singularity in this approximate form for B(k,w), indicat-
ing that the expansion is not valid near w;. A plot of
B(k,w) for various values of & is given in Fig. 1. Inserting
the closed form B(k,w) for the summation on the right-
hand side of Eq. (2.6) we obtain the dispersion relation
relating w and %. The solutions of this dispersion relation
that lie above the maximum particle-hole energy wy, are
interpreted as stable collective oscillations of the
system.

1 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
15L.. D. Landau, Zh. Eksperim. i Teor. Fiz. 32, 59 (1957)
[Enghsh transl.: Soviet Phys.—JETP 5, 101 (1957)].
K. Sawada, Phys. Rev. 106, 372 (1957)
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Fic. 1. Behavior of the function B(x,y) defined by Eq. (2.8) as
a function of y=w/er for various values of x=*%/pz.

The graphical solution of this dispersion relation pro-
ceeds as in Fig. 2, where we qualitatively plot B(kw)
and f(k,w)=27% g\>mp r(2u?—w?) as a function of w?for
fixed k. The intersections of B(k,w) and f(k,w) give the
solutions of (2.6). Values w2< 0 correspond to collective
modes whose amplitude grows exponentially with time,
i.e., the system exhibits an instability. The threshold for
instability is obtained by requiring that w=0 be a solu-
tion of (2.6) corresponding to point B in Fig. 2. We find
that for gA2<27x%u?/mpr, there exist no instabilities for
any value of k. For g\2>27%u?/mpr, an instability
appears for k<k, where the critical momentum %, is
given by

)\2'”1«?1? k02
w2
47, |pp 4pp?

1—k./2pF

The threshold %. is plotted in Fig. 3 as a function of A2
We conclude that instability is a phenomenon peculiar
to long wavelengths and strong coupling constants for
neutral scalar coupling. In the event of instability, the
assumed ground state will evolve spontaneously into
some other state with a lower energy. This modified

} . (2.10)

Fixed x = k/p.
f(x,y)
I\
D )‘Z
%

F (w/Gr)z
1

G \
B(x,y)

>\23>)‘22> >\z|

F1c. 2. Graphical solution of Eq. (2.6) for the collective mode
energies of the coupled meson-nucleon system. The lines AF, BF,
and DF correspond to successively increasing values of the neutral
scalar coupling constant A%,
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Xe = ke/pg

F16. 3. Critical momentum . for the onset of instability in the
RPA ground state (permanent density fluctuations) as a function
of the neutral scalar coupling strength A2

ground state will contain permanent fluctuations corre-
sponding to the type of collective mode we are consider-
ing (in this case density fluctuations). In such a situa-
tion the RPA is no longer appropriate for a description
of the ground state, since it assumes small deviations
from the unperturbed Fermi surface.

For the spin- and isospin-dependent Chew-Low cou-
pling (2.3), one can also formulate an exactly soluble
model as in the neutral scalar case. The dispersion rela-
tion analogous to (2.6) becomes (g=4 now, since spin
and isospin have to be considered)

8f% k2 g’
1=— ng .11
“2 w2__ ka P 602— (wpko)z
The instability threshold %, is found to be
fzmp 2 Eo b2
Q2= ! kc{_‘i‘(l— >
wu?  pr pr®
1+k,/2
ln’——-——pf ] . (212)
1—k/2pr

The region of instability is shown graphically in Fig.
4. As for the neutral scalar case, the instability is a
strong-coupling phenomenon. However, the instability
is most probable at intermediate momenta for pseudo-
scalar coupling, and vanishes in the long-wavelength
limit (% — 0), in striking contrast to the neutral scalar
case. Physically, this is due to the fact that the Chew-
Low interaction vanishes at £=0, and hence the insta-
bility must also disappear.

From Fig. 2, we also note the existence of solutions
for w?>0 corresponding to points G, H, and I. The be-
havior of these solutions for £-— 0 can be obtained by
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a straightforward expansion of B(k,w) in a power series
in k:
W~ Q2 (1+ N2k mu) ,

where N=gpp®/6n? is the particle density. Since
w?— 2 as k— 0, we refer to this solution as the
“dressed meson.” Such a mode has appeared because
we have included meson degrees of freedom explicitly,
and does not appear if one starts with some given direct
interaction.

For short-range forces, we are interested in the exis-
tence of collective modes with w — 0 as £ — 0. For these
modes to be undamped, the energy w must exceed the
maximum particle-hole energy of wy. If w<ws, the mode
will be strongly damped into the particle-hole con-
tinuum (Landau damping).'® It can be shown that the
minimum of B(kw) corresponds to an energy w<w.
From Fig. 2, we then see that the only undamped mode
supported by a neutral scalar coupling is the “dressed
meson.” The mode corresponding to point E, for ex-
ample, will be strongly Landau damped. We can under-
stand this result physically by noting that our simple
model includes only the direct matrix element of a neu-
tral scalar interaction, which is attractive for the
S=T=0 channel (S and T are the total spin and isospin
of the collective mode). Hence the energy of this mode
is pushed down below w;. Thus to explore collective
modes, we must extend the simple model to include ex-
change matrix elements. In this case, one no longer ob-
tains a simple dispersion relation like (2.6), but must
solve an integral equation. This program will be carried
out in Sec. 4.

3. EFFECTIVE INTERACTIONS AND THE
HARTREE-FOCK FIELD

We now turn to the general problem of identifying the
effective interaction in the many-body system, when
these interactions arise from the exchange of a meson.
In the previous section we were able to identify the effec-

F16. 4. Critical momentum for instability of the RPA ground state
for a pseudoscalar meson theory (coupling constant f2).
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tive interaction by simply looking at the form of the dis-
persion relation (2.6) that provided the eigenfrequencies
of the problem, and reading off the matrix element (2.7)
of the interaction. We cannot do this in general, how-
ever, since the dispersion relation will no longer be a
closed-form algebraic equation. Instead, we must con-
sider the equations of motion of some quantity related
to the motion of a particle and identify the form of the
effective interaction determining the variation of this
quantity by eliminating explicitly all reference to the
meson variables. It will be convenient for reasons that
will become apparent later to consider the single-par-
ticle Green’s function G,,(i—¢'), defined below in Eq.
(3.1), as the quantity related to the motion of a par-
ticle. For a linear meson-nucleon density coupling of the
type we are considering, the elimination of the meson
field can produce terms in the equation of motion of
Gp(t— 1) that are at most quartic in the nucleon crea-
tion and destruction operators a," and a,, i.e., give rise
to effective interactions that have a two-body structure.
Consider, then, a nucleon of momentum p moving in
an infinite Fermi sea. Its Green’s function, or propa-
gator, is supplied by the time-ordered expression

Gp(t—t)=i(T{an(Day'()}), 3.1)

where the angular brackets denote an average over the
exact ground state of H in Eq. (2.1) and T the time-
ordering operator. We note for later use that Gp(i—t')
is only a function of this time difference ({—¢) and van-
ishes if the momentum and spin labels p and » are differ-
ent on ¢ and a'. The equation of motion that determines
Gp(t—1') is readily found to be

]
(i—-— e,,O)G,,y(t— )=—08(1t-1)
ot

+i\ % (T{0-«(apsx, »(an'(t)}) (3.2)

for H'= H'y,. The 6 function discontinuity in {—¢' arises
because of the anticommutation of a,! and a,, at equal
time. We now proceed to eliminate explicit reference to
the meson field operators by examining the equation of
motion for the quantity (T{Q—x(8)@pix,.({')an (#)}).
Since the Q_y(f) satisfy

Ot Q= — Mou(0)
from the form of H in Eq. (2.1), we also have

[(8%/ 082+ U2 T{Q—-(D)apix, »()ap'(¥)})
= )‘<T{Pk(l)a'p+k. «(2") ava(t’) 1.

The fermion and meson operators commute and so
carrying out a time-ordering does not introduce a dis-
continuity in the right-hand side of Eq. (3.4).

Now we wish to insert Eq. (3.4) for the quantity of
interest. We do so by introducing the meson Green’s

(3.3)

(3.4)
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function Dy(¢—¢') which is a solution of
62
(a_+ szk2>Dk —t)=0(—1). (3.5)
/2

Since we will be interested in virtual meson absorption

and emission we choose boundary conditions in time
such that

tl—ibrilw Dk (t) = 0 ’

i.e., no real mesons present at {— == . The solution

for Dy(i—1t') corresponding to these boundary condi-
tions is

Dy(t—')= (1/2i%) exp[i(Qutin) [t—1'| ],
where n — 0.
We may now solve Eq. (2.7) for (T{Q—x()@psx, ,(t'")
Xay'(¢)}) and substitute the result into the right hand

side of (3.2) after letting ¢/ — ¢. The result is an equiva-
lent equation of motion for Gy, (t—?):

]
(i—— epﬂ)Gw(t—— =—8@—1)
ot
-+
dty Dy(t—11)

—00

-y
k

X(T{px(t)apsx, »(Oap' (t)}).  (3.6)

This equation avoids explicit reference to the meson
field variables Q_x. On the other hand a nonlocal opera-
tor in time has appeared on the right-hand side of this
equation to replace the somewhat simpler structure of
Eq. (3.2). Comparing the structure of Eq. (3.6) with
the corresponding equation when an instantaneous two-

body force V(|r1—rz|) between particles is considered,
ie.,

-a O)G Ne= —§ ’
(%T“’ (1) = —8(1—1)
i 5 VT (o apis, (D0 ©)) (31)

[Vi is the momentum space matrix element of
V(|r1—r2])], we can identify the momentum-space ma-
trix elements of an equivalent “effective interaction”

Vi(t—1)=—N2Dy(1—1') (3.8

for scalar meson exchange. The corresponding expres-
sion for pseudoscalar meson exchange is found to be

Vilt—=0)= = (f/w)*(e1- %) (01-K) (02 K) Di(t— 1) (3.8")

Notice that this interaction is no longer instantaneous
in time, since Dy({—#') exhibits contributions from all
times. This circumstance just reflects the fact that,
physically, a nucleon can change the meson field by
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emitting a meson. The resulting variation in meson field
propagates in space and time and hence can influence
the motion of the same nucleon (or another one) at a
later time. The price we pay for eliminating explicit
reference to the meson variables is the appearance of a
retarded interaction in time between participating
nucleons.

Such interactions are well known in the theory of
superconductivity where they arise due to the exchange
of lattice phonons between electrons.® As in the case of
superconductivity it is more convenient to work with a
particular Fourier component of Vi(i—?'), instead of a
time-dependent interaction directly. We write

o0
Vielw) = / dt e (l) (3.9)

where boundary conditions in time on Vy(f) like those
given below Eq. (3.5) are supposed to ensure the con-
vergence of the integral. We find

Vi(w)=—NDy(w); Di(w)=[(Qu+in)*—w’T*, (3.10)

where Dy(w) is the transform of the meson propagator
Dy(t—1') in Eq. (3.8) that satisfies the boundary condi-

tions
lim Dy(#)=0,
t—>4-00

This result agrees with the identification of the effective
interaction already given in Eq. (2.7).

Our further discussions will for the most part be
based on the form (3.10) for the effective interaction,
which is now frequency-dependent. However, to get
some feeling for the effects introduced by treating the
meson exchange between nucleons explicitly, we con-
sider the coordinate space version of the effective inter-
action, V(z,?), that obeys the causal boundary condition
V(z,t)=0 for <0 where the time ¢ is interpreted as the
time-delay between emission and reabsorption of the
meson. Introducing the transform Dy (w) of Dy (2)

again we find

dk [ do .
V(r,t)=—”/ ) gyt (341
T u

provided Dy ‘() satisfies the same boundary condition
as V(x,t), i.e.,, D@ (=0, for {<0. This requires that

Dy () be given by
Dy (w)=[ >~ (w+in)* ]

instead of the expression in Eq. (3.10). We may now
evaluate (3.11) by contour integration. The v integra-
tion only contributes for :>0 because of the form of
Dy ©(w) in (3.12), which only has poles in the lower-half
o plane. In this case, we can close the contour in the

lower-half « plane and get

A\ 2 kdk
V(rt)=— | — sinkr sinQ¢
27!'21’ 0 Qk

(3.12)

(3.13)
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after also performing the angular integration over all
directions of the variable k. Since Q.= (k2+u?)!’2, in-
tegral (3.13) is a special case of the Sonine-Gegenbauer
integral'” which yields
)\2 J t2—7’2 1/2
N el
dr  (P2—r)U2

= 0

for (>r

(3.14)
for <r

where J1(x) is a Bessel function of order 1.

Equation (3.14) has the typical structure of a re-
tarded interaction. The field V(r,f) sweeps past a point
distance 7 from its source in a time Af=1/u determined
by the width of the first oscillation of Jy(x). This in
turn depends on the value of  in the argument of J; in
Eq. (3.14). For a typical nucleon separation in nuclear
matter r~1.4/u F, one has A¢=2.4/u, which should be
small compared to the single-particle lifetime in a heavy
nucleus. Finally, integrating over all time in (3.14) we
recover the Yukawa interaction form

0 )\2 e—Br

/ dt V() =——
0 4

r

already introduced in connection with Eq. (1.2).
Turning now to the properties of Vy(w) as a function
of frequency, we see from Eq. (3.10) that Vi(w) is at-
tractive for all frequencies w<Qx and repulsive for
w> Q. Since the momentum transfer and energy % and
win Vy(w) are controlled by conservation laws, we will see
later that Vi(w) in fact remains attractive for fre-
quencies of interest in nuclear structure problems, the
change-over occurring at rather high frequencies. The
situation in electron-phonon systems is reversed because
of the low value Qx assumes in this case, and the change
of sign occurs at low frequencies. For single-particle
motion within the Fermi sea the frequencies of interest
are expected to be w~ep, where er is the Fermi energy.
The parameter determining the importance of frequency-
dependent effects is correspondingly er/u=2/7. Since
this parameter enters into the effective interaction as
(er/u)?, we expect such effects to be quite small. Notice
also that, in a many-body system, we can look upon the
frequency dependence as giving rise to a density-depen-
dent interaction since w=ep, so that the frequency-
dependent effects increase with increasing density. This
fact can easily be understood if we observe that the
average nucleon velocity pr/m increases with density
like po!/? so that the retardation effects show a corre-
sponding increase. Finally, as w—  we note that
Vi(w) vanishes; the nucleons are not able to follow the
rapid variations in the meson field, and the effective in-

17 W. Magnus and F. Oberhettinger, Formulas and Theorems for
the Special Functions of M athematical Physics (Chelsea Publishing
Co., New York, 1949).



165

teraction becomes negligible. In the other limit w — 0
the effective interaction reduces to the Yukawa
interaction

Vi(0)=—7?/Qu=—N/(u?+%?)

which has been given in Eq. (1.2) in coordinate space.

Since the range of frequencies w that is important in
(3.10) is determined by what physical property of the
many-body system is under consideration, let us con-
sider two separate situations: (i) the Hartree-Fock po-
tential for nuclear matter generated by the interaction
(3.10) and (ii) properties of collective excited states of
nuclear matter.

Let us first consider the Hartree-Fock potential. We
return to Eq. (3.6) which for the neutral scalar inter-
action given by Eq. (3.8) can be written in the form

(3.15)

(%— e,,o>c,,,.(t~z') ——5(—1)

+o0
-2 dty Vi(t—11)

Epv ] o
XK(@v't, p+k/tt; p+k, v, pot’)  (3.16)
after introducing the two-particle Green’s function
K(1234) = i(T{ar(t)as' (L) as(ts)ad (t)})  (3.17)

using the definition of Galitskii and Migdal,!* and writ-
ing #* for times infinitesimally greater than # in order
to reproduce the time-ordering appropriate for the right-
hand side of Eq. (3.6).

Equation (3.16) is exact, and represents the first of an
infinite chain of equations coupling 1-particle, 2-particle,
3-particle, etc. Green’s functions. The Hartree-Fock
(HF) or self-consistent field approximation consists in
truncating this chain of equations at stage (3.16) by
introducing the approximation

iK(1230)~G(1,2)G(3,4)—G(1,4)G3,2), (3.18)

i.e., replacing the exact two-particle Green’s function by
an antisymmetrized product of one-particle Green’s
functions G(3,7) as defined in Eq. (3.1). This amounts to
replacing the propagator of two interacting particles
by the product of “free’”” propagators of two noninteract-
ing particles. We thus replace ¢K in Eq. (3.16) by

iK(pv'ty, p'+ k't ; p+kt, put')
~ GPI,’(tl— t1+)pr(t‘— tl)sk()"‘ Gpv(tl— t’)
XGp+k. V(t“ t1+)app’8w’ )
where we have made use of the invariance of the one-
particle Green’s functions under spatial and temporal
translations in infinite systems to reduce the number of

variables on the right-hand side. In this approximation,
Eq. (3.16) for Gy, (i—1") becomes

(3.19)
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]
(i———— e,°>Gp,(z—t’) =—8@—1)+2 | dt”
ot 'y’

X{tgwVoli—1")Gp(t— 1) — 18,y G prye (t—1"F)
XVop(t—1")Gp(t"—1)}, (3.20)
where we have introduced the relation

tl,i_>11‘1+ iGp(t—1)=(ap! (Dap ()= gy (3.21)
between the particle density distribution #,, and the
Green’s function at equal times.

We first observe that Eq. (3.20) reduces to the ordi-
nary HF equation for G,,(i—?') if Vi(¢—¢') is replaced
by an instantaneous interaction, Vx6(¢—¢'). Then, using
Eq. (3.21) once more, we find Gp((—?') satisfies

d
(z;-t— e,,°>G,,(t—-t’)= —=8(t—1)+VpGp(t—t), (3.22)

where U, is the HF potential
Vp=2 [Vo— 8w Vipp| Jrgrr

v’

(3.23)

which is actually independent of » in the present case.

Returning to the general case of time-dependent in-
teractions, Eq. (3.20), we introduce the Fourier trans-
forms Vi(w) and Gp(w) of Vi(i—1') and Gp(t—1), de-
fined as in Eq. (3.9). Then we find an equation very
similar to (3.22), viz.,

(i—a—-—e °>G (—t)y=—d(@—1)
a )T

dw
+f —Op(@)Gpp(w)e 1) (3.24)
27

for Gp,(t—1'). The potential V,(w) is given by
/7

dw
’Onv(‘*’) =2 -

p'v’ ¢ 27‘.
X[Vo0)—6,.V, 'l (w—w’)]iGp',.' (@) (3.25)
and is a frequency-dependent generalization of the

HF field given by Eq. (3.23). In deriving this result,
we have used the relation

. dw
/ 1Gp(w)y—=1p,, (3.26)
¢ 27

where the contours C in integrals (3.25) and (3.26) run
along the real w axis and close in the upper half w plane.
Taking the time Fourier transform on both sides of Eq.
(3.24) we finally obtain

[w— €= Vp(w) JGpp(w) = —1

Gp(w)= [€p0+Upv(w) —w]!

(3.27)
or

(3.28)



1114 C. B.

for the frequency-dependent Green’s function Gp.(w) in
the HF approximation.

One immediately recognizes Eq. (3.28) as a solution
of the Dyson integral equation!?

Gp(@)=Gp (@) +GCp @ (@)X ps (@)Gp(w) (3.29)
for the Green’s function, where
=0t |[p|>pr
=07, |p|<pr

is the free-particle Green’s function, and 3 ,(w) the
nucleon self-energy. The HF approximation (3.28) is
then seen to correspond to calculating the self-energy to
first order in the interaction, but using the Green’s
function Gp(w) for intermediate states, also calculated
in the HF approximation. A self-consistency condition
thus arises: Up,(w) and Gy, (w) must be determined simul-
taneously from Egs. (3.25) and (3.28). Later on, we try
to meet this condition very approximately by introduc-
ing an effective mass approximation. We also remark
that in the context of perturbation theory graphs, the
HF approximation to X ,(w) given by Eq. (3.25)
amounts to allowing only one meson at a time in inter-
mediate states but summing over all such states. It is
interesting to note the close analogy between the ex-
pressions (3.23) and (3.25) for the HF potential for
static and nonstatic two-body interactions. In (3.23) we
sum over all momenta in the Fermi sea according to
their distribution 7, over allowed momentum states.
Equation (3.25) has a very similar structure. We make
the analogy complete by noting that, according to Eq.
(3.26), the quantity iGp(w)=np(w) can be interpreted
as the distribution function of states labeled by pr and

.

G © ()= (e —w—id) (3.30)

In the frequency-dependent case (3.25) the first term
represents the forward scattering of the particle p, with
particles distributed according to #,,(w), by exchanging
ameson. Since there is no momentum or energy transfer,
only Vo(0) appears. This term therefore exactly equals
the direct term in Eq. (3.23). In the second term
8,V p—pr|(w—0’) of Eq. (3.25) p exchange scatters with
particles distributed according to #7,,s(w’). The meson
carries the momentum and energy transfer p—p’ and
w—«' and we must sum over all p’»’ and «’ consistent
with the distribution 7, (') ; explicit effects of the fre-
quency dependence in the two-body interaction now
appear in the calculation.

Notice also that the exclusion principle is also carried
at each stage of the calculation; the structure of 7,,(w)
depends explicitly on the presence of the other fermions.
By analogy with Eq. (3.30) we have

0 a0 P
Col) =l +Op@) el G

since the noninteracting Fermi distribution is not dis-
turbed in the HF approximation.

DOVER AND R. H. LEMMER

165

Now let us calculate Upy(w) explicitly from Eq. (3.25).
We are interested in the potential seen by a nucleon in
amomentum state p. The energy of this state is given by
the poles of Gy (w), i.e., by w=¢,, where

epo“'Zp (ep) —&=0

which then defines the single-particle energies ¢,. When
2_w(w) is calculated to first order one knows that G, (w)
has unit residues at the poles w=¢, and that the ¢, are
real. We can now evaluate (3.25) by contour integration.
There are contributions from (i) poles of G,,(w) which
are at e==706 and (i) poles of Vi(w) which are at
== (Qit49). The contribution from (i) gives

(3.32)

1 6w’
Vpp(eg) = —A2 3 [——————————:,n v (3.33)
o 27 Lt oy’ (ep—ep)? !

after inserting the Vi(w) explicitly from Eq. (3.10), while
the contribution from (ii) is
A2
> 5,,,,/2—-—Gp',:(ep+9,,_,,l).
p’y'

'p~p’

(3.34)

Equation (3.33) is the HF potential for the’ fre-
quency-dependent interaction given by the one-meson
exchange we have considered. To interpret (3.34), we
turn to the static neutral scalar theory for meson ex-
change between two nucleons. In this static approxima-
tion one can identify the mass renormalization of a nu-
cleon represented by its transformation from a bare to
a physical nucleon surrounded by a cloud of virtual
mesons. The physical mass » is related to the bare mass
mo which appears in the original Hamiltonian by
m=mqo~+dm, where

NN [ f@)]?
Y 20,°

(3.35)

and f(p) is a nucleon form factor in momentum space.
For f=1 (point nucleons), expression (3.35) is identical
with the static limit of Eq. (3.34), and is of course di-
vergent. We interpret the contribution (ii) from the
poles of the meson propagator as a mass renormalization
of the particles in the Fermi sea. We see that the expres-
sion for this is different from the case of free nucleons
(except in the static limit) and should include the effects
of the exclusion principle on the formation of virtual
meson clouds around each nucleon in the Fermi sea. We
have not investigated this point in detail.

It is of course no surprise that >_,(w) should contain
both interaction and renormalization effects. There is
nothing in Eq. (3.25) that distinguishes the nucleon in
state p’ from the “probe” nucleon p. The emitted meson
can be absorbed by the probe nucleon again (mass re-
normalization) or another nucleon of the Fermi sea
(interaction). This point becomes obvious if we note
that, in the system composed of one nucleon plus
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mesons, there is no Fermi sea, so that poles of type (i)
do not appear. Only the mass renormalization remains.

Let us illustrate the quantitative effects of the fre-
quency dependence by evaluating the HF field for both
the neutral scalar and pseudoscalar interactions given by
Egs. (3.8) and (3.8), respectively. The HF field for the
former is given by (3.33) with Vi(w)=—A2Dy(w). For
the pseudoscalar interaction (3.8’), we obtain by similar
reasoning

—Dy(w—0")

o= (2) 5 [ 5

XiGptk, o r(@) (00’ |01 -k 02-k|0'0)
X (7’| 72| 7'7)  (3.36)

for the H.F. potential, where we have supplied the spin
o and isospin 7 indices explicitly. If the Green’s func-
tion Gpix, o-(w) does not depend on the spin and isospin
indices (a consistent assumption for “normal” fermion
systems), then the HF field is also independent of these
indices, and we have (the factor 3%2 arises from perform-
ing the trace over spin and isospin variables)

do’

—k2Dy(w—")iGpx(0”)

Usle)= 3(,]{)2 b ¢ 2m

2 —n’l2
=3([> S o lp—p'|
w/ v Dyt (0 ep)?
after a change of variable from k to p’=p-+k. The last
form of this result is similar in structure to Eq. (3.33)
except that there is no direct term; the pseudoscalar
field cannot be transferred without momentum change
due to its intrinsic odd-parity nature.

In both expressions (3.33) and (3.37), the effects of
frequency dependence in the two-body interaction are
confined to the exchange contribution to the HF po-
tential. We can evaluate these terms explicitly if the
dependence of the single-particle energies ¢, on the mo-
mentum p is known. This dependence is given implicitly
by Eq. (3.32), through the dependence of >_;(e;) on p.
For small momenta p/pr<<1 we can solve this equa-
tion for €, by expanding the HF potential in powers of
|p| and keeping only the lowest-order correction ~ p2.
This leads to an effective-mass approximation e,=p?/
2m*--constant, where the constant term is independent
of momentum, and m* is the “effective mass.”!® For our
further discussion we assume this form for e, to be valid
for all p. Then, we have for the neutral scalar (ns) and
pseudoscalar (ps) interactions, respectively,

7

(3.37)

N4
V ez(é ) >\ 8 _Ins(y)a

y
e )]

AT 27
Ve (e’)_3<;) [61r2 8y

18 V, Weisskopf, Nucl. Phys. 3, 423 (1957).

(3.38)
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where the summations in Egs. (3.33) and (3.37) have
been converted into integrals over the Fermi sphere. We
have

I(y)= f dx
0

ln'1+(1>p/u)2(x+y)2— (er™*/ )X (a2 —y?)?
1+ (pr/w)¥m—y)2— (er*/w)X(a?—yD2|

o[ i (Yorr]

]n’1+<pp/u>2<x+y>2—<eF*/u>2(x2—y2>2
1+ (pr/w)(w—y)2— (er*/u)?(x2— 52| ’

where y=p/pr, er*=(m/m*)ep, and the integrals are
over the variable x=9'/pp. In the static limit, which
corresponds to taking the limit m — o, ie., nucleon
mass>>meson mass, both 7,s and I tend to the same
expression

(3.39)

I(y)=

2#3’{?5'. 1+ (pr/w*(1—y?)

prlu 4(pr/u)y

ln'1+(1)z«~/u)2(1+y)2
14+ (pr/w*(1—y)*

—tan™'[(pr/w)(149)]

—tan"‘[(PF/u)(1~y)]}- (3.40)

The structure of Ins and [, again shows that the
frequency-dependent effects enter through the param-
eter ep/u as was pointed out in the Introduction. The
potentials in Eq. (3.38) are also density-dependent
through their dependence on pp/u, and ep/u. The de-
pendence of the potentials (3.38) on the recoil parameter
r/m is also of interest. This ratio formally enters via the
parameter er/u=73(u/m)(pr/u)?; thus Egs. (3.38) carry
nucleon recoil corrections to the potential exactly within
the framework of the H.F. approximation.

In Figs. 5 and 6 we plot the potentials for neutral
scalar and pseudoscalar interactions, respectively, and
compare these with the corresponding static limit where
Is and I, are replaced by 7. Figures 7 and 8 show the
fractional change AV/Vy=[0(ep)—Vst]/ Vst for both
cases. We have taken the coupling constants A2~ 5 and
f?~1, a nominal value m*=0.8m, and assumed a Fermi
momentum pr= 270 MeV/c, which corresponds to that
in nuclear systems at normal density.

‘One observes that the frequency-dependent Hartree-
Fock field deviates progressively from the static limit as
momentum increases. However, for single-particle mo-
tion within the Fermi sea (< pr), the frequency effects
remain very small at physical densities (y=1). At very
high momenta (~6pr for n=1) an additional physical
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Fic. 5. Effects of the frequency dependence of the effective in-
teraction on the single-particle Hartree-Fock potential at normal
density (n=1). The solid curve represents the exchange potential
0% (ep) of Eq. (3.38) for neutral scalar coupling, while the dashed
curve corresponds to the static limit (3.40).

effect appears, that is, the production of real mesons.
This effect arises from the pole in the integrand (3.33)
for €,— e, =2y Note that since we have momentum
and energy conservation in the one-meson-exchange
process, the above pole corresponds to a meson on the
energy shell; i.e., the meson cannot be produced at rest,
but must also provide the correct momentum transfer
p—p’. Thus in the vicinity of the meson production
threshold, the effects of the frequency dependence are
particularly important. However, at these high mo-
menta, the Hartree-Fock approximation we have used
is certainly not adequate. In particular, contributions
from multiparticle excitations (not included in HF)
will produce additional frequency dependence that has
been ignored in the present calculation.

Figures 7 and 8 also illustrate the increasing impor-
tance of frequency effects at higher densities. However,
even at n=2 (8 times normal density), the effects are
still less than 109, for momenta p<ps.

4. COLLECTIVE EXCITATIONS

We turn now to the study of excited states of the
many-fermion system with interactions of the type
given by Egs. (3.8) and (3.8’). We have already studied
the case of particle-hole excitations within the frame
work of the simple model of Sec. 2. There, the solubility
rested on the simplicity of Eq. (2.4”) when the exchange
of mesons with momentum different from the particle-
hole pair momentum is ignored. In this section, we will
restore the exchange terms, and at the same time derive
the equations of motion for the density fluctuations
(particle-hole excitations) that contain the effective in-
teractions Vi(f—1t'), instead of the explicit reference to
the meson field Q_, as in Eq. (2.4').

It is well known!! that the density fluctuations bear
a close connection with the two-particle Green’s func-
tion K(1234) defined in Eq. (3.17) for the special time
ordering (#1,12)> (fs,4s). For this time ordering one can
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introduce a complete set of states |#) of the many-body
system and write

K(1234) =1 ¥ X,(1,2)%u(3,4) (4.1)

without changing the value of K. Here, the functions
Xn(1,2)={0| T{ar(tr)as (1)} | n) 4.1)

and their adjoint functions X, measure the amplitude of
particle-hole excitations in the state |n). If |n) refers
to a bound state formed by the interaction of many
particle-hole pairs, the associated amplitude X,(1,2)
satisfies a homogeneous Bethe-Salpeter!® equation

Xa(1,2) =i / > G(1,5)G(6,2)T'(56; 78)

XX,;(7,8)dl5dL’sdt7dls. (4.2)
The function I'(56; 78) is a vertex function, or “com-
pact four-pole diagram” in field theory language.!* We
will always replace I' by the antisymmetric matrix ele-
ments of the two-body force, which is valid to first order
in the interaction between particle-hole pairs. This cor-
responds to treating the motion of such pairs in the RPA
approximation. The functions G in Eq. (4.2) are the
exact one-particle Green’s functions introduced in Eq.
(3.1). In keeping with the approximations for I', we re-
place them by free one-particle Green’s functions, or by
Green’s functions describing the motion of the particle
in the HL.F. field of the system.

Equation (4.2) simplifies considerably for an infinite
system. Using the invariance of such systems under the
translation of coordinates and time, we pass at once to
relative and total momentum and frequency variables

for a particle-hole excitation and write
X(p've ,pre) = 6(¢'— e— ) frewn(p,€) (4.3)

for a particle-hole excitation of energy «w and momen-
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Fic. 6. Effects of the frequency dependence of the effective in-
reaction on the Hartree-Fock potential at normal density (y=1).
The dashed curve represents Vy**(ep) of Eq. (3.38) for pseudo-
scalar coupling, while the solid curve corresponds to the static
Bhew-Low interaction.
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tum k. Then making the replacements for I' and G as
discussed above, Eq. (4.2) becomes

’

d
fkwv(p;e) =—1iGpix, V(€+w)le(€) Z -

P’ ™
X[Vi(@) =8V pp (0—€) ] frwr P, €

for the neutral scalar form of the interaction in T

The physical content of this equation is clear: The
interaction between particles is not instantaneous in
time, which means that particle-hole pairs are not de-
stroyed and recreated simultaneously. Therefore, the
particle-hole amplitudes fx, at different times (and
therefore frequencies) are coupled. If the matrix ele-
ments in Eq. (4.4) were independent of frequency, we
can integrate over frequency on the right-hand side and
obtain

(4.4)

Np—Npik ,

fkwv(p)‘__—_”— E [Vk_sw’le—-p'l:lfkwv'(p ) (4°5)

W—Wpx P’
after setting

feon®)= f de frwD,9)

and using the fact that

. de  Np—Mpix

; / G (e 0)Gplmm 2 (46

c ™ Wpr— W

which is valid for both the free form Eq. (3.30) and HF
form Eq. (3.28) for Gy (€). The only difference is in the
value of the particle-hole excitation energy wy that is
used: wpx= ep4x— €,° for the free case and wpx= epx— €5,
a difference of HF energies in the second case. Equa-

vp (€ p)' Vp"

0 10 20 30
y=P/pr

Fic. 7. The relative change in the Hartree-Fock field due to the
frequency dependence of the effective interaction for various
values of the density (neutral scalar coupling). Vp(ep) is given by
Eqg. (3.38) and the static limit 0 4* corresponds to Eq. (3.40).
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FiG. 8 .The relative change in the Hartree-Fock field due to the
frequency dependence of the interaction for various densities
(pseudoscalar coupling). Vp(ep) and the static limit U y** corre-
spond to Egs. (3.38) and (3.40), respectively.

tion (4.5) is precisely the RPA equation? derived in Sec.
2 for the density fluctuations pp,p+x ™. Equation (4.5),
and its generalization, Eq. (4.4), to frequency-dependent
interactions, describe collective excitations of a particle-
hole nature of an infinite Fermi system.

5. THE LANDAU EQUATION
A. Static Interactions

We expect the effects of frequency dependence to be
controlled by the parameter w/u, where w is the collec-
tive frequency. For nuclear systems this parameter is
small (=1071); the slow vibrations in the collective
mode cannot follow the rapid changes in the meson field
providing the interaction. Let us therefore concentrate
on the static case first. For convenience we replace the
amplitudes pp, p1x® in Eq. (24’) [or few(p) in Eq.
(4.5)] by linear combinations of a given total spin S
and isospin T, fuoST(p)=2", (—1)%frw(p). There are
four possibilities depending on the phase §,:

(i) S=0, T=0 for §,=0, (density oscillations).

(ii) S=0, T=1 for §,=r, (isospin density
oscillations).

(i) S=1, T=0 for §,=0, (spin density
oscillations).

(iv) S=1, T=1 for §,=o-+, (spin-isospin density
oscillations).

Furthermore, we restrict ourselves to the long-wave-
length limit of Eq. (4.5), which then becomes identical
in form with Landau’s equation for zero sound propaga-
tion in a Fermi liquid.!® The restriction to long wave-
lengths is suggested by the fact that 2K pr for collective
oscillations in nuclei (when viewed as a sample of nuclear
matter). We will see that the mathematical com-
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plexity of the problem is also greatly reduced by this
assumption.

For k£ — 0 the particle-hole excitations are restricted
to the vicinity of the Fermi surface. This is obvious, but
can also be seen from the form assumed by the difference
in momentum distributions: #p—n,~—[(k-p)/pr]
X 8(|p|—pr). Only the direction (6,¢) of p remains un-
restricted. It is convenient to introduce an amplitude
U(0,0)0(p— pr) instead of froS7(p) which reflects this
fact. Then Eq. (4.5) is replaced by

mpr

(2m)?

(cosb—s)U(6,)+ cosf / d VsTU(6',¢')=0

(5.1)

after converting the sum on p’into an integral, where
VST is the particle-hole matrix element

VA5T= (4Vk5506T0'_ V!p—p'l)lpl=lp’l=m (5~2)
for neutral scalar coupling. We have put wpx=wy cosf in
Eq. (5.1) where wy=/kovr is the maximum particle-hole
energy in a noninteracting Fermi gas, and set w= swz.
Equation (5.1) is the Landau equation; U(6,¢) measures
the displacement of the Fermi surface along the direc-
tion (0,4) relative to the direction k. These amplitudes
are of course labeled by S and T as well.

The structure of Eq. (5.1) suggests an expansion in
spherical harmonics. We write

Un(8,6)=c0s0 > anm(2n+1)P,m(cosf)e™¢,  (5.3)

where P,™(cosf) are Legendre functions and a,» is an
expansion coefficient. We have labeled each eigensolu-
tion by an azimuthal index m, classifying the type of
symmetry in ¢ measured about k (7= 0 for longitudinal
mode, m=1 for transverse mode, etc.) and explicitly
extracted a cosf factor from the expansion, since Eq.
(5.1) shows that Un(3m,¢) must vanish for s#0. The
coefficients @, satisfy a three term recursion relation

2n+1
8n

which holds for 7> m, with the convention that @m—1, m
=0. The multipole strengths g, are related to the ex-
pansion coefficients of the interaction V57 in multipoles:

n= 1+fnSTy (5'5)

SGnm= (n—m)n-1, mt(0+m+1)an11, m (5.4)

272
VT = e— Z (2”+1)fnSTPn(C080) ’
mpp »

(5.6)

where ¢ is the angle between p and p’ which are both on

the Fermi surface.
The recursion relations (5.4) constitute an infinite set

of homogeneous linear equations for the coefficients anm
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and possess a nontrivial solution if the corresponding
determinant vanishes, i.e.,

S/go 1 0 0
1 3/ 2 0

0 2 Ss/g 3 -ee|0

(5.7)

where, for simplicity, we specialize to the longitudinal
mode m=0. This is the most interesting case for nuclear
excitations. Modes of higher # represent more compli-
cated distortions of the Fermi surface and require very
strong coupling between particles to be formed.??

Infinite tri-diagonal determinants of the form (5.7) are
familiar from the theory of Fredholm integral equations
of the second kind,? of which (5.1) is an example. The
determinantal condition (5.7) can be rewritten in terms
of the infinite continued fraction

s 1

g (3s/g1)—22
(55/g2)—3%
(7s/g2)—4*

(5.8)

In principle we have now solved the integral equation
(5.1), since we have constructed a dispersion relation
for the eigenvalues s. Knowing the value of s, we can de-
duce the set of coefficients @, and hence build the com-
plete eigenfunction U(6,¢) given by (5.3).

For an arbitrary set of multipoles {g.}, it does not
seem possible to display the continued fraction (5.8) in
terms of a function of s in closed form. For purposes of
application it will be sufficient to consider several
exactly soluble models which do reduce the eigenvalue
condition (5.8) to a closed form.

(i) go#1, all other coefficients g,=1. This corre-
sponds to assuming a constant interaction in momentum
space and is equivalent to the model proposed by
Landau for zero sound waves,'® who gives simple ex-
pressions for s and U. We rederive his results from the
continued fraction expression (5.8). Setting g.=1 on
the right-hand side of Eq. (5.8) and employing the
result?!

tanh—1(1/x) = (5.9)

x—

3x—22

Sx_....-

19 C. B. Dover, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1967 (unpublished).

20 P, M.. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1952), Vol. I.

2], Khovanskii, The Application of Continued Fractions and
their Generalizations to Problems in A pproximation Theory (Noord-
hoff, Groningen, 1963).
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one finds, after some algebra

St _Ql(s), (5.10)
2 tanh=1(1/s) Qo(s)

where the last form follows from the relations (s>1)

s+1
tanh=1(1/s)=%In -——1- =Qo(s),

§—
SQO(S) = 1+Q1(S) )

and Qos), Qi(s) are Legendre functions of the second
kind.?® Equation (5.10) is equivalent to Landau’s result.
To find the coefficients @,, we note that

(s/go)ao=a,1; (511)

@Cn+1)ser=nana+m+1)an1, n>1
so that @, for #>1 satisfies the recursion relation for
Legendre functions. Therefore a,=(,(s) for n>1 [the
other possibility, Pa(s), leads to the trivial solution].

The eigenvalue condition (5.10) shows that this solution
also holds for n=0, i.e., ae=Q0(s), and so

cosf

U(6)=cosd 3 (21--1)0a(s) Pa(cost) = (5.12)

s—cosf

provided s> 1. This is the result given by Landau.
(ii) The simple Landau model suggests the generali-
zation where a finite number of force multipoles are
kept, ie., g, g1, g2 *** gv, gv1=gni2=-+=1. We
find
@n=Qn(s) for >N (5.13)

as before. However, the lower coefficients a,(z<N) are
modified; we obtain

cosf N—1
Ue)= +cosf > (2n+1)
s—cosf n=0

X[@n—0Qn(s)]Pn(cosb), (5.14)

where the finite sum appears as a correction to the simple
monopole result of Eq. (5.12) as more multipoles are
added. The dispersion relation (5.10) also changes. For
example, we find

(s/80)[Qo(s)+35(1/g1—1)01(s)]=Qs(s) for N=1,

(s/80)[Qo(8)+35(1/g1—1)Q1(5)+5/2g1(352— gogs)
X(1/g—1)Q2(s)]1=Q1(s), for N=2 etc. (5.15)

which gives an indication of the general pattern. The
associated eigenfunctions for the eigenvalue equations
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shown in Eq. (5.15) turn out to be

(35(1/g1—1)Q1(s) cosf for N=1

) 35(1/g1—1)Q1(s) cosd
+1 +155/2(1/g2—1)Qx(s)

X (s/g1+cosb) cosb

L for N=2, etc.

(5.16)

(iii) A third soluble model that is complementary to
(i) and (ii) assumes a multipole pattern gogige::-
gn,8,8,8" * +, 1.e., the first N1 multipoles arbitrary and
all multipoles equal to g thereafter. By considering the
recursion relation satisfied by the functions Q.(s/g), one
immediately obtains the following results for such cases:

§=g:§;§; for the pattern (go=g1=::-=g),
s Qils/g)
g0 0uls/80)
for the pattern (go, f1=ge='--=g), (5.17)

-gi=Q1(s/g)[3s(1/g1—1/g)Q1(S/g)+Qo(S/g):|'l

for the pattern (go, g1, g2=gs=---=g). (5.18)

For instance, the first case in Eq. (5.17) (all multipole
strengths equal) has the eigenvalue and eigenfunction

U(6) = cosb/(1— cosf) (5.19)

which becomes singular at cosf=1 (infinite distortion
of the Fermi surface) in contrast to the solution (5.12).
This is not surprising since the interaction in momentum
space corresponding to equal multipoles is proportional
to 6(1—cosd), i.e., there is only an interaction when p
and p’ are parallel, whereas the interaction leading to
Eq. (5.12) is independent of angle.

To illustrate the usefulness of the solutions we have
obtained for special choices of the interaction let us con-
sider the solutions of Eq. (5.1) in the channel S=0,
T=1 (isospin density oscillations). This mode is iden-
tified with the giant dipole states that are excited by
~y-ray absorption‘in nuclei. The matrix elements V57 are
given by Eq. (5.2) with V,_p=—N/(u2+(p—p")?), ie,
the static Yukawa interaction. Then we can calculate
that

s=g;

u?
prz

mA2
Qn(ﬁ); B=1+

n= 1+
§ 47!'2?1.'

(5.20)

We observe that go>g1>g.>-+->1 in this case and
that
lim g,=1.

n->0
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Model (ii), which includes only a finite number of
multipoles in the force, will supply a converging se-
quence of approximations to the eigenvalue s for a given
coupling strength associated with the full Yukawa in-
teraction. We will rather regard s as being given by the
observed excitation energy of the giant dipole state in
nuclei and determine \2. We notice from Eq. (5.20) that
all multipoles are repulsive. Thus the value of A\? we ob-
tain from model (ii) provides an upper bound for A%
Alternatively, model (iii) with the pattern go, g1, g2 +* -
gn, g g - yields a set of lower bounds on A%

The results in Table I were obtained by solving nu-
merically dispersion relations of the type (5.15) and

TABLE 1. Pattern of multipoles and corresponding value of
neutral scalar coupling constant A% that yield the eigenvalue
s=1.125 for the giant dipole state (S=0, 7'=1) in nuclear matter.

Multipoles A2
8o0gogogo" * * 1.0
gog1g1g1e -+ 2.38
gog1g2g2" * * 436
gog182838a"  * 4.74
£0g182838484" * * 4.88
gog;gzgagd]n .o 498
gog1g2g311 s 5.02
gogigell: - - 52
goglll- .. 6.14
golll--. 13.48

(5.17) for a prescribed value of s. We present results for
the value s=w/w;=1.125 which is obtained from the
estimates w~804~12 (MeV), k=w/2R for the dipole
state energy and its effective wave number?? £ in a nu-
cleus of radius R.

Using R=1.254'3 we find k/pr=0.16 in a heavy
nucleus like Pb(4 =208), so that the long-wavelength
limit is probably applicable. The assumed 4 dependence
of w and & actually makes our estimate of s=w/w; inde-
pendent of 4, but the identification of the giant dipole
mode with a solution of the Landau equation is only
justified for large A. We see from Table I that a coupling
constant given by 4.88<2?<4.98 will give a collective
mode at the observed excitation of the dipole state. This
value agrees well with the strength of Yukawa interac-
tions used in shell-model calculations of this state.?

Now let us look at the static limit of the Chew-Low in-
teraction (3.8’). Its particle-hole matrix elements turn
out to be attractive in S=0 T'=1, so the pseudoscalar
coupling in our model will not support an isospin wave.
This is just one more symptom of the fact that pseudo-
scalar meson exchange alone cannot give the entire two-
body interaction. However, the pseudoscalar theory
gives repulsive particle-hole matrix elements in the
“breathing mode” S=T=0. Let us therefore compare
our excitation frequencies for such a mode, using the
known (renormalized) value!® of f?~1, with the esti-

22 W. Brenig, Nucl. Phys. 22, 14 (1961).
23 J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)

242, 57 (1957).
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mates of this frequency based on nuclear compressi-
bility. Such a comparison is expected to be very crude
and we will be interested in orders of magnitude only.

In the S=T=0 channel one finds that the multipole

strengths are
gn=1+43/2x%)mp r(f/1)*L(1—B)Qn(8)+8n0], (5.21)

where 3 has the same definition as before. Using the dis-
persion relations (5.15) with g, given by (5.21) and
f?=1.09, u=135 MeV. pp=270 MeV/c, we find the
values of s shown in Table II. The frequencies w refer to

TaBrLE II. Energies of S=7=0 “breathing mode” in Pb208
corresponding to the renormalized pseudoscalar coupling constant
/?~1.09 for various multipole patterns. s=w/w; where w;=12
MeV.

Multipoles s w (MeV)
2 1.15 13.8
£og1 1.07 12.8
20182 1.05 12.6

a nucleus the size of Pb2%, for which we assume w;=12
MeV. We note that the calculation of s converges very
rapidly, the addition of g, having very little effect on
the value of s. Nuclear compressibilities?4:2® indicate
that the breathing mode energy lies somewhere between
8 and 16 MeV in a nucleus like Pb. Our estimate, based
on the Landau equation and the known pseudoscalar
coupling constant, is not inconsistent with this result.
However, we emphasize again that our simple model
only contains a part of the two-body interaction, so this
result is only of qualitative interest.

B. Nonstatic Interactions
We now discuss the case where the full frequency de-
pendence of Eq. (4.4) comes into play. As with the static
case above, we consider only the long-wavelength limit
of Eq. (4.4), where both the particle and the hole states
are on the Fermi surface. In the long-wavelength limit

we have

k-p
iGp+k ’ w(5+w)Gpv(€) = 7!'_"6(?"" PF)

pr Wpk—

X [6(5p+k_w* 5)+5(€p_ 5)] , (5.22)

where the €ptk, € and eypx— e, =wpx are either HF en-
ergies and energy differences if the HF Green’s func-
tions are used, or kinetic energies and their differences
if free-particle Green’s functions are used. If we intro-
duce amplitudes U(0,¢,¢)6(p— pr) on the Fermi surface
for froS7(p,€), we have

(cosb—s)U (8,¢,€)F [ 8(er+wr cosb—w—e)+5(er—e)]

mpr

dé
X cosO/dﬂ’/ —VSTU(0'¢’'e')=0, (5.23)
(2r)? 2r ’
24 H. A. Weidenmiiller, Phys. Rev. 128, 841 (1962).

2% C. Werntz and H. Uberall, Phys. Rev. 149, 762 (1966).
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where V5T stands for the matrix elements
VsT= [4Vk(0)58051'0_ le~p’l(€" e’):llpl=lp’ |=pF (5-24)

for the neutral scalar case and wr=~kvp is the maximum
particle-hole energy in the long-wavelength limit as be-
fore. Suppression of the frequency dependence in VST
and subsequent integration of Eq. (5.23) over frequency
reproduces the static case, Eq. (5.1) (= times the two 6
functions just cancels the 27 in the energy integral over
).

We also refer to Eq. (5.23) as a Landau equation. Its
solutions are complicated by the appearence of & func-
tion singularities multiplying the interaction term. In
fact, we may extract these singularities as follows: Con-
sider again the case of longitudinal distortions about k
so that w is independent of ¢ and write

U(6,2)= f1(0)(z)+ f2(6)8(z+wi cosb—w),

where we measure the energy 2= ey— e from the Fermi
energy. Then U(6)= S U(6,3)de measures the distortion
of the Fermi surface. The amplitudes f1(6) and fa(6)
satisfy coupled equations. We write down these equa-
tions for the neutral scalar coupling in the channel S=0,
T=1, i.e., the isospin wave channel that we considered
in the static case. Then, from Egs. (5.24) and (3.8),

(5.25)

A2
Vsl=—V, p(w) =m ,  (5.26)
and the amplitudes f; and f; obey
e-anw="0 "
872 S,
XLV 1p-91(0) /(@) +V ip—pri(w0—ra’) fo(x") ], (5.27)

mpp,x +1
; / ax’ [V gy (@i — ')
-1

(x—5) fo(%) =

X fo(&)+V ppi(0—wix) fo(2)],

after introducing the variable x= cosé.

It is clear from the structure of the matrix elements in
these equations that frequency-dependent effects are of
order (w/u)?= (wi/u)? in the limit of long wavelengths.
For nuclear systems (wi/u)?~10"2 so that the effects
are very small. We saw that the situation was different
for single-particle motion in the HF field where this
effect was larger by an order of magnitude.

We expect to find solutions to Eqgs. (5.27) that are
close to the static solutions given for Eq. (5.1). We con-
sider the particular case where the dependence of
V\p—p'|(w) on the angle between p and p’ is suppressed
[this is similar to soluble model (i) of the static equa-
tion]. Then the equation for fi(x) has the solution

fil®)=x/(x—s) (5.28)
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apart from a normalizing constant. If we eliminate f;
from the second equation in (5.27) by using (5.28),
and replace the matrix elements V(wix—wix’) and
V(w—wix) by

V (wrr—wpr) = —i\—:[lﬁ-(w—k)z(x—x')’] ,

I K

TR W |

valid to order (wr/w)?, then the integral equation for f,
has the exact solution

fo(x) =[x/ (x—5) (@t a6+ aox?) , (5.30)

where the coefficients ay, @1, @2 are determined by direct
substitution. The eigenvalue condition is then a con-
sistency condition that f; and f, as given above satisfy
Eq. (5.27). This leads to the complicated relation

(5.29)

2
1=4CQ1(3)+2cz(ﬁ)

u
X[(8/3+3s%/C)Q1(s)—10s*0s*(s)—1/C+3],

where C=Ampp/8ru2. The second term on the right-
hand side of this dispersion relation for s exhibits the
frequency-dependent effects to order (wy/u)2. If we solve
the static dispersion relation 1=4CQy(s) for C (and
hence A?) to place the eigenvalue at s=1.125 for normal
density ~pr?® as before, one finds A2=2.412. With the
second term in Eq. (5.31) taken into account we obtain
A2=2.406 for the same s. The ratios ¢1/ao and az/a, can
likewise be expressed as functions of the eigenvalue s
and constants C and w;/u, but the resulting expressions
are unwieldy and are not displayed here.!* We only
quote the corrections to fa(x) evaluated for s=1.125,

fo(x) =[x/ (x—s)Jao(140.043x+0.003%%) , (5.32)

showing that the distortion U(x)= fi(x)-+ fo(x) of the
Fermi surface is close to that of the static case. We see
then that using the static approximation for the one-
pion-exchange interactions between nucleons participat-
ing in low-frequency oscillations of the many-body sys-
tem introduces only very small errors.

(5.31)

6. SUMMARY

The results we have developed are to a large extent
self-explanatory and hardly require further comment.
We simply summarize the main consequences and im-
plications of our approach:

(i) In the one-meson-exchange model of nucleon-
nucleon interactions that we have used, it is simpler to
obtain solutions for the nucleon motion in infinite nu-
clear matter than for two isolated nucleons. This feature
is evident both from the simple model of Sec. 2 for the
coupled meson-nucleon system as well as from the ex-
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tended treatment in Secs. 3, 4, and 5 of the Hartree-
Fock potential and collective excitations by means of
Green’s-function techniques. The simplicity arises be-
cause of the zero-point motion of the nucleons in the
Fermi sea. This motion is fairly adequately described by
the independent-particle model, and can be treated
rather well in the Hartree-Fock approximation. The
presence of the unperturbed Fermi sea also provides the
basis for a discussion of the characteristic particle-
hole excitations of the system via the random-phase
approximation.

(if) In the Hartree-Fock approximation one obtains
a clean separation of renormalization effects and nu-
cleon-nucleon interactions in the single-particle self-
energy function ), (w) that appears in the Dyson
equation.’? We noted that the renormalization contribu-
tion to X, (w) came entirely from the poles of the
meson Green’s function Dy(w). The resulting expression
reduces to the familiar results of the neutral scalar
theory in the static limit, w — 0 and p — 0 where it can
be interpreted as a mass renormalization of the nucleon.
There is no renormalization of the coupling constant in
the HF approximation. Intuitively,?® one expects re-
normalization effects associated with nucleons develop-
ing a “meson cloud” to differ for isolated nucleons and
nucleons in a Fermi sea. These differences are contained
in formula (3.34) as compared with (3.35) for an isolated
nucleon. A more complete treatment of the problem is
required to analyze these differences.

(iii) Frequency-dependent effects in the effective two-
body interaction are characterized by the parameter
er/u for single-particle motion, or w/u for collective ex-
citations (w= collective frequency). They are therefore
much more important in the former case. We notice that
the effects increase with increasing Fermi energy er
showing that the effective interaction is density-
dependent.

(iv) We showed in Sec. 3 that the Hartree-Fock po-
tential derived from pseudoscalar one pion exchange
(OPEP) is in fact repulsive in nuclear matter (except at
very high momenta p). This is just a symptom of the
fact that a one-pion-exchange model for the interaction
between nucleons is too simple; for instance, the OPEP
does not support the giant dipole excitation that is well
established experimentally. In nuclear matter, the one-
pion-exchange model excludes the possibility of direct
matrix elements that are attractive and can produce a
net binding of the system. One could go beyond OPEP
by introducing more meson fields in the model, to simu-
late the nucleon-nucleon interaction at shorter ranges.?’
However, since a possible frequency dependence in the
resulting effective interaction becomes less important as
the range decreases, it would be reasonable to treat the
short-range character of the nucleon-nucleon interaction
phenomenologically (by introducing hard cores, etc.)

26 S, Drell and J. Walecka, Phys. Rev. 120, 1069 (1960).
27 R. Bryan and B. L. Scott, Phys. Rev. 135, B434 (1964).
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while still treating the exchange of = mesons in the
manner we have done. This would allow for a more
realistic discussion of the saturation problem and how
saturation is effected by the density dependence, which
is introduced through the frequency dependence of the
long-range part Vi(w) of the interaction.

(v) It is clear from the form of our effective interac-
tion Vi(w) that frequency-dependent effects should in-
crease with increasing nucleon energy. Unfortunately
the expression Y, (w) for the Hartree-Fock field is
modified at higher energies by higher-order contribu-
tions from multiparticle excitations out of the Fermi
sea. These also introduce a frequency dependence into
> p (w), even if the two-nucleon interaction is static.
This suggests that processes involving meson production
or absorption could perhaps provide information on the
importance of the one-pion-exchange effects in nuclear
structure. For example, one can derive a meson optical
potential from the equations of Sec. 3 by examining the
full Green’s function for meson propagation instead of
nucleons. It would be interesting to compare the results
obtained in this manner with calculations of the meson
optical potential based on other methods, such as mul-
tiple scattering theory.? In general, we would maximize
the effects of frequency dependence by looking at proc-
esses involving high momentum transfers. For example,
one could consider high-energy inelastic electron scat-
tering at backward angles or nuclear reactions such as
($,20).

(vi) For low lying excited states such as the collec-
tive excitations in heavy nuclei, the effects of frequency
dependence in Vi(w) are inessential. The static solution
of the meson-nucleon coupled system is completely
adequate.

We may thus regard the interaction Vy(w) as the fre-
quency-dependent generalization of the ordinary static
one-pion-exchange potential (OPEP). However, the
Green’s-function method we used for the identification
of Vi(w) does not depend on the use of perturbation
theory. A more sophisticated calculation would attempt
to include the strong short-range repulsion necessary to
explain saturation and to fit high-energy nucleon-
nucleon scattering data. Since methods based on meson
theory are unambiguous only for the long-range OPEP
part of the interaction, the short-range repulsion is prob-
ably best included by means of a phenomenological hard
core. In the case of the Landau equation, only the long-
range part of the interaction is sampled in the £2— 0
limit, and hence the collective mode energies should be
insensitive to the presence of the hard core. In the case
of the Hartree-Fock field, we do not expect the OPEP
to produce the correct magnitude of the single-particle
potential. However the effects of frequency dependence
should be most important for the OPEP, and hence we

( 28 l\sI Ericson and T. E. O. Ericson, Ann. Phys. (N. Y.) 36, 323
1966).
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expect that the modification of the static Hartree-Fock
field due to retardation will be well represented in our
approach.

We view the calculations with the frequency-depen-
dentOPEP as only the first step in the program of study-
ing meson exchange between nucleons in a nucleus. The
missing pieces of the interaction, such as the effects of
multimeson exchange, could be inserted phenomeno-
logically to give a quantitatively more useful theory. In
spite of its limitations we have seen that the simple
theory can be carried quite far. It also provides a com-
pact characterization of the order of magnitude of re-
tardation effects in the Hartree-Fock field and collective
modes [the small quantities (er/u)? and (w/w)%]. Our
calculations have been performed for infinite nuclear
matter. The translational invariance of the system led to
considerable calculational simplicity, and many results
could be obtained analytically. The formulation for a
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finite system is simply obtained by replacing the linear
momentum by angular-momentum quantum numbers
{l,m}. However, so long as we are not interested in
specific nuclear-structure effects, the nuclear-matter ap-
proximation is probably sufficient for a discussion of
meson-nucleon interactions in heavy nuclei.
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Modification of the Spectroscopic Factor in (*He,d) Reactions
due to the t.T Interactions™

Taro TAMURA
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A correction term to the usual distorted-wave Born-approximation amplitude of the (*He,d) reaction is
derived by using Lane’s t-T interaction. This interaction changes the 3He into ¢ and the target into its
analog, and thus gives rise to a (,d) reaction from this analog channel; the deuteron produced in this way
is coherent with the deuteron produced by the straightforward (3He,d) reaction. It is shown that this cor-
reaction term changes the value of the derived spectroscopic factor by an important amount, and makes

it agree well, if not completely, with the value predicted by the shell-model calculation.

RECENT paper! showed that it is possible to

remove a large discrepancy? between the experi-
mental and theoretical spectroscopic factors Ss in the
9Be(d,n)®B (=1, 1.74-MeV state) reaction, if the
t-T interaction3 is considered between the final 'B+#
channel and its analog, i.e., the “Be+-p channel. More
specifically, it was known? that if the experimental data
for the above process for Eg=~5-MeV were analyzed by
the usual distorted-wave Born-approximation (DWBA)
calculation, one gets Ss(d,n)=~1.0, while the corre-
sponding theoretical value S>* of Kurath* is 1.96.
However, consideration of the t-T interaction gives
rise to a contribution to the above (d,n) process from
a new process, in which the *Be(d,p)'°Be reaction occurs
first and then charge exchange follows. Our calculation

* Research sponsored by the U. S. Atomic Energy Commission
under contract with Union Carbide Corporation.

1T, Tamura, Phys. Rev. Letters 19, 321 (1967).

2 R. H. Siemssen, G. C. Morrison, B. Zeidman, and H. Fuchs,
Phys. Rev. Letters 16, 1050 (1966).

3 A. M. Lane, Phys. Rev. Letters 8, 171 (1962); Nucl. Phys.
35, 676 (1962).

4 D, Kurath, referred to in Ref. 1.

showed! that this contribution was rather large (inter-
fering destructively), and made S-(d,n)~2, in very
good agreement with Sst,

In Ref. 2 it was also pointed out that Ss(*He,d) of
the *Be(*He,d)B process for Esge=10~25 MeV
ranged from 3.35 to 2.65, if the usual DWBA was used
in analyzing the data. This value disagrees with S5t
[and thus with our new value of S5 (d,x)], and also dis-
agrees very badly with the DWBA value of S5 (d,n) ~1.
The purpose of the present paper is to show that a
technique similar to that used previously! can be used
here again, and it works to remove the above dis-
crepancy to a large extent, if not completely.

The way the t-T interaction comes into our present
calculation, however, is not exactly the same as it did
in the (d,n) reaction. There, the t-T interaction worked
in the final channel, while in the present case it works
in the incident channel. That is, the incident 3He-Be
channel changes, because of the t-T interaction, into a
t+°B channel and in this new channel a (¢,d) reaction
can occur. The deuteron produced in this way is
coherent, and thus interferes with the deuteron pro-



