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The nature of the two-body interactions in many-fermion systems is studied from the viewpoint of meson
theory. An exactly soluble model is formulated for the linear coupling of a meson Geld to fermion density
Quctuations, in which meson degrees of freedom are treated exactly, and fermion motion is treated within
the domain of the random-phase approximation (RPA). Instability conditions for the RPA ground state
are established. More generally, the efFective two-body interaction is deduced via a Green's-function tech-
nique by eliminating the meson degrees of freedom. This interaction is shown to be frequency-dependent,
i.e., retarded in time. The resulting interaction is then applied to the calculation of the Hartree-Fock (H.F.)
Geld and of the collective modes of the system via a generalized Landau equation. In the H.F. approxima-
tion, one obtains an unambiguous separation of renormalization (self-energy) effects and the nucleon-
nucleon interactions themselves, the former reducing to the correct mass renormalization of the nucleon in
the static limit. For reasonably small momenta (p (pz), the retardation corrections to the H.F. Geld can
be characterized by a small parameter (ey/y)' (=0.1 for actual nuclear densities), where eg =Fermi energy
and p. =meson mass. The corrections become more important at high momenta and densities. In the long-
wavelength limit, the frequency-dependent corrections to the collective mode energies are found to be of
order (or/p)', where&a=collective mode energy. For a static Yukawa interaction, a value X~=5 (consistent
with the usual shell-model values) is found for the neutral scalar coupling constant by requiring that the giant
dipole collective state appear at the experimental energy. For pseudoscalar coupling, the usual renormalized
coupling constant f'/kr =0.08 is shown to yield a "breathing mode" in heavy nuclei consistent with crude
estimates based on nuclear compressibilities.

1. INTRODUCTION

HE problem of trying to construct the interaction
energy between two nucleons from basic prin-

ciples is an old idea that dates back to the pioneering
work of Yukawa' in 1935. In the Yukawa theory, the
interaction between two nucleons is brought about by
the exchange of (virtual) mesons between the two par-
ticipating nucleons, which act as a source and a sink,
respectively, for the exchanged meson. As is well known,
this simple one-meson-exchange process can be con-
sidered to give rise to a class of interaction potentials
(usually referred to as OPEP) which are instantaneous
in time and thus depend only on the relative separation
of the two nucleons and possibly their spin and isospin
coordinates. The specific spin and isospin dependence of
these potentials is determined by the type of meson that
one considers to be exchanged. However, the range in
coordinate space is always of order 1/is, the inverse rest
mass of the exchanged meson (we use units is=c=1
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throughout). A complete review of the present status of
such an approach to the two-nucleon interaction is to
be found, for example, in Moravcsik and Noyes. ' For
our purposes, it will be sufIicient to comment that pres-
ent data on two-nucleon scattering systems are consist-
ent with interactions having a long-range character of
the type produced by sr-meson exchange (1/is 1.4 F),
but showing considerable deviations from such poten-
tials as the nucleon separation approaches the "hard
core" radius ( 0.3 F) associated with the structure of
a nucleon itself.

By contrast, the properties of interacting systems of
nucleons containing many nucleons (nuclear matter) is
a distinct problem and invites a diferent approach.
Here one usually assumes the two-nucleon interaction
to be given a priori, either by some version of the meson
theory discussed above, or by a suitably parametrized
two-body interaction. The force parameters are then
either adjusted in an attempt to reproduce expected
properties of the many-body system, e.g., saturation at
observed nuclear densities, or adjusted so that charac-
teristics of the two-nucleon system are reproduced as
accurately as possible. The properties of the many-body
system are then calculated in some approximation with
a given two-body interaction. The latter approach has
been the subject of considerable recent discussion in the

~ M. J. Moravcsik and H. P. Noyes, Ann. Rcv. Nucl. /&i. 11,
95 {1961}.



C. B. DOVER AND R. H. LEM M ER

literature. ' ' It has been found that multiple scattering
e6ects in the many-body system, that modify the effec-
tive interaction of nucleons embedded in nuclear matter,
have to be taken into account. The resulting "eGective"
two-body interactions derived in this manner using free
two-body parameters are found to give very reasonable
results when used to calculate spectroscopic properties
of low-lying nuclear states from the nuclear shell model.

It is also clear, however, that the problem of the inter-
action between a pair of isolated nucleons, and a pair
embedded in a nuclear system is connected in a further
dynamical way in a meson-theory framework of nudeon-
nucleon interactions. The mere presence of the other nu-
cleons modi6es in an essential way the motion of the
pair under study. For example, since one is dealing with
fermions, exclusion effects due to particle identity ex-
clude scattering states that would otherwise be available
to an isolated interacting pair, leading to modi6cations
in the interaction between the embedded pair. One is
therefore led to the alterna, tive point of view of studying
the properties of the interacting system: nucleons plus
mesons without introducing the concept of nucleon-
nucleon interactions directly. These interactions are
now mediated entirely by the meson exchange between
nucleons. Such a point of view is not new. Besides the
Yukawa theory mentioned previously for two nucleon
interactions, the interaction between electrons in metals
is drastically modified by a similar process, the exchange
of phonons (describing the motion of the ionic lattice)
between electron pairs, leading as is weH known to the
phenomenon of superconductivity. '

The subject of this article is the study of Fermi sys-
tems where the interactions arise from the exchange of
massive particles. For the most part. the discussion will

be quite general. The applications we have in mind how-

ever are to nuclear systems, in which case the fermions
are nucleons, the exchanged particle one of the mesons
that are thought to be associated with nucleon-nucleon
interactions. We emphasize that if we are considering
a nuclear system, then we certainly cannot hope to de-
scribe the actual characteristics of nucleon-nucleon in-

teractions by the exchange of only one type of meson.
For example, the "hard core" structure of the interac-
tion a,t small distances cannot be reproduced in this
manner. However, we can study the long-range part of
the nucleon-nucleon potential (the OPEP part) by con-
hning our attention to the exchange of m mesons which
are the lightest mesons of interest for nucleon forces.
Our discussion could be immediately extended to include
the single quantum exchange of heavier mesons, such as
the p, g, andes.

In order to see what features are important in study-

~K. A. Brueckner and J. L. Gammel, Phys. Rev. I09, I023
{1958}.

4 S. A. Moskowski and B. L. Scott, Ann. Phys. (N. V.) 11, 65
(&96O}.' T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 {1966}.

6 H. Frohlich, Phys. Rev. 79, 845 (1950}.

ing such systems of fermions plus exchanged particles
let us couple the fermions via the exchange of a neutral
scalar particle described by the real 6eld $(x,t). The sim-
plest type of interaction in this case is (ns identi6es the
coupling as neutral scalar)

H„,'= X dx p(x, t)y(x, t) .

X is the coupling constant and p(x, t) the nucleon density
at (x,t) Hth. e fermions are nucleons, the simplest ver-
sion of Yukawa's theory considers the nucleons as
sources at fixed points in space tha, t exchange the par-
ticle described by p(x, t) The n. ucleon motion (or lack of
it) is prescribed through the density distribution p(x, t)
and only the 6eld p(x, t) is determined dynamically. For
two fixed nucleons at a relative separation r one 6nds
the second-order perturbation result

(1.2)

for the interaction. The sum on k is over all momenta of
the exchanged particle of mass p,. The result (1.2) is the
well-known Yukawa interaction between two 6xed
nucleons.

It hardly need be pointed out that the above calcula-
tion is inconsistent for the following reasons. The motion
of the nucleons is ignored in determining E;„q(r), and
the motion of the exchanged particle is ignored in turn
when (1.2) is employed to study the nucleon motion. ln
principle, we have to consider ihe equations of motion
of the coupled nucleon-meson system. Such equations
are simple to obtain, but have a nonlinear structure and
are consequently prohibitively dificult to use. For the
two-nucleon system one therefore resorts to approximate
schemes like that leading to Eq. (1.2) that neglect the
nucleon recoil motion as a first approximation; this is
called the static approximation. For such an approxi-
ma, tion scheme one expects the controlling parameter to
be the mass ratio p/m, where m is the nucleon mass.
Such recoil corrections have been extensively investi-
gated for x-meson exchange between nucleons. ' In this
ease p/m=1/7 and the approximation appears to be
reasonable. Of course this approximation worsens as
the Inass of the exchanged particle increases.

We now make the point that an essential simplifica-
tion occurs when we use a coupling of the form (1.1) to
describe the interactions in a dense system of fermions.
In such systems a linear coupling to the density as given

by E/„,' gives rise to density fluctuations about the
equilibrium density distribution of the fermion system
which can be regarded as small under conditions to be
discussed later. The point is that the equation of motion
determining the fluctuation in density can then be lin-

earized so that linear coupled equations result for the
density-Quctuations —meson system, and recoil effects
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need not be treated perturbatively. However, another
eGect enters in the many-body system vrhich is absent
in two-body systems. Because of the exclusion principle,
the fermions in such a system possess a zero-point mo-
tion characterized by their Fermi energy ep even when
there are no interactions present. The exchange of a
meson betvreen nucleons in motion vrill register effects
coming from the time-delay betvreen emission and reab-
sorption, i.e., the interaction will no longer be instan-
taneous in time as in the static approximation, Eq. (1.2).
The parameter controlling such time-delay effects is of
order ss/p since 1/p, and 1/ss are characteristic times
for meson and fermion motion in the Fermi sea. Hovr-
ever, ~~ depends on the ferrnion density; correspond-
ingly we expect a density dependence in the eGective
interaction between an embedded pair that is also ab-
scIlt. f10111Eq. (1.2). Fllltllcl; slllcc tllc avclagc spaclIlg
between fermions decreases slower ( 1/ps) than sl
increases with increasing density vre expect the time-
delay eGects to become more important at higher
densities.

Let us return to the question of the characteristic
density Auctuations in the fermion system. One knovrs
that such fluctuations represent excited states of inter-
acting systems. Microscopically, this approach considers
the excitation of particle-hole pairs out of the Fermi
sea that characterizes the noninteracting Fermi system,
and the resulting interaction of these pairs due to the
exchange of a massive particle. The linearization pro-
cedure then amounts to keeping a certain class of
particle-hole excitations which are then treated exactly.
This is just the "random-phase approximation" (RPA)
that has been midely applied. in nuclear and metallic
electron systems. " 8

Our specific problem is complicated by the time-delay
effects that enter into the particle-hole interactions.
Such time-dependent interactions are awkward to han-
dle, and vre vrill prefer to work vrith the Fourier trans-
formed version of the interaction vrhich then becomes
frequency-dependent. Particle-hole systems interacting
in this manner are most naturally treated by the use of
Green's-function methods9 that have been developed
for simi1ar problems in electron-phonon systems. In
this manner a Bethe-Salpeter'0" equation, or ladder
equation, is obtained for the motion of interacting par-
ticle-hole pairs.

In the following, vre mill restrict the discussion to
fermion systems of in6nite extent, which for delniteness
we take to be nuclear rnatter. The nuclear matter ap-
proximation is not necessary. Hovrever, it does serve as

~ A. M. Lane, ENclear Theory (W. A. Benjamin, Inc. , New York,
1964).

8 P. Nozieres and D. Pines, Qgantem Theory of Iiglids (W. A.
Benjamin, Inc. , New York, 1966).

9 L. P. Kadano8, Lectures on the Many-Body ProMem (Academic
Press, Inc. , New York, 1964},Vol. II, p. 77.

'0 K. E.-Salpeter and H. A. Bethe, Phys. Rev. S4, 1232 {1951)."V. M. Galitskii and A. B.Migdal, Zh. Eksperim. i Teor. Fiz.
54, 139 (1958) [English transl. :Soviet Phys. —JETP 7, 96 (1958)j.

a very convenient vehicle for studying the eGects of
particle exchange betvreen the participating nucleons,
and hovr these eGects depend. on the nuclear density etc.,
without getting involved vrith the details of nuclear
structure.

For such infinite systems the Bethe-Salpeter equation
is known to possess two types of solutions: single-

particle scattering solutions, and "bound" solutions cor-
responding to collective oscillations of the medium,
characterized by a frequency o&(k) with wave number k.
For long wavelengths these oscillations are described by
a simpliaed version of the ladder equation mentioned
above that is identical with the Landau equation for
the propagation of "zero sound" in Fermi liquids. We
show that a Landau-like equation also results for the
ca,se of retarded interactions. The solutions of such equa-
tions and their ability to describe stable oscillations in
nuclear matter is discussed in detail in Sec. 4. Results
are presented for neutral scalar and pseudoscalar meson
exchanges. In the latter case one is dealing vrith the
more realistic situation of m-meson exchange betvreen

nucleons; the coupling constant is known and, hence a
comparison with eGective interactions obtained by other
means is possible.

The method of Green's functions is also used to study
the propagation of a single nucleon in nuclear matter.
In this case, the exact treatment of a certain class of ex-
citations leads as is well known to a "Dyson equation""
for the single-particle propagator. The lowest-order
solution of this equation a11oms one to identify the self-

energy Z~ of a nucleon of momentum y, In the many-
body system, Z~ contains contributions from the mesons
being emitted and reabsorbed by the same nucleon
(mass renormalization effects) and contributions from
emission-absorption by different nucleons (the average
interaction energy). We show that in a neutral scalar
theory such eGects are approximately additive and, sug-
gest the point of vievr that nucleon "dressing" processes
can, be identi6ed independently from nucleon-nucleon
interactions in the Fermi sea. Since vre only consider
point nucleons, such renormalizations are infinite. We
have not attempted to outline a "renormalization pro-
gram" in these considerations beyond pointing out how
such eGects might occur. After removing renormaliza-
tion eGects, Z~ is just the Hartree-Fock potential for
nuclear matter. We shovr that the determination of Z~
leads to a self-consistency problem, even in nuclear
matter, contrary to the case vrhen the interaction be-
tvreen nucleons is instantaneous.

2. STATEMENT OF THE PROBLEM

We consider a large system of E nucleons, mass m,
interacting by the exchange of mesons of mass p. The
words "nucleon" and "meson" are used. as a convenient
nomenclature only. Most of the follovring discussion wiQ

~ P. Nozibres, Interacting Fermi Systems, (W. A. Benjamin, Inc.,
New York, 1964).
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apply to arbitrary fermion systems interacting via the
exchange of a massive boson. We introduce the notation
apt and up for nucleon creation and destruction operators
in the nucleon state y (momentum, spin, and isospin);
Bg~ and B~ play the same role for a meson of momentum
k The nucleon operators anticommute, (a2t, a2 }=b»,
while for the meson operators we have the boson com-
mutation relations: LB2,B2 tj=822, all other commu-
tators being zero.

The total Hamiltonian is taken to be the sum of three
terms: the free-nucleon 6eld, the free-meson 6eld, and
a meson-nucleon coupling term H'.

theory. We therefore consider the equations for the mo-
tion of Q2 and the nuclear density component p2. ,+2
= (a2+2ta2) characterizing the motion of a particle-hole
pair. The average is taken with respect to the exact
ground state of H. Treating all operators as time-
dependent, we derive the Heisenberg equations of
motion

8
(22 22+2 ) &2 2+2

8$

=ll 2 Q &'(P2-+&' 2+2 Pu 2+2-2') ~

H=g 22'a2ta2+2' g (E2tE2+Q22Q2IQ2)+H'. (2.1)

Wc 11avc illtl'odliccd tile IlotR'tlon 62 =—y /22P2 fol' tile
kinetic energy of a nucleon and the linear combinations
(canonical coordinates)

Q =(B+B I)/(2Q)'", E =2(Q/2)'"(B„t—B „)

for a meson of momentum k and energy Q2 ——{122+k2) '".
We will only be interested in forms for H' that are

linear in the meson field. Specifically, we consider (i)
the neutral scalar interaction already given in Kq. (1.1)
which now reads

H'„,=X Q P2Q2 (2 2)

(p2= p, a2+2ta, is the Fourier transform of the nucleon
density), and (ii) the pseudoscalar interactio~

&"'=-Z a.+"(~ k)(~ 02)~p
p p&

(2.3)

'3 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (I956).

(at and a are now row and column vectors in spin and
isospin space) that couples the nucleon spin e and iso-
spin ~ to the meson momentum and charge states, re-
spcc tlvclv. 02 ls Rll lsovcctol' lll Eq. (2.3), Rlld introduces
mesons in three diferent charge states. Equation (2.3)
leads in the static limit to the charge-independent cou-
pling interaction used by Chew and Low in their dis-
cussion of pion-nucleon scattering" and we will there-
fore refer to it as the "Chew-Low interaction. " The
collplllig collstallt f ls dimcns10nicss 111 the follll (2.3).
YVe will carry out most formal considerations using the
simpler neutral scalar form for H' and simply supply the
analogous results for the pseudoscalar interaction.

For the reasons given in the Introduction we will for
the most part employ a Green's-function treatment of
the ground and excited states of the Hamiltonian H.
However, it is useful to consider the following idealized
problem first in order to gain insight into some proper-
ties of systems described by H. We start with the ob-
servation that the nucleon motion is only coupled via
their density pg to the meson 6eld in the neutral scalar

These equations are exact. We now make the essential
point: For large fermion systems a well-defined approxi-
mation exists for treating the motion of p, , p+~ which
then represents fluctuations in the nucleon density in
momentum space about the Fermi distribution np which
is established in the noninteracting ground state by the
exclusion principle. If we write p2, ,+2= N2+p2, ,+2"',
whel e pp, p+g

) ls the deIlslty Quctuatlon and lgnoI'e

momentum transfers Q 2 for k'Wk on the right-hand
side of Eq. (2.4), we obtain

(
8

2—+~,d ly2. ~."'=l (~2+2—~2)Q-' (2 4')
a)

%'e have used cop& = ~~j,o—t.p for the excitation energy
of the particle-hole pair in pp p+Q and ep is the Fermi
distribution function 22, = 1 for

~ y t &p» and 21,=0 for

lyl &p& where p& is the Fermi momentum. Equation
(2.4') is one version of the "random-phase approxima-
tion" (RPA) that has been extensively investigated in

nuclear and electron gas problems. '' In Eq. (2.4'),
pp, p+Q consists only of pal tlcle-hole excltatlons fol
which (y+k()P2 and ~y((P2 and vice versa, i.e.,
one index must refer to a particle state when the other
index refers to a hole state. This approximation renders
the pair of equations (2.5), (2.4') linear in the unknown

amplitudes Q 2 and p2, 2+I, &". We can therefore ask for
normal modes made up of linear superpositions of these
amplitudes. A normal mode of frequency co and wave
vector k exists if co= ~(k) satisfies the dispersion relation

Xs 2M pg
1=g g 222

Q 2 ~2 2 (~20)2 ~2
(2.6)

We have extracted the spin-isospin degeneracy of the
fermions in g (g= 4 for nucleons); the sum on y is there-
fore only over all momentum states in the Fermi sea.
Apart from the frequency dependence in the coeKcient
in Eq. (2.6), i.e.,

VI, (a&) = —X2/(Q22 —(V2)
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this equation is identical in form to the dispersion
relation for collective oscillations in an electron gas'
(plasmons) when V~(ce) is the repulsive Coulomb inter-
action 4v.e'/k~, or to the dispersion relation for Landau's
zero sound waves" to which it reduces when Vk(ce) is
a positive, frequency-independent constant.

A brief discussion of the solutions of Eq. (2.6) is useful
for our further work. As in the case of the electron gas, "
the free particle-hole frequencies co»0 are still eigen-
frequencies of the coupled system, corresponding to the
fact that the particle-hole pairs have no self-energy in
this approximation. We can investigate the possibility
of additional collective solut. ions of (2.6) by passing to
the continuum limit and performing the sum over p as
a principal-value integral. We obtain

where B(k,ce) is a universal function for Fermi systems
depending only on the fermion mass m, Fermi momen-
tum p& and velocity v& ——p&/m. B(k,c0) is obviously a
complicated function of its parameters. We will mostly
be interested in B(k,ce) as a function of ce for small k at
6xed density of the system. Then B(k,ru) is a smooth
function, apart from a deep minimum in the vicinity of
the maximum particle-hole pair excitation energy
ceq= kvp+k'/2m. For long wavelengths, k —+ 0, B(k,co)

becomes
N CO—Q7Is

B(k,ce)=1+— ln
2(dp c0+cey

(2.9)

2cevk mph
Q e, —= B(k,c0),

(ce,g')' —c0' 2v'

pp ce+k'/2m '
B(k,ce) =—',+— —1

4k key

ce+k'/2m kvt —pr /~ k'/2m~ '—
Xln

(o+k'/2m+kv p 4k E kvg

ce—k'/2m —kv p
Xln (2.8)

ce—k'/2m+kv p

T "T-I

0-
~\x

-1.4-
-1.8 - .05
202

klp~ ~.0)

-3,0
0 .I .2

t 1 1

.3 A .5
y QJ/p

Fro. 1. Behavior of the function B(x,y) defined by Eq. (2.8) as
a function of y=co/eg for various values of x=k/pp.

1+k,/2p p
Xln

1—k,/2p p
(2.10)

The threshold k, is plotted in Fig. 3 as a function of ) ~.

We conclude that instability is a phenomenon peculiar
to long wavelengths and strong coupling constants for
neutral scalar coupling. In the event of instability, the
assumed ground state will evolve spontaneously into
some other state with a lower energy. This modified

The graphical solution of this dispersion relation pro-
ceeds as in Fig. 2, where we qualitatively plot B(k,ru)

and f(k,ce) =2v'/gX'mph(QI, ' aP) —as a function of ce' for
6xed k. The intersections of B(k,ce) and f(k,ce) give the
solutions of (2.6). Values ce'&0 correspond to collective
modes whose amplitude grows exponentially with time,
i.e., the system exhibits an instability. The threshold for
instability is obtained by requiring that ~=0 be a solu-
tion of (2.6) corresponding to point B in Fig. 2. We 6nd
that for gX'&2v'p, '/mp~, there exist no instabilities for
any value of k. For gI')2v'p'/mp& an instability
appears for k&k, where the critical momentum k, is
given by

gX'mp&' k, ) k,s
qa„.s=

4v'k. pv E 4p g'i

where co&=ke& gives the maximum excitation energy
for small k. The minimum at ~=coI, now appears as a
singularity in this approximate form for B(k,c0), indicat-
ing that the expansion is not valid near ~I,. A plot of
B(k,c0) for various values of k is given in Fig. 1.Inserting
the closed form B(k,c0) for the summation on the right-
hand side of Eq. (2.6) we obtain the dispersion relation
relating co and k. The solutions of this dispersion relation
that lie above the maximum particle-hole energy co& are
interpreted as stable collective oscillations of the
system. 2 2 2

'4 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953)."L. D. Landau, Zh. Eksperim. i Teor. Fiz. 32, 59
)English transl. : Soviet Phys. —JETP 5, 101 (1957)j.

'6 K. Sawada, Phys. Rev. 106, 372 (1957).

Fzo. 2. Graphical solution of Eq. (2.6) for the collective mode
(1957) energies of the coupled meson-nucleon system. The lines AF, BF,

and DF correspond to successively increasing values of the neutral
scalar coupling constant ) '.
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FIG. 3. Critical momentum k. for the onset of instability in the
RPA ground state (permanent density fluctuations) as a function
of the neutral scalar coupling strength X'.

ground state will contain permanent fluctuations corre-
sponding to the type of collective mode we are consider-
ing (in this case density Quctuations). In such a situa-
tion the RPA is no longer appropriate for a description
of the ground state, since it assumes small deviations
from the unperturbed Fermi surface.

For the spin- and isospin-dependent Chem-Lom cou-
pling (2.3), one can also formulate an exactly soluble
model as in the neutral scalar case. The dispersion rela-
tion analogous to (2.6) becomes (g=4 now, since spin
and isospin have to be considered)

a straightforward expansion of B(k,&o) in a power series
in k.

&o'= 0 '(1+EX'k'/esp'),

where E=gp~'/6m' is the particle density. Since
co' —+Qg, ' as k —+0, we refer to this solution as the
"dressed meson. " Such a mode has appeared because
we have included meson degrees of freedom explicitly,
and. does not appear if one starts with some given direct
interaction.

For short-range forces, we are interested in the exis-
tence of collective modes with ao —+ 0 as k —+ 0. For these
modes to be undamped, the energy co must exceed the
maximum particle-hole energy of ~&. If ar&col„ the mode
will be strongly damped, into the particle-hole con-
tinuum (Landau damping). "It can be shown that the
minimum of B(k,co) corresponds to an energy co(orq.
From Fig. 2, we then see that the only undamped mode
supported by a neutral scalar coupling is the "dressed
meson. " The mode corresponding to point E, for ex-
arnple, mill be strongly Landau damped. We can under-
stand this result physically by noting that our simple
model includes only the direct matrix element of a neu-
tral scalar interaction, which is attractive for the
5= T= 0 channel (8 and T are the total spin and isospin
of the collective mode). Hence the energy of this mode
is pushed down below ~I,. Thus to explore collective
modes, we must extend the simple model to include ex-
change matrix elements. In this case, one no longer ob-
tains a simple dispersion relation like (2.6), but must
solve an integral equation. This program will be carried
out in Sec. 4.

Sf' k' CO&g

j.—

enny

~2 ~2 @~2 p ~2 (~ ~0)s

The instability threshold k, is found to be

(2.11)

3. EFFECTIVE INTERACTIONS AND THE
HARTREE-FOCK FIELD

We now turn to the general problem of identifying the
effective interaction in the many-body system, when
these interactions arise from the exchange of a meson.
In the previous section we were able to identify the eGec-

1+k./2p p ~

X ln . (2.12)
1—k,/2pg

The region of instability is shown graphically in Fig.
4. As for the neutral scalar case, the instability is a
strong-coupling phenomenon. However, the instability
is most probable at intermediate mornenta for pseudo-
scalar coupling, and vanishes in the long-wavelength
limit (k ~ 0), in striking contrast to the neutral scalar
case. Physically, this is due to the fact that the Chem'-

Low interaction vanishes at k= 0, and hence the insta-
bility must also disappear.

From Fig. 2, we also note the existence of solutions
for co'&0 corresponding to points G, H, and I. The be-
havior of these solutions for k —+ 0 can be obtained by

l I I I

2

Fro. 4, Critical momentum for instability of the RPA ground state
for a pseudoscalar meson theory I'coupling constant f').
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function D~(t—t') which is a solution oftive interaction by simply looking at the form of the dis-
persion relation (2.6) that provided the eigenfrequencies
of the problem, and reading off the matrix element (2.7)
of the interaction. We cannot do this in general, how-
ever, since the dispersion relation will no longer be a
closed-form algebraic equation. Instead, we must con-
sider the equations of motion of some quantity related
to the motion of a particle and identify the form of the
effective interaction determining the variation of this
quantity by eliminating explicitly all reference to the
meson variables. It will be convenient for reasons that
will become apparent later to consider the single-par-
ticle Green's function G„„(t—t'), defined below in Kq.
(3.1), as the quantity related to the motion of a par-
ticle. For a linear meson-nucleon density coupling of the
type we are considering, the elimination of the meson
Geld can produce terms in the equation of motion of
G„„(t—t') that are at most quartic in the nucleon crea-
tion and destruction operators a~ and a~, i.e., give rise
to effective interactions that have a two-body structure.

Consider, then, a nucleon of momentum y moving in
an inlnite Fermi sea. Its Green's function, or pro a-
gator, is supplied by the time-ordered expression

—+0&' ~D&(t—t') = S(t—t').
at

(3.3)

Since we will be interested in virtual meson absorption
and emission we choose boundary conditions in time
such that

lim D„(t)=0,
g-+goo

i.e., no real mesons present at t —+ +. The solution
for Dz(t t') co—rresponding to these boundary condi-
tions is

Dg(t —t') = (1/2iQg) exp[i(Qk+iit)
~
t—t'

~ ],
where g —+0 .

We may now solve Eq. (2.7) for (T(Q z(t) a,+z, „(t")
Xa~„t(t')})and substitute the result into the right hand
side of (3.2) after letting t" —+ t. The result is an equiva-
lent equation of motion for G~.(t t'):—

p

i— ep' Gp„ t—t' = —b t—t'

(3.1)

t eh
i7' Q— Cti Dg(t —ti)

k
00

Gi.(t—t') = i(T(ai „(t)ai,„(t')}),
where the angular brackets denote an average over
exact ground state of H in Eq. (2.1) and T the time-
ordering operator. We note for later use that G„„(t t')—
is only a function of this time difference (t—t') and van-
ishes if the momentum and spin labels y and v are differ-
ent on a and at. The equation of motion that determines

G~„(t t') is re—adily found to be

X (T(pg(ti) a,+g, „(t)a„(t')}). (3.6)

i——so ~G „(t—t)= —8(t—t)(
8

/

P) P"

This equation avoids explicit reference to the meson
field variables Q q. On the other hand a nonlocal opera-
tor in time has appeared on the right-hand side of this
equation to replace the somewhat simpler structure of
Eq. (3.2). Comparing the structure of Kq. (3.6) with
the corresponding equation when an instantaneous two-
body force V(

~
ri—r&

~ ) between particles is considered,

+i P (T(Q ~(t)au+a„(t)ai, '(t') }) (3.2)
l.e.)

Q g+0~'Q~= xp~(t)— (3.3)

for H'= H', .The 8 function discontinuity in t—t' arises
because of the anticommutation of a,„t and a~„at equal
time. We now proceed to eliminate explicit reference to
the meson field operators by examining the equation of
motion for the quantity (T(Q z(t)a~+&, „(t")a,„t(t')}).
Since the Q ~(t) satisfy

i—~,' ~G,„(t t') = ti(t—t')— —
Bt

+i Z V~(T(p~(t)a~&, .(t)a,.t(t') }) (3.7)

[V~ is the momentum space matrix element of
V(

~
ri —r&

~ )],we can identify the momentum-space ma-
trix elements of an equivalent "effective interaction"

from the form of H in Eq. (2.1), we also have V (t—t') =—7 'Dg(t —t') (3.8)

[(&'/&t'+ft~'](T(Q- (t)a.+ . .(t )a ~ (t )})
= —&(T(p~(t)a+~. (t")a '(t')}) (3 4)

The fermion and meson operators commute and so
carrying out a time-ordering does not introduce a dis-
continuity in the right-hand side of Eq. (3.4).

Now we wish to insert Eq. (3.4) for the quantity of
interest. We do so by introducing the meson Green's

for scalar meson exchange. The corresponding expres-
sion for pseudoscalar meson exchange is found to be

Vg(t —t')= —(f/p)'(si ~p)(ai k)(eg k)Dg(t —t'). (3.8')

Notice that this interaction is no longer instantaneous
in time, since D~(t—t ) exhibits contributions from all
times. This circumstance just reQects the fact that,
physically, a nucleon can change the meson fieM by
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tt, ( ) fe=e"1' (t), (3.9)

where boundary conditions in time on V&(t) like those
given below Kq. (3.5) are supposed to ensure the con-
vergence of the integral. We 6nd

V2(co)= —12D2((o); D2(co)=L(Q2+sst)2 —cosg', (3.10)

where D2(co) is the transform of the meson propagator
D&(t t') in Eq. —(3.8) that satisfies the boundary condi-
tions

emitting a meson. The resulting variation in meson field
propagates in space and time and hence can inRuence
the motion of the same nucleon (or another one) at a
later time. The price we pay for eliminating explicit
reference to the meson variables is the appearance of a
retarded interaction in time between participating
nucleons.

Such interactions are well known in the theory of
superconductivity where they arise due to the exchange
of lattice phonons between electrons. ' As in the case of
superconductivity it is more convenient to work with a
particular Fourier component of V2(t—t'), instead of a
time-dependent interaction directly. We write

after also performing the angular integration over all
directions of the variable k. Since Q2=(k2+tt2)'t2, in-

tegral (3.13) is a special case of the Sonine-Gegenbauer
integral'~ which yields

v(r, t) =
ttg2 JlLtc(t2 r2)1/2j

for t)~
4~ (ts—r2)»2

(3.14)
for t&r

where Jl(2;) is a Bessel function of order 1.
Equation (3.14) has the typical structure of a re-

tarded interaction. The 6eld V(r, t) sweeps past a point
distance r from its source in a time t2t=1/tt determined
by the width of the first oscillation of Jl(2:). This in
turn depends on the value of r in the argument of J~ in
Eq. (3.14). For a typical nucleon separation in nuclear
matter r= 1.4/tc F, one has LB=2.4/ts, which should be
small compared to the single-particle lifetime in a heavy
nucleus. Finally, integrating over all time in (3.14) we
recover the Yukawa interaction form

lim D2(t) =0.
g~+(o

already introduced in connection with Eq. (1.2).
Turning now to the properties of V2(&o) as a function

of frequency, we see from Eq. (3.10) that V&((o) is at-
tractive for all frequencies ~&0& and repulsive for
~&0&. Since the momentum transfer and energy k and
co in Vz(co) are controlled by conservation laws, we will see
later that V2((o) in fact remains attractive for fre-
quencies of interest in nuclear structure problems, the
change-over occurring at rather high frequencies. The
situation in electron-phonon systems is reversed because
of the low value 0» assumes in this case, and the change
of sign occurs at low frequencies. For single-particle
motion within the Fermi sea the frequencies of interest
are expected to be co=~&, where e& is the Fermi energy.
The parameter determining the importance of frequency-
dependent effects is correspondingly e&/ts=2/7. Since
this parameter enters into the effective interaction as
(ez/tc) 2, we expect such eit'ects to be quite small. Notice
also that, in a many-body system, we can look upon the
frequency dependence as giving rise to a density-depen-
dent interaction since co=a&, so that the frequency-
dependent sects increase with increasing density. This
fact can easily be understood if we observe that the
average nucleon velocity pz/est increases with density
like po'" so that the retardation sects show a corre-
sponding increase. Finally, as co~ Oc) we note that
V2(co) varushes; the nucleons are not able to follow the
rapid variations in the meson Geld, and the effective in-

This result agrees with the identification of the effective
interaction already given in Eq. (2.7).

Our further discussions will for the most part be
based on the form (3.10) for the effective interaction,
which is now frequency-dependent. However, to get
some feeling for the eGects introduced by treating the
meson exchange between nucleons explicitly, we con-
sider the coordinate space version of the eGective inter-
action, V(r, t), that obeys the causal boundary condition
V(r, t) =0 for t(0 where the time t is interpreted as the
time-delay between emission and reabsorption of the
meson. Introducing the transform D2(')(co) of D2(')(t)
again we 6nd

dk Zco

D ( )( tt) (oats-atilt) (3 11)
(22r) 2 22r

V(r, t) = —X2

provided Dh('(t) satis6es the same boundary condition
as V(r, t), i.e., D2('(t) =0, for t(0. This requires that
D2(')(co) be given by

D2(') (co) = Les—(co+ist) 'j—'

instead of the expression in Eq. (3.10). We may now
evaluate (3.11) by contour integration. The &o integra-
tion only contributes for t)0 because of the form of
D&(')(&o) in (3.12), which only has poles in the lower-half
co plane. In this case, we can close the contour in the
lower-half co plane and get

"kdk
V(r, t) = sinkr sinQ2t

2m2r q QI,

'7 W. Magnus and F. Oberhettinger, Formulas and Theorems for
(3 13) the SPeciat P'stactiorts of titlathematicat Physics (Chelsea Publishing

Co., New York, 1949).



teraction becomes negligible. In the other limit (p —& 0

at ) y"the effective interaction reduces to the Vukawa y y"{ ) { )+~
intel Rctlon

VI,(0)=—1).'/QI, '———X'/(tI'+ &') (3.15)
X{a;:V,(t t"—)G,.{t t')—iS„G„...(t t"—+)

wlllcll llas been glvcll II1 Eq. (1.2) 1I1 coordinate space.
Since the range of frequencies e that is important in

{3.10) is determined by what physical property of the
many-body system is under consideration, let us con-
sider two separate situations: (i) the Hartree-Fock po-
tential for nuclear matter generated by the interaction
(3.10) and (ii) properties of collective excited states of
nucleRl matter.

Let us 6rst consider the Hartree-Pock potential. %e
return to Eq. (3.6) which for the neutral scalar inter-
action given by Eq. (3.8) can be written in the form

X Vy y (t—t")Gy.(t"—t')), (3.20)

vrhere we have introduced the relation

hm iGy. (t—t')=(ayt(t)ay. {t))=yiy,

between the particle density distribution n~„and the
Green's function at equal times.

We first observe that Eq. (3.20) reduces to the ordi-
nary HF equation for Gy„(t—t') if VI,(t—t') is replaced
by an instantaneous interaction, VyB(t t') T—hen., using
Eq. (3.21) once more, we 6nd Gy„(t—t') satisfies

Ctl VI (t—tl)
kp p

where *U~, is the HI potential

'Uy, =g LVp —h„V, y y (jey„. (3.23)

XE(p'y'ti, p'+fly'tl+', p+II, yt, pyt') (3.16)

after introducing the two-particle Green's function

IC(1234)= t(T(ai(ti)ayI(ty) a()(ty)a4I(t4)) ) (3.1/)

using the de6nition of Galitskii and Migdal, "and mit-
ing tq+ for times in6nitesimally greater than fj in order
to reproduce the time-ordering appropriate for the right-
hand side of Eq. (3.6).

Equation (3.16) is exact, and represents the first of an
in6nite chain of equations coupling j,-particle, 2-particle,
3-particle, etc. Green's functions. The Hartree-Pock
(HF) or self-consistent field approximation consists in
truncating this chain of equations at stage (3.16) by
introducing the approximation

tE(1234)=G(1,2)G(3,4)—G(1,4)G(3,2), (3.18)

i.e., replacing the exact tvro-particle Green's function by
an antisymmetrized product of one-particle Green's
functions G(t,j) as defined in Eq. (3.1).This amounts to
replacing the propagator of two interacting particles
by the product of free propRgators of two noninteract-
ing particles. We thus replace iE in Eq. (3.16) by

E(pYtiq p +1Iy ti ) p+RPtq pvt )
=G,,„,(t,—t,+)G,„(t—t')b„—G„(ti—t')

XGy+I. . .(t ti+) Byy 8.. . (3—.19)

~here ~e have made use of the invariance of the one-
particle Green's functions under spatial and temporal
translations in in6nite systems to reduce the number of
variables on the right-hand side. In this approximation,
Eq. (3.16) for Gy„(t t') becomes—

which is actually independent of v in the present case.
Returning to the general case of time-dependent in-

teractions, Eq. (3.20), we introduce the Fourier trans-
forms VI,(p)) and Gy„(p)) of V),(t—t') and Gy„(t—t'), de-
6ned as in Eq. (3.9). Then we find an equation very
similar to (3.22), viz. ,

f
Ao

yGy„(co)—=ny„,
2%'

(3.26)

where the contours C in integrals (3.25) and (3.26) run
along the real co axis and close in the upper half ~ plane.
Taking the time Fourier transform on both sides of Eq.
(3.24) we finaQy obtain

Lp)—pyP —'Uy„(p&))Gy„(p)) =—1 (3.27)

Gy&((p) = Lpy +Uy~((p) (3.28)

—.' IG (t-t')=-&(t-t')
at

Ao
+ —U (~)G (~)c *"&'-") (324)

2x
'

for Gyr(t t ).Tile potcIltial 'U»((p) is given by

Ao
'0"(~)= Z

g 2Ã

X(Vy(0) B„.V(y y.—((cy p)') jjGy„,—((p') (3 25)

and is a frequency-dependent generalization of the
HF field given by Eq. (3.23). In deriving this result,
we have used the relation
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for the frequency-dependent Green's function Gp„(&o) in
the HF approximation.

One immediately recognizes Eq. (3.28) as a solutjon,
of the Dyson integral equation"

G„(~)=Gp. "'(~)+Gp''"(~)Zy. (~)Gy.(~) (3 29)

for the Green's function, where

6=0; lpl&Z.
G,.&'I(co) = (ay' ~ 28)-I;- (3.30)

/pl &P~

is the free-particle Green's function, and gy„(co) the
nucleon self-energy. The HF approximation (3.28) is
then seen to correspond to calculating the self-energy to
5.rst order in the interaction, but using the Green's
function Gy„(~) for intermediate states, also calculated
in the HF approximation. A self-consistency condition
thus arises Uy„{~)and Gy„{Iy)must be determined sirnul-

taneously from Eqs. (3.25) and (3.28). Later on, we try
to meet this condition very approximately by introduc-
ing an effective mass approximation. Ke also remark
that in the context of perturbation theory graphs, the
HF approximation to gy{s&) given by Eq. {3.25)
amounts to allowing only one meson at a time in inter-
mediate states but summing over all such states. It is
interesting to note the close analogy between the ex-
pressions {3.23) and (3.25) for the HF potential for
static and nonstatic two-body interactions. In (3.23) we
sum over all mornenta in the Fermi sea according to
their distribution g~. over allowed momentum states.
Equation (3.25) has a very similar structure. We make
the analogy complete by noting that, according to Kq.
(3.26), the quantity 2Gp„(&o) =By„(co) can be interpreted
as the distribution function of states labeled by yp and
04

In the frequency-dependent case (3.25) the first term
represents the forward scattering of the particle y, with
partjcles djstrjblltcd according to By„((d), by cxcllallg111g

a meson. Since there is no momentum or energy transfer,
only Vy(0) appears. Ttus term therefore exactly equals
tile direct tcl'111 111 Eq. (3.23). Ill thc second tcrlll

8„„V~p y [((0—td') of Eq. (3.25) y exchange scatters with
PRI'tlclcs dlstllbutcd according to Bp~p~(% ) Tllc Illc. so11

carries the momentum and energy transfer y—y' and
+—&' and we must sum over all y's' and ~' consistent
with the distribution Bp...(co'}; explicit effects of the fre-

quency dependence in the two-body interaction now
appear' 1Q the calculation.

Notice also that the exclusion principle is also carried
at each stage of the calculation; the structure of Bp„(~)
depends explicitly on the presence of the other fermions.

By analogy with Eq. (3.30) we have

, ~=0+, lul&Pp
Gy„{co)= I sy'+'Uy, ((o) yp ybg ';—— (3.31)

=0 lpt&P~

since the noninteracting Fermi distribution is not dis-
turbed. in the HF approximation.

Now let us calculate 'Uy„(co) explicitly from Eq. (3.25).
We are interested in the potential seen by a nucleon in
a momentum state y. The energy of this state is given by
the poles of Gy„(&o), i.e., by &o= ey, where

~p'+Zp (~p) —~p=0 (3.32)

which then de6nes the single-particle energies e~. %'hen

gp. (&o) is calculated to 6rst order one knows that Gy„(cv)
has unit residues at the poles so= e~ and that the e~ are
real. We can now evaluate (3.25) by contour integration.
There are contributions from (i) poles of Gp„(cv) which
are at ay+28 and (ii) poles of V2(&v) which are at
%(Q2+2g) Th.e contribution from (i) gives

Spy~ Gp~p~(2y+Qp y/)2' py

Equation (3.33) is the HF potential for the" fre-
quency-dependent interaction given by the one-meson
exchange we have considered. To interpret (3.34), we
turn to the static neutral scalar theory for meson ex-
change between two nucleons. In this static approxima-
tion one can identify the mass renormalization of a nu-
cleon represented by its transformation from a bare to
a physical nucleon surrounded by a cloud of virtual
mesons. The physical mass m is related to the bare mass
mo which appears in the original Hamiltonian by
m=my+bm, where

If(p') I'
8m= —X2 Q (3.35)

and f(P) ls R nucleon form factor in momentum space.
For f= I (point nucleons) expressjon (3.35) js Identical
with the static limit of Eq. (3.34), snd js of course d;
vergent. We illterpret the contribution (ii) from the
poles of the meson propagator as a mass renormalization
of the particles in the Fermi sea. Ke see that the expres-
sion for this is di6erent from the case of free nucleons
(except in the static limit) and should include the effects
of the exclusion principle on the formation of virtual
meson clouds around each nucleon in the Fermi sea. We
have not investigated this point in detail.

It is of course no surprise that gy(co) should contain
both interaction and renormalization effects. There is
nothing in Eq. (3.25) that distinguishes the nucleon in
state y' from the "probe" nucleon p. The emitted meson
can be absorbed by the probe nucleon again (mass re-
normalization) or another nucleon of the Fermi sea
(interaction). This point becomes obvious if we note
that, in the system composed of one nucleon plus

-1
'Up (")= —l ' Z —— — B, , (3.33)

y Il Q p (yy — )2

after inserting the V2{&o) explicitly from Eq. (3.I0), while
the contribution from (ii) is
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pp1
v,-(.,) =z' -I..(y),

8~2 y

f) pp p pp
v,-(.,)=3 -

I

— -- I,.(y),
Itz/ . 6n-' 8m'y

18 V. Weisskopf, Nucl. Phys. 3, 423 (1957).

(3.38)

mesons, there is no Fermi sea, so that poles of type (i)
do not appear. Only the mass renormalization remains.

Let us illustrate the quantitative effects of the fre-
quency dependence by evaluating the HF field for both
the neutral scalar and pseudoscalar interactions given by
Eqs. (3.8) and (3.8'), respectively. The HF Geld for the
former is given by (3.33) with Vz(&o) = —X'Dz(&o). For
the pseudoscalar interaction (3.8 ), we obtain by similar
reasoning

f) ' d~'
~,',(-)= -

I Z D.( - ')
p)~"" g 2~

XzGp+, , „,.(~')(~~'~ez k ez h~o'~)

X(« ~'z 'z~r'r) (3.36)

for the H.F. potential, where we have supplied the spin
a and isospin v indices explicitly. If the Green s func-
tion G~+~, „(&o) does not depend on the spin and isospin
indices (a consistent assumption for "normal" fermion
systems), then the HF Geld is also independent of these
indices, and we have (the factor 3k' arises from perform-
ing the trace over spin and isospin variables)

/f ' de'
+p(~) =3~ P k Dg(co Gl )zG&+g(—G0 )

kp, ~ c2~
(3.37)

(f '
=3] — P ny

~u-u' (~ ~u')

after a change of variable from k to p'= p+k. The last
form of this result is similar in structure to Eq. (3.33)
except that there is no direct term; the pseudoscalar
field cannot be transferred without momentum change
due to its intrinsic odd-parity nature.

In both expressions (3.33) and (3.37), the sects of
frequency dependence in the two-body interaction are
conhned to the exchange contribution to the HF po-
tential. %e can evaluate these terms explicitly if the
dependence of the single-particle energies e~ on the mo-
mentum p is known. This dependence is given implicitly
by Eq. (3.32), through the dependence of P'(e') on p.
For small momenta p/p~&&1 we can solve this equa-
tion for e~ by expanding the HF potential in powers of

~ p~ and keeping only the lowest-order correction ~pz.
This leads to an effective-mass approximation e'= p'/
2m*+constant, where the constant term is independent
of momentum, and m* is the effective mass. ""For our
further discussion we assume this form for e~ to be valid
for all p. Then, we have f'or the neutral scalar (ns) and
pseudoscalar (ps) interactions, respectively,

where the summations in Eqs. (3.33) and (3.37) have
been converted into integrals over the Fermi sphere. We
have

1

I,(y) = dx

where y=P/Pp, 'p*= (m/m*)e', and the integrals are
over the variable x= p'/p~. In the static i~it, which
corresponds to taking the limit ns —+ ao, i.e., nucleon
mass&)meson mass, both I, and Ir, tend to the same
expression

2W' P' 1+(P'/p)'(1 y')—
I(y) = — —+

P~ ~ 4(p'/")y

1+(P~/") '(1+y) '
X ln

1+(P '/")'(1 —y) '
—tan- [(p,/„) (Igy) j

—tan '[(P'/p)(1 —y)] (3 4o)

The structure of I„, and I~, again shows that the
frequency-dependent effects enter through the param-
eter ep/y as was pointed out in the Introduction. The
potentials in Eq. (3.38) are also density-dependent
through their dependence on p~/p, and e'/p. The de-
pendence of the potentials (3.38) on the recoil parameter
p/m is also of interest. This ratio f'ormally enters via the
parameter c~/p = 2 (p/m)(pz/y)'; thus Eqs. (3.38) carry
nucleon recoil corrections to the potential exactly within
the framework of the H.F. approximation.

In Figs. 5 and 6 we plot the potentials for neutral
scalar and pseudoscalar interactions, respectively, and
compare these with the corresponding static limit whereI, and I~, are replaced by I. Figures 7 and 8 show the
fractional change ~v/V. z= ['U(e„)—'U,zj/'U, z for both
cases. We have taken the coupling constants X'=5 and
f'= 1, a nominal value m*= 0.8m, and assumed a Fermi
momentum p~ ——270 MeV/c, which corresponds to that
in nuclear systems at normal density.

One observes that the frequency-dependent Hartree-
Fock field deviates progressively from the static limit as
momentum increases. However, for single-particle mo-
tion within the Fermi sea (p& p~), the frequency eGects
remain very small at physical densities (g= 1).At very
high momenta (=6pz for g = 1) an additional physical

1+(pF/p) z(x+y) z (&F*/+)2(x2 y2) 2

Xx ln
1+(P~/~)'(x —y)' —(~~*/~) '(x' —y')'

(3.39)
1 — ' 8)2

Ip, (y)= dx x 1——
I

(x'—y')
p P )

1+(P / )'( +y)' —( */ )'( '—y')'
Xln

1y(p,/p)'(x-y)'-(e, */p)'(x' —y')'
'
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1ntroducc R complete sct of stRtes i I) of thc IIlally-body
system and write

1t(1234)= i g x„(1,2)x„(3,4) (4.1)

!0

f

2
y= P/p

without changing thc value of E.Herc, the functions

x„(1,2)= (0i 2'(III(hl)apt(h2)) i e) (4.1')

and their adjoint functions g„measure the amplitude of
particle-hole excitations in the state ~u). If ~II} refers
to a bound state formed by the interaction of many
particle-hole pairs, the associated amphtude x„(1,2)
satisfies a homogeneous Bethe-Salpeter" equation

FIG. $. Effects of the frequency dependence of the effective in-
teraction on the single-particle Hartree-Pock potential at normal
density (q= 1).The solid curve represents the exchange potential
'U &e~(e&) of Eq. (3.38) for neutral scalar coupling, while the dashed
curve corresponds to the static bmit (3.40).

cgcct appears, that is, the production of real mesons.
This effect arises from the pole in the integrand {3.33)
for — .=g .. Note that since we have momentum
and energy conservation ln thc onc-DMson-exchange
process, the above pole corresponds to a meson on the
energy shell; i.e., the meson cannot be produced at rest,
but must also provide thc correct momentum transfer

y—y. Thus in thc vlclnlty of thc meson ploductlon
threshold, the CGccts of the frequency dependence are
particularly important. However, at these high mo-
menta, the Hartree-Fock approximation we have used
is certainly not adequate. In particular, contributions
from multiparticle excitations (not included in Hp)
will produce additional frequency dependence that has
been ignored in the present calculation.

Figures 7 and 8 also iHustratc the increasing impor-
tance of frequency CGccts at higher densities. However,
even at Ih=2 (8 times normal density), the effects are
still less than 10%%u~ for momenta p& pI .

x(p'I e', pl e) =8(e'—e ru) f~„„—(p, e) (4.3)

for a particIe-hole excitation of energy co and mornen-

x.(1,2) = h 2 G(1,5)G(6,2) r{5fi; /8)
5678

Xx P,8)ChlCh6ChIChs. (4.2)

The function I'(56; /8) is a vertex function, or "corn
pact four-pole diagram" in Geld theory language. "%e
will always replace I' by the antisymmetric matrix ele-
ments of thc two-body force, which is valid to first order
in thc interaction between particle-hole pairs. This cor-
responds to treating the motion of such pairs in the RPA
Rppl'oxlnla'tlon. Thc fllllctloIls G 111 Eq. (4.2) Rl'e thc
exact one-particle Green's functions introduced in Kq.
(3.1). In keeping with the approximations for I', we re-
place them by free one-pax'ticle Green's functions, or by
Green's functions describing the motion of the particle
in the H.F. 6eld of the system.

Equation (4.2) simplifies considerably for an infinite
system. Using thc lnvallance of such systems under thc
translation of coordinates and time, wc pass at once to
relative and total momentum and frequency variables
for a particle-hole excitation and. write

'Qlc turn now to the study of excited. states of the
many-fermion system with intexactions of the type
given by Eqs. (3.8) and (3.8'). We have already studied
the case of particle-hole excitations within the frame
work of the simple model of Sec. 2. There, the solubility
rested 011 thc sllllpllclty of Eq. (2.4 ) when thc exchange
of mesons with momentum diBcrcnt from the particle-
holc pRix' momcntUIQ ls ignored. In this scctlon, %'c vill
restore the exchange terms, Rnd at the same time derive
the equations of motion for the density Quctuations
(particle-hole excitations) that contain the effective in-

teractions VI, (h—h'), instead of the explicit reference to
the meson field Q I„as in Eq. (2.4').

It is well known" that the density Quctuations bear
a close connection with the two-particle Green's func-
tion E(1234) defined in Eq. (3.1"/) for the special time
ordering (hl, hl))(ha, h4). For this time ordering one can
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FIG 6 Effects of the frequency dependence of the effecti ve in
reaction on the Hartree-Poet potential at normal density (&= y)
The dashed curve represents Up (ep) of Eq. (3.38) for pseudo-
scalar coupling, while the solid curve corresponds to the static
Bhew-Low interaction.



for I and

I6$

turn & Th'"en Dia ing the replacements or
( 2) becomesove Eq. 4.discussed ab

d6 /

( e)= —', (e+o))Gs,(e)Q&~g= —&Gp+&, , & p&f»~ip~ei =

1l

= O.I8
fA

0.5—
CL

L x

~ 0.2-
e interaction in I".f the neutral seal e in I".alar form o e in I".or

ntof t ls cqT c p nh hysical conten
between partic

'
u

~ means t a
here ore,u simultaneously.stroyed and recreate sim

-hol amplitudes f „

wei E . (4.4) were indepen en o
can ln ct glatc over Icqucn
obtain

LO 2.0
y= P/t)

"(p')f.-(p) =
a7—N pg P'~

and

ive an
'

rtree-Pock 6eld due to theive change in the Hartree- oc heFIG. 8 .The relative an
frequencyeq dependence o

anseudoscalar coup)iug)
spoud to Eqs. (3.38) aud 3.

after setting

...(n)=f«f-6, )

Il l I

es
CL

l
Q,

CL
4l
cl

0.3—

O.l-

I.O 2,0
Y

"" P~p~

h e8 t t tofrequency depen en

d the static 1m&Eq. (3.38) an

Qdu g

de ss—ss+g

~e article-hole excivalue of e p l xci

the secon
u. p

— 0—~or
case. qu-a diGerence of HF energies in

RPA equation dcrlvnved in Se .)' 'ytion 4. p
2 for the density

q
s b collective exci adescri elntcl actlonsq

h nature of an in ni e

oscillations).

we restrict oursrselves to t e on-
identical

Furthcrmorep w I's
th hmit of Eq. (4.5),

ln forID with Lan ol 2'

b the fact thatl ths is suggested y ~ e
i whenviewe aoscl a a"ll tionsinnuc ei

athematlcalmatter). We w se

ole

5. THE LANDAU EQUATION

A. Static Interactions

uenc dependence to beCBects of frequency c

tive frequency. For nu t is

ode cannot follow t p' es in

amplitudes pp, ,+&

* s-"(p)=Z. (-1 " ».
b linear combma io

'
o

th h b.r ossihilities depending on

=0, T=O for 8„=0, densi y o

0 7=1 for 8„=r, iso(11

osciiiations).

(iii) 8=1, T=O for „=o;iii =, = r 8„=»; (spin density
osclllatlons).

s in-lsospln densityT= 1 fol' 8„=o+r, p'(1v) S= 1~



plexity of the problem is also greatly reduced by this
assumptloIl.

FOI' k ~ 0 tI1c particjc-hole cxcltRtlons arc rcstllctcd
to the vicinity of the Fermi surface. This is obvious, but
can aIso bc seen from the form assumed by the difference
iii momentum distributions: tyy+g —tyy —Dk'p)/ppg
X8((y) —p ). Only the direction (8,qb) of y remains un-
restricted. It is convenient to introduce an amplitude
U(8,&)8(p—pp) instead of fj, sr{p) which reflects this
fact. Then. Eq. (4.5) is replaced by

mpy
(cos8—s) U(8,$)+ — cos8 dQ' Var U(8',P') =0

(2tr)' (5.1)

after converting the sum on p' into an integral, where
t/'~~ is the particle-hole matrix element

and possess a nontrivial solution if the corresponding
determinant vanishes, i.e.,

ylgo

0

0 0 0 ~

0 ~ y =0
5s/gy 3

e

(5.7)

%'herc fol simplicity wc specialize to thc longitudinal
mode no= 0. This is the most interesting case for nuclear
excitations. Modes of higher ns represent more compli-
cated distortions of the Fermi surface and require very
strong couphng between particles to be formed. '9

Infinite tri-diagonal determinants of the form (5.7) are
familiar from the theory of Fredholm integral equations
of the second kind, "of which (5.1) is an example. The
determinantal condition (5.7) can be rewritten in terms
of thc ln6nltc contlQucd flRctloQ

(4V&8&o8~y Vly —y'l) 1yl=ly'i=yy (5.2)

for neutral scalar coupling. %chave put e~q =~~ cos8 in

Eq. (5.1) where ~y=kyy is the maximum particle-hole

energy in a noninteracting Fermi gas, and set eu=s+~.
Equation {5.1) is the Landau equation; U(8,&) measures

the displacement of the FerIni surface along the direc-
tion (8,$) relative to the direction k. These amplitudes
are of course labeled by 5 and T as well.

The structure of Eq. (5.1) suggests an expansion in

spherical harmonics. %e write

U (8,y) = cos8 Q a„„(2N+1)E "(cos8)e'"&, (5.3)

where p„~(cos8) are Legendre functions and a„~ is an

expansion coefhcient. Ke have labeled each eigensoIu. -

tion by an azimuthal index ns, classifying the type of

symmetry in P measured about k (m= 0 for longitudinal

mode, m=1 for transverse mode, etc.) and explicitly
extracted a cos8 factor from the expansion, since Kq.
{5.1) shows that U (yitr, P) must vanish for s&0. The
coeScients u„satisfy a three term recursion relation

2s+ 1
sa„=(ty —m) a i, +(ty+m+1) a„+i,„(5.4)

which holds for e&m, with the convention that u

=0. The multipole strengths g„are related to the ex-

pansion coefBcicnts of the interaction V in multipolcs:

(5.5)

gy (»/gi) —2'

(»/g2) -3'
(7s/gy) —4'

(5.8)

tanh-'(1/g) = (5.9)

In principle we have now solved the integral equation
(5.1), since we have constructed a dispersion relation
for thc eigcnvalucs s. Knowing tile value of s, wc CRQ dc-
ducc tIIc set of cocSclcnts s~ Rnd hcncc build thc com-
plete eigenfunction U(8,&) given by (5.3).

For an arbitrary set of multipoles {g„),it does not
seem possible to display the continued fraction (5.8) in
tclIQs of R function of s ln closed form. Fol puI'poses of
application it will be su%.cicnt to consider several
exactly soluble models which do reduce thc cigenvaIue
condition {5.8) to a closed foi'Iii.

(i) gy/1, all other coeflicients g„=1. This corre-
sponds to assuming a constant interaction in momentum
space and is equivalent to the model proposed by
Landau for zero sound waves, "who gives simple ex-
pressions for s and U. %C redcrivc his results from the
continued fraction expression (5.8). Setting g„=1 on
the right-hand side of Eq. (5.8) and employing the
result"

2x'
Vsr=-- --P (2ty+1)f„aran (cos8),

mpy

where 8 is the angle between y and y' which are both on

the Fermi surface.
The recursion relations (5.4) constitute an infinite set

of homogeneous linear equations for thc cocQicicnts g„

g~ 4 0 05

» C. B. Dover, Ph.D. thesis, Massachusetts Institute of Tech-
nology, j.9Q' (unpubhshed).» P. M. Morse and H. Feshbach, 3Athods of Theoretka/ Phys~vs
(Mcoravr-HiH Book Co., New York, 1952), Pol. I.

~'I. Khovanskii, The Application of Contingefg Fractions and
their Generalizations to Problemsin A pprorimation Theory (Noord-
hoG, Groningen, 1963).
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one 6nds, after some algebra shown in Eq. (5.15) turn out to be

Qi(s)

tanh-'(1/s) Qp(s)
(5.10)

cos8

3s(1/gi —1)Qi(s) cos8 for X=1

3s(1/gi —1)Qi(s) cos8

where the last form follows from the relations (s&1)

s+ 1

U(8) = -+ +15s/2(1/gp —1)Qp(s)
$—cos8

X(s/gi+cos8) cos8

(5.16)

tanh '(1/s) =-', ln =Qp(s),
$—1

sQp(s) =1+Qi(s),

and Qp(s), Qi(s) are Legendre functions of the second
kind. "Equation (5.10) is equivalent to Landau's result.
To 6nd the coeKcients a, we note that

for X=2, etc.

(iii) A third soluble model that is complementary to
(i) and (ii) assumes a multipole pattern gpgigp

g~,g,g,g
., i.e., the 6rst X+1 multipoles arbitrary and

all multipoles equal to g thereafter. By considering the
recursion relation satis6ed by the functions Q (s/g), one
immediately obtains the following results for such cases:

(s/gp)op= ci,

(2m+1)sa„=isa„ i+(m+1)a~i, ip)1

(5.11) Qi(s/g)
for the pattern (gp=gi= =g),

g Qo(s/g)

so that u for e)1 satis6es the recursion relation for
Legendre functions. Therefore a„=Q„(s)for e&1 )the
other possibility, P„(s), leads to the trivial solution).
The eigenvalue condition (5.10) shows that this solution
also holds for n=0, i.e., ap=Qp(s), and so

Qi(s/g)

g p Qp(s/gp)

for the pattern (gp, gi=gp= . =g), (5.17)

U(8) = cos8 g (2m+1)Q„(s)P„(cos8)=
n~o for the pattern (gp, gi, gp ——gp —— ——g) . (5.18)

—=Qi(s/g) L»(1/gi —1/g) Qi(s/g)+Qo(s/g)] '
(5.12)

s—cose

which becomes singular at cos8 —1 (m6nite distortion
of the Fermi surface) in contrast to the solution (5.12).
This is not surprising since the interaction in momentum
space corresponding to equal multipoles is proportional
to 8(1—cos8), i.e., there is only an interaction when y
and p' are parallel, whereas the interaction leading to
Eq. (5.12) is independent of angle.

To illustrate the usefulness of the solutions we have
obtained for special choices of the interaction let us con-
sider the solutions of Kq. (5.1) in the channel $=0,
T=1 (isospin density oscillations). This mode is iden-
tified with the giant dipole states that are excited by
7-ray absorption"in nuclei. The matrix elements V8~ are
given by Eq. (5.2) with Vp p

= —X'/(p'+(y —y')'), i.e.,
the static Yukawa interaction. Then we can calculate
that

a„=Q„(s) for ip &S (5.13)

as before. However, the lower coef6cients a (n(E) are
modified; we obtain

cos8 N-1
U(8) = +cos8 P (2m+1)

s—cos0 0

X La„—Q„(s)]P„(cos8), (5.14)

where the Gnite sum appears as a correction to the simple
monopole result of Eq. (5.12) as more multipoles are
added. The dispersion relation (5.10) also changes. For
example, we 6nd

provided s) 1.This is the result given by Landau. " For instance, the 6rst case in Eq. (5.1.7) (all multipole
(ii) The simPle Landau model suggests the generali- strengths equal) has the eigenvalue and eigenfunction

zation where a Gnite number of force multipoles are
kept, i.e., go, g~, g2, ~ ~ ~ gN, gN+~=gN+2= ~ ~ =1. We .=..; Ut, e~=cose,«1—cos8& &5.19',I

flIld ~ ~ ~

(s/gp)LQp(s)+3s(1/gi —1)Qi(s)]=Qi(s) for

(s/go) LQo(s)+3s(1/g —1)Q ( )+5/2g (»'—gog~)

X(1/gp —1)Qp(s)]=Qi(s), for 1V=2 etc. (5.15)

which gives an indication of the general pattern. The
associated eigenfunctions for the eigenvalue equations

p
g =1+ Q (P); 0=1+

4n'p p 2p p'
(5.20)

We observe that go)gi)g2) ~ ~ ~ )1 in this case and
that

lim g„=1.
n ~no
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Model (ii), which includes only a Quite number of
multipoles in the force, will supply a converging se-
quence of approximations to the eigenvalue s for a given
coupling strength associated with the full Yukawa in-
teraction. We will rather regard s as being given by the
observed excitation energy of the giant dipole state in
nuclei and determine X'. We notice from Eq. (5.20) that
all multipoles are repulsive. Thus the value of X' we ob-
tain from model (ii) provides an upper bound for X'.
Alternatively, model (iii) with the pattern ge, gi, g&

~

g&, g, g . yields a set of lower bounds on X'.
The results in Table I were obtained by solving nu-

merically dispersion relations of the type (5.15) and

TABLE I. Pattern of multipoles and corresponding value of
neutral scalar coupling constant X' that yield the eigenvalue
s=1.125 for the giant dipole state (S=0, T=1) in nuclear matter.

Multipoles

gogogogo
gpg1g1g1' "
g'og1g&g&' ' '
gog1g~g3g3' '
gpg1gSgsg4g4' ' '
gpg1gC3g411' ' '
gog1gsg311' ' '

gog1gs11' ' '

gpg11 1 o ~ ~

gp111 ~ ~ ~

1.0
2.38
4.36
4 74
4.88
4.98
5.02
5.2
6.14

13.48

(5.17) for a prescribed value of s. We present results for
the value s=ce/cod, ——1.125 which is obtained from the
estimates ce=80A '+ (MeV), k=vr/2E for the dipole
state energy and its effective wave number" k in a nu-
cleus of radius E.

Using 8=1.25A'" we find k/pF ——0.16 in a heavy
nucleus like Pb(A =208), so that the long-wavelength
limit is probably applicable. The assumed A dependence
of co and k actually makes our estimate of s=ce/ce& inde-

pendent of A, but the identi6cation of the giant dipole
mode with a solution of the Landau equation is only
justi6ed for large A. We see from Table I that a coupling
constant given by 4.88&X'&4.98 will give a collective
mode at the observed excitation of the dipole state. This
value agrees well with the strength of Yukawa interac-
tions used in shell-model calculations of this state. "

Now let us look at the static limit of the Chew-Low in-
teraction (3.8'). Its particle-hole matrix elements turn
out to be attractive in S=O X=1, so the pseudoscalar
coupling in our model will not support an isospin wave.
This is just one more symptom of the fact that pseudo-
scalar meson exchange alone cannot give the entire two-
body interaction. However, the pseudoscalar theory
gives repulsive particle-hole matrix elements in the
"breathing mode" S=T=O. Let us therefore compare
our excitation frequencies for such a mode, using the
known (renormalized) value" of f'=1, with the esti-

» W. Brenig, Nucl. Phys. 22, 14 (1961)."J.P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
242, 57 (1957).

mates of this frequency based on nuclear compressi-
bility. Such a comparison is expected to be very crude
and we will be interested in orders of magnitude only.

In the 5= T=0 channel one finds that the multipole
strengths are

g„=1+(3/2e')mpF(f/p)'f(1 —p)Q„(p)+8 e], (5.21)

where P has the same definition as before. Using the dis-
persion relations (5.15) with g„given by (5.21) and
f'=1.09, @=135 MeV. pF ——270 MeV/c, we find the
values of s shown in Table II. The frequencies co refer to

TABLE II. Energies of S= T=0 "breathing mode" in Pb~os
corresponding to the renormalized pseudoscalar coupling constant
f'=1.09 for various multipole patterns. s=co/ark where &ok=12
MeV.

Multipoles

go
gog&

goglg2

1.15
1.07
1.05

~ (MeV)

13.8
12.8
12.6

a nucleus the size of Pb"', for which we assume co~=12
MeV. We note that the calculation of s converges very
rapidly, the addition of g& having very little effect on
the value of s. Nuclear compressibilities"" indicate
that the breathing mode energy lies somewhere between
8 and 16 MeV in a nucleus like Pb. Our estimate, based
on the Landau equation and the known pseudoscalar
coupling constant, is not inconsistent with this result.
However, we emphasize again that our simple model
only contains a part of the two-body interaction, so this
result is only of qualitative interest.

B. Nonstatic Interactions

We now discuss the case where the full frequency de-
pendence of Eq. (4.4) comes into play. As with the static
case above, we consider only the long-wavelength limit
of Eq. (4.4), where both the particle and the hole states
are on the Fermi surface. In the long-wavelength limit
we have

ky
iGF+z, „(e+ce)Ge„(e)=e 8(p—pF)

PF G)pg —
Gg

)& L8(ee+g —ce—e)+8(ee—e)], (5.22)

where the 6p+I, 6p and ~p+Q cp Mpp are either HF en-
ergies and energy diKerences if the HF Green's func-
tions are used, or kinetic energies and their differences
if free-particle Green's functions are used. If we intro-
duce amplitudes U(8,&,e)8(P—PF) on the Fermi surface
for fq„sr(p, e), we have

(cos8—s) U(8,$,e)+s $8(eF+cee cos8—ce—e)+8(eF—e)]

mPF l6
&( cos8 dQ' —Ver U(8'P'e') =0 (523)

(2s.)' 2'
~4 H. A. KVeidenmiiller, Phys. Rev. 128, 841 (1962).
2' C. Werntz and H. Uberall, Phys. Rev. 149, 762 (1966).
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where V~~ stands for the matrix elements

[4Vk(0) 8S08TO Vip —p'I (& & )jly I=I y'
I us' (5 24)

for the neutral scalar case and co~= km~ is the maximum
particle-hole energy in the long-wavelength limit as be-
fore. Suppression of the frequency dependence in V~~

and subsequent integration of Eq. (5.23) over frequency
reproduces the static case, Eq. (5.1) (z times the two 8

functions just cancels the 2m in the energy integral over
e').

We also refer to Eq. (5.23) as a Landau equation. Its
solutions are complicated by the appearence of b func-
tion singularities multiplying the interaction term. In
fact, we may extract these singularities as follows: Con-
sider again the case of longitudinal distortions about k
so that co is independent of P and write

U(8,z) = fg(8)8(z)+ f2(8)8(z+(ag cos8—(a), (5.25)

where we measure the energy z= e|;—e from the Fermi
energy. Then U(8) =J'U(8, z)de measures the distortion
of the Fermi surface. The amplitudes fi(8) and f2(8)
satisfy coupled equations. We write down these equa-
tions for the neutral scalar coupling in the channel 5=0,
T= 1, i.e., the isospin wave channel that we considered
in the static case. Then, from Eqs. (5.24) and (3.8),

and the amplitudes f& and fa obey

mppx
(x—s)fg(x) = — dx'

8ml

X[Vir y i(0)fx(x')+Vis y i(a) co&x') f&(x')—j, (5.2/)

51ppx
(x—s)f,(x) = dx' [Vs& i(~&x ,

~&x')
8m~

Xfi(x')+ V|A s. i(a) &okx)fx(x')—g

after introducing the variable x= cos0.
It is clear from the structure of the matrix elements in

these equations that frequency-dependent eGects are of
order (&v/p)'= (a&q/p)' in the limit of long wavelengths.
For nuclear systems (&o&/p)'=10 2 so that the effects
are very small. We saw that the situation was different
for single-particle motion in the HF field where this
effect was larger by an order of magnitude.

We expect to find solutions to Eqs. (5.27) that are
close to the static solutions given for Eq. (5.1).We con-
sider the particular case where the dependence of
Vi, , i{co) on the angle between y and p' is suppressed
[this is similar to soluble model (i) of the static equa-
tionj. Then the equation for f&(x) has the solution

f~(x) =x/(x —s) (5.28)

apart from a normalizing constant. If we eliminate fi
from the second equation in (5.27) by using (5.28),
and replace the matrix elements V(&u~x —coax') and
V(a&—&o&x) by

X' a)p) '
V((ogx —s)l,x') =——1+ —

i (x—x')'

V((0—07yx )=——1+ —
I (s—x)

(5.29)

1=4CQg(s)+2C' —
i

pP

X[(8/3+3s'/C)Q|(s) —10s'Q|s(s) —1/C+-', j, (5.31)

where C=Vmps/Sz'p'. The second term on the right-
hand side of this dispersion relation for s exhibits the
frequency-dependent effects to order (~&/p) '. If we solve
the static dispersion relation 1=4CQi(s) for C (and
hence X') to place the eigenvalue at s= 1.125 for normal
density ~ps' as before, one 6nds X'=2.412. With the
second term in Eq. (5.31) taken into account we obtain
X'= 2.406 for the same s. The ratios ai/ao and as/ao can
likewise be expressed as functions of the eigenvalue s
and constants C and. &o~/p, but the resulting expressions
are unwieldy and are not displayed here. " We only
quote the corrections to f~(x) evaluated for s=1.125,

f2(x) = [x/(x —s)gao(1+0.043x+0.003x~), (5.32)

showing that the distortion U(x)= fi(x)+fz(x) of the
Fermi surface is close to that of the static case. We see
then that using the static approximation for the one-
pion-exchange interactions between nucleons participat-
ing in low-frequency oscillations of the many-body sys-
tem introduces only very small errors.

0. SUMMARY

The results we have developed are to a large extent
self-explanatory and hardly require further comment.
We simply summarize the main consequences and im-
plications of our approach:

(i) In the one-meson-exchange model of nucleon-
nucleon interactions that we have used, it is simpler to
obtain solutions for the nucleon motion in infinite nu-
clear matter than for two isolated nucleons. This feature
is evident both from the simple model of Sec. 2 for the
coupled meson-nucleon system as well as from the ex-

valid to order (&oq/p)', then the integral equation for f2
has the exact solution

f2(x) = [x/(x —s)g(ao+a&x+a2x'), (5.30)

where the coefficients uo, u&, u& are determined by direct
substitution. The eigenvalue condition is then a con-
sistency condition that fi and fn as given above satisfy
Eq. (5.27). This leads to the complicated relation
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tended treatment in Secs. 3, 4, and 5 of the Hartree-
Fock potential and collective excitations by means of
Green s-function techniques. The simplicity arises be-
cause of the zero-point motion of the nucleons in the
Fermi sea. This motion is fairly adequately described by
the independent-particle model, and can be treated
rather well in the Hartree-Fock approximation. The
presence of the unperturbed Fermi sea also provides the
basis for a discussion of the characteristic particle-
hole excitations of the system via the random-phase
approximation.

(ii) In the Hartree-Fock approximation one obtains
a clean separation of renormalization effects and nu-
cleon-nucleon interactions in the single-particle self-

energy function P~(co) that appears in the Dyson
equation. "We noted that the renormalization contribu-
tion to P~ (co) came entirely from the poles of the
meson Green's function D~(co). The resulting expression
reduces to the familiar results of the neutral scalar
theory in the static limit, ~ —+ 0 and p~ 0 where it can
be interpreted as a mass renormalization of the nucleon.
There is no renormalization of the coupling constant in
the HF approximation. Intuitively, " one expects re-
normalization effects associated with nucleons develop-
ing a "meson cloud" to diGer for isolated nucleons and
nucleons in a Fermi sea. These diGerences are contained
in formula (3.34) as compared with (3.35) for an isolated
nucleon. A more complete treatment of the problem is
required to analyze these differences.

(iii) Frequency-dependent eEects in the eB'ective two-

body interaction are characterized by the parameter

ep/p for single-particle motion, or co/p for collective ex-

citations (~=collective frequency). They are therefore
much more important in the former case. We notice that
the effects increase with increasing Fermi energy e&

showing that the eGective interaction is density-
dependent.

(iv) We showed in Sec. 3 that the Hartree-Fock po-
tential derived from pseudoscalar one pion exchange
(OPEP) is in fact repulsive in nuclear matter (except at
very high momenta p). This is just a symptom of the
fact that a one-pion-exchange model for the interaction
between nucleons is too simple; for instance, the OPEP
does not support the giant dipole excitation that is well

established experimentally. In nuclear matter, the one-

pion-exchange model excludes the possibility of direct
matrix elements that are attractive and can produce a
net binding of the system. One couM. go beyond OPEP
by introducing more meson fields in the model, to simu-

late the nucleon-nucleon interaction at shorter ranges. '~

However, since a possible frequency dependence in the
resulting eGective interaction becomes less important as
the range decreases, it would be reasonable to treat the
short-range character of the nucleon-nucleon interaction
phenomenologically (by introducing hard cores, etc.)

while still treating the exchange of m mesons in the
manner we have done. This would allow for a more
realistic discussion of the saturation problem and how
saturation is effected by the density dependence, which
is introduced through the frequency dependence of the
long-range part V"(u&) of the interaction.

(v) It is clear from the form of our effective interac-
tion Vz(co) that frequency-dependent e8ects should in-
crease with increasing nucleon energy. Unfortunately
the expression g~ (co) for the Hartree-Fock field is
modified at higher energies by higher-order contribu-
tions from multiparticle excitations out of the Fermi
sea. These also introduce a frequency dependence into

g~ (~), even if the two-nucleon interaction is static.
This suggests that processes involving meson production
or absorption could perhaps provide information on the
importance of the one-pion-exchange effects in nuclear
structure. For example, one can derive a meson optical
potential from the equations of Sec. 3 by examining the
full Green's function for meson propagation instead of
nucleons. It would be interesting to compare the results
obtained in this manner with calculations of the Ineson
optical potential based on other methods, such as mul-
tiple scattering theory. "In general, we would maximize
the eGects of frequency dependence by looking at proc-
esses involving high momentum transfers. For example,
one could consider high-energy inelastic electron scat-
tering at backward angles or nuclear reactions such as

(p 2p)
(vi) For low lying excited states such as the collec-

tive excitations in heavy nuclei, the effects of frequency
dependence in V"(co) are inessential. The static solution
of the meson-nucleon coupled system is completely
adequate.

We may thus regard the interaction Vz(~) as the fre-
quency-dependent generalization of the ordinary static
one-pion-exchange potential (OPEP). However, the
Green's-function method we used for the identification
of V'(co) does not depend on the use of perturbation
theory. A more sophisticated calculation would attempt
to include the strong short-range repulsion necessary to
explain saturation and to fit high-energy nucleon-
nucleon scattering data. Since methods based on meson
theory are unambiguous only for the long-range OPEP
part of the interaction, the short-range repulsion is prob-
ably best included by means of a phenomenological hard
core. In the case of the Landau equation, only the long-

range part of the interaction is sampled in the k —+ 0
limit, and hence the collective mode energies should be
insensitive to the presence of the hard core. In the case
of the Hartree-Fock field, we do not expect the OPEP
to produce the correct magnitude of the single-particle
potential. However the effects of frequency dependence
should be most important for the OPEP, and hence we

' S. Drell and J. Walecka, Phys. Rev. 120, 1069 (1960).
"R.Bryan and B. L. Scott, Phys. Rev. 135, 3434 (1964).

"M. Ericson and T. E. 0. Ericson, Ann. Phys. (N. Y.) 36, 323
(1966).
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expect that the modification of the static Hartrec-Pock
6eld due to retardation will be well represented in our
approach.

Ke view the calculations with the frequency-depen-
dentOPEP as only the erst step in the program of study-
ing meson exchange between nucleons in a nucleus. The
missing pieces of the interaction, such as the CGects of
multirneson exchange, could be inserted phenomeno-
logically to give a quantitatively more useful theory. In
spite of its limitations we have seen that the simple
theory can be carried quite far. It also provides a corn-

pact characterization of the order of magnitude of re-
tardation CGects in the Hartree-Pock field and collective
modes Lthe small quantities (ez /zz)' an.d (co/zz)'j. Our
calculations have been performed for infinite nuclear
rnatter. The translational invariance of the system led to
considerable calculational simplicity, and many results
could be obtained analytically. The formulation for a

Qnite system is simply obtained by replacing the linear
momentum by angular-momentum quantum numbers

{z,zN). However, so long as we are not interested in

specific nuclear-structure CGects, the nuclear-matter ap-
proximation is probably suf6cient for a discussion of
meson-nucleon interactions in heavy nuclei.
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Modi6cation of the Spectroscopic Factor in ('He, d) Reactions
due to the t T Interactions*
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A correction term to the usual distorted-wave Born-approximation amplitude of the ('He, d) reaction is
derived by using Lane s t.I interaction. This interaction changes the 'He into t and the target into its
analog, and thus gives rise to a (f,d) reaction from this analog channel; the deuteron produced in this way
is coherent with the deuteron produced by the straightforward ( He, d) reaction. It is shown that this cor-
reaction term changes the value of the derived spectroscopic factor by an important amount, and makes
it agree well, if not completely, with the value predicted by the shell-model calculation.

RECENT paper' showed that it is possible to
remove a large discrepancy' between the experi-

mental and theoretical spectroscopic factors 5» in the
'Be(dzz)zoB (T=1 174-MeV state) reaction, if the
t I interaction' is considered between the final "3+m
channel and its analog, i.e., the "Be+p channel. More
spcciacally, it was known' that if the experimental data
for the above process for X~=5-McV were analyzed by
the usual distorted-wave Born-approximation (DWBA)
calculation, one gets S&(d,zz) =1.0, while the corre-

sponding theoretical value 5»'h of Kurath4 is 1.96.
However, consideration of the t I interaction gives
rise to a contribution to the above (d,m) process from
a new process, in which the 'Be(d,p) "Bereaction occurs
Grst and then charge exchange follows. Our calculation

*Research sponsored by the U. S. Atomic Energy Commission
under contract with Union Carbide Corporation.

~ T.Tamura, Phys. Rev. Letters 19, 321 (1967).
~ R. H. Siemssen, G. C. Morrison, B. Zeidman, and B. Fuchs,

Phys. Rev. Letters 16, 1050 (1966).
'A. M. Lane, Phys. Rev. Letters 8, 171 (1962); Nucl. Phys.

BS, 676 (1962).
4 D. Kurath, referred to in Ref. 1.

showed' that this contribution was rather large (inter-
fering destructively), and made S&(d,zz)=2, in very
good agI'ccIncnt with 5»

In Ref. 2 it was also pointed out that S&('He, d) of
the 'Be('He, d) "B process for &n, ——10 25 MeV
ranged from 3.35 to 2.65, if the usual DKBA was used
in analyzing the data. This value disagrees with 5»'"
pand thus with our new value of S&(d,zz)g, and also dis-
agrees very badly with the DWBA value of S&(d,l) = 1.
The purpose of the present paper is to show that a
technique similar to that used previously' can bc used
here again, and it works to remove the above dis-
crepancy to a large extent, if not completely.

The way the t I interaction comes into our present
calculation, however, is not exactly the same as it did
in the (d,l) reaction. There, the t T interaction worked
in the 6nal channel, while in the present case it works
in the incident channel. That is, the incident 'He+'Be
channel changes, because of the t T interaction, into a
t+'B channel and in this new channel a (z,d) reaction
can occur. The deuteron produced in this way is
coherent, and thus interferes with thc deuteron pro-


