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KENNETH SMITH AND LESLEY A. MORGAN

Department of Physk s, University of Nebraska, Lincoln, Nebraska

(Received 20 March 1967)

The theory of the scattering of electrons by atoms or ions with any number of incomplete subshells is de-
veloped within the Hartree-Fock, or close-coupling, approximation. Allowance is made for the target system
to be excited to any electronic con6guration constructed from discrete orbitals. The one-electron orbitals of
the discrete subshells are assumed known; the scattering (continuum) functions are given as the solutions of
coupled integrodiGerential equations with prescribed boundary conditions. The form of these equations is
such that the continuum functions are orthogonal to all the discrete orbitals. The potential terms appearing
in the equations are written in terms of the generalized angular momentum recoupling coef5cients. A
technique for calculating these coefEcients on a computer, which is a complicated algebraic problem, is pre-
sented in an Appendix. A computer code for calculating the various elastic, inelastic, and photoionization
cross sections has been written and is currently being tested.

1. INTRODUCTION

HE scattering of electrons by many electron
systems has been studied by Seaton' and by

Vainstein and Sobel'man. ' Seaton showed that the only
consistent means of obtaining antisymmetric wave
functions in approximate solutions is to make the expan-
sion explicitly antisymmetric. He then analyzed in
detail the configuration n&kL In this case, the anti-
symmetrized wave function for a system of (X+1)
electrons initially in the state I" is

N'+1

4(i" xt »+r)=(&+1) '" 2 (—1)"+' "

~«(re)
XQ 4(7/ LSD~), (1)

where X=xr . x~, with x, denoting the space (r) and
spin (o) coordinates of electron i The q.uantity y
denotes all the quantum numbers of the S-electron
target, while l~ represents the orbital and spin angular
momentum of the projectile; I. and S are the total
quantum numbers.

Vainstein and Sobel'man considered the case of two
groups of equivalent electrons.

Calculations of the cross sections for the collision of
electrons with many electron atoms have been per-
formed by numerous authors in a variety of diferent
approximations, e.g., Bauer and Browne. Extensive
calculations are currently under study by Peterkop and

* Work supported, in part, by the Air Force Weapons Labora-
tory, Kirtland AFB, N. M., under Contract No. AF29 (601)-6801
with Lockheed Research Laboratories, Palo Alto, Calif. , and by
the U. K. Science Research Council.' M. J. Seaton, Phil. Trans. Roy. Soc. (London) 245, 469 (1953).'L. A. Vainstein and I. I. Sobel'man, Zh. Eksperim i Teor.
Fiz. 39, 767 (1960) tEnglish transl. : Soviet Phys. —JETP 12,
536 (1961)j.'E. Bauer and H. N. Browne Atomic Collision Processes,
edited by M. R. C. McDowell (North-Holland Publishing Co.,
Amsterdam, 1964), p. 16.

Karule, 4 Krueger and Czyzak, 5 and Smith, Henry, and
Burke. ' ~ All these calculations involve only a single
incomplete subshell in the target atom, and only a
single-electron configuration in the expansion over F in
Eq. (1).

Recent developments in the calculation of matrix
elements of one and two electron operators between
wave functions describing configurations with several
incomplete subshells (see Shore~ and Fanos) have indi-
cated the method for formulating the general electron-
atom problem. In the present paper, the notation of
Fano is used to take into account the actual or virtual
excitation of any number of atomic terms.

The need for developing the formalism presented in
this paper is due to the failure of single-configuration
theories to predict the low-energy cross sections for
electron-atom scattering (see Smith et al. ') to provide a
close-coupling framework for discussing auto-ionization"
and photo-ionization" since the close-coupling approxi-
mation has proved so successful for simple systems, "
and to provide a theory which will allow the calculation
of inelastic cross sections involving a change in the
electron configuration.

In Sec. (2), the form of the trial wave function to be
substututed into the variational principle is discussed.
In Sec. (3), the techniques for evaluating the various
matrix elements are presented. Finally, in Sec. (4&,
the radial equations for the continuum functions are
derived.

4 E. Karule and R. Peterkop. Abstracts of Papers, Foz.rth
International Conference on the Physics of Electronic and Atomic
Collisions (Science Bookcrafters, Inc. , New York, 1965), p. 134.'T. K. Krueger and S. J. Czyzak, Mem. Roy. Astr. Soc. 69,
144 (1965);see also H. E. Saraph, M. J. Seaton, and J. Shemming,
Proc. Phys. Soc. (London) 89, 27 (1966).

K. Smith, R. J. W. Henry, and P. G. Burke, Phys. Rev. 147,
21 (1966).' K. Smith, R. J. W. Henry, and P. G. Burke, Phys. Rev. 157,
51 (1967); see also W. R. Garrett and H. T. Jackson, Jr., ibid.
153, 28 (1967).

~ B. W. Shore, Phys. Rev. 139, A1042 (1965).9 U. Fano, Phys. Rev. 140, A67 (1965).' R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516
(1963)."R.J. W. Henry and L. Lipsky, Phys. Rev. 153, 51 (1967).~ K. Smith, Repts. Progr. Phys. 29, 373 (1966).
iso
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2. TRIAL WAVE FUNCTION of ingoing and outgoing waves

Yp (qVrX) = LII (q&IYYl& "o&S&L&jj"r (2)

An unsymmetrized wave function of an E electron p'r~g« —sf|r

atomic system is (see Fano') Z—E
~r= &rr—~lr~+ ln2k pr+0 &r,

where y& denotes the complete set of quantum numbers
which specify the target T. The wave function for
each subshell X, of principal quantum number n and
orbital l, with resultant quantum numbers a), Sz I.)„
is antisymmetrized and their angular momenta are
compounded to give o. 5 I. for the target. The unsym-
metrized wave function for an (%+1) electron system
can be expanded using the functions of Eq. (2) as a
basis:

P„(qXx )=Q YP„(qy X)P (x ),

where the S matrix is defined by

&r—=Z Srr&r Y

where the sum I" is taken over the incident channels.
Therefore a new radial function F can be defined by

&r=p Frr (r) p Ar (Srr e '8"—Srr e'~rj. (7)

In terms of these new radial functions F, Eq. (6) is
therefore

XFrr (rN+1)rN+1 ', (8)

tp (qXxN+1) = Q f„(qI',XrN+goN+1)
where we shall assume the sum to include several rr
distinct configurations, and the coeKcients F can be
expanded also in two steps:

and

~'Y r(xN+1) E xm (YYN+1) +'Y rm, (rN+1)
which is the total, unsymmetrized, wave function for
the entire system (projectile+target).

For the system (p+T) initially in the quantum state
I", the wave function is

+Yr (rN+1) 2 fvr l r r(rN+1) Fl r r(rN+1) rN+1

where ly is the orbital angular momentum of the pro-
jectile relative to the target.

Combining the above results we obtain

4-(qX N+1) = 2 I 4-(qvrX) x(l&+11&rirk)3'
&TlTLMLSMs

Fr(rN+1)
X , (4)

where I' denotes the complete set of quantum numbers
(yr ,'lrLMzSMs) a-nd where the && denotes the vector
coupling of the X-electron function and the single-
electron spin-angle function (X+1

~
krlr-,'), and

Fr(rN+1)= Q (LrlrMzrmr~LMz)

X(Sr2Msrm, ~SMs)fYrm. 1rmr(rN+1), (5)

where LrMzrSrMsr are the total orbital and spin
quantum numbers of the target T and their z
components.

The unsymmetrized wave function of Eq. (4) will be
written

(qXxN+1) =p tlY.(qI, XrN+1YYN+1)~r(rN+1)rN+1 . (6)
r

(qp XxN+1) =Z Yp (qpXrN+1YYN+1)
r

K&rr (rN+1)rN+1 '. (9)

The wave function for the target system will be con-
structed from Hartree-Fock orbitals, I' 1(r), which,
strictly spea»~g will depend upon I'. In this paper we
shall ignore this dependence. We can expect this as-
sumption to be valid for inner closed-shell orbitals. Its
validity for incomplete outer subshells wi0 be tested
by running the computer code with the diKerent sets
of P„~ and observing the variation of the cross sections.
If this variation is substantial, then the problem will
have to be reformulated including the I' dependence in
P„I, this will result in considerable complication of the
algebra and many more radial equations to be solved.

In order to have a properly antisymmetrized wave
function, we antisymmetrize the target function, Eq.
(2), as proposed by Fano':

0(»X)=&(») '"r. (—1)"4-(q,vrX), (10)

and then antisymmetrize with respect to the projectile
as in (1) to give a total antisymmetric function

P(I",x .x )= (IV+1) "'
N+1

X P (—1)N+' "P YIY(I'XrrYr~)trr (r„)r„' (11)

Asymptotically, the radial functions are superpositions instead of the unsymmetrized form given in Eq. (9),
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where

|P(rX&,~„)= X(X„)-~r2g ( 1)—&~y„(qrXr~, )

=Ot(1V&,) '"P (—1) ~~ (qz~nlr, &a&L&S&)7'&

of F in the open channels

Fr, r,~4 "'[4r sinoa+ K,i cosea7,
and

I kl = . dxl ~ ~ dxN+ngg(Fp&xl xN+y)

(17)

dr Frr. (r)P„r„(r)=0. (13)

This orthogonalization of F with respect to the dis-
crete orbitals can be interpreted as preventing the pro-
jectile from being captured into any incomplete sub-
shell included in the eigenfunction expansion, Kq. (3).
Because of the assumed form of the Hamiltonian, each
set of LSm of the (%+1) electron system is decoupled
from the other sets. Consequently to allow for electron
capture we must include in our trial function, (X+1)
electron wave functions in which there is an extra
electron in one of the incomplete subshells included in
the eigenfunction expansion, i.e., functions of the form

4„(LSw,xg x~+g)=K(Sgr) 'r'

XQ (—1) g„(q„LSzxi x~+g), (14)

x(pl~.l~2)7r. (12)

Here we assign even parity to the normal order of
labels 1, 2, 3, , P—1, P+1, , iq', N+1 and a
parity P, to any q according to the number of permu-
tations by which it di6ers from normal.

The continuum functions Frr (r„) will be determined
from a variational principle, subject to the constraint

N

X PHpr+Hg(x~+j)+ Q rN+g ' E7—
a~1

Xf&(I'r,xx xi+i), (18)

where the variations in the continuum functions are
such that

8FI,) kI, ' 'SKI, I, coseg, (19)

subject to the constraint of Kq. (13), and the vari-
ations 8C„are arbitrary. Substituting Kq. (15) into
(18) gives three types of terms; 6rst, terms independent
of C but quadratic in F; second, terms linear in both C
and F; third, terms quadratic in C, but independent of
F. The first two types of terms will lead to the Hartree-
Fock equations for F when we consider F~ F+bF.
These equations will contain factors linear in C. When
variations C —+ C+8C are taken in (16), the last two
terms give an expression for the C's which will be sub-
stituted into the Hartree-Fock equations.

Making the substitution for the erst f, in Kq. (18)

dXl ' 'dXN+l

N+1
X C ($+1) '" P (—1)' +' "P P(1',Xr"~ )

where p, runs over all the incomplete subshells included
in the eigenfunction expansion which can contribute
to the LSx, g&, Xq"=N+1, and qh„ is an unsymme-
trized wave function of the form given in Kq. (2).

The trial function P& is taken to be a linear super-
position of functions (11) and (14), viz. ,

P (I' x ' 'xpr+y) = f(p,x ' x~+z)+P C %(Xg")

XF,a(r „)r„'+P C„'C'„(L&Srn.&,x& x~+&)7

X LH —E7tP, (i'rxg. x~+g) .
Since H is symmetric under interchange of any pair of
electrons and P, (1'&) is antisymmetric, then

L~r dx~ dx~+——~{(A+1)'r'

XZ (—1)"4.(q»LS,xi" x~+), (15) XQ 4 (I';Xr~+irJ~+~) F;r (r~+g) r~+g

where the coefBcients C„r are completely arbitrary.
In Secs. (3.2) and (3.3), it will be necessary to sepa-

rate out the interacting electron in the subshell p from
its equivalent electrons. This is accomplished using
coeKcients of fractional parentage Lsee Fano's Kqs.
(24) and (25)7.

+Z C, ""C',(LaSas ~xi x~+i) }
X LH —E7$~(1'p:i xN+i) . (20)

A. C-Independent Terms

The C-independent terms are

3. VARIATIONAL PRINCIPLE

We consider
8LLr, (—~Egr7= 0, (16)

where the elements of the real and symmetric reactance
matrix KI,g are defined in terms of the asymptotic form

Lcr,;( dx . dx ——(V+1)'r'g (I' XP~+,g~+,)J

XF;k(rpr+i) r~+g
—'LH —E7(V+ 1)—'r'

N+l
X Q (—1)~+' "f(l',Xr „)F,,(r„)r —', (21)
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which can be separated into so-called direct and ex-

change terms by writing Pa in the form

4'(I X»N+loN+1)F 'l(»N+1)

+2 (—1)"+' V(1'Xr~ )F (» ).

The fact that P is antisymmetric under interchange of

any pair of labels in the target function can be used to
give Eq. (21) in the form

F a(»N+1)
Lz, 1—— ~ ~ dxl dxN+1$(I';XrN+loN+1)

where the distributions q;, q,. are such that electrons
labeled X+1, E, respectively, are in the continuum; in

other words, neither F;I, nor F,~ will contain "spectator"
electrons. "Spectator" electrons are those with labels
other than E and X+1, the labels of the two-electron
operator. Consequently, in Eq. (26) only one inter-
acting electron can appear in the discrete subshells.
If the con6guration of the electrons in y; differ by two
electron jumps from the con6guration in p;, then the
matrix element vanishes, because there will be a factor

Fjl("N+1)
)& LH —Fjp(I', XrN+la N+1)

—1V dxl dxN~1$(1';X»N+loN+1)

F'a(»N+1) F,l(»N)
$H Efy(I', X»—NoN), (22)

where the first term is the direct term and the second is
the exchange term.

dxN+, F;1(xN+1)R„l(xN+1)=0,

and so will the L' term. Furthermore, the term Hl(ssN+1)
will contain

(24)

Consequently, the second term in Eq. (22) reduces to

d». . dxN+14(I'lX4+1)

F;1(»N+1) 1
X

Fll(»N)
P(I',Xx ), (25)

~N+1 ~N+l, N

where rN+1, N ——
~
rN+1 —rN ~, since the other terms in p

will contain (24). Substituting Eq. (12) into (25) gives

La, ,;lN= —El K(X1')X(1V1&)j '" Q (—1) "+ "

X . . dxy. - dXN+) ~N~N+y ~ q;~;XiN+&

1
)&F;„(rN+1) p„(q,I;XiN)F, l(rN), (26)

1. Exchenge Terms

The matrix element of the .V electron Hamiltonian,
HN, will include an overlap integral

provided discrete one-electron orbitals are used which
are orthogonal to one another whether the subshell is
complete or incomplete. If the con6guration of elec-
trons differ by one electron jump, e.g. , Is'2ss2Pa com-
pared with 1s'2s2p'»ll, then the interacting electron
will be assigned to a 2s orbital in the former con6gura-
tion and to nl in the latter, and the configuration of the
spectator electrons among the subshells is determined
uniquely. If (Ez'} and {Xz&} are identical, then the
second of the interacting electrons will be found in the
same subshell in F, and F; and can be assigned to each
of the subshells in turn; that is to say, there are as
many configurations of spectator electrons as there are
subshells with E),'=X),&/0. We note that the matrix
element will vanish unless it is diagonal in the quantum
numbers of the spectator electrons.

Symbolically, the exchange terms of Eq. (20) can be
written as

max(b;, b~)

I.„=p I..., = p g h(x, ',x, +6„,—s.„)
r r; r r; )i ie

XP Ll1,,1N, (28)

where Pc denotes the sum over possible configurations
of spectator electrons. The interacting electron with
label S is assigned to R 1&„.~ in f(1';), while the inter-
acting electron with label %+1 is assigned to R ~~,,) in
f(1',). If more than one configuration is included in Pr
of Eq. (11) then the double sum over I'; and I', in Eq.
(28) will include terms with E1'&X1' so that the 5

will specify nona, ero elements in this sum and designate
the subshells which contain the interacting electrons.
If p;/p, , then only a single configuration of spectator
electrons is possible. If p;= p;, as in the formulations of
Seaton and coworkers' and Smith, Henry, and Burke,
then there will be as many terms in the sum over |.as
there are subshells with Eg'= E)t'WO.

For the remainder of this subsection we shall con-
sider a particular configuration of spectator electrons;
quantities with a bar over them refer to spectator
electrons. Both the distributions q; and q; include a
distribution g;=g, =g in order to give nonvanishing
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contributions to Eq. (26). The number of different
distributions of spectator electrons will be

~(N, )=(N—1)!/g(N, !), QN, =N 1—, (2V)

and their contributions to Q„.„.will be identical. The
distributions in the interacting subshells are uniquely
specified

q„.= {q„.,N} and q„.= {q„., N+1) .

Now I'; takes all the spectators to normal order and
in P(F;) label N will be in subshell!I, =p;; consequently,
further

bs

¹

&=ps+1

bs

X=ps+1

and similarly for P+ (since in the exchange term~
"normal" order for the atomic electrons is 1. .S—1,
N+1, the label 1V being in the continuum). Therefore

b; b~

P„+P„= Q ¹.+ Q Ni= AP, , —(30)
pg'+1ps+1

permutations will be required to put the labels of the
atomic electrons in normal order, where b; is the outer-
most subshell containing an electron in I;.Hence

We can now write, from (26) and (28)—(30), that

L . . = —Nx(N), )LK(1V),')X(Np, ')j '"
X(-1)"(, .-'), (»)

where the outside factor becomes

[N„.N„.j'". (32)

The matrix element in Eq. (31) vanishes unless the
representations are diagonal in the quantum numbers of
the spectator electrons. For those subshells which just
contain spectators

{«P"'ai'Si'Li'(qi') = f«P"uiSiLi(qi), (33a)

and for those same subshells

(qi&(«i~"'a&,'Si'Li') = (qi(n/i~"a&S&I i), (33b)

while for the subshells p; and p;, containing the inter-
acting electrons E and %+1 respectively, we separate
out the interacting electron from the E equivalent
particles in the subshell using coefficients of fractional
parentage

{«."'uPA.
I q.)

(/, ~~a„S,L,{I/, ~~u 8g„/„)
apSpLp

X [{nl,~&u,SQ, (q,) X {nl,(.V) js&~&, (34)

where the first factor in the sum is a coeds%i.cient of frac-
tional parentage (see Racah"). A similar separation is
carried out for the p; subshell.

Substituting the above results into Eq. (31) we obtain

L;,; =5Ã„N .j' '(—1) *+' Q (l ',S„L„{(l„'„.8„L„./„.).
Qs ~ ~ oLj

where f„„isdefined by F.ano to be

X(/.'""u,S.;L.,E, I )E.,"" Sa.,L.;)9-.;(1'')F ~ I It/. ~, (1'~)F ~) (35)

l/„„(F)=([Q {nlrb~'aiSiLi(q~) Xp{nl„~o*u,;S„L„(q„)X{«„(iV)js '~ 'J&'X{/ k;(N+1))"',
&Wps

(36)

(37a)
and

where we recall {l,k;(1V+1) is the spin-angle function associated with the projectile orbital F,I,.
In LS coupling, spin and orbital variables are tied together in the matrix element only by the connection between

antisymmetrization and addition of angular momenta within each subshell. Writing

Sg= {8i.. S„ i(8p,.—,'(N))S„. . 8g,.-(N+i21), S; Ia,

we obtain
Og= {Li Lp, i(L p /p, (N))L„.. .Lg,./;(N+1), acL.,I, (37b)

L;p, ,;P=(cV IV 7"'(—1) '~+' Q (l "a S„L„{(l,""u,8, I, /,). .
Qs ~ ~ oLj'

1
X(E„~"„S„.I„E„.(}l„"' „„S)L(S,(s;))(0; F( -(0;F;g).

~X,%+1

~ G. Racah, Phys. Rev. 63, 367 (1943).

(38)



165 SCATTERING OF ELECTRONS B Y ATOM I C SYSTEM S ii5

The spin recoupling coeScient (8;~ 8;) will depend upon the problem under consideration. For example, for a
target atom with configuration 1s'2s'2P& when no electron jumps are permitted, the sum over C in Eq. (28) will
contain three terms, one of them having the factor

((S1p-,'(Ã))Sgp*, —,'(%+1);S;~(S1ps(1V+1))S1„jp12(Ã);S;)=8s,e,I-(.2S1„'+1)(2S1„'+1)]'"W(S1p'~11sS1„',S1+'). (39)

Upon expanding rN, N+1 in terms of Legendre polynomials P&(r'N rN+1) the radial integrals reduce to Slater
integrals and the matrix element is

1
(0;F;1

~ ~
O,Fj1)=g R1(nl„F;1,F;tnl„)(L1 (I „. l„(V))L„"L~,l;(%+1),L;~

XP1(rN rN+1) ~L1 .(Lpl„()V+1))Lp, Lg, l;.(1V),L&)

=»«nip'F'1 Fj«lp;)(lp;IIC'llij)(ip;IIC'Ill )L(21„+1)(2l„.+1)] 'Is

X(L1 ' $Lp;(lj't)lp;]Lp; La;/;, L;~L1'' [Lp, (tl;)lp;]Lp; Lg, lj,Lj), (40)

using the method of I ano, Prats, and Goldschmidt'4 and where the orbital recoupling coefBcient can be calculated
in the same way as in the spin coeKcient (see Appendix). Combining Eqs. (28), (38), and (40), we obtain

=+ LIIb(N'1V'+~ ' b )]Z51V 7 ]'( 1) "+'L(2i'+1)(2l;+1)]'"

X Q (lp; 'apSp, Lp;((lp; p*ap,Sp,Lp, lp;)(lp;Np'ap, Sp;Lp, lp, ~)lp, Np'ap, Sp,Lp,). .

X(S;[Sj) PRg(nl ,pF/„Fgnjl„)(l„[[ C(]l;)(1,/([ C(]l;)( 0[ 0), (41)

where the final factor in Eq. (41) denotes the exchange orbital recoupling coeKcient as written out in Eq. (40).

Z. Direct Terms

These terms are given by the first term in Eq. (22)

F'1(rN+1) F;1(rN+1)
L;&,,&

. dx1. . d——x gP(F;X8 ) LH —E]f(I';XS +,) (42)
ran+1

where/ is defined in Eq. (12). It will be assumed (as in Smith et al. ) that

rN+1

dx1 dxNP(y;X)LHN —8]f(y;X)=0. (43)

Any calculation on N& 1 target systems must use approximate wave functions, i.e., functions which are the eigen-
functions of an E-electron Hamiltonian HN(approx) WHN(exact). Consequently, (43) introduces an inconsistency
which should lead to a small error if accurate atomic orbitals are used. Because of this assumption, the H~ term in
Eq. (42) is

drN+1FA(rN+1) ~8~jFjl(rN+1) ~ (44)

Due to the orthonormality of f(y;X) the H1 term is

1( d' l,(l;+1) 2Z )
«N+1F;a(rN+1) —

~

— + —
~

Fjt(rN+1),
2(drN+1 rN'+1 rN+1~—

(45)

which leaves us with the evaluation of

dXN+1 dx1 dx f(F;XtN+1) g p(F;XNAN+1) —=V;;(rN+1).
a 1rlV'+1 I

"U. Fano, F. Prats, and Z. Goldschmidt, Phys. Rev. 129, 2634 (1963).

(46)
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As for exchange terms, the matrix element will be nonzero only for zero or one-electron jumps, i.e.,

max(b;, b&)

V,,(r)= II h(N, ', V, +S„,.—S„,) P V,;o(r), (4&)

with

V;iD(r) = t Nr, A'„7.'l'( 1)~—~'i Q (I„N"arS„.L„.( itr, "'ar S„Lp,lp,.). .

sxs ~ ~ e Llj

X(l„N&'ap, Sp,Lp, l„i)lp, N~'ap;Sp;Lp;)(g;ig, )oL(2lr, +l)(21,+1)7 'l2

XP y (nl„nl, /r) (t„iiC'ill„) (l;inc'i(l;)(0; i 0;), (48)

where the direct orbital recoupling coefBcient is defined by

(0, i 0;) = (Ll. ~ $Lp, (lp, t)t p,.7.Lp., Li,,l,.,a;L;
i Ll ~ ~ (Lp, lp, )Lp, .~ I. i,,(.tli) l, ,a;L,),

and the direct spin recoupling coef6cient is defined to be

(g;ig, ) =(8l (8„.$(N)s„. 8,.-', (N+1),a;s, i8l (8„.'(N))s„. 8,,g(N+I),ap).
Collecting the various factors of the direct terms together gives

1 d' l,(t,+I) 2Z
L i, il = drN+iF%'k(rN+l) 6'l I

+ +@i & i+ vi '(rN+i) ~'g'(rN+l)-
2 drN+l rN+l

(49a)

(49b)

(50)

B. Terms Linear in C

From Eqs. (15) and (20) we see that the two terms linear in C are

F;~(rN+l)
L;&,,io= dxl .dxN+l(N+1)'" f(r,xf!N+l) [H E7 p C„'C,(Ll—Spl)

Fj l (r N+1)+P c„'c„(L.s,N.)LH—@7'(r,xf, „) . (51)

The full term can be written
Lai =Q (L'a l +Li ac), . (52)

where the two terms on the right are defined in Eq. (51). The matrix elements of (HN —E) vanish because they
contain a factor like the l.h.s. of Kq. (23). From Green's theorem and the boundary conditions of the discrete one-
electron orbitals Kq. (52) can be written in the form

Laic Z(L=;a, lo+L;l, l e), (53)

where the two terms have the same structure, viz. ,

F'i(rN+i)
L;l.&o= (iV+1)'"p C„" dx . .dx +,f(r;XSN+l) H, (.V+1)+ — C'„(LaSp.ixi .xNi. i) . (54)

~N+1,N-

We note that the configurations of f(r,) and 4„(LQ&n.q) necessarily differ by one electron jump, hence for a non-
zero matrix element we must have an interacting electron in the "extra" orbital of 4„.For the one-electron operator
this implies that ere must have the label X+1 in the extra orbital. To calculate the matrix element we must sepa-
rate off E,(rN+l), the radial function of the only interacting electron, from 4„using coefficients of fractional paren-
tage; for the two-electron operator a further two fractional parentage coeKcients are introduced, one each from
f and C „.We have the matrix element

(Hl) = (A+1)"'g ll(Ng', Ng" —bg, )LK(Ng')K(Ng")7 'I' Q (—1)P"+P "
dx1 dXN+1

~il (rN+l) &.(rN+l)
X (4"'a."L."S."1)t.""a.*'L.'Sn*4)|t"(q'r*) Hl(N+ I)4.,(q„LaSa~a), (54a)

~N+1 ~N+1
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(N+1)!
X(N&,~) =

II.(N"!)
(55)

and f„and qh, do not include the radial functions of the electron with label (N+1).Here, Nq" denotes the number
of electrons in the discrete subshell X, with an extra electron in subshell X=p (compared with the configuration of
the parent state p.) For a properly antisymmetrized (N+1) electron wave function we must allow for the label
(1V+1) to be in any of the subshells for which Nq&WO The .number of alternative configurations of electrons which
are spectators for the interaction Pr(N+1) is

Equation (54a) becomes

X(Na) =
II) (Na!)

(H )=Q b(Na', Na"—ba,)N, '"(—1)*"-"'" ~ (l,"&,S, L, !}f," ' 'S 'L 'l, )

1 ( d' l,(l,+1) 2Z
X drF g —-~ — +—P...(r)

2Edra rm r

X(S,'. Sa'2,S;l(S,'y)S, I' Sa",Sa)(L ' La'/; L;I (L q )L,~ La" La). (56)

We note that (L,' . La'l;, L;~ (L,'f,)L," Lp, La) will be nonzero only for /;= 1, since it contains

d6+aFi; *(&a+i) I'i, (&a+i)

This is equivalent to saying that the incident electron can only be captured into the incomplete subshell p if its
orbital angular momentum equals that of the subshell. In general pA @ since the 'extra' orbital p, of @„may be
matched by one in F;.For example, if the target atom in state y; has configuration Is'2s'2p' and @„hasconfiguration
1s'2s'2pa(=1s'2s2pa+2s) then p=2p but p=2p.

For the two-electron operator in Eq. (54) let p„and o„be the subshells containing the interacting electrons. For
a nonzero matrix element we must have identical distributions g of spectator electrons and for each g there are in
general two possible distributions of interacting electrons labeled by a =0, 1.Viz. , for XW p„or o „,qa'= ga, a= 0 or 1,
and for X=p„or o„either p„Wo„, q,„'={q,„,N+a} and q,„'={q,„N+1—a} or

p„=0„,q,„'={g,„N, N+1},e=O or 1.

Substituting Eqs. (12) and (14) into Kq. (54) and using Eq. (57) we get for a function f of q; and q„, that

&(N) Z (1- ~,...)g( ', .).

(57)

Defining 4I' to be the number of permutations to take the E electron of p;, and the interacting electrons of p„
and 0„, out to normal order, the matrix element of the two-electron operator is

1
X ~ qsI'; Fa

where
bg le

hP=
)t~Ps~1 )i~P„+1

We recall there is only one term in Pc if a!(F~) and p„differ by two electron jumps, but "b" terms when they diRer
by only one electron jump, and the matrix element vanishes unless it is diagonal in the quantum numbers of the
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spectator electrons. The matrix element on the r.h.s. of Eq. (58) can be expanded out into the form

(f„""a,S„I.„(I
l„~"a„8„L„l„)(lg. +a,„S,„I,„l,„I)i,„"«„„S,„L,„)(lg«.„8.„L.„/.„I)l.„"«.„S.„I.,„)

Npj ~ ~ egg

X(~~ (~.s(N))S.; . S~;k(N+1)~S'I~i (~,„k(V+~))S.„(~;2(N+1—~))S.. .S~)

X(Lr. (I„.l„.)L„. . L~,l, ,L;I P. „(r~ r~+~) IL~. (L,„l,„(V+c))L,„(L,„l,„(N+1—e))L „.,L~), (5 )

where (P„) can be evaluated using the method of Fano, Prats, and Goldschmidt as in Eq. (40).
Writing Eq. (53) as

1
Lg, jc=g C„' (ilIHgIp)+ il —p

V r

=Z C dxiV+li . (rN+1)P l'(rN+I) (53a)

where the erst term on the r.h.s. is written out explicitly in Eq. (56) and

~ I
1 = II b(N ',N."+b.„—~ ..—h'. ) Z LN„N, „(N.„—b,„'„)j"'(—1)" Z (—1) '(1—b,...)
r Ls 0~0,1

Z (4,""~.;S.;L.;( I 4;""~n;S.;L;4;)(4,"«..S.g".4, I )4,"«n.S..L..)
sxpso ~ s gs I

x(fg N~.„s.„L.„f.„I)f.„~"~.„s.„L.„)(s,I s„) P z„(pP,,g)(i„.IIc IIf,)P, IIC IIi)
Y

XL(2l,i+1)(2lr+1)1 ' '(0;IO„)', (60)

where the last factor is the orbital recoupling coefficient

(Lx' ' ' (Lq lz )Li, Ls (lrv)l &LgI Lq' ' ')Lr(vli, )l&jL&' ' ' (Lrlr)Lr ' ' 'Ls)

where g is the subshell containing E in distribution e and f is subshell containing iV+ 1.

(60a)

C. Terms Quadratic in C

The matrix elements of the two-electron operators which are quadratic in C, i.e., do not involve the continuum.
functions F, are precisely the quantities studied by Fano. From Eqs. (15) and (20) the terms quadratic in C are
seen to be

Lgo' ——P dx. dxgq)C„'C„'4„(LISp.I )[H—E]4,(L&Sp.() .
Il gv

(61)

The (N+1) electron Hamiltonian will be expanded out as in Eq. (18).The matrix elements of g, r~+&will all,
contribute equally and the contribution to Eq. (61) will be

1
Q C„C„'N C„(LgSgsg) —4,(L(Sgn)) =Q C„"C„'(N+1) 'Q (N,„(iV,„b,„,„)Np, (cV„Bp„,„)—$'~'—
IkV ~N, N+j '

Is, p C

XII ~(N)" N~"+b~.,+4,—b~..—&),) 2 (—1)' (1—&A', ;)(1—~.b....)(—1)'" '"

where the quantities e„, e„, and ~ are defined in Fano.

X 4g q,„LISI7Ig,
1

—4.(q..is. .)), (62)
~N, %+1
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Using Fano's Eqs. (24), (34)—(36), and (41) we have

rN, N+1
y„(,.I.P„,) = P (l,„'",„S,„L,„{i l,„" -,„S,„L,„l,„)

ap" Iy~

X(l „~~a „S „L,„{it,„~~a,„S„L,„t,„)(tr,~~argr jr, tr, i)i+~ a,„Sr Lr )(l,~'"a „S,„L „l „i)t„""a„S „L„)

(Sg (8»-,'(N+ e„))s». (8,„-,'(N+1 —e„))s,„ng,sg,.
i
Sg . (Sr,—',(N+ a„))s,„(S,„,'(N-+1 e„—))s~„,ngsg)

XQ [h „,„Rg(p„a„p„gr„)[(2E,„+1)(2E,+1}5 ' (l „iiC'iil „)(l,„iiC'iil,„)(Lg. ~ ~ (Lr„t „)L„~[L,„(l „t)l „5I,„
C

Lg,„,ngLg, iLg. [Lr„(tt»)tr„5L „,a~gLg)+(1 l4„,—„)Rg(p„gr„gr„p„)[(2E„+1)(2l„+1)5 g (E»iiC'iitr„)(tr, iiC iit»)

X(Lg. (L»t»)L» . [X,„(t,„t)E,,5L,„agLgiLg. (Lr„tr„)Lr„.[L,„(tt,„)E„5L„,agLg)]. (62 )

Within the distributions qg, „and q&,„, (N+1) and (iV) are the interacting electrons. When C„and C „have identical
configurations then there will be several ways of determining {¹),hence Pz appearing in Eq. (62). When these
functions diGer by one jump, e.g.,

1s'2s'2Pgg
rN, N+1

then label (N+1) could be assigned to 2s on the left and 3s on the right; the interacting label (N) could then be in
any of the three common subshells and once again a Pc. For C „and C differing by two electron jumps, there is a
unique coniguration of the spectators.

The matrix element of Hg(xv+g) is

(C„iHgiC„)=[K(Ng )X(kg}5 " Q (—1) &" &($„„(q„Lgsrrrg)iHgigtg„„(q Lgsggrg)). (63)

If 4„and 4„difI'er by a single electron jump, then this must be the interacting electron and there is a unique con-
figuration of spectator electrons. For two or more electron jumps, the matrix element vanishes. For C„=C„then
( 4 +1) will be found in the same subshell in C'„and 4„and there will be as many terms in PL= as there are occupied
sub shells.

(C'„iH
i
C',)=P K(N„)[Ot(N„)X(.V„")5—' 'g ll(,$ „,,V„"+Eg,„„—6, „)

C

x(—1)» P (E,„~~,„S,„L,„{i E,„~~ „S,„L„„E,„)-(t,„~"-,„S,.L„„t„i)t P "n,„s,.r.„)
a p„.-.I.p

X([g {ntg~'ngSgLxiqg)X[{nt»~+a, „S,„L»ig„) Xn{E»iN+1) 5~& sr]~" "s H(gi V+1)
X&Pp

X[@ (qqintp"ngSgLq)X[(qr„int„~~a, „S,„Lr„)X(V+1int,„)5 ~s "]rgsg, (64)
XWp„

which will include a spin recoupling coeKcient

(Sg (8,„-,'(N+1))Sp„Sg„ngspiSg. (8,„-,'(N+1))Sr„Sg„agSg)
and the factor

(P(rgt, „)iHgiP(nt, „))(Lg . .(L,„l,„)L,„.ngLriLg (L,„l„)L,„.agLg)

Combining the above results together

(C'.
I
H

I
C'.}=2(V+ 1) 'O', .N..5"'ll &(~.",-~."+b.,„—6,.)(—1)'

(65)

(66)

x P (E,„'~,„S,„L,„{i t,„~ ,„8,„L,„E,„)(E,P-" ,P,„L,„t,„i )t,„~-",„s,„r.,„)
ap ~ *.I psg

X (Sg (8»-', )S» ngsg, i8g (8,„2)Sp„ngsg)(Lg (L»tr„)L» agLg, i Lg (Lr„tr„)Lr„ngLg)
d' l»(t»+ 1) 2Z

X (——;) drP„,,„(r) —" '" +—P„,,„(r), (67)
dr2 r2 r
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where
max(pp, p„)

min (pt», p s)

Finally we have to evaluate the matrix element of IJN, the N-electron Hamiltonian:

&C„(L»$»s») (HN(C„(LgStst))=LX(X» )X(1V»)]—' ' P (—1) ++""&y „(q„L»S»s»)(H~(y „(qL)$(s(). (68)

Separating off the noninteracting electron we have

&P„„(L»$»rr»)
~
H~ ~$„„(L($(n())= Q (lr„~+ap„Sr„L,„(~

l,„~&a»„8»,Lr„lr„)
Q p ~ ~ ~ sss p

X (lr, "&'arg»L„lr„~ )lr „N& a»Sr, Lr,)(L»„l»„Mr,„mt„~ L»„Mr,„)(8p„xMs„m,„[$»„Ms„)

X(L,Ã„Mr„mi„lL,,„Mr,„)(8r.2Msm ~ IS».Ms„)&rdr Ir»ir. )&C'~(L»$»s'»g») IHNIC'(LtS't«gt)), (69)

where 4 is an unsymmetrized wave function of N electrons. In order to evaluate the "direct" terms we have made
the assumption that

~ dxg . dxyP(y;X)[Hg —8]iP(y;X) =0,

where f&y;X) is a properly antisymmetrized wave function of 1V electrons Lsee Eq. (43)].H~ is symmetric under
interchange of labels of any pair of electrons and so it can be readily shown, using the expansion of Eq. (10), that
this implies that

dxg dxNP„(y;X) [H~ 8]P„(y;X)=—0.

Hence we have
(70)

&C„(L»$»~») (H„(C„(L,S,«))=LX(X,)]-» g (l N~a I,;$, ((l,& aug, t,)
qikp8pL p

X(l."~aAAl»
I
)lr"~"a,"L."S.")E""&~&pN»" (71)

The noninteracting electron N+1 may be found in any subshell for which Nz/0, and from the symmetry of Hz
(for a given configuration) each distribution of interacting electrons contributes equally, hence

1
&C', (L»$»~»

~
H»

~

4', (LP'rs t))= 2 &» 2 (1»"""a)"$ "Le~ )4 "a»8»L»4)
S+1 &-i~ a) 4s)

X (1» "a»8&L»l»
~ )1» "a»'S»'Lg")E~"~"4rw»»(72)~

4. RADIAL EQUATIONS

A. Derivation

As in Smith et al.,' Eq. (16) can be written out ex-
plicitly with the help of Eqs. (50), (41), (53), and (61), Z ~stFtr+Z Cl V~,;=0. (75)

and A „.is defined in terms of Eqs. (62a), (67), and (72).
For variations of F, of the form Eq. (19), Eq. (73)
yields the integrodiGerential equations

b Q F;»Z,,Fr)dr++ C„» V„,;F,)dr++ C„&
seS PsÃ 1y&

Variations of (73) with respect to C»~ lead to

where

X V.,;F;»dr++ C„»C„'A„. gE»g =0, (73)— Q A„.C.'+Q V„,;F;tdr=0. (76)

The solutions of Eqs. (75) and (76) are to be subjected
to the further requirement and that they are orthogonal
to all subshells of the target system with the same orbital
angular momentum, i.e., Eq. (13).

Introducing this requirement into (74) using+V,;+W;;, (74)

1 d' l,(l;+1) 2Z
+ +2(E 8) 8;——

2 df f t'
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LaGrange multipliers, 5K gives (75) to be

P Z;;P;t+P C„'V„„+ZJlt) P„t,st,.t„——0. (77)

B. Numerical Method

An algorithm for the solution of the system of second-
order integro-diBerential equations 2;;Ii;~=0 for k 2)0
has been given by Smith" and for k;2&0 by Smith and
Burke. " Both these papers are based on iterative
techniques. Noniterative techniques are implied in the
work of Hartree'7 " and have been developed for col-
lision problems with k &0 by Marriott" and Ornidvar"
for the system 2,;;F,I,=O. The noniterative alogrithm
for the system of equations in (77) for all real nonzero
k;2 has been developed by Smith et al. '

A FORTRAN program has been written to solve Eq.
(77) and is currently being tested. Given a set of (LSs),
the con6gurations to be coupled together and their
term values, the code calculates the number of channels
and potentials and sets up the distinct exchange terms
to be obtained as the solutions of diGerential equations.
It then proceeds to solve the equations, using an ex-
tension to the algorithm presented in Smith et ul. ,' and
prints out the partial-wave cross sections. Some of the
early production runs with the code will be to calculate
the total cross sections for the scattering of low-energy
electrons by atomic oxygen in order to compare with
the absolute measurements of Sunshine et al."Calcu-
lations will also be carried out to determine the positions
and widths of resonances in the photo-ionization con-
tinuum of Ne I (20-150eV), as these have been observed
by Codling et al. 22 Carroll et e/, ,23 have observed a new
Rydberg series in the absorption spectrum of atomic
nitrogen which they attributed to transitions from the
'S' ground state of the nitrogen atom to the Rydberg
terms 2s 2p' ('S')lp P; it will be possible to calculate
the parameters of these autoionized levels with the code.
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APPENDIX

Evaluation of the Recoupling CoeRcients

The subshell angular momenta Lq, Sq together with
the angular momenta lr and $ of the projectile are
coupled according to a prescribed coupling scheme to
give total angular momenta L, S. If the intermediate
couplings leading to a given L, S are not unique, then
to each coupling there corresponds a distinct state 1';
speci6ed by the quantum numbers L, S, x together with
an additional parameter e; which speci6es the coupling.
We shall couple the vectors L~ . L~, l; to give a total
L; according to the scheme

~
(LtLr) (Le 'Le) (Le ' Lg)(L),~& ) (Lt,,~ l;)L,), (1a)

where L~ ' denotes the result of coupling L), to the
resultant of L~ Lq ~. For the purposes of recoupling
we may regard the continuum electron as being in a
subshell 6+i where b is the outermost of the discrete
orbitals and where I ~~=0, L~~=l;. We shall de6ne
subshell p to contain electron X and 0 to contain E+i.
The general form of the orbital recoupling coefficient is

(X tX e . .Lp, te'[L p, (tp, k.)tp,]Lp,L. p,
N. r I,, . .

(L,,l.,) L.. .L; i LtLe I„..(L„,tr, )L.„..
L~, ' PX.,(kl~;) t.,]Le;Lr; r .)Lr').

We note that there are three vectors to be recoupled,
namely, l& l&+& and k. We must recouple lN from p; to p;
or vice versa when p, lies inside p;, as we do not know
a priori which is the smaller, then recouple L~+~ from
0; to 0; and k from p; to 0;. To evaluate the above
recoupling coeKcient we generalize the method of
Biedenharne4 by first recoupling l„(=lN) step by step
from p; to p;, each intermediate recoupling contributing
a Racah coefBcient and then recouple the vectors
$L„,(l„,k) l„]L„.~D. L„.l„)L.„,k] Nex.t r.econ. pie.k step
by step from p; to o;, couple it to l, ,(= tz+t) to give l.t
and 6nally recouple l,, from 0.; to 0;. The recoupling
coeKcient will then have been expressed as a product or,
in the case when the intermediate recoupling vector is
not found on the r.h.s. of the coefBcient, a sum of
products of Racah coeKcients. Three basic types of re-
coupling occur:

(a) Direct: in which max(p;p, ) &~ min(o, o,) as in Eqs.
(49a), (56), (67), and, depending upon the particular
configurations considered, in Eqs. (60a) and (62a), see
Fig. 1(a). Alternatively we may have max(o;o, )
&~min(p;p, ) which can occur in Eqs. (60a) and (62a). In
either case, we do not, at any stage in the recoupling,
have to recouple both 4 and l~+j through the same

"L.Q. Biedenharn, J. Math. Phys. 31, 287 (19S2).
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(c)

CFj

Eq. (40) or alternatively min(o;o, ) & min(p;, p, )
~& max(o, «r,). Both cases may also occur in Eq. (60a)
and (62a). In the former case we will have to recouple
both lp, and l,. through the range 0; to p,. and will
therefore have to sum over the intermediate couplings of
this range. A schematic representations of these ex-
change recouplings are presented in Fig. 1(b);

(c) Tr«srtslatiois: max(p;o;) (min(p, o;.) or alternatively
max(p, o,)(min(p;o, ). This type of recoupling will only
only occur in terms linear or quadratic in C, Eqs. (60a)
and (62a), where both interacting electrons can appear
in discrete orbitals. For example the recoupling coef-
6cient of Eq. (60) arising from the con6gurations
1s'2s'2P'3skl 1s—'2s'2p' (where p;=3s, o;=kl contin-
uum, and p, =o, =2p), will be of this form. In the former
case we will have to recouple both lp,. and l, , from cr; to
p;. This is most easily achieved by coupling l„l.,(l;).
and recoupling l; from 0.; to p, then summing over all
possible l;. Schematically, these recouplings can be
by Fig. 1(c).

The general form of the spin recoupling coefFicient
1S

Fzo. 1. Schematic representation of the three types of recoupling
schemes encountered in the angular-momentum recoupling coefB-
cients: (a) direct, (b) exchange, (c) translation.

range. This will give rise to a single product of Racah
coefFicients since we may use the property

((Lg g 'Lg)Lglnr, LP'I (Ly O'Lg)Lg «l~, Lg '& =Sf„r«a;

to eliminate the summation over the intermediate
couplings, L;

(b) Exchar«ge: min(p;p, ) &~min(o, o;)&max(p;p, ) as in

( g „g '( „s(Ã))5«,, S«,,. . .5, g *(S,,g(%+1))
.S,,S,,. . .,a,S;ISg S„. . Sp,. g (S«,,2(1V))5,,

S,, S.. . «(S,P(%+1))S.. .a,S,).
The evaluation can be carried out in the same way as the
orbital recoupling coefIicient, giving rise to the same 3
types of recoupling but will be simplified by the fact
that there are only two vectors 2(Ã), 2(%+1) to be
recoupled.

For example, the direct spin recoupling coefficient
is, for p;(p;,

(Si . 5„ i (8„2(&V))5„8p,. .'.S-«,, —,'(«V+. 1),5«ISi 8„.. (8«,—,'(«V)). .5«,. '-,'(%+1),5;)

p' —1

=(5«, , g *«Sp,.—,(5„)P'„'IS„g'8„(5„«)«—,P'p, ') II (5), g «-, (Sg g ),$«„Sg 'ISg g «Sg(Sg i),—,;5), ')
p j+1

ps—1 b;

X(5„,- -,'(5„,-'),8„.;5„-'IS„,-;8„.—,(5„.) P'„-') II S(5,-'5,-~) II b(5 'Sg ')bg;y, bs;e„
X pg+1

where the recoupling coefIicients are given in terms of Racah coefIicients by'4

p~
—1

L(25„+1)(25„+1)O'"W(5„'S„S„'-';5„'S„) II L(25 '+1)(25 '+1)j'"
X~ps+1

)(Il (5) ) 'sS~S~ i S~ ) 'S~ ~)L(25 ~ '+])(25 +1)]«(—l) «'& I oig (5 i
—i 5«8~, ~ 5—. ~

'5 ).


