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It is apparent that the Nal results, when compared to
those of the germanium crystal, leave something to be
desired. However, from this curve and three others like
it, we were able to obtain a value for the ratio

F=AE/AE;= (v)/v,=0.65+0.1.

Copper backings were used in measurements on this
level, and from the slowing-down parameters of copper
listed above, and from Eq. (4), we obtain a value for
the mean life of the 3.59-MeV state in BY of r=1.7
+0.7X 1071 sec. This result is in agreement with the
two previous measurements.®*

IV. SUMMARY

In Table IIT we summarize all of the measurements
on mean lives of three states in BY. As can be seen, all
measurements now show reasonable agreement. From
the mean lives for the three states shown in the table,
and from the branching ratios for the 2.15-MeV and
the 3.59-MeV states,® a total of six M1 transition proba-
bilities can be obtained, and, hopefully, compared with
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Tasre III. Mean lives (seconds) of states in B,

State

(MeV) BNL= Stanfordb Present work
1.740 <2.8 X101 <4.0 X101
2.154 (4.0 +1.0) X10712 (2.1_0.5%0-8) X10712
3.585 (1.200.43) X10-18  (1,33+0.35) X101  (1.70.7) X10™13

a Reference 4.
b Reference 3.

the calculations of Cohen and Kurath.® However, as
illustrated in the discussions of Warburton ef al.,* un-
certainties in the multipolarities of all but two of the
transitions make such comparisons ambiguous. Of those
two, the 1.74 — 0.72 MeV transition is too fast to be
measured by the Doppler-shift method, a result in
agreement with Cohen and Kurath’s predictions.
Finally, the transition probability of the 2.15— 1.74
MeV M1, AT=1, transition obtained from our meas-
urement of the mean life and from the branching ratio
of that state® is about one-fourth of the best value cal-
culated for it.
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Theory of the Photodisintegration of the Deuteron and of Other Nuclei*
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The interaction between the radiation field and a collection of nucleons is formulated in a manner suitable
for the employment of the Franz-Stech classification of electromagnetic multipoles, and for separating the
more certain parts of the interaction energy from the speculative ones, the uncertainties being concerned
with exchange currents. The separation is effected by bringing the entrance of the electric charge density
into evidence. The heuristic introduction of the intensity of magnetization as though it were due to magnetic
moments of the fixed-magnetic-moment type is avoided, the whole interaction being expressed in terms
of currents. Part of the general discussion neglects retardation so as to bring out the reasons for the particu-
lar grouping of terms, but retardation effects are included later on. It is shown that in a nonrelativistic theory
the usual procedure of making calculations as though the center of mass of the p-» system were fixed may
be justified as an approximation provided certain assumptions are made. The recoil of the center of mass
caused by photon absorption is explicitly considered in this connection. Some limitations of the theory
caused by relativistic effects are mentioned. The relationships of contributions to the electric-multipole
transition amplitudes caused by the nucleon magnetic moments, as well as of related contributions of radial
components of the Schridinger current, are discussed in relation to the retardation effects. A brief review
of the limitations of space-time models and of the accomplishments of the pure S-matrix approach to the
d(v,m)p problem indicates the continued value of both approaches.

L. INTRODUCTION

N connection with nuclear photodisintegration in
general and especially that of the deuteron, it is
desirable to employ a classification of electromagnetic
multipoles making use of irreducible tensors. The suit-

* Supported by the U. S. Atomic Energy Commission (Yale-
1807-46), the U. S. Army Research Office-Durham, and by the
Air Force Office of Scientific Research, Office of Aerospace Re-
search, U. S. Air Force, under AFOSR Grant No. AF 394-66.

t Present address: Department of Physics, State University of
New York at Buffalo, Buffalo, N. Y.

ability of such a treatment for the discussion of prob-
lems involving rotations of coordinate axes is clear. For
this reason as well as the aesthetic appeal of a plan
based on transformation properties, this classification
has displaced other ways of dealing with electromagnetic
multipole radiation. The well-known necessity of in-
troducing exchange currents when exchange forces are
present in the nuclear Hamiltonian makes it desirable,
however, to formulate the interaction between the radia-
tion field and the nucleons in a manner which separates
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the more certain parts of the interaction energy from
the more speculative ones, the latter involving exchange
currents in an essential manner. The present paper is
concerned with questions arising in such a formulation.

In Sec. II the entrance of the intensity of magnetiza-
tion in Maxwell’s equations is discussed. This quantity,
often denoted by the symbol M, is frequently introduced
heuristically as though it had its origin in magnetic
moments of the fixed-magnetic-moment type. On the
other hand, in applications, M is used for the represen-
tation of effects of magnetic moments associated with
nuclear spins, which in final analysis are caused by
electric currents. These are partly the currents caused
by the motion of a Dirac proton as a whole and partly
the currents originating in the motion of charged mesons
around the nucleon. It is shown that the net effect is
as though one were formally dealing with an intensity of
magnetization.

Section III is concerned with a partly intuitive formu-
lation of the interaction energy for electric multipoles
in the nonretarded approximation. The electric field of
the electric multipoles is expressed as the gradient of
a potential, and the interaction Hamiltonian is therefore
obtainable as the potential energy of the charge density
p(r,?) in that field. This part of the interaction energy
therefore has a meaning independently of unsolved
questions regarding exchange currents. This does not
mean, however, that the corresponding part of the
Hamiltonian is completely known. Among the uncer-
tainties, in the first place, there is a lack of knowledge
of the wave function; and secondly, the equation

P(ryt)=6¢*¢1 (11)

commonly used for a single particle, is doubtless only an
approximation, which needs refinement in view of the
empirical evidence for the existence of form factors of
nucleons. But to the extent to which one may formulate
the theory in terms of a wave function employing only
the coordinates of the centers of mass of the nucleons
and their spin coordinates, and in which the electro-
magnetic form factors are neglected, this part of the in-
teraction energy has an immediately obvious validity.

The magnetic multipole interaction energy is treated
along somewhat similar lines in Sec. IV. The considera-
tions regarding the meaning of M(r,?) in Sec. II are
made use of, with the aid of elementary relationships
between the electric current and equivalent magnetic
shell formulations of magnetostatics. On account of the
probable existence of exchange moments in nuclei, there
is in a sense less certainty concerning these contribu-
tions than for those arising from the charge density. On
the other hand, the connection between the form factor
and the exchange currents must be an intimate one, and
the distinction between the degrees of certainty may be
more formal than actual. At the end of Sec. IV, the
connection of the forms arrived at with the Hamiltonian
giving the effect of radiation on matter is briefly pointed
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out, and the way in which equivalent operators in such
a treatment may be introduced is mentioned.

The restrictions regarding the negligibility of retarda-
tion effects are removed in Sec. V. The parts of the
Hamiltonian referring to electric and magnetic multi-
poles, having to do with the absorption of radiation, are
transformed in such a way as to bring into evidence the
interaction with the charge density and also the equiva-
lent magnetic pole density. The current densities en-
tering this discussion include effects of exchange cur-
rents. Although there is no safe prescription for calculat-
ing these, and although there is therefore no safe way of
using the formulas, it is hoped that it may prove useful
to have a separation of the interaction into parts con-
taining uncertainties of different types. The information
concerning electromagnetic form factors is more certain
than that about exchange currents, and the contribu-
tions to photodisintegration amplitudes arising from
the form factors are not expected to be as hard to arrive
at with accuracy as the other contributions. One may
hope, therefore, that with such a classification of terms,
comparison with experimental material may lead even-
tually to a cleaner distinction between alternative pos-
sibilities for exchange currents. At the end of the section
the transition to equivalent operators which has been
mentioned at the end of the preceding section is written
out.

In Sec. VI the elimination of the coordinates of the
center of mass is discussed, and it is shown that under
certain limitations one may treat the center of mass as
fixed at a point R=0 and take the coordinate vectors of
the proton and neutron as r,—R and r,—R, respec-
tively, even though the localization of the center of
mass is in contradiction with Heisenberg’s uncertainty
relation. The inclusion of recoil effects caused by the
absorption of the photon is essential for the validity
of this elimination of center-of-mass coordinates. The
discussion of this elimination is nonrelativistic, and is
presented in terms of the impulse approximation. Esti-
mates indicate that both of these approximations are
good in the usual range of experimental energies.

Discussions of the absence of exchange-current effects
on the interaction through electric multipole effects
have been given by Sachs and Austern in the old multi-
pole classification, and by Brennan and Sachs in the
modern one, making use of gauge-invariance considera-
tions in both cases. The presence of a space gradient
term in the expression for the vector potential corre-
sponding to electric multipoles occurring in the present
paper makes possible a direct transformation to the
charge density. In the absence of form-factor effects,
the independence of this part of the interaction energy
on exchange currents is directly obvious, as discussed
in Secs. IIT and V.

Section VII points out some of the limitations of non-
relativistic space-time models of the d(y,n)p reaction;
discusses the relationship of the effect of magnetic mo-
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ments on electric multipole transitions, and the rela-
tionship of related terms appearing in Sec. V, to the
modification of electric multipole effects caused by the
inclusion of retardation; briefly reviews advances made
in the theory of the d(y,n)p reaction by dispersion-
theoretical methods; and arrives at the conclusion that
the space-time representation of the reaction should
still be useful as a preliminary step even in the non-
relativistic local potential form. This section, and to a
degree the present paper as a whole, may be considered
as an introduction to a series of papers by members of
a group with which the present authors have been
associated.

Some of the more frequently used symbols are as
follows:

M =nucleon mass.
W¥,=large components of the Dirac wave function y.
Xin=LY1m(6,¢)/[0(+1)]12
x,w=photon wave vector and angular frequency; /2w
is the photon wave number.
Z13= FZ(K’I’)LYLS/(KT).

II. ELECTROMAGNETIC QUANTITIES

The treatment of the radiation field in this paper
makes use of Franz’s classification of electromagnetic
multipoles! as presented by Blatt and Weisskopf,? and
of many of the results obtained in these references. In
the present application, the quantization of the electro-
magnetic field is not necessary, and the treatment in
Ref. 2 can be simplified. Doing so has the additional
advantage of showing in an elementary manner that
exchange currents may be neglected in the evaluation of
certain terms. It is also necessary to discuss a few mat-
ters of principle.

In BW use is made of the intensity of magnetization
M. While mathematically terms corresponding to M
may be inserted in Maxwell’s equations, there is no
evidence for the existence of permanent magnetic di-
poles, so that these terms do not have direct significance.
Nevertheless it is convenient to summarize the effect of
spin currents by replacing them with an equivalent in-
tensity of magnetization Mg, which will be abbreviated
as M. In a nonrelativistic treatment by means of
Dirac’s equation the particle current density may be
approximated as

j=—c o)~ (h/2iM) (¥ * V¥~ VoV E,*)
+ B/ 2M) VX 6]as¥o*Tp.  (2.1)

Here M is the mass of the particle, the nucleon in the
present case, while ¥, (a=1, 2) represents the “large”
components of the Dirac wave function y. The first
term on the right-hand side of this equation is the

!'W. Franz, Z. Physik 127, 363 (1950); B. Stech, Z. Natur-
forsch. 7a, 401 (1952).

2J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952). This reference will
be referred to as BW.
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Schréodinger current jg; the second is the spin current.
If the Dirac particle carries a charge e, the Maxwell
equation expressing Ampére’s law is

curl¥e=08/cdt+4xrJ g/c—4wn(eh/2Mc)
XLoasX VI¥ Vg, (2.2)

where

J 8= eis (2.3)
is the electric current density attributable to the
Schrodinger particle current density. Electrostatic units
of electric charge and intensity and electromagnetic
units of magnetic field strength are used. Introducing

Fort=FC—4wM; M= (e#i/2Mc)¥ *0as¥s, (2.4)
Eq. (2.2) becomes
curl¥Cosi=98/cot-+4nJ s/c (2.5)

and the remaining Maxwell equations take the form
curl&= — 9(3Cess+47M)/cot, (2.6)
div(FCesr+47M) =0, divE=4me¥ *¥,. (2.7)

Specializing to fields of definite frequency w/2r, Egs.
(2.5) and (2.6) agree with Eqgs. (4.1a) and (4.1b) of
Appendix B of BW, provided €. is replaced by 3¢. In
treating nonvacuum electrodynamics it is customary to
use the symbol B for the magnetic induction. In such
treatments

B=sc+4rl, divB=0, (2.8)

where 3¢ and I stand for the magnetic field and the in-
tensity of magnetization, respectively. There is a close
analogy between Eq. (2.8) and the first of the two Egs.
(2.7). In the passage from a microscopic to a macro-
scopic treatment of a medium consisting of moving
electric charges (but not of higher-order singularities in
the electric field), such as contained in the well-known
development by H. A. Lorentz, the macroscopic quan-
tity B is the mean of the microscopically defined mag-
netic field h, and is thus more closely related to the
original magnetic field than the quantity called 3¢ in
macroscopic field treatments. This situation is similar
to 3 being a solenoidal vector according to (2.4) and
(2.7). In spite of the analogies, however, the quantity
occurring in the previously quoted equations of BW is
not the magnetic field but the 3Cess of Eq. (2.4).

According to Egs. (2.1) and (2.3) the interaction en-
ergy between radiation and matter is

1
H'=—- / {Js+(e/2M) [[VX 0as ¥ >V 5]} - Adr
c
1
=—— /([J,ﬁ—c curlM]-A)dr, (2.9)
Cc

where A is the vector potential of the external field, i.e.,
of the incident plane wave, and differential operators
are supposed not to apply to quantities outside the
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special brackets. Although (2.9) is clearly the value of
the interaction energy, it is not immediately clear from
the form of the equation that it gives correctly the main
effect of interest in the d(y,%)p reaction, viz., thechanges
in the state of the p-» system. That this is so in the case
of a single Dirac proton follows, however, from the first
of the two forms j in (2.1) and the standard form of
the interaction Hamiltonian of a Dirac particle, com-
bined with the fact that it suffices to transform the
matrix elements from the four-component ¢ to the two-
component ¥ forms. In (2.4), M includes effects of the
Dirac part of the magnetic moment only. The inclusion
of the pion-nucleon interactions adds in effect the
“Pauli” part of the magnetic moment of the nucleon to
the Bohr magneton in the equation that results from
multiplying Eq. (2.1) by e. It may be verified that this
addition is also correct so far as the employment of the
modified M in (2.9) is concerned. The verification is
essentially the same as that used in showing that the
force exerted on a system of atomic electrons by an ex-
ternal magnetic field can be calculated by replacing all
atomic currents with an equivalent magnetic shell, even
though there are induction effects associated with the
Larmor precession. The general relation thus becomes

J=Js+c curlM. (2.10)

The contribution of M to J can be pictured as the result
of local current accumulation resulting from space non-
uniformity of the intensity of Amperian whirl density.
For example, if the whirls are around the z axis and if
their intensity varies along the % direction, then the
magnetic moment of the magnetic shell formed by area
AxAy is J;AxAy/c, and M,=J;/c. On account of the
variation of J; with x there is a contribution to J,

Jy=[—(8J:/0x)Ax]/Ax=—cOM ,/dx=c curl, M.

It is thus clear that for a single particle, Eq. (2.9) ap-
plies, with M representing the intensity of magnetiza-
tion that would be present had the Dirac and meson
parts of the spin current been replaced by ¢ curlM. The
result is the same as though M were caused by magnetic
dipoles. It applies to neutrons as well as protons.

III. ELECTRIC MULTIPOLE
INTERACTION ENERGY

The presence of exchange potentials brings with it34
the possibility of modifications of the operators to be
used for electric currents. Considerations regarding the
possibilities for the absence of modifications in the cal-

3 H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (London)
A148, 206 (1935); Nature 133, 211 (1934). It has been suggested by
Massey and Mohr, following a related discussion by Taylor and
Mott, that electric dipole radiation might disappear for systems
governed by Majorana forces.

4 G. Breit and E. U. Condon, Phys. Rev. 49, 904 (1936). Argu-
ments have been given in this paper for calculating the E-1 effect
by the usual —e(&-r) form of interaction energy in thenonretarded
approximation. It was also pointed out, shortly before Eqgs. (2),
that one would expect a modification of the usual expressions for
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culation of E—1 transitions have been given by Siegert,5
Lamb and Schiff,® and others.”8 A discussion by Sachs’
based on the work of Austern and Sachs proves in a
certain sense that “the electric multipole moment opera-
tors are independent of exchange effects.” Since the
multipole classifications of Sachs and of BW are not
the same, since further spin-orbit potentials have as-
sumed an added importance, and since the calculations
of the d(ym)p reaction are much simplified by the
Franz-BW classification, it appears desirable to reexam-
ine the question directly in connection with the BW
presentation and the BW analysis of a plane electro-
magnetic wave into multipoles. According to Egs.
(5.4a) and (5.4b) of BW, the field strengths of a circu-
larly polarized plane wave may be represented as

&)=Y i[2r(2+1) ]2
1

X ’i curl[Fl(p)Xz{l—l-

K p

fl_(l’)xlsl ) (313)

p

3e,(1)=3" ¢ 2x(20+1) 12
. FZ(P) 1/ Fl(p)
X { [

—1is X;,—- curl
) K

x,s]} . (3.1b)

P

where

s=1, (3.1¢)

depending on whether the wave is right or left polarized;
k is the absolute value of the propagation vector, i.e.,
2m times the wave number;

p=rr;
and

Fulp)= (mp/2)"2T 11.1/2(p) = pJ1(p) , (3.1d)

with J.(x) denoting the Bessel function of order # and
argument x. The symbols &(r), 3¢(r) are related to the

the electric currents on account of the presence of exchange
potentials.

5 A. J. F. Siegert, Phys. Rev. 52, 787 (1937).

¢ W. E. Lamb, Jr. and L. I. Schiff, Phys. Rev. 53, 651 (1938).

7 Robert G. Sachs, Nuclear Theory (Addison-Wesley Publishing
Company, Inc. Cambridge, Mass., 1953). In the footnote on p. 243
of this reference the view regarding the propriety of employing
—¢(&-r) which was taken in Ref. 4 was attributed to Siegert.

8 N. Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951). Cf.
also R. G. Sachs, sbid. 71, 457 (1947); J. G. Brennan and R. G.
Sachs, bid. 88, 824 (1952). In the last-named reference, essentially
the same multipole classification as in the present paper is em-
ployed, and limitations of the EEA theorem are discussed. There is
also some overlap in the results and claims, especially those in the
present section (Sec. III) of this paper. But in the present discus-
sion no explicit use of gauge invariance is made. The argument is
as a consequence less abstract and more pictorial. It is believed to
have an advantage in applications involving an approximate treat-
ment of form-factor effects, since gauge invariance relies on a strict
point-charge interpretation of the proton, and is not truly appli-
cable to a composite nucleon-meson system unless the constituent
parts are explicitly included.
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complete field strengths &(r,t), 3¢(r,t) by

&(r,t)=8(r)e "ot 8*(r)e*t, w=ck  (3.1e)
3e(r,t) =5e(r)e—tot+-ge*(r)e;
and
Xin=LY1a(8,0)/[0(+1) ]2 3.2)

is a special case of a vector spherical harmonic. The
angles 6, ¢ are the colatitude and azimuth of r for polar
axis along . The electric multipole part of &(r) is

&x1,(0)=C1, curl[Fi(p)X1s/p]=~Cie curl[LriV ], (3.3)

where
Ci'=4[2x(214+1)]'2,
s/k=QRIHDNII+1) ] 2% Chs.

The approximation made in Eq. (3.3) consists in keeping
only the first nonvanishing power of p in the power-series
expansion of Fy(p). This procedure is valid in the non-
retarded approximation, in which the dimensions of the
deuteron are considered small in comparison with the
wavelength of the y ray. From the expansion of Fy,
requiring that the first neglected term be small in com-
parison with the one kept, it follows that

2r2K2(214-3)

(3.3

(3.3

must be required in order that the approximation be
valid. The approximation becomes increasingly better,
therefore, as  increases. It follows from (3.3) that

o= —(+1)iCisr'¥ .

Here ¢m, is effectively the electrostatic potential for
the Els part of the plane wave. The mutual energy be-
tween p*(r), defined as the e?! part of the charge den-
sity p(r,f) = p(r)e~i@t4p*(r)e*v?, and the Els multipole is

8m1(1) =~ — V omis, 3.4)

Hpgi/'= / p*(@) omidr. (3.5)

According to Appendix B of BW
&,(r)= (1,4 sil,)eixe /2112

where 1., 1, are unit vectors along the x and y axes, re-
spectively. Hence

[81(1)+&-1(r) ]/2"/2= &.(r)

gives a wave polarized with electric vector along the x
axis of a Cartesian coordinate system, the z axis of
which is the polar axis of the system used for 6, ¢. The
% axis corresponds to ¢=0. Accordingly the mutual
energy of p*(r) with a plane-polarized electromagnetic
wave having for &(r) the vector

&.(r)=(1,0,0)¢i*

(3.6)

(3.6")

(3.6”)

is a sum of contributions from various electric multi-
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poles El, each contributing
Hp'= / p*(Y) om1edr, (3.7)
where
eme=2 ome/2'?, 3.7)

the sum being taken over s=1, —1. On making use of
(3.3") and (3.4) there results the explicit form

+1 Il

1/2
Hod =i —=)  [r(241)]" ————
et (z) [r(@+1)] [(zz+1)u]

X/p*(r)rl[Yz'1— Yz__ljdl’. (38)

This form has been obtained for a field which is the
gradient of a potential, as seen from (3.4) and (3.7’). For
such a field the force exerted on a particle is derivable
from a potential energy which is the charge of the par-
ticle multiplied by the potential. One may use therefore
Hpg', Hgi,' as the perturbing Hamiltonians for circu-
larly and linearly polarized v rays in the nonretarded
approximation. It is seen that the question of exchange
currents does not enter this phase of the problem. The
reason for this simplification is the existence of ¢g;,. It
is a natural extension of the argument used in Ref. 4 in
the special case of the electric dipole. Formally the
result is the same as that of Sachs and Austern except
for the fact that in the Franz classification the absence
of exchange-current effects has been shown to hold only
in the nonretarded approximation. The step from (3.3)
to (3.4) makes use of the identity A(»*¥;,)=0, which
leads to the disappearance of rA(r'Y;,) in the direct
evaluation of (3.3). This circumstance is special to the
first term of the expansion of F;, and does not hold for
the exact expression. Thus in general

curl? Fi(p)X;s/p ]540

and the motion of a particle is not describable by a
potential.

IV. MAGNETIC MULTIPOLE
INTERACTION ENERGY

The effect of M on magnetic multipoles may be ob-
tained on noting that the last term in curly braces in
(3.1b) takes the place of the first term in curly braces
of (3.1a) when one goes from electric to magnetic multi-
poles and makes use of the following consideration re-
garding the similarity of electric and magnetic quanti-
ties. From (2.5) and (2.6),

¢ curldCese(r) = — 108 (1) +4wJ s(x) ,
¢ curl&(r) = iw[ Fes:(r) +47M(r)],
div] s(r) =iwp(r),

(4.1a)
(4.1b)
(4.1¢)
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where the original Js(r,f) is represented by
Js(r,8) =Js(r)e~iot4J g*(r)eivt.

The first three equations are very similar to Egs. (4.1a),
(4.1b), and (4.1c) in Appendix B of BW, but differ from
them through the occurrence of 3C in place of 3¢, and
of Js in place of j. It follows from (4.1a) that

(4.1d)

divE(r) =4np(r) (4.2a)
and from (4.1b) that
div3Cess(r) = — 4 divM(r). (4.2b)

Comparison of (4.2b) with (4.2a) indicates that the re-
placement p(r) — —divM(r) combined with s— —i,
the latter arising from the comparison of the relevant
terms in (3.1a) and (3.1b), should give the contribution
of M to the magnetic multipole interaction. This pro-

cedure gives
es=— (l-+1)sC17'V 14
I\ 27 (204-1) ]2
<__> —Vy, (4.3)
l @4nn

HMZ.": —-/[diVM*(f)]qoMzsdl'.

= gt

(44)

The meaning of s is here the same as previously, i.e.,
s=+1 and s=—1 give, respectively, right- and left-
handed polarizations of the incident plane wave. From
(4.4) it follows that the interaction energy for a plane
wave polarized along the x axis is

1H1\12 [x(214-1)]12
Ha' = ilKl-—l(____> - T
! Qi+

X / [divM*@) (Y ut Vi )dr. (4.5)

The somewhat formal procedure giving H ;. through
a comparison with H g;;’ may appear unsatisfactory be-
cause in the photodisintegration process the production
of the field by the fictitious magnetic charge density
—divM does not enter directly. The expansion of the
plane wave into multipoles as in (3.1a) and (3.1b) should
suffice for a complete treatment of first-order effects, and
the comparison of (4.2a) with (4.2b) appears at first
sight irrelevant. The inverse reaction p(u,v)d, however,
is concerned with field production, and the substitution
p(r) » —divM(r) is in this case directly applicable.
According to reciprocity, correct results for transition
matrix elements are therefore obtainable by the proce-
dure used. The result of a direct transformation of the
original interaction energy which agrees with Eq. (4.4)
is given in the next section. Independently of this con-
sideration, a photodisintegration reaction such as
d(y,m)p, when considered directly, can be treated by
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means of Eq. (2.9), employing for A a vector potential
describing the incident plane wave. The part of H’
corresponding to M is

HM’=—/(A~curlM*)dr=——/(M*-Gc)dr. (4.6)

If, within the physically important region, 4¢ is deriv-
able from a potential as

5C=-—Vg05c,

then the nonretarded approximation to Hy' is

4.7)

Hw'= / (M*- V gye)dr=— / e divM*dr.  (4.8)

The replacement of p(r) by —divM(r) is thus justifiable.
The magnetic multipole transitions are also affected
by the Schrédinger current density Js. The magnetic
field caused by this current can be described by a vector
potential. Employing the transformation from the curl
form to the gradient form in the same way as in going
from Eq. (3.3) to Eq. (3.4) and treating the magnetic
field produced by J as in magnetostatics, one finds

Fess~ CurlAmgst, Amgn= (_i/s)clsL(rlYls) (4~9)
and hence
Hiygl=— (1/sc)Cl,/(r’Yl,) div[Js*Xr]dr, (4.10)

which, combined with (4.8), gives

+1
(Hw'+H Js’).=———Cz./r‘Yl,
s

{ diV[l‘X J s*]

+divM*}dr, (4.11)
c(l4+1)

where

(4.11")

ML ()] 1y e
s @ \7) '

For linear polarization of the incident wave along the x
axis, employing (3.6) as in obtaining (3.8),

- , +1
(Hwm'+H 34 ),=-—\/j—sCu/rl(Yz,l+ Yi-1)

+divM* { dr.

{ div[rXJs*] (4.12)

c(i+1)

In the above discussion no clear distinction between
the meaning of H’ as a part of the Hamiltonian and its
meaning as a contribution to the total energy has been
drawn. The expressions obtained may nevertheless be
used as contributions to the Hamiltonian in the photo-
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disintegration problem, provided they are suitably in-
terpreted. This follows from the fact that if in the formu-
las for Js and M the replacement

Wo* — ot (4.13)

is made, and ¥,, ¥, are interpreted as the Jordan-
Wigner quantized wave functions, then the transforma-
tions used are still valid. On the other hand, ¥,, ¥, are
connected with the quantized wave functions y,, ¥,
of the original Dirac formulation by the same equations
as connect the unquantized ¥,, ¥,* with the unquan-
tized ¥, ¥, provided the replacement

Y — \IIMT

is made. Since the original interaction energy, expressed
in terms of ¥, ¥,*, has also the significance of the inter-
action Hamiltonian representing the coupling of radia-
tion and matter, the necessary matrix elements may be
calculated by regarding H' as the interaction Hamil-
tonian also in the formulation employing two compo-
nents per particle. The quantities J*(r), M*(x), Js*(r),
and p*(r) are readily identified with expressions involv-
ing the initial and final states of the material system,
either by means of quantized amplitudes or directly in
spin-coordinate space. They correspond to the employ-
ment of operators JO», MO, JOr and p° such that,
taking M*(r) as an example,

(¥, MOPT,) 5, =M*(x),

(4.13)

(4.14)

where the inner product is taken over spin coordinates
only, as indicated by the subscript Sp. In (4.14), ¥; and
¥, are the wave functions of the system of particles in
the initial and final states, respectively.

V. EFFECT OF RETARDATION AND
ADDITIONAL TERMS

The formulas discussed so far have been obtained by
neglecting in each F,(kr), which originally entered
through the electromagnetic field expressions (3.1a) and
(3.1b), all but the lowest part of x». The approximate
results obtained in this way can be made to include the
effect of all multipoles, but the evaluation of the effect
of any one multipole is not exact. A complete evaluation
requires a knowledge of the exchange currents, which is
not available. For the present it will be supposed, how-
ever, that the exchange-current operators will eventu-
ally become ascertained, and the expressions for the
interaction energy will be written out in such a way that
the terms in which exchange-current effects can appear
are obvious.

The electric multipole effects are caused by the first
two terms in curly braces in (3.1a) and (3.1b). They
may be represented by means of the four-potential
having for its space part

Ap1, () =Amio(r)— VO1,(1) / (ix) , 6.1)
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and O for the time part. Here one may take

AEla(r)=Cls,sz(Ki’)st/El(l’f-1)]1/2 (51')

and
@p15(r) = —iCr'[dFy(kr) /d(kr) ]V 1s/[UE+1) T2, (5.17)
The field strengths are

Ep1:(r) = — 0A g15(Y) /cOt— VD gy, (1), (5.2)

where 9/cdt=—ix for electromagnetic field quantities
in accordance with (3.1e), and

JcEls(r) = CurlAE,s(r) . (53)
Equations (5.2), (5.3) have the same form as though
one used (Agi;(r),®m.(r)) as the vector and scalar po-
tentials, respectively. Whether this is done in place of
using (Az,;®(r),0) does not matter, but it may be ob-
served that the (Agi(r),®mi(r)) do not satisfy the
Lorentz condition. This, however, is immaterial to the
application of the four-potential. In fact, from (5.1) and
the equation of continuity
divI*(r)+icxp*(r)=0, (5.4)

together with the assumption j(|r| = )=0, it follows
that

1
Hpg'=—- /(AElc(O)(r) -J*(1))dr

c
1
=/[‘I’Els(r)P*(r)“‘Ama(r)-J*(r)]dr. (5.5)
¢

This interaction energy follows directly, employing
either of the two gauges already mentioned. Substitu-
tion of ®gi,(r), Agi(r) gives

Chl sz(Kf)
Hol=—— | v —i
" [l(l+1)]1/2/ Y[ e @

1
~Z¢- J*(xr))F;(Kr):Idr. (5.6)
c

The first term does not contain the current density, the
equation of continuity having been used in the form of
Eq. (54) to express this part in terms of p*(r). The
question of exchange currents therefore does not affect
the contribution of the term containing p*(r) in the
bracket in Eq. (5.6). This contribution is thus analogous
to the electric multipole contribution in the classifica-
tion of R. G. Sachs for which there are proofs™# of the
independence of electric multipoles on exchange current
effects.

Formally, the procedure used here appears at first
sight to be very different from that used by Sachs.
However, the difference is not great. In the Sachs-
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Austern proof, the independence of

Di=2_ ¢;(u-1;) (#-1;) "

on exchange currents is an essential ingredient, but
the primary cause for the success of the proof is that
the electric multipole effect is expressible as a gradient
of a suitable function. The employment of gauge in-
variance shows that there exists such a function. But
the demonstration of its existence and its determination
do not require the direct employment of gauge invari-
ance. The occurrence of the gradient becomes evident
in the present case in the second term of Eq. (5.1) and
is responsible for the appearance of divJ*(r) in (5.6),
which brings in p*(r) according to (5.4). The questions
arising about the correctness of the usual calculation of
o*(r) are related, however, to the questions about the
correctness of calculating J*(r) without taking account
of exchange currents. The least that may be expected is
an inaccuracy in the employment of ey*y for a charged
particle in the computation of its charge density, the
recoil action of the meson emission providing some
smearing in the effective position of the nucleon charge.
Some of these form-factor effects are present, however,
even if the interaction with the second nucleon is very
weak, so that they cannot be blamed completely on
meson exchange between the nucleons. Following cur-
rent custom, however, these effects will be neglected
below, and it will be assumed that p*(r) can be obtained
from ¢*¢ in the usual manner.

The second term in square brackets in (5.6) contains
in J*(7) the effects of M*. These have been deliberately
left out in some earlier calculations.® The character of
the omitted effect is seen from (2.10), according to which
the contribution of M to J is ¢ curlM. The effect of nu-
cleon structure can conceivably be large for this term,
because the contribution to J is a differential effect be-
tween the intensities of M at neighboring points. The
evaluation of effects of this term appear to be insuff-
ciently reliable to justify its inclusion when other effects
such as retardation have been omitted, but it is in-
consistent to omit this term if retardation is taken into
account.

The effect of M on magnetic multipole transitions is
less delicate, depending on M directly rather than on
curlM. Neglecting the effect of curlM on the EI transi-
tions would be inconsistent with taking retardation into
account, and is to some extent inconsistent with the in-
clusion of effects of many multipoles.

Magnetic multipole effects can be similarly treated.
The part of the vector potential corresponding to mag-
netic multipole radiation for a magnetic 2! pole is

Ci'Filkr
G l(K)X

Mls— A ls
18Ky

(5.7)

9 M. L. Rustgi, W. Zernik, G. Breit, and D. J. Andrews, Phys.
Rev. 120, 1881 (1960).
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and the corresponding magnetic field is

FCars=curlA yry,, (5.8)

since these equations clearly account for the second
term in curly braces in (3.1a) and the first in (3.1b). The
2%-pole contribution to the interaction energy may be
put in the form

H'=Hp'+Hal' (5.9)
with
;L Czs Fz(m’)f "
Ml = TR / Vi o (r: curlJ*(r))dr
Czs//&‘ dFl(Kf')
= / st{ diVM*
[l@+1) ]2 d(xr)

F;(m')

—[(r-curl g*)+cx?(x- M*) ] ]dr. (5.10)
Krc

In the second of the above two forms of Hys,/, the in-
dication of the argument r in M* and Jg* has been
omitted so as to shorten the formula. Combining this
form with (5.6), (5.9), and (3.3"),
2w (204-1) 12
k[ I(+4-1)]t2
dF,

d(kr)

X {i[ (divJ*)dd(f:) — k(- J*)F,:I—f—(divM*)

—«k(?- (M*+ curIJs*/cx“’))F;} dr. (5.11)

In this form the symmetry between electric and mag-
netic quantities is apparent. The bracket inside the
curly braces originated in the electric multipole part of
the plane wave. The last two terms correspond to mag-
netic multipoles. Leaving s out of consideration, the
magnetic quantity divM* corresponds to the electric
quantity divJ*/(ck), and the magnetic quantity
M*4-curlls*/(ck?) corresponds to J*/(ck). Both state-
ments could be covered by regarding J*/(cx) as replaced
by M*+curlls*/(ck?). The current density J*(r) en-
tering the electric quantities contains the Schrodinger
current Jg*(r) and ¢ curlM*(r). From (3.3), it is seen

that
27r(2l+1):,1/2

1
5000034 =+
¢ I(1+1)
s
X—JI*(x) - curlZy,, (5.12)
ck?

where

ZstFz(m’)LYls/(K?') . (512,)
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Substitution in (5.5) with the aid of (2.10) and of
f B(x) - curlM*(r)dr= / M*(x)-curlB(@)dr, (5.13)

which follows for the boundary conditions at infinity
previously used, with B(r) standing for any of the field
strengths used here, gives

w(2041)74/2
2_52___*:_)_:' , (5.14)

I(1+1)
hEza='/{j—zJ,g*(r)-curIle—I—sM*(r)-le]dr. (5.14)
K

Heg'=Kihgis, Ki= i"“[

Hence the_ calculation of Hg;,’ may be performed em-
ploying the operator

Hpi 2= Kihgi,OP, (5.15)
hg10P= (s/ck?)J 0P - curlZy+su®r-Zy,, (5.15)

where JgOP and yOP are the operators giving, respec-
tively, the Schrodinger current and the magnetic mo-
ment of the system. The operators are meant to be used
in the sense of Eq. (4.14). The justification for including
all the effects of all the particles by summing the opera-
tors for the individual particles can be formulated, of
course, by means of quantized amplitudes along the
lines mentioned in connection with Eq. (4.13). For_the
Schrédinger current operator one may use

Js%= (/i) (e/ M3)s(;=1)V;,  (5.16)

where the summation is taken over all the particles.
Their charges and masses are denoted by e; and M,
respectively,’ the subscript 7 being used as a particle
label. Equation (5.16) follows from the fact that

/ Cle) - [o* V= Vo¥ i,
- / C(x)- o*Vidt;, (5.16)

which holds provided the otherwise arbitrary vector
C(r;) satisfies

fdiVj[¢*¢C(rj)]de= 0. (5\.16”)

This relation”is satisfied for the C(r;) occurring in the
present problem whenever at least one of the states
¢, ¥ represents a bound state, as is seen from Eq.
(5.14').

According to the discussion of the meaning of M fol-
lowing Eq. (2.10), it is permissible to use

yoP: Z (eh/ZMC)ujUj(S(l‘j— l') , (5.17)
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where the u; and oy are, respectively, the magnetic mo-
ments in Bohr magnetons and the Pauli spin matrices
of the particles. A short calculation making use of (5.7)
shows that

1
Hyp=—~- /AMh' (Js*+c curlM*)dr= Kihap,, (5.18)
¢

where

1
ths=—/[(1/0)13*-erl*M*-curlZ;.]dr. (5.19)
K

Hence the calculation of Hyy,” may be performed by
means of the operator

H 1=K iagi 0P (5.20)

where
hants®P= (1/kc)J §OP - Lo+ (1/k)uOP- curlZ,,  (5.20° )

and the operators used in the sense of Eq. (4.14) are
again as in (5.16) and (5.17).

In Egs. (5.14) and (5.18) the vector densities Jg*(r),
M*(r) may have to be supplemented by exchange cur-
rents. The employment of the spin-coordinate-space
operators Js°%, o in the form of Eqs. (5.16) and (5.17)
does not take these contributions into account, and
caution must be expressed regarding the literal use of
these expressions.

In (5.20) the position of °® corresponds to the mu-
tual energy of a magnetic doublet and the external mag-
netic field. In the absence of exchange current and
associated exchange-moment effects, this form has been
derived above—even though the origin of M is in the
electric currents, as follows from Sec. IT and considera-
tions in connection with Eq. (4.13). Similarly, the
position of J5°P in (5.15’) and (5.20’) corresponds to in-
teractions with the nonrelativistic momentum, although
the actual current has a more complicated structure.

VI. ELIMINATION OF THE DEUTERON'’S
CENTER OF MASS

On account of the large ratio of the nuclear to the
electronic mass, the motion of the center of gravity of
the atom is relatively unimportant in the interaction of
atoms with the electromagnetic field. In the case of the
deuteron the masses of the proton and neutron are prac-
tically equal, and greater care must therefore be exer-
cised regarding the distinction between the motion of
either particle around the common center of mass and
their relative motion. Taking the proton and neutron
masses to be equal, there is the temptation to write
r,=—TI,=3r, where r=r,—r, is the relative coordinate
vector of the two particles, while r,, and r, are, respec-
tively, the coordinate vectors of the proton and neutron
in the center-of-mass system. Actually, however,

t,=R+ir, r,=R—1r, (6.1)
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where R=2(r,+r,) is the coordinate vector of the center
of mass. To set R=0 implies perfect definition of the
position of the center of gravity and therefore an infinite
spread in the uncertainty of its momentum P. Such a
spread leads to a large spread in the apparent frequency
of the incident radiation as it appears to the deuteron,
and hence to the inapplicability of usual theory. If one
of the center-of-mass coordinates were defined to within
AX =¢*/mc? the associated minimum uncertainty in
the kinetic energy of the momentum of the deuteron
would be AP, = (%ic/e*)mc=13Tmc, and the correspond-
ing uncertainty in the energy of the deuteron would be

AE;=(AP;)*/(4M)

= (137)2(m/4M )mc?~1.2 MeV. 6.2)

Here m, M are, respectively, the masses of the electron
and nucleon. For high E this uncertainty is not very
serious, but for y-ray energies in the 1-20-MeV range
it is too large to make ordinary theory applicable.
Furthermore, AX =2.8 F is not small compared with the
dimensions of the deuteron, % or 7% of this value being
presumably necessary in the definition of its position if
details of the angular distribution were to be guaranteed
from the viewpoint of accurate localization of every
point. On the other hand, the localization of the center
of mass is not directly related to the angular distribution
of the disintegration products. It is necessary therefore
to consider the situation more completely.

The discussion presented below is closely related to
Sec. 3 of Chap. VII of Ref. 10. The presence of many
final states in the continuum of the p-n system and of
just one plane electromagnetic wave initially are the
main reasons for the impossibility of direct employment
of results in the reference cited. The initial and final
proton-neutron wave functions will be taken to have

the form

i(R,r) =y(r) exp(—iwid) / Ci(K)e'®RdK,
(6.3)

1
¥, (R)=—— / C/ (K, k) e'E Ry, O (r) dKdk.

(2m)?

In the first of these equations y;(r) is the space factor
of the initial deuteron wave function, the energy of the
deuteron is %w;, and the integral is the wave function of
the center of mass. The second equation gives the ex-
pansion of the final-wave function in products of plane
waves for the center of mass with the functions ¥« (r),
each of which is the ingoing-wave modification caused
by the p-# interaction of a plane wave of unit density in
the space of relative coordinates r with momentum #k
at infinite 7. The coefficients C* and C7 are time-depend-
ent. The spin coordinates of the proton and neutron
enter ¥; and the ¥, but are not explicitly indicated. The

10 G. Breit, Rev. Mod. Phys. 5, 91 (1933).
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deuteron is actually bound in a molecule or a similar
structure. A complete treatment would include the con-
sideration of forces that keep the deuteron in place be-
fore the collision with the photon, and would therefore
be complicated, especially because the forces may be
different in the initial and final states. The problem is
therefore first considered here only in the impulse ap-
proximation, i.e., as though the forces binding the deu-
teron to the molecule were switched off at the time =0
and the interaction with the incident electromagnetic
wave were switched on at the same instant. The relative
smallness of the molecular forces suggests that this ap-
proximation is good enough. Arguments to be mentioned
at the end of this section show that conclusions arrived
at here employing the impulse approximation should
hold also if this approximation is not made.

The wave packet represented by the first of the two
equations (6.3) spreads with time. This spread is caused
by the time dependence of the C#(K), which is not ex-
plicitly indicated. Since the deuteron has only one
stable state, the whole wave function may be repre-
sented as ¥;+4¥,. Substitution of this expression into
the Schrédinger equation gives, on making use of

/ Yo O OO @dr=2m)%(k—k),  (6.4)

the result
hd  HK®  h2k? exp(—iwt)
(o= — T
idt AM 2 (273

X/ RO (0,16 Ry, (1)

XC{(K")dK'dRdr, (6.5)
where u=3M is the reduced mass for relative p-n
motion. The Hamiltonian is supposed to have the form

H=Ht+H', (6.6)

with H, taking account of the kinetic energies of the
proton and neutron and of their interaction energy.
The interaction energy of the two particles with the
incident photon wave is represented by H’. The absorp-
tion of the photon is obtained to within first-order terms
of H' by solving Eq. (6.5) for C’, employing the unper-
turbed values of the C? on the right-hand side. The
inner product under the integral sign is meant to apply
to spin coordinates only.

In the special case of the interaction of the Schréd-
inger current with a transverse electromagnetic wave,
the part of H’ responsible for photodisintegration has
the form

H1/= -

7
- ;C@- [V,— (), expli( rp—ai)], (6.7)
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with the understanding that the arrow pointing to the
left indicates the application of the differentiations to
the first rather than the second factor of the inner
product. Substitution into (6.5) gives for this part of
C’ the equation

[hdJ 72K+ h%z] hie

T |‘ C1I(K+ L) k)E’ﬁ—C’(K)
1idt aM 2u 2iMc

Xespl—ifock] [ (GO, a-(Tem (9]

Xet 2y (1))+i(a- K)@u O @),e */2p(r))}dr.  (6.8)
The vector a is defined by

A(r,l) =a¢—iwixn | g¥gilet—en) 6.7

Only the first part on the right-hand side is kept, since
the second does not contribute to absorption. Summa-
tions over spin indices are understood but not indicated
in the inner products of Eq. (6.8).

The second term in curly braces can easily be missed
in an “intuitive” consideration. It will be seen that it
may be assumed to vanish in the nonretarded approxi-
mation unless an energy dependence of the p-» potential
is postulated. This dependence must be of a special
type, however, if a nonvanishing result is desired in the
present treatment, because in the proof of Eq. (6.4) it
is assumed!! that the radial functions for uncoupled
states entering the ¥x satisfy the orthogonality
relation

/ﬁL(kr)S’L(k'r)dr: irs(k—F"), (6.9)

which holds for energy-independent potentials, but may
be violated otherwise. Since the bound state does not
enter Eq. (6.4), it is conceivable that

/ @ (1) ¥i(x))dr%0

without violation of (6.4), provided that the potential
for the deuteron ground state differs from the potential
in unbound states, and that the potential in unbound
states of the same symmetry is the same. This possi-
bility is very improbable, however. Furthermore, the
values of K corresponding to nonvanishing C¥K,f) in
the photodisintegration problem are small. Thus as-
suming that the deuteron is bound in a molecule within
a distance tag=~10~? cm, where ¢y is the Bohr radius,
the value of k/K =~ 54(#iw) mev > 118. Furthermore, if the
molecule is at rest, K has an angular distribution with
the same probability along a as in the opposite direc-
tion. The nonretarded effect of the term in (a-K) is
therefore negligibly small.

11 G. Breit, Ann. Phys. (N. Y.) 16, 346 (1961).
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The effect of the factor exp(ix-1/2) is to give, at low
energies, matrix elements of the same type as for El
transitions. In this approximation the orthogonality of
different states illustrated in Eq. (6.4) does not make
the result vanish. The randomness of directions of K
with respect to a, combined with the abovementioned
relative smallness of the important range of values of
K, makes it improbable that the effect of these terms
need be taken into account. This is especially true be-
cause even apart from the randomness of the directions
of K, the effect of the terms is very small at low energies
on account of the smallness of «; whereas at high energies
the accuracy of the measurements is small, and the pres-
ence of effects of many electromagnetic multipoles in-
troduces other uncertainties in the calculations. The
terms in (a-K) will therefore be omitted, even though
they are present in principle.

If instead of using Eq. (6.3) the motion of the p-# cen-
ter of mass is disregarded, and the problem is treated in
the fixed-center-of-mass procedure (FCOMP) by setting
the p-n wave function equal to

Y= cipi(g)eionnt f MO dk/2r),  (6.10)

then a calculation similar to that which gave (6.5)
starting with (6.3) gives

hd h*% exp(— 1wt
<_~+_’)C,(k)=_ﬂ_w_>c..
idt 2

x f GO, H ). (6.11)

Employment of the part H," of H' and the assumption
that the calculation of first-order effects suffices makes
¢t time-independent and gives for the first-order effect
on ¢/ the equation

hd 7k
(D)oo

idt 2

e
cte —i(witw)t
2iM¢ xpL-ilorto)]

X f GO, [a- (Vi (Ve dr. (6.12)

On account of the transverse nature of the incident
wave, the factor exp(ix-r/2) can be taken out of the
(') in both (6.8) and (6.12). For K=0 these two equa-
tions are seen to be very similar. To make the corre-
spondence more complete one may set

Ci(K)=c"5(K). (6.13a)

The first line of Eq. (6.3) gives then ¥, = ciy; exp(—iw;f),
which is the same initial state as in (6.10). Equation
(6.8) shows that Cy/ is of the form

Cy/(K+x, K)= e/ (K+x, K)o(K),  (6.13h)
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which according to the second line of Eq. (6.3) gives
eix-R

EaR =T f (O @dk (6,130

)3

and according to (6.8)

hd B2 h2k?
[ Y
it 4M 2

e
¢t exp[ —i(wstw)t
P, xp[ —i(witw)l]

X / WO @),[a- (Vi— () V) Jerer/20,(r))dr. (6.13d)

This equation is similar to Eq. (6.12), but differs from
it by the presence of the term #%%2/4M in the factor
multiplying @i/(x,k). If it were not for that term,
@1/ (x,k) would be equal to ¢y/, the right-hand sides of
(6.12) and (6.13d) as well as the initial conditions for
@4/ and ¢,/ being the same. The quantity #%%?2/4M is the
kinetic energy of a particle with mass 2/, which is the
sum of the proton and neutron masses, and momentum
#x, which is the momentum of the absorbed photon. A
consideration of the well-known way in which the en-
ergy #2k%/2u becomes selected if the electromagnetic
wave acts for a long time shows that for (6.12)
#2k2/ 2= o+ Hes; (6.12%)

and for (6.13d)
#2k2/ 2u~+h22/AM = ho-+fiw;. (6.13¢)

In addition to this difference between the FCOMP and
the more realistic consideration, the factor exp(ix-R)
in (6.13c) modifies the final-state contribution to ¢,
represented by the second term in (6.10). This modifica-
tion corresponds to the transfer of the photon momen-
tum to the center of mass of the p-n system.

The interaction energy associated with the action of
the magnetic field on the nucleon magnetic moments
gives similar results regarding the role of the recoil of the
center of mass. Setting

b=i[“xa] ’
this part of H' for the absorption problem may be taken
to be
Hy'=—(eti/2Mc){u,(h-0,) expli(x-1,—wi)]
+ua(h-on) expli(x-ra—wi) ]},
where the magnetic moments of the proton and neutron
in units of the nuclear Bohr magneton are u, and u,,

respectively, and the corresponding Pauli spin operators
are ¢, and o,. From Eq. (6.5) it follows that

[hdJ (Rt)? Wk

(6.14)

(6.15)

]sz (K+%, k)

1 L

it 4M 2u
= (et/2Mc)C¥(K) eXP[—i(w.-+w)t][ h- / @),

X [ p0 €™ T2+ punonae ™! 2]1,0,-(1'))0’1'} (6.16)
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and from (6.11)

)9 = s expl k]
—_— — ) R y t ,
(idt » [ ZMCC exp[ —#(wi+w)t]{ }

the expression inside the curly braces being identical in
the two cases. Comparing the relationship of (6.17)
to (6.16) with that of (6.12) to (6.8), it is seen that if
Co/(K+x, k) is introduced by changing subscripts 1 to
subscripts 2 on both sides of (6.13b), then the relation-
ship of @/(x,k) to ¢2/(k) is the same as that of @1/ (x,k)
to ¢1/ (k). Thus for Hy', as was already discussed for Hy/,
the modification regarding energy given by Eq. (6.13e)
as compared with Eq. (6.12"), and that regarding total
momentum caused by the factor exp(ix-R) in (6.13c),
describe the effect of considering the system in the im-
pulse approximation as compared with the FCOMP.

The two special cases corresponding to H,’ and Hy'
show the typical forms that enter the comparison of
C/(K+x, k) with ¢/(k). In the case of H,’ the presence
of r, in R caused the appearance of the term containing
(a*K) as a factor inside the curly braces in Eq. (6.8).
The reason for its appearance is that the Schrédinger
current operator contains the differential operator V,,.
The extra term turns out to be small. Aside from it, the
operations contained in H’; are concerned with the pres-
ence of r, and r,, in r rather than R. For this reason the
parts of the right-hand sides of both (6.8) and (6.16) are
the same as the corresponding ones of (6.12) and (6.17),
respectively. These features of the relationship to the
FCOMP of the result of eliminating the c.m. do not
depend on the details of the form of the interaction en-
ergy, since they simply amount to neglecting in the
answer terms arising from [H'e*X-R7],

The change from (6.12") to (6.13e) accompanied by
the inclusion of the factor exp(ix-R) in (6.13c) is equiva-
lent to a Galilean transformation of the final-state wave
function. Stated more precisely, the relationships are
as follows. For the same value of k, the two relation-

ships mean
V= () {{h R (hx)zj” (6.18)
= COMP €X K IN— 1 o .
I rooME O g a
The Galilean transformation connecting the wave func-
tions ¢ and ¢’ describing two particles in the reference

systems K and K’, respectively, is

Y(r,12,0) =y (r/,r2,t')
X exp{ (i/%) (MvoX —:Mve*)}, (6.19)

where the coordinates in the two systems are related by
(6.19")

(6.17)

x=x'+vt/, y=9, z=2, =V,
and where

M=M1+M2, X= (M1x1+M2x2)/M (6.19/')

are the total mass and the % coordinate of the COM.
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Comparing with Eq. (6.18), agreement is obtained if
¥, is identified with ¢, (¥/)rcomr with ¢/, %x with
(M,0,0), and 2M with . Since the coordinate trans-
formation (6.19") means that system K’ has the velocity
(0,0,0) with respect to K, the above identification means
that ()rcomr is the result of looking, in the system
moving with the recoiling center of mass K’, at the state
that is described by ¥, in the laboratory system K. A
property of the Galilean transformation is that if
V(ry,12,8) is the potential energy describing the system
in K, and if V' (xr/,ro,t') is the potential energy describ-
ing it in K’, then

V(r1,r2,t) = V’(l’l’,l"z',t’) . (6.19”’)

This property is in agreement with the second line of
Eq. (6.3), since the ¥x“(r) correspond to wave func-
tions in different systems, and since they are taken to
be independent of the momentum #x of the c.m. as
viewed from the laboratory system K. It is nevertheless
desirable to remember that (6.19”) is correct only in
a nonrelativistic model. The vector fields which are sup-
posed to be partly responsible for nucleon-nucleon inter-
actions transform relativistically in such a way that the
effective potential replacing the V of Eq. (6.19"”) is not
a function of r;—r, only. This complication can be taken
care of by replacing the Galilean with a Lorentz trans-
formation. The replacement of the steps from Eq. (6.3)
to Eq. (6.5) or Eq. (6.16) involves the employment of
relativistic dynamics of the p-» problem and is not at-
tempted in the present paper.

The possibility of describing the nonrelativistic cal-
culation of ¥; by a Galilean transformation does not
mean that the calculation could have been made more
simply in the system K’. In that system the deuteron is
not at rest initially, and the photon wave has a fre-
quency different from that in K. On account of the
initial motion of the deuteron, it is not possible to apply
the FCOMP in K’ directly, since in that procedure the
initial and final p-» functions are treated as though they
were referred to the same coordinate system. A partial
explanation of the agreement of FCOMP with the cal-
culations made on the basis of (6.3) is obtained from
the consideration of the Doppler effect. On account of it,
the apparent value of w in K’ is

o =[1—fi/2Mc]=w—Tu2/2M.  (6.20)
Combining this with (6.13¢) gives
n? s hPk?
' = ——————l—(———— hw,-) , (6.20")
aM 2u
which on combining with (6.13) again gives
L (hotho)=h2k2/ 2u— ;. (6.20")

The right-hand side of the last equation is the photon
energy corresponding to the value of k2 on the FCOMP.
This energy is thus the arithmetic mean of the energies
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in the laboratory system K and in the recoiling c.m.
system K'. Introducing a system K’ in which the sys-
tems K and K’ appear to move with equal and opposite
velocities, the apparent photon energy %’ = fiw— #%?2/
4M. In K" the energy of the center of mass does not
change during the collision. Therefore

fiwo— 123 /AM =i’ = #2k2/ 2u—fw;,  (6.20")
which reproduces (6.13¢). The reference system K
thus corresponds to that used in the FCOMP. It will be
noted that in K’ the centers of mass of the ground and
excited states move with respect to each other in oppo-
site directions. This interrelationship of the initial and
final states is not a part of the FCOMP. The justification
of the latter cannot be made therefore by simple identi-
fication of the fixed c.m. system with K", but requires
an additional dynamical consideration. This conclusion
is in agreement with the fact that in order to obtain
agreement with the FCOMP, it was necessary to discard
the (a-K) term in (6.8). This was done, not as a matter
of principle, but because estimates indicate that in ap-
plications this term has relatively little effect.

The validity of the impulse approximation was pre-
supposed in this section without detailed justification.
In the final state the energies of the proton and neutron
are usually very high compared to molecular binding.
There is little doubt, therefore, regarding the propriety
of neglecting the molecular effects on these states. In
the initial state, however, the deuteron is bound to the
molecule of which it is a part. In this respect there might
perhaps be more doubt regarding the applicability of
the impulse approximation. But although the picture
implied by the impulse approximation does not hold for
the initial state, the effect of this violation of assump-
tions on the equations derived above is small. In fact,
the Fourier integral in the first line of Eq. (6.3) is
still adequate, provided the time-dependent factor
exp(—i#K%/4M) in C¥(K) is replaced by exp(—iet/%),
where € is the energy of the deuteron in the field of the
molecule. The original time factor disappeared in the
calculation after Eq. (6.8) because K was set equal zero,
the distribution of energies #2K2/4M in a wave packet
of molecular dimensions being confined to small values
of the general order of electron volts. The energy e is
negative, rather than positive like #2K2/4M, but they
are of the same order of magnitude. The presence of e
therefore affects Eq. (6.13¢) to a negligible extent. At
very low energies the final state is affected by the inter-
action of the proton with the charged particles surround-
ing the deuteron, but these effects can hardly affect the
Yi(r) at the deuteron or modify the factor exp(¢K-R) in
the second line of Eq. (6.3) appreciably, since in colli-
sions on an atomic scale the proton interaction energies
are of the order of 10 eV, and these interactions affect
the energies at the deuteron only indirectly. For proton
energies above 100 keV these effects may be expected to
be negligible.
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When deuteron photodisintegration data are obtained
employing the bremsstrahlung spectrum, the y-ray en-
ergy cannot be measured directly, but has to be inferred
for each disintegration process from the measured en-
ergy of a disintegration product—usually the proton.
Graphs and tables for this purpose employing relativistic
kinematics have been provided by Wiener,!? and such
calculations were made previously on a nonrelativistic
basis by Scharff-Goldhaber.!® Conversion of cross sec-
tions from the laboratory to the center-of-mass system
is also provided in these references. The center-of-mass
system under consideration is the system in which the
total momentum is zero, i.e., the center-of-mass system
of the disintegration products. Wiener’s opinion that
most theoretical calculations are made in the center-of-
mass system, and that therefore experimental results
should be presented in that system in order to be theo-
retically meaningful, is seen not to be justified if calcu-
lations made by the FCOMP (which constituted the
majority at the time of his paper) are to be included. In
fact, the system K’ used above is the nonrelativistic
c.m. system. The nonrelativistically calculated photon
frequency in it is 1—7%k/2Mc¢ times the photon fre-
quency of the laboratory system, in contrast with the
photon energy #w—#%%?2/4M which must be used in the
FCOMP in order to give the correct value of k. This
energy corresponds to a frequency equal to 1—7#x/4M¢
times the laboratory frequency rather than 1—7#%x/2M¢
times that frequency. However, it is convenient to think
of wave functions as associated with K’ because they
have to do only with the relative #-p motion. It is
furthermore clear that the angular distribution in one
frame of reference can be used to calculate the angular
distribution in another frame. There is therefore no
question of one or another frame providing more
meaningful results.

Since the justification for the FCOMP given in this
section is nonrelativistic, and since there is no available
relativistic justification, it may be suspected that rela-
tivistic calculations will provide a definite improvement
over older calculations?® (except in a literally interpreted
kinematical problem) whenever the FCOMP procedure
remains in error even after the recoil corrections are
made. For this reason it is desirable to examine the rela-
tionship of the nonrelativistic!® treatment to the relati-
vistic!? one.

(1—y2/24- - -) sin®’
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Neglecting the proton-neutron mass difference and
denoting each of these masses by M, the relativistic ex-
pression for the sum of the kinetic energies of the disinte-
gration products available in the center-of-mass system
(the system of zero total momentum) is readily shown to

be

2E)—Mc®)=———| 4] —I—MM[—————— 1:,
(1+27)12 (1+2p2
(hw)?  hw
= fw— | ea]| — +—y24---, (6.21)
2Mgc? 2
where
v="hw/Mac*=8/1-8), B=1v/c, (6.22)

with v denoting the transformation velocity, and with
the deuteron mass expressed as

Mo=2M—|ed. (6.23)

The first three terms in the second form for 2(E,'— Mc?)
are essentially the nonrelativistic ones occurring in
(6.13¢), but with | eg| = — %w;, and with 4M replaced by
2M 4. Since (M 4/2M)—1=—0.001, the latter replace-
ment usually matters little. Otherwise, the first non-
vanishing relativistic correction #wy2/2 is about 0.14
and 0.7 MeV at #w=100 and 170 MeV, respectively.
The kinetic energy 2(E,'— Mc?) is the important quan-
tity for the calculation of the relativistic reduced wave
number k. In this respect the nonrelativistic calcula-
tions appear to be good enough kinematically.

The relation between the angles made by the proton

with the incident photon direction in the two systems is
(1—p2)1/2 ging’
ng=—— (6.24)
cost’'+(BE'/cp’)

all quantities being meant for the proton. The quantity
occurring in the denominator is explicitly calculable

from 7w as
4 ll
op' 2V2(1H){1+[1— (M /M 5)*]/ (27)}?

Expanding in powers of ¥ and neglecting in numerator
and denominator terms O(vy?),

(6.25)

tanf=

The term containing | es| explicitly in the denominator
is usually small, because

| ea| L(2M)+M 4]/2M 422:0.001 .

12 Martin Wiener, Natl. Bur. Std. (U. S.) Circ. 5/5 (1951).
13 G. Scharff-Goldhaber, Brookhaven National Laboratory
Report No. I-3 August 1, 1948 (unpublished).

 cost/+ (&) V1 — 32+ [ QM)+ Ma]|eal /Gy M D+ -}

Excluding this small effect and the (—%v?) correction
terms in the coefficient of sinf’ in the numerator and
in that of the coefficient of (3v)!/? in the denominator,
there results the classical-mechanics relation between
6 and 0, except for the factor (2 /M 4)'/2 in the term
added to cos6’ in the denominator. This effect is usually
very small. The relativistic effects on the angles are
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therefore mainly those caused by the change from 1 to

—2~2, and are of the same relative order of magnitude
as the effects in the energy transformation. Thus at in-
cident y-ray energies up to about 200 MeV, neither the
transformation of kinetic energy nor that of angles indi-
cates, through failure of nonrelativistic kinematics, that
serious errors in the dynamics are introduced by the
nonrelativistic dynamics of the discussion from Eq. (6.3)
on to Eq. (6.20). On the other hand, the absence of
major kinematical effects cannot be regarded as a proof
of the absence of nonnegligible dynamical effects.

The recoil corrections obtained in this section consist
in: (a) calculating the difference between the final and
initial energies of relative motion as

Es— E;=hk2/ 2u— hw;=ho—h%2/4M , (6.26)
and (b) leaving w at its value in the laboratory system
in all parts of the work not concerned with final-state
wave functions. The two interaction energies H,' and
H' of (6.7) and (6.15) have in common the occurrence
of the combinations exp[i(xr,—wf)] or exp[i(xr,—wi)]
in every term. The proof, as carried out, depends on this
feature. Part (a), i.e., Eq. (6.26), is of course a conse-
quence of the conservation of energy and momentum.
The simplicity of part (b) may perhaps be destroyed by
the introduction of exchange-current modifications. If,
for instance, such a modification is made in the Ag,
but not in the ® g, part of Hg;,' in Eq. (5.5) ,then the
sum of the contributions to the total perturbation en-
ergy H' from all [ for s=1is

) g"‘P
@E(l’)= Z q)El,c= T
l=1 21k sinf

X [ze?**—rei*r+(r—z) cos(kr)]

=—(x+iy)/V2+---. (6.27)
The last of the above forms of ® is the result of expand-
ing the form listed just before it in powers of 7, using 7
and @ as variables. In that limit the nonretarded ap-
proximation is thus reproduced. But in general there
occur to both exp(ikr) and cos(xkr) which are not im-
mediately related to exp(==ikz). It is not claimed there-
fore that feature (b) of the recoil correction recipe is
valid for any interaction energy. A violation of feature
(b) is furthermore expected on a composite nucleon
model, because the acceleration of the deuteron associ-
ated with its recoil implies accelerations of the proton
and neutron additional to those taking place on account
of the force acting between them. The associated tem-
porary change of the relationship between the location
of a nucleon and that of its charge-current system may
also interfere with the validity of feature (b). Since,
however, the recoil effect on the cross section is of the
order of only about 109, at a y-ray energy of 177 MeV
and is much smaller at lower energies, and for polariza-
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tion, it appears good enough to use the simple result
for the intermediate range of energies.

VII. DISCUSSION

The considerations presented above have been de-
vised partly for applications to calculations with nu-
cleon-nucleon potentials. As seen in the discussion fol-
lowing Eq. (5.6), there is no complete certainty regard-
ing the accuracy of the final results, even in the case of
the simplest terms originating in the charge density.
It is nevertheless hoped that by classifying the contri-
butions into more and less certain ones, comparison
with experimental data—including those on nuclear
structure—will provide sufficient information regarding
the relationship between ey*y and p*(r) to improve the
meaningfulness of present analyses of the data.

The representation of nucleon-nucleon interactions
by means of static potentials does not pretend to give
a fundamentally meaningful description. The actual
situation cannot be represented in its entirety by a
mathematical two-body problem. There have, however,
been partial successes of such simplified replacements,
both in the theory of nuclear matter and in that of effec-
tive interactions in finite nuclei. The static potentials
are apparently capable of furnishing some of the off-
energy-shell matrix elements approximately correctly.
The uncertainty regarding the correctness of off-energy-
shell matrix elements enters photodisintegration cal-
culations as well, but in this case there are also ques-
tions regarding nucleon electromagnetic factors and
their possible dependence on the interaction of a nucleon
with other nucleons, and related questions regarding
the influence of exchange currents. Since most of the
relations of Secs. IT, ITI, IV, and V refer to the connec-
tion between the electromagnetic field and electromag-
netic charge and current densities, the difficulties just
mentioned enter mainly in establishing the connection
between these quantities and the nucleon dynamics.
However, definite forms of the Schrédinger current Jg
and of M of Eq. (2.4) imply approximations which may
not be valid, quite apart from the difficulties arising
from insufficient knowledge concerning the electromag-
netic structure of the nucleon.

One of these approximations arises from the relati-
vistic effect of the appearance of electric dipole moments
when a magnetic moment executes a uniform motion of
translation. The hard-core potentials in use for nucleon-
nucleon scattering are large in absolute value and at-
tractive in some states. It is questionable, therefore,
whether these motional effects are negligible. The Pauli
part up of the nucleon magnetic moment in interaction
with a static electric field gives rise!* to an interaction
energy

Hp'>=(up/2Mc)
X{—% dive+[pX &]-e—[eXp] -0},
14 G. Breit, Proc. Natl. Acad. Sci. U. S. 37, 837 (1951).

(7.1)



1090

which may also be written

HP’= (h/.LP/ZMC)
X {—dive—io-curle—2i[&Xe]-V}. (7.1')

If this result is applied to the case of incident electro-
magnetic wave, the term containing curl€ can be ex-
pressed in terms of the magnetic field 3¢ of the wave
and gives a correction of the order of (%w/2Mc%up to
the effective value of the magnetic moment of the par-
ticle. The term involving the V in Eq. (7.1") produces
roughly similar effects, but involves the space properties
of the wave functions differently. For #iw=170 MeV the
fraction %w/2Mc¢?~1/11. The effects are not definitely
negligible, therefore.

The employment of a nonrelativistic Schrédinger
equation with a hard-core potential, such as has often
been made for the d(y,n)p reaction, is also subject to
criticism because of the errors which it may introduce
in the calculation of the Schrédinger current, as well
as because of the questionable meaning of the charge
density derived from it. At the surface of the hard core,
the Yale and the Hamada-Johnston potentials give for
singlet even states attractive interaction energies of the
order of 1 BeV. The nonrelativistic Schrédinger equation
is not a good approximation under such conditions. On
the other hand, the absolute value of the potential drops
very rapidly with distance when it is so large, the de-
crease being by a factor 3 in a distance of roughly
%/2mc. Since the wave function vanishes at the core,
this particular difficulty is not as large as the potential
depth at the core might suggest.

Approaches to the d(y,n)p problem minimizing the
role of effective potentials have been used. Without at-
tempting an exhaustive survey, a few characteristic
contributions may be mentioned. Donnachie and
O’Donnell’s employ a deuteron ground-state wave func-
tion of the Hulthén-Sugawara type. Their final-state
wave functions are solutions of the field-free equation
from a certain small radius on, the linear combination
of the regular and irregular functions being made to cor-
respond to the phenomenological phase shifts. Inside
that distance the regular radial functions for the field-
free equation are used. Agreement with experiment up
to 120 MeV is satisfactory, especially with 69, D-state
probability and with inclusion of retardation effects.
Although it is instructive to know that a reasonably
successful representation of the data can be obtained by
obtained by this procedure, there remains the question
of what happens to the agreement if one uses wave func-
tions that satisfy a Schrodinger equation capable of
representing the phenomenological phase shifts. Em-
ployment of free-field wave functions with phase shifts
amounts to assuming that the interaction is confined to
very short distances, a view for which there is little

support.

16 A, Donnachie and P. J. O'Donnell, Nucl. Phys. 53, 128
(1964).
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Lomon and Feshbach!® use potentials of a semitheo=-
retical type outside the energy-independent boundary
condition radius, and calculate the matrix elements em-
ploying the same region. Their success in giving a
decidedly better than qualitative representation of
nucleon-nucleon phase shifts employing the same model
speaks in favor of the approach. However, the energy
independence of the boundary condition has been
justified only qualitatively, and the role of the region
inside the boundary-condition radius needs further
elucidation.

Le Bellac, Renard, and Tran Thanh Van'? give a rela-
tivistic dispersion-theoretical treatment and obtain
agreement with experiment of about the same quality
as that with nucleon-nucleon-potential treatments.
Without claiming decided superiority for their approach,
the authors point out that it has the advantage of being
relativistic to begin with, so that relativistic corrections
need not be made. They also emphasize that their
theory makes use of the phase shifts directly, and does
not depend on the more or less arbitrary choice of a
nucleon-nucleon potential. There is no doubt regarding
the power of the dispersion-theoretical approach. It
may be remarked, however, that the simpler problem
of the two-nucleon interaction has not been solved in
a quantitative sense so far. It may be argued that the
employment of phenomenological phase shifts brings
in the effect of the nucleon-nucleon interaction to a
sufficient degree to make its further examination un-
necessary. In other words, it is conceivable that if a de-
tailed theory based on the consideration of charge and
current distributions were carried through, the formulas
for the photodisintegration amplitudes would reduce to
expressions containing only phase shifts (speaking more
precisely, phase parameters) and some properties of the
ground state. But it would be surprising if the descrip-
tion of the deuteron ground state by means of a wave
function referring to two nucleons were sufficient, es-
pecially if the wave function does not originate in a
relativistic formulation but rather in a procedure in-
volving an adjustable cutoff. This starting point does
not appear to be any more fundamental than that of a
theory employing static local potentials. A cancellation
of final-state interaction effects, as might occur if the
properties of the ground state were fully used, would
not be destroyed by the simplified treatment of
the ground state. The fit to the d(y,n)p data is obtained
by adjusting the two free parameters of the four-pole
wave function. There is no other control on these pa-
rameters in the work cited. In this respect the employ-

16 /. Feshbach and E. Lomon, Phys. Rev. 102, 891 (1956); H.
Feshbach, E. Lomon, and A. Tubis, Phys. Rev. Letters 6, 635
(1961). Cf. also G. Breit and W. G. Bouricius, Phys. Rev. 74,
1546 (1948); 75, 1029 (1949); a comprehensive report, including
mention of agreement with d(y,n)p, is to be found in an invited
paper read in March, 1967 at the International Conference on

Nucleon-Nucleon Interaction, Gainesville, Florida. E. Lomow and

H. Feshbach, Rev. Mod. Phys. 39, 611 (1967).
17 M. Le Bellac, F. M. Renard, and J. Tran Thanh-Van, Nuovo

Cimento 33, 594 (1964); 34, 450 (1964).
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ment of potentials is less arbitrary, since any adjust-
ment usually produces an effect on scattering. The usual
procedure is to fit the latter first. In such cases no
adjustment to d(v,n)p data takes place at all. It is con-
ceivable, however, that some combinations of changes
in potential parameters do not affect scattering, but do
change the d(v,n)p observables. It is believed by Bellac
et al. that since they are working with a gauge-invariant
theory, they are taking exchange currents into account.
As has been shown by Osborn and Foldy,!® however,
securing gauge invariance in a theory does not determine
the exchange currents uniquely, so that from a purely
phenomenological viewpoint there is no assurance that
the exchange currents used in Ref. 17 are the actual
ones. Furthermore, the consideration of exchange cur-
rents by means of gauge invariance, taken literally,
presupposes that the particles are strictly points. The
error caused by spreading the particle to take into ac-
count its structure is thus not part of the usual con-
sideration. The electromagnetic size of the nucleon is,
on the other hand, comparable with (though smaller
than) the p-n separation distance in the deuteron. It
appears, therefore, that the exchange currents will have
to be determined either from the phenomenology of
d(y,m)p and possibly of p-p bremstrahlung, or else from
the theory of nucleon-nucleon scattering. As the authors
point out, there are disagreements in their fit to low-
energy d(y,n)p data. It appears therefore that even
though the dispersion-theoretical approach may eventu-
ally furnish a much superior treatment of the deuteron
photodisintegration problem, it has not reached that
stage so far.

Employing a dispersion-theoretical consideration,
Skolnick!® claims to have removed most of the dis-
crepancy between the expected and observed values of
the p(n,v)d capture cross section at a neutron laboratory
velocity of 2200 m/sec—the “interaction effect” of
Austern and Rost?® which at the time of publication of
the last reference became apparent in the comparison
of a calculated value of 0.3032£0.012 b with the experi-
mental value of 0.33154-0.0017 b. A reconsideration of
this problem by Noyes?! is in sharp disagreement with
Skolnick’s conclusions, and reduces the correction to a
much smaller value, on the grounds that Skolnick’s
assumption regarding the shape-independent approxi-
mation was made without sufficient justification. Here
again the S-matrix approach has not eliminated the
desirability of calculations made with models employing
a space-time description.

Such models, as well as the larger part of the present
paper, are not limited to the employment of potentials.
These provide however a possible starting point for a
more realistic attack. Since exchange currents, relativ-
istic effects, nonlocality of potentials, electromagnetic

18 R. K. Osborn and L. L. Foldy, Phys. Rev. 79, 795 (1950).

19 M. H. Skolnick, Phys. Rev. 136, B1493 (1964.

20 N. Austern and E. Rost, Phys. Rev. 117, 1506 (1959).
21 H. Pierre Noyes, Nucl. Phys. 74, 508 (1965).
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nucleon structure, and related complications affect con-
tributions from various parts of expressions occurring
in Eq. (5.11) differently, it is desirable to arrange the
calculations in such a way as to be able to study the
effect of their contributions separately. A way of doing
so is to deal directly with the amplitudes corresponding
to different relative spin orientations of the final states,?
and in the more complicated cases to obtain from these
the values of the observables. Other essentially equiva-
lent arrangements of the calculations have been used by
various authors, notably Bethe and Longmire, Austern,
and Nicholson and Brown. References to the papers by
these and many other authors may be found in Ref. 9.
Potentials similar to those in Ref. 22 have been used by
de Swart and Marshak? and more recently by Partovi.?
Extensive use is made of Wigner’s 3-j, 6-4, and 9-j
symbols by the latter author. If, however, the ampli-
tudes are left in their original form, as in the papers
listed in Ref. 22, the calculation of any observable is
quite simple, especially if a highspeed digital computing
machine is available. An example of such an application
is the calculation of the photodisintegration of polarized
and aligned deuterons by Zickendraht, Andrews, and
Rustgi.?s The direct employment of amplitudes makes
it easy to take into account all effects of additional
multipole or final states without calculating many cross-
product terms. Their occasional omission? is unneces-
sary in the amplitude method. Since matrix elements
corresponding to various final states and multipoles may
be affected differently by the pions and vector mesons
responsible for the p-# interactions, a beginning of a
systematic study intended to provide an insight into
the relative importance of such contributions has been
made. The results will be described in three companion
papers to the present one.

In the paper by Zickendraht, Rustgi, and Brandt2¢
the calculation of amplitudes is arranged in a form con-
venient for use with an electronic digital computer. The
method employed makes use of the representation co-
efficients of the rotation group, having this in common
with the work of Partovi,? but has been developed and
used before the appearance and without the knowledge
of Partovi’s papers. The employment of the representa-
tion coefficients is convenient for a digital machine pro-
gram. The formulas do not take retardation into ac-
count. The effects of the second term in Eq. (5.6) are
not included, for reasons mentioned in the discussion
following Eq. (5.10) above. To these it may be added
that the simplest form of exchange currents expected

22 W. Zernik, M. L. Rustgi, and G. Breit, Phys. Rev. 114, 1358
(1959); W. Zickendraht, D. J. Andrews, M. L. Rustgi, W. Zernik,

A. J. Torruella, and G. Breit, Phys. Rev. 124, 1538 (1961). Cf.
also Ref. 9.

2 J. J. deSwart and R. E. Marshak, Phys. Rev. 111, 272 (1958);
Physica 25, 1001 (1959).

2 |, Partovi, Ann. Phys. (N.Y.) 27, 79 (1964); 27, 114 (1964).

% W. Zickendraht, D. J. Andrews, and M. L. Rustgi, Phys. Rev.
Letters 7, 252 (1961).

26 W. Zickendraht, M. L. Rustgi, R. G. Brandt, and G. Breit,
Bull. Am. Phys. Soc. 10, 447 (1965).
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from considerations of gauge invariance?” involves cur-
rents along the line joining the interacting nucleons.
Since there is some uncertainty regarding these currents
as a result of uncertainties in the exchange character of
the p-n interaction, the numerical treatment of these
terms may not be very reliable. Comparing orders of
magnitude of the contributions of the Schrédinger-
current part in the second term in square brackets of
Eq. (5.6) with that of the term containing the charge
density p*(r), and neglecting all but the lowest-order
terms in «7, the order of magnitude of the ratio is

| (J s part)/ (o part) | = (kr)?/(I+1).

The same power of the parameter xr appears here as
in bringing in effects of retardation for the p part
by expanding Fi(kr). At fiw=100 MeV, r=e2/mc?, and
l=1, the above ratio is about 1.1; but at Ziw=10 MeV, it
is about 0.011. Comparing similarly the nucleon-
magnetic-moment part with the p part, and employing
a gyromagnetic ratio 3 for the combined effect of u, and
Ka, One obtains for the ratio

| (pyen part)/(p part) | =1.5%w/(+1)Mc?. (7.3)

For #iw=100 MeV this is =0.16/(l+1), and at 2.2 MeV
it is =0.004/(l41). Formally the nucleon-magnetic-
moment effects are of a lower order than the correspond-
ing Schrédinger current terms. The presence of the
small length %#/Mc, however, makes the effects of the
two kinds of terms on the integrand of (5.6) comparable,
except for energies close to the reaction threshold, where
the effects are quite small. In the paper by Botzian,

(7.2)

2 R. G. Sachs, Phys. Rev. 74, 433 (1948). It may be noted that
in the first section of that paper the author states that one expects
the exchange current to consist of two parts, one depending in
some way (as in the paper by Villars) on the details of the field
describing the interaction between nucleons.
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Rustgi, and Torruella,? a different and in some respects
simpler derivation of the same formulas is described,
making use of operators similar to those in Egs. (5.15),
(5.15"), (5.16), (5.16"), (5.17), (5.20), and (5.20"). This
derivation has been made after the one in Ref. 26.

The equations arrived at in the work referred to have
been applied by Brandt, Zickendraht, Torruella, Schrils,
and Breit?® to the evaluation of the differential cross sec-
tion and of the proton polarization, tracing the effect of
including additional multipoles. The Yale and the
Hamada-Johnston potentials were used in these calcula-
tions. A procedure taking into account changes in
phenomenological fits to nucleon-nucleon scattering
without refitting the potential will also be found in that
paper. This way of dealing with the final-state interac-
tion will be seen to be much less arbitrary than the pre-
scription used in Ref. 15.

Calculations including effects of retardation and of
terms omitted in Eq. (5.6) are expected to be prepared
for publication in the near future, together with an
examination of effects of successive additions of electro-
magnetic multipoles supplementary to that in Ref. 29,
and an examination of fits to additional low-energy data.
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Phys. Soc. 10, 448 (1965).
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