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Lattice Theory of the Elastic Dielectric*
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A homogeneously deformed and uniformly polarized elastic dielectric is considered. I'or small displace-
ments of the medium from the deformed and polarized state, the equation of motion and the equation for
the change in polarization due to the displacement are derived to the Grst order in the deformation param-
eter and the macroscopic electric Geld, using Toupin s general theory of the elastic dielectric. Born and
Huang s treatment of the vibrations of an ionic lattice is extended to the case where the lattice is homo-
geneously deformed and has a uniform electric Geld. The equation of motion and the equation for the change
in polarization due to small displacements from the deformed and polarized state are derived on lattice
theory. A comparison of lattice-theoretical equations at long wavelength with the continuum-mechanical
equations yields the expressions for the electrical susceptibility, the piezoelectric constants, and the second-
order elastic constants together with their linear coeScients of variation with the deformation and the
electrical Geld.

I. INTRODUCTION

HK general theory of the elastic dielectric in
static equilibrium has been studied in detail by

Toupin, ' Eringen, ' and Grindlay. ' Toupin' has also
considered the dynamics of an elastic dielectric and
arrived at the equation of motion for small displace-
ments from an initially polarized and elastically de-
formed state. Toupin has some criticisms to OGer about
the earlier analysis of the problem by Born and Huang, 5

and Mason. '
The lattice theory of vibrations of an ionic lattice in

an initially unpolarized and strain-free state has been
developed by Born and Huang. ~ They obtained the
expressions for the dielectric, piezoelectric, and second-
order elastic constants of such a lattice in terms of
second-order coupling parameters. In nonionic crystals,
the lattice theory was extended by Srinivasan' to the
case of a lattice under homogeneous strain and the
lattice-theoretical expressions for the third-order elastic
constants of a nonionic crystal were obtained in terms
of the second- and third-order coupling parameters.
(This paper will be referred to as RSI, and the notation
developed in this paper will be used extensively in
what follows. ) These expressions were applied by
Srinivasan' to the case of germanium and silicon.

In the work presented here, the lattice theory of the
vibration of an ionic lattice is extended to the case when
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the lattice is initially polarized uniformly and is in a state
of homogeneous strain. The equation of motion is de-
veloped to the first power in the initial strain and electric
fieM. This is compared with the corresponding equation
of motion from Toupin's general theory. Expressions
arc deiivcd foI' thc linear cocKclcnts of variation with
strain and electric 6eld of (i) the electric susceptibility,
(ii) the piezoelectric constants, and (iii) the second-order
elastic constants of an ionic lattice in terms of the
second- and third-order coupling parameters.

The expressions so derived are applied to the fluorite
lattice in the succeeding paper.

II. CONTINUUM THEORY

Consider a body subjected to a homogeneous de-
formation and a uniform electric field E.Using Toupin's'
general theory of the dynamics of an elastic dielectric,
the equation of motion for small displacements from
an initially deformed and polarized state will be
derived to the first order in the deformation parameters
and the components of the electric field. It is convenient
to use a rectangular Cartesian system of axes in what
follows.

The reference or material con6guration of the body
is one free of strain and polarization. In this state let
the coordinates of a material particle be denoted by
X; (i=1, 2, 3). When the body is homogeneously de-
formed, the spatial coordinate of the material particle
becomes x;. The deformation parameters e;; are given by

Bz;/BX; =8;i+e;;.

The 8;; are Kronecker deltas. The Lagrangian strain
g;j ls given by

'9ij= 2 (eij+ eji+Z eaj ei i) ~

k

For a homogeneous strain, c,; and q;; are independent
of the material coordinates I,.

The polarization in the deformed medium is P and
the electric 6eld E. Both are assumed to be uniform.
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Toupin4 defines the material measure of polarization
of the medium as

v' &Xi
~,=—P Ek (2.3)

'V k 8$k

where ~' is the volume of unit mass of the material in
the deformed state and ~ is the volume of unit mass
of the material in the reference configuration.

According to Toupin, ' one could de6ne an energy
function Z per unit volume of the undeformed state. Z
is a function of the components xi and gij only. This
function should be invariant to rigid rotations and to all
the symmetry operations of the point-group symmetry
of the medium.

As we are interested in developing the equations of
motion for small displacements from the deformed state
to first order in E; and k,, (terms involving the product
of E, and eij are to be considered as second-order
quantities and omitted), we shall assume that the
function 5 can be explicitly written out as a power
series in q,; and x;. Since there are no stresses and no
electric field in the reference configuration, we may write

Here

Bu
&&*=P~+2 &l

l Qg) k ggk
(2.9)

(2.10)

where b7fj is the change in the material polarization
accompanying the displacement.

The change in the electric field ei is given by'

Here

Bx„BXjBu„

aX) aXi aXk

BXk BX] t9uk

+2 (X ')kl p;—Z &k — (211)
jkl BX; 8Xj k gg;

If the material particles are given small displacements
ui from the deformed state, an additional polarization
bI'; and an additional electric field bEi= ei are generated.
The additional polarization bI'i is given by

2 ~ ~~ij,kllijpkl+6 ~ ~ij,kl, mn'Qij'Qklgmn
ijkl ijklmn

+Z +i,kl]ri]]kl+ 2 2 +[ij,kl]rjij7lk7rl
ikl ijkl

+2 ~ ~i,kl, mn~igkl'gmn
iklmn

@j,kZ=
~X'gBgkZ

v' O'Z
(& ')ll=—

V 87l k87l [t

Equation (2.11) can be inverted to give

(2.12)

(2.13)

ijk

I''= Z O'4'j (2.6)

g;, are the components of the electrical-susceptibility
tensor in the reference configuration. Ei „are the com-
ponents of the piezoelectric tensor in the reference
configuration:

The symmetry of the coefficients is indicated by
brackets over the suffixes as explained in RSI. Thus
0;, kl, „ is symmetric in (i j), (k l), (jrl I), as
well as (ij) = (kl) = (jljl) S[;,,»] is sy.mmetric only in

(i = j) and (k l) For our .purpose no higher-order
terms in the expansion Eq. (2.4) are needed.

The electric Geld E is given by
8Z BXj

t97l j t9X&

The final equation of motion we obtain should be ex-
pressed in terms of Ei and eij. The components I'; that
may occur in this equation have to be replaced in terms
of E, and e;, to the first order. Equation (2.5) can there-
fore be inverted to give

Using Eqs. (2.13) and (2.7), we can write Xkl to the
f]rst order in E; and k;, :

Xkl I Bkl+2 [] [kl, mn]&mn+Q gkly+yj v

'V mn y
(2.13)

+[kl, mn] 2 & v(&k[ vmnmP]Gvcoypymn)gvvl ~ (2, ~ 16)

This quantity is symmetric in (k l) and (jul yl):

wkly= —Z gkvGvmlgimgyl.
v tot

(2.17)

This quantity is symmetric in k l p.
Xk~ are the components of the electrical-susceptibility

tensor in the deformed and polarized state. The linear

BSl BXj ( BBy
p;=2 Xkl

~
~,+2 E,

BXk BX[( y Bxl.

Bxi Bxy Bu7—p Sj,k„— . (2.14)
BXjBXk BX,

Here
@j,kv= Z Xj]8l k'.

Ei,vnn P giPj, mn ~

(2.7)

(2.8)

"There is a misprint in Eq. (6.19) of Toupin's paper (Ref. 4}.
The sign before the last term on the right-hand side of that equa-
tion should be positive."R. Srinivasan, following paper, Phys. Rev. 165, 1054 (1968).
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coeKcient of variation of the component Xg, ~ with the
deformation parameter e „is given by

rcj[kl, mn] 6 [kl, m]ncjktftmn ~ (2.1S)

gktt, yields the linear coefficient of variation of Xkt with
the electric field E„.

If we are dealing with the susceptibility in the optical-
frequency region we can relate [j[kt, „] to the elasto-
optic constants of the material.

Using Eqs. (2.12) and (2.15) we get

V

@jks,= (Ej,ks+g Ej,ke, mnCmn+ar E[jtc,ks]Etc) a (2.19)
V mn y

E;,"-=2 O,.LS.,....
P (S[vw, ks]Ewmn+, S[vwmn]E, w.ks)

+Z Ew, kaovwtEt, mn] ~ (2.2O)

This is symmetric in (k s), (ztz tz), and (ks) (jtztz)

F[;„,k,]=+ gj,S[k... ]g „+QS„,k„c.„,,„(2.21)

~[j,ks, mn] =+j,ks, mn ~j,ks~mn ~ (2.22)

E~;„,~,] gives the linear coeKcient of variation of hj, y,

with the electric Geld.

Using Eqs. (2.6), (2.9), (2.14), (2.15), and (2.19),
the expression for 8P; can be written as

This is symmetric in (j p) and (k s).
8;,~, are the components of the piezoelectric constant

tensor in the deformed state. The linear coe%cient of

variation of 8j,~, with the deformation parameter

emn 1S

2 &j L jtj+2 ([c[tjmn]+ ccjin tcjm+ gn jtcim) &mn+ P cjijtcEtc)
'V mn Sl

BN~

LEcjs+2 (Eijsmn+E, inetcjm+, Enjst]im+, Esmntcij , Eimnc]js), &mn

js BX, mn

+& (E['n, t ] 8' 4n Bv4—+O'A—.)En] (2.23)

This equation will be compared with the corresponding equation from lattice theory to get the lattice-theoretical
express]ons for P[cj,mn], gtj» Et,je,m» and E[;„,;,].

For the present case of a dielectric subjected to a homogeneous deformation and a uniform polarization and
electrical field, the equation of motion given by Toupin4 reduces to

BN, ijp l

PO ui Z ~ik, jc +Z Sl,ik +Z +kc
Bg&BgI, I t Bgj, I t Bg&BgI,

—E; divy. (2.24)

Here po is the density of the material in the reference configuration.

B Z Bg Bg BgI[; Bgi
+ij,kl Z

v' vers Bg~qBg„, BX„BX~BX„BX,

BZ Bgy Bgi
&kt=- Z"-B~„,BX„BX,

(2.25)

(2.26)

Substituting in (2.24) for St,,k, Pt, 8,k,,t, and 9"kt from (2.12), (2.14), (2.25), and (2.26), and. looking for periodic
solutions

u;= u; exp(not),
we get

PPM Qz=—2
B2N-

$+ ir,js+P &mn(+ ir,js,mn++ r smut]i j++ ir, n, st]jm++ nr, jst]im)+2 Etc(+ tc,ir.ja+Etc, rat]i j
jrs BXrBXs mn u

Bej
+Esir&jtc+Er, jst]it,c)]+2 [Ejir+g &mn(,Ej,ir, mn+&n, tr&jm+Ejnrt]im)+P E (E[jtcir] tccjjr&itc)] ~ (2 2&)

jr BX„mn
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C'ir, js=~ir, js Z ~y, tr&y. t'st
u

& irjsm, n,=&irjs, mn P P'y, ir, july, mn+I-t 'y, js,mn&y ir+&y, mn, isa, js7
p

(2.28)

+g $$[t yrq]+y, j +sq, m +nS[j ysq]+y, m+nq, ir++[ mnyq]+y, tr+qjs7+P Gyq@y, ir+qjs+t, mns (2 29)
PC so&

& y, irjs=Z byqP'q, irj sP (S[qt js]&t,ir+&[qt, ir]@,js)7 g gyq6'q, trR, js ~

t qt
(2.30)

The effective second-order elastic constants for wave
propagation in an elastic dielectric are O';„,;,. The
eGective third-order elastic constants are O';„,;„„.The
linear coefBcient of variation of C;,,;, with the electric
Geld is given by C'„,;„,;,.

The above equation must be supplemented with the
equation where

x,(LX)=X;(LX)+U;(LX), (3.3)

The lattice is assumed to be subjected to a homogene-
ous deformation. The coordinates x;(LX) of the particles
after deformation are related to the coordinates X;(LX)
before deformation by the relation

div(e+4tr8P) =0. (2.31) U;(LX) =P q;jXj(LX)+re;(]I,) . (3.4)

In the next section, the equation of motion of a
homogeneously deformed and uniformly polarized ionic
lattice will be derived from lattice theory. Comparison
with the Eq. (2.27) will yield the lattice the-oretical

expressions for C';, ,;,,~~ and C'„„„,;,.

III. LATTICE THEORY

Following the notation in RSI, the Greek alphabet is
used to designate the particles in the basis cell. Capital
letters I., M, E stand for cell indices and small letters
i, j, k stand for component indices. A particle of type
]t has a mass M(jt) and a charge e(]t). The theoretical
expressions to be derived in the following are valid not
only for rigid ions but also for polarizable ions when

they are treated in the framework of the shell model of
Cochran.

The potential energy between two particles (LX)
and (Mjt) is C (LX,M]t). It is composed of two parts,

C (LX,M]s) =~C (LX,Mjt)+ eC. (LX,Mjs) . (3.1)

The q,j are the deformation parameters and w(g) is
the internal displacement of the X sublattice. The
polarization in the deformed state is given by

, Ze(j—)*'(0])= , Ze(j—)~'(j) (35)
'V~ Sg

since the reference state is one of no polarization, i.e.,

Q e(tt)X;(Ojt) =0. (3.6)

e, is the volume of the undeformed basis cell and ~
'

is the volume of the basis cell after deformation. This
polarization I'; is given by Eq. (2.6) to f]rst order in
the electric field and deformation.

When the particles are given displacements I;(LX)
from this deformed conGguration, the equation of
motion is given by (31) of RSI to the first order in

U;(LX):

M(X)tt;(LX) = —g g g 4';;(LX,M]t)u (Mjt)
j p M

(3.7)

4't, (LP,,Mjt) = C;,(L'j]Mjs)
3.2'C'(L],M] )=e(] )e(j )/IX(L],M] ) I.

+Q Q Q C i;t(LX,M]t,Nv) Ut(Nv) . (3.8)

NC refers to the non-Coulomb interaction between the
particles and could involve many body forces. ~C refers
to the Coulomb interaction between the particles,

The Coulomb part of the potential depends on the
distance between two particles and hence satisfies the
translational- and rotational-invariance conditions. The
coupling parameters due to the non-Coulomb inter-
action must satisfy the conditions (2a)—(3f) of RSI,
since the total potential energy must be invariant to
rigid translations and rotations.

l r N

Let us seek solutions of (3.7) of the type

N, (LX)= tt, (X)Lexpitqt7(expi2tr Y X(LX)7
= tt, (X)Pexpitst7Lexpi2try x(LX)7. (3.9)

Here 7 is the wave vector in the reference configuration
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and y the wave vector in the deformed con6guration. The Coulomb part of this sum is
To erst order in the deformation,

P eC;;(OX,Mp) expi2~Y. X(OX,Mp)

(3.10)

+P P eC...(OX,Mp, N.)U,(N.)

Consider
Xexpi27r Y X(Oli,Mp) . (3.11)

Q 4'u(OX, Mp) expi2n-Y X(Ol~,Mp) .

In Eqs. (2.23) and (2.27), the derivatives of the dis-

placements with respect to material coordinates occur.
So we shall use the first form of the solution (3.9).
Substituting this form of the solution in (3.7), we get

M(li)a)'(Y)u;(X) =Q u, (p) Q 4', ;(OX,Mp)

lv MX

&(expi2s Y X(Ol~,Mp) . (3.12)

The first term can be written as

p' eCu(01', Mp) expi2vrY X(OX,Mp)

—S„»P P' eC;;(OX,P~) . (3.13)

Substituting for Ui(Nv) from (3.4) into the second term
of (3.12), and taking into account the fact that the
Coulomb interaction is a two-body central interaction,
we can write the second term of (3.12) as

g g hei(v)$8.„+' C';, i(Oli, Mp, Mp) expi2m Y X(Oli,Mp)+8„» P' eC;;i(OX,Mp, OX) expi2sY X(OX,Mp)

+8„»Q' eCui(OXOXNv) 8„»8» —Q'Q e4;;i(OZONE»Pm)j+Q e Lb„» Q' eC'u (OXOliNv)X„(OXNv)

—g' eC;;„(OX,Mp, OX)X„(Oli,Mp) expi2s Y X(OX,Mp)7. (3.14)

In the above, use has been made of the fact that

eC;;(OX,Oli) = —Q Q' e4;;(Ol~,Mp),
p M

and
eC;; (OX,OX,OX) = —Q Q' eC';; (OX,OX,Mp) .

Ply

(3.15a)

The prime over the summation sign means that when ) =p, , the term M =0 must be omitted.
From the expression (3.2) for eC (Ol»,Mp), we can write

eC';;(OX,Mp) expi2s Y X(OX,Mp) =expi2m Y X(lip)
M (XQy)

a' (
X —e(X)e(p)

~
P expi2m Y X(M)

~

BX;8X;Eu' iX(M) —Xi ~ —X X(»v)

eC'; i(Oli, OX,Mp) expi27r Y X(Oli,Mp) =expj2irY X(Xp)
M (gQp)

8' ( expi2s Y X(M)
X -e(&)e(p)

BX;8X;BX,k nr
~
X(hf) X~ )—

(3.15b)

(3.15c)

Using the theta transformation formula, Born and Huang~ have shown that

expi2s. Y X(M) = P(1/~v, Y') exp( —(n'/R') I'2+i2n-Y X)+RP II(R~ X(M)—X~) expi2w Y X(M)
IX(M) —XI M

+(n/v, R) P'G(m'~Y»+Y~ /R') expi2n. (Y»+Y) Xj. (3.16)

Here R is an arbitrary parameter chosen to ensure the rapid convergence of the two sums on the right. 7& is a
reciprocal lattice vector.

(3.17)
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The prime over the sum over VI, means that the origin of the reciprocal lattice should be omitted in performing
the sum. Substituting {3.16) in (3.15b) we get

P' eC,; (OX,3Ip) expi2n Y X{OXPIp)= (4m/e, )e(»e(p) (F;F/F')+e(»e(p) Q,,(Y,Xp), (3.19a)

g' eC;;~(OX,OXPfp) expi2vrY X(OXMp)=(4x/e)e(»e(p)fi2n F;F;F~/F'5+ e(»e( p)R; p(Y, X p). (3.19b)

Q;;(Y Xp) = (4s/v, )(F;F/F')Lexp( —~'F'/R2) —1j—R' g' P,;(R i X(OX3Ep) f) expi2~Y. X(OXPIp)

l4~'
g'(Y,+Y);(Y,+Y),Gi

—iY,+Yf f exp( —i2~Y„.XPp)), (3.2os)
R2V, ra )

R'p(Y, ~p) = (4~/~. )i2~(F'F;Fi/F') f &xp( —~'F'/R') —1j+R'Z' Kp(R f X(»,~p) f) ~xpi2~Y X(O&,jap)

8x'
+i g' (Ya+Y),(Ya+Y),(YI+Y)&Gf —f

Ye+If�'

f &xp( i2~—Yg X(zp)), (3.20b)
ajar &a re'

Now

&';(i~f)= &(i~l),
8$;8$;

B3

&* (I kl)=

II(foal)

~6~6~6

8Z' eC';; (OX,OX,Mp)X. (OX,Mp) ~xpi2~Y X(OX,&p) = Q' eC;; (OX,OX,Mp) mpi2~Y X(OX,Mp)
M i2~ BP„~

4x=—e(»e(p)f(F;F, 8„„+Y,F 8,„+F;F„8,„)/F' 2F;Fg—F F /F' j+ e(»e( p}Rg J(Y,hp), , (3.21)

The Coulomb part of

R;;„,„(Y,Xp) = R„„(Y,Xp) .
i2m BY„

g e;;(OXPfp) expi2m Y. X(XO,M )p

can now' be written as

(»L ( )Q*'(Y,~ )—Z ( )Q';(O, ~ )8.~j+Z Z ()L—8"R' (Y ~ } (» ( )+8 R' {Y» ) {» ( )

+8„gR,;g(O, Xv)e(»e(v) —8„)8„ge(»g e(m)R;, ,(O,X~)1++ e„.
f

—e(»e(p)R;;„,„(Y,zp)+e(» Q e(~)R;;„,„(O,X~)j
4x

+—e(»e(p) —f FP;—Q e (F;F 8, +F,F„8; +F;F;8 —2F~F,F F /F'-)j
S~ mn

4m- V;V;V)
+—,0)e{p)g P;2~

'
f 8„-8„„q~,{v).

&a Y2

The equation of motion can novr be written as

~(» ' '(» =Z LC".(Y,~ )+Z D*'; (Y,~ ) ( )+r. &*' -(Y,~ ) -7 ( )

4m

+e(» Q ——
f F~F;—Q e„(F;F 8J +F;F 8; +F~F;8 —2F~FJF F /F je(p)N;(p)

we, Y2

+e(» Q i2m F;e(p}u;(p) XQ F;Fg(8„g—8„„)w((v) . (3.23)
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Here

C*;,(Y,l()(()=g C;;(OX,Mu) expi2m. Y X(Ol(,Mu)+e(l() [e()(()Q;,(Y,Xp) —b„), g e(m)Q, ,(0,) m) j, (3.24a)

D*;;~(Y,Xuv) = P ~C;;g(OX,Mu, Nv) expi2m Y X(Ol(,M'u)+e(X) [e(u)R;,((Y,&)))(b. ) &—.„)
MN

+e(v)R,, ((0, )(v)b„ ,tb—„ bt. )P e(m)R;;)(O, Xm)], (3.24b)

E*u „(Y,Xp) =g g P ~C,)&(OX,MII, ,Nv)X„(Nv) expi2m Y X(OX,Mp)

+e()()[b„q P e(m)R;, ,„(0,)(m) —e(u)R@,„(Y,Xu)j. (3.24c)

Following Born and Huang's procedure, Y is replaced by eY and (O', C*, D*, E*, and the displacement u;(X)
are expanded in powers of e. Here e is a convenient parameter which aids us in collecting terms of zero, first, and
second orders separately. Later e can be put equal to unity. We write

u ()()=u "()()+eu "'(X)+-,'e'u ' ()()+ . ~

~2(EY) = e2~2(Y)+. . .

C*u(eY,)(p) = C*,,:(O,l(u)+i2m e Q C*;,„(O,Xu) F,—xm(4m') e' Q C*~)„.(0,)(u) Y,Y,+ ~

ra

D*;;((aY,)(IIv) = D*e)(0,)(uv)+i2me Q D*;,(„(O,l(pv) F,—-', (4m') e' Q D*;,(,„(0,)(uv) F„F'.+ .

(3.25a)

(3.25b)

(3.25c)

(3.25d)

E*;; „(eYXu)=E*;; „(O,Xu)+i2meg E*;, „„(O,Xy)F„—m(4mn)e'P E*o „,~~(O,Xu) Y,F&+ . . (3.25e)

Here

and
O,OQ;;... ~

A"

O~=
i2x BY„

A stands for C*, D~, or E*.
Substituting in (3.23), and collecting the terms of zero order in e,

Z [C*~J(O,l p)+Z D*~J~(O,t p )~v~( )+vZ E*'~ .(0,~) )~ -juJ")(u)

4m

+e(X) P [F;F;—P e „(Y~Y;b„„+F~Fb; +F;Y' b; —2Y;Y', Y' Fl/F'))XP e(u)u~(')(u)=0. (3.26)
pa Y2 y mn

Since P„C*;,(O,Xp), P„D*,;((O,Xpv), Q„E~u„„(O,Xp), and P„e(p) are all zero, the solution of the above equation
ls

independent of p..
The Grst-order equation is

u .(0) ()(()
—u .(0) (3.27)

Q [C*I;(O,Xu)+Q D*;,)(O,Xuv)m)((v)+Q E*g;„„(O,Xp) e~~ju, "'(p)

= —Q i2m F,u;(')(Q C*;;,,(O,Xu)+Q w((v) Q D*;;(,.(O,Xpv)+Q e„„QE*;;„„,,(O,Xp))
vl mn

—e(l() Q [F;F;—Q e „(Y~F;b „+F;F b;„+F;F b;„—2F;F;F Y„/Y2)jp e(p)u,'(')()(()
ya

4~ Y;Y;
g e(v)w, (v) P i2m Fqu), ( ) . (3.28)
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Now

C*;;(O,lw,y) =g ~C;;(OX,Mxx)+e(X) [e(p)Q;;(0,)xx) b—„q g e(v) Q,;(0, l%7r))

(3.29a)

from (7a') of RSI.

p &*';,.(0&p) =p C'I, (N, Mw)X. (ORMS)+v(&) p e(II)Q;;„(OX@)= v.[~(Xi js)+o(Xi js))=v. (Xi js), (3 29b)

from (7b') of RSI.

D*;&~(O,Xpv) =P ~4;;x(OX,Mp, Nv)+ [e(X)e(p) (b.x—b„„)R;;x(O,Xp)+ e(X)e(v) b„xR;;x(O,Xv)

e(X—)b»bing e(v)E;;&(OXv))=v, {~Pipjvl)+cgixxjvl)}=v, (Pipj vl), (329c)

from (14a) of RSI.

g D*;;x„(O,Xxxv) =P g ~4;;x(OX,MIx, Nv)X, (OX,MIx)+eP) g e(ls)(b„q b.„)R—;,x„(O,Xp)

from (14b') of RSI.

=v,PPi vljs)t+~Pi vljs)t}=v,Pi vl j )s~, (3 29d)

Pi,vl, js)=Pi,vlj s5t Ps,vl)b—g P~,vs)b—&;., (3.29d')

Pi,vljs) is not symmetric in (j s) while Pi,vljs) is symmetric in (j s).

E;;, „(O,Xp)=gg @;; (OX,MIx,Nv)X (Nv) —e(A)ge(xl)R;;„,„(O,Xp) b„qg—e(v)R;;„(O,hv), )
M Nxs

=v.gi, l j,eon)t, (3.29e)

P 8*;;„„,,(O, lw p) =P P "4';; (OX,Mp, Nv) X (Nv)X, (OX,Mxx) —e(X) Q e(p) R;;„,„,(O,Xxx)

=v, {~[hi,(js),(mn)7+cPi, (js),(xxxxs)7}=v Pi, (js),(mn)7, (3 29f).

from (14d') of RSL

[Xi,js,mm)= pi, (js),(me)7 —(Xe,js)b;„
—(Xs,mxs) b;; (Xi,sn) —b;, (3.29f') bP=Q bP(v). (3.32)

The contribution to bP arises froxn the dipoles on the
various sublattices,

(3.33)

(3.34a)

e(x) =e expi2v. y.x.

The polarization wave accompanying the displacement bP&'&(v) = (1/v ')[e(v)n&'x(v)

—Q i2vyjxsI, &"e(v)x(0v)). (3.34c)
bP(x) =bP expi2vy x. (3.31)

from (14c') of RSI. [Xi,(js),(me)) is syxnmetric only
in the interchange of (js) (me), while p.i,js,tin) is e and bp can again be expanded in powers of z as
syxnmetric in (j s), (tN I), and (js) (mxs).

Accompanying the displacement we have a change in follows: Putting y= ey,

polarization Bp and a macroscopic electric Geld e.
n4 has emphasized the point that the

variable in the electrical field is the spatial coordinate
x; and not the material coordinate I;.So we write

(3.3 )0bP"'( )v= (1/v')s(v)»"', (3.34b)
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The second contribution to bP&" (v) arises as follows.
Following Toupin, 4 we may consider —div(bp&'&(v)

Xexpi2~y x)&&,
' as an additional charge be(v); the dipole

moment due to this additional charge is be(v)x(0v).
This contribution is also of the 6rst order in e. This
interpretation receives support from the perfect agree-
ment between the theoretical expression 8P on lattice
theory and the Eq. (2.23) and the lattice-theoretical
equation of motion and Eq. (2.27).

The polarization of the medium is therefore

related by Eq. (2.31), then

e;&"=—4&r—g y;bP;&0&=0,
y' ~

y~
Py, bP, &&y''' '

4m y;———Q y, [Q e(v)u, &"(v)
&a ym

(3.36a)

bP&'&= (1/e, ') Q e(v)u&'&=0, (3.35a) —v, ' P i2sy&u& &&P j. (3.36b)

bP&'& = (1/vo')[e(v)uo&(v) —P i2sy&u&0&& P e(v)x(0v) j
= (1/e, ')[e(v)u&'&(v) —

&&

' Q i2sy&, u& &&,Pj. (3.35b)

Taking into account the fact that to first order in e „,
v.'= v.(1++e„„b„.),

and using Eq. (3.10), we can write e, &" to first order

It, Born and Huang' have shown that if e and, bP are in e „and P; as

4m 1
e,&»=———g [F;F;—g e„„(F;F„b,„+F;F b;.+F;F;b „—2F';F;F F. /F) je( p) u&»(

p)

'pa I+2 $4j sin
4x F;

+——P F; g e(v)w, (v) P i2n. F~u&, &'&. (3.37)
a/2 g

So the first-order equation of motion (3.28) can be written as

s, p pi pj 7u;&»(p) = —v, p i2s F,u, &0&{(&&ijs)+p pi vl js7&w&(v)+ p pi, (js),(rnn) je „}+e(&&)e,&'&. (3.38)
je

Here
[&i,lsj 5 =pi, isj j+p pi,,pj,vow&(v)+p pi, vj,rnn] e „. (3.39)

The matrix [&i,pj ) is of order 3nX3n, where n is the number of particles in the basis celL It is singular smce

g„[)i,pj j'=0 Follow. ing Born and Huang, " we form the matrix {Xi,lsj }'as follows. All rows and all columns of
the matrix pi, l»j j having the index l&= 1 or p, = 1 are omitted. The resulting matrix is inverted and bordered with
zeros to make up the 3nX3n matrix {&&i,&sj}'.To 6rst order in e „and w&(v),

{Xi,pj}= {Xi,pj}—P g {Xi,ua}[P [na,Pb, vow&(v)+P [&sa,Pb,rnn jte „J{Pb,isj }.
aP ab rl mn

Pi,pj}is obtained from [&i,pj J following the above procedure.
The solution of (3.38) can then be written as

u;&0&= —P i2sFu;&0&fg {Xipr}'f(prjs)+g [prvl jsj w&(v)+P [pr, (js),(rnn) je „g
je

(3.40)

With the help of (3.35b), the polarization bP &'& can be written as

1
+ (l ) Z;"&Z —.(p){&,pj}'. (3.41)j P Pa

&a 1
bP;&'&= —P i2s F,u&&0& —P e(l&){l&i,pr}'((pr, js)+ P [pr,v/jsjtw&(v)+P [pr, (js),(rnn) je „)

je Pa XPt r& mn

e(&&)e(p)
+Q ep Q {Xi,pj }' Q i27rF&,—u&, &"P (3 42)

&P Va2 k
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If there were no initial deformation or polarization

u.&'&(h)= —Q i27rY, u, &' A(hi,js)+Q e;&'& Q —e(p){hi,pj},
je

(3.43a)

1 1
8E;&'&=—P e(h)u, o&(h) = —P i2~Y u, &" —P e(h)A(hijs) +g e, &'~ P e(h)e(p){hi pj }. (343b)

Pa Je -&a &Is Va
Here

A(hi j s) =g {hi,pr }(prj's) .
pr

(3.43b')

Comparing with Eqs. (2 6) and (3 5), one can identify m, (h) with u ~'~(h), 8P ~'& with P, e&'& with E, and i2n Y,u ~ ~

with e,, To the first order in e;, and E»

~;(h) = —P A(hi, mu) ...yP E,P e(~—){hi,~P}, (3.44a)

1 1
I';= ——P e „Lg e(h)A(hi mu)$+P Ev g e(h) {hipp}e(z)

amn X p 2)~n

The piezoelectric constant E;, in the undeformed unpolarized state is given by

1
E, ...=—P e(h)A(hi, mn),

(3.44b)

(3.45)

and the electric susceptibility in the undeformed and unpolarized state is given by

g;;= Q e(h){hip j}e(s).
Pa2 Xx

(3.46)

The above results were obtained by Born and Huang. ~

For the case of the initially deformed and polarized lattice we substitute for ut~(v) and p; from (3.44a) and
(3.44b) in (3.42), and obtain an expression for bP, &'~ involving only e„„and E„.We compare this expression
with (2.23).

First let us consider the coeKcient of e;&') in the resulting expression. This is

vg 1
p e(h)e(p)({hi pj}—p e [p Q {hina}{pb,pj }[na,pb, mujt QLna, pb, vljA—(vl, ra+)]

mn aP ab

—Z E.K Z Z {h', } ( ){ P, l}{P»pj}l:,Pb;ij]) (34&)
Pa P aa Pb vl

Comparing with the coefficient of e, in (2.23), one gets

gu, ——— g P Q Q Pnapb, vl5e(h) {hi,na}e(z) {sPvl}e(p) {pj,Pb}.
Xpx rxa pb vl

The right-hand side has the proper symmetry, namely, i j p.

(3.48)

p~;; 1+g;„b; +g;„8, = — g Q p e(h){hi na}e(p){pbpj }{1na pb, mn7~ g(napb, vl7A(vl—mn)}. (3.49)
Xp aa Pb vl

Using (3.29d'), the right side of (3.49) becomes

—(1/e, s) P P g e(h) {hina}e(p) {Pbpj}{LnaPb, mu 1—g (naPb, vl5A (vl mn) }
Xp ua Pb vl

—(1/e, ')b; P e(h)e(p){hmpj} —(1/e, ')8, P e(h)e(p){hi pm}. (350)
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Using (3.46), one can therefore write

+] s,m ]= —(1/v ') P P P e(X)(Xi,na}e(p) {Pb,pj}{[na,Pb,mn] —P [na„Pb,vl]A (vl, mn) )
Xp aa pb

[—g'n&jm+gjnb; +g; B;.+g; Bj ] .(3.51)

The right side has the proper symmetry (i j) and (m. n).
The coeKcient of i—2nY..Nj(o) in (3.42), after substituting for w](v), P,, and {Xi,pr)' from (3.44a), (3.44b), and

(3.40), is

Va 1—p e(X)fA (Xi,js)+p e „(p {Xipr}[[pr,(js),(rnn)] —p [pr, rt, mn]"A (rtjs) p—pr, rt js]~A (rt, mn)
Pa tnn pr rt rt

1
+Q p [pr na pb]A (naj s)A (pbmn)])g+p E„—p (Xi pr) [p [pr vljsjt p—[prrt vl]A (rtj s)

aa p| g) pa t(]r v l rt

Comparing with the coeKcient of —BN;/BX, in (2.23), one gets

8[iv js] gi bju gsubs j+givbjs= (1/v. ') p p p e(X) (Xi pr)e(p) (pp ul) [[pr vl js]—Q [pr vl rt]A (rtjs)]
] p pr vl rt

+(1/v, ')B;, p e(X)e(p)p jpp]+(1/v, ')B,v g e(X)[Xi,pj]e(p)+g;vbj„(3.53)

so that

8;;v,j,]= {(1/v ') p p p e(X) (hi pr)e(p)(pp, ul) [[pr,vl js] p[pr, vl—,rt]A (rt js)])
)p pr vl

+[gsv~*.+gisb. v+ g.v&;,+g;v&, ,]. (3.54)

The right-hand side has the proper symmetry (i P) and (j s).
Comparing the coeRcient of 8 „in the term containing —BN;/BX, in (2.23) with the coefficient of e „in (3.52),

and using (3.29d'), (3.29f'), and (3.48b'), one gets

Ei jsmn+Ei, nab jm+ ,En,jsbim+Es, nmbs j Ei,mnbjs

= (1/v, ) g e(X) (Xi pr}([prjs,mn] —p [pr, rt, mn]A (rtjs) g[pr, rtj s]A—(rt mn)
Xpr rt

+p g Qr, na, pb ]A (na, mn)A(pbj s) )+E;,, B; E;, „Bj, E,j,—b,„—Ej,„„—b;, .
aa pb

Therefore,

E;,;,,n,„=(1/v, ) p e(X)(4,pr)([prjs, mn] —p [pr, rt, ps]A (rt, mn) p[pr, rt, mn ]A—(rt js)
Xpr rt rt

+g p [pr na, pb]A(najs)A(pb, mn)) [E„j,b; +E—„jb,.„+E, „B,+E. B.] (3 55)
aa pb

The right side has the requisite symmetry j s, rn n, and (js) (mn).
Comparing the second-order terms in e in the equation of motion (3.23) and summing o~er y, one gets

pov. co'u;('&=+ 4m 2Y,F,uj(0)(—v)(Q C* 8,„,(OXp)+Q wi(u)[g D*;;]„,(O,cpu)7+ p e „[gE+,, „„(0](p)])
mrs Xp, vl tnn

+Q Z2nF, njo](p) {QC*;j,,(O,Xp)+Q wl(v)[Q D*,j],,(O,hpv)]++ &„„[pE*,j„„,„(O,y„)]}
W'r vl tnn

+Z ' -~.[(4 /~. )(~;/~ ) Z ~je(p); (.)jg ep)rv, p) . (3.56)

Now

Q C*ij,„,(0,hp)=Q Q ~C j(OX,Mp)X„(OX,Mp)X, (OX,Mp)+Q e(X)e(p)g;j „(0,](p)

2va[ ~[ij,rs]+ ~tij, rs]]= 2Vg]8j „8] s (3.5'la)
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from (8) of RSI.

P D*;;&,„.(O,X]iv) =P Q ~4,,&(OX,Mjs, Nv) X,(OX,Mjs)X, (OP,Mji)+Q e(][)e(ji)R;ji „,(0,][]i)[&]„&,
—b„„]

Mp N)

~4&&;;(Ov,tPX,M'ji) [X„(0v,tPX) —X„(0v,M'ji) ][X,(0v, N'X) —X,(0v,M'j&)]
Xp M'N'

+g e(v&)e(&&)R;,] ..(.O, t&js) [b,&,
8—,„]=—2 g g ~rb];; (Ov, tPP, M'js)X„(0v,M'p)X. (Ov, N'X)

}[p M'¹
+2e(v) P e(ji)R;j],«(O, vjs) = —2v, [vl, (jr),(is)], (3,57b)

from (3.29f).

P E*;; „,„(0,]&js)=P P P +&b,; (0]&M]i,Nv)X„(Nv)X, (0]&My)X,(0&,M]i) ge(][)e(—ji)R;, „„,(0,&&]i)
}[,p }I&, Mt[s Nv Xp

2vn{ ~ij, [mn], rs+ &ij.[mn], rs}= 2vu&i j[mn],,rs r (3.57c)
from (15) of RSI.

Q C*;j„(0,&&]i)= —v, (jij,ir), (3.57d)

P D*;;],„(O,Xpv) = v.[vl,jsj,i—r]t, (3.57e)

Q Eo;; „,,(0,&&]i)= —v.[jij,(mn), (ir)], (3.57f)

g i2v F,[(4v/v, )(Fi/Fs) Q F,e(ji)si ' (ji)]g e(&[)w](t[)= —v, g i2 Fy„; e' P&&„, (3.58)

to the f]rst order in e and P;. Thus, (3.56) becomes

p&&o&'I;&o& =4'' Q F,F.N, &o&[C[;j...]++sv&(v)[vl, (jr),(is)]++ e„„C,;,[„„],„s]
JT8

—g i2sr Fn; O&(js){(jij ir)+g w&(v)[vl &ij ir]t+g e „[jij,(rnn), (ir)]}—P i2v Fe;&'&Pr (3 59)r
vl

Substituting for I;&'&(ji) from (3.41) and collecting the coefficients of —i2s F„e;&'&, we get

(1/v, )(P e(P)A(Pj,ir)+P w](v) g Q {jia,Pj}e(P)X [[jia,vl ir]t —g [jsa,vl,os]A(os,ir)]
pP a 0'8

+g o Q Q {jPiaj}e(P)X [—g [jia,os,mn]tA (os,ir)+[jia, (mn), (ir)]]+P„B;&). (3.60)
mn pP a 0'8

Substituting for v&](v) and P„from (3.44a) and (2.6), and making use of (3.53) and (3.55), it can be shown that the
coeKcient of —i2v F, e;&'& agrees exactly with the coefficient of —Be;/BX„ in (2.27).

Now, let us consider the coeKcient of 4v2F„F,Nj&o& in (3.59) after substituting for Nj&'&(ji) from (3.41). This is

2C[;;,„,] —g (jsa ir)A(jsaj s) g(pais)A(jiaj—r)+g v&](v) {[vl,(ir), (js)]+[vl,(is),(jr)]—P [[vl Pbj s] A(Pb, ir)

+[vl Pb ir]tA(Pbj s)+[vl,Pbj r]tA(Pb, is)+[vl Pb is]tA(Pbjr) J+Q Q [na,Pb, vl][A(na, ir)A(Pbjs)

+A(na is)A(Pbjr)}}+P o {2C;;[]„P, [[n.a,—(j s), (mn)]A(nair)+[na, (ir), (mn)]A(naj s)

+[na, (jr), (m'n)]A (na, is)+ [na, (is), (mn)]A (naj r) J

+P g [na,Pb,mn]t[A(na ir)A (Pbjs)+A(nais)A(Pbj r)}}. (3.61)
aa Pb

This should be comI&ared with the coeKcient of B'I;/BX—,BX, in (2.27), namely,

+ irjs+C i ~ jr+2 emn(2+ rsmnbi j++ irnsbjm++ isnrbjm++ jsnrbim++ ns jrbim+C irjsmn+~ isjrmn)
mn

+Q Ry(& y, irjs+C y, isjr+2Py, rsbij+Ps, irbjy+Rr, isbjy+Pr, jsbiy+ I' s, jrbiy& ~ (3 62)
y
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If the lattice frere undeformed and unpolarized, one vrould get

20[i;,&e] g—(jja&ir)A (jiaj s) P—(j»a&is) A (jia&yr) =C';„,,+C'...;,. (3.63)

This leads to the Kun-Huang relation on the second-order coupling parameters

~[ij,ee] —~ij,re & (3.64)

i.e., C[;;,„,] must be symmetric in the interchange (&j) (rs) Th.e second-order elastic constants are given by

C'i„je=C;„.&,
—P (jia&ir)A (jea&js) = Cij,ee+Cj ",ie '&ir—,j e 2 (jia&ir)A (jia&js) .

Substituting for wi(v) from (3.44a) into (3.61), the coefficient of e„„is

2P;j, [„„],„—P {E[na,[js,me] JA (na ir)+E fna, [me ir]JA (naj s)+E[na, [irj s]]A (na, me) }

—P P P [na,Pb,vl]A (na ir) A (Pbj s)A (vl, me) P(E[—na, [jr,me]]A (na, is) +Efna, [me,is]]A (na jr)
aa Pb vl

+E[na, [isj r]JA(na, me) } PP P—[na,Pb, vl]A(na, is)A(Pb, jr)A(vl, me) —P [2(na, rs)A(na, me)b;;
aa Pb vl

+(na, se)A(nair)b; +(na, re)A(nais)5; +(na, re)A(najs)b;„+(na, se)A(najr)b; j. (3.66)

Here we have used (3.29d') and (3.29f').

Efna, [jr,me]] = [naj r,me] C[na, [jr,—me] 7,

C[ n[aj r, m]e]= Q [na, vl, me]A (vl jr),
vl

(3.66')

(3.66")

from Eqs. (28a), and (28b) of RSI.
Comparing this with the coeKcient of e „in (3.62), one can get the Kun-Huang relation among the third-order

coupling parameters, as eras done in RSI. This relation is

2gij, [mn], re ~[jn,ee]birn C[ai,ee]bjm C&e,mnbij]&

it must be symmetric in (ir) (js). As in RSI, we can write the expression for C';„,;,, „as
C';, ,;,,„„=C;,,;,,„„—g (E[na, [js me]JA(nair)+E[na, [meir]]A(na js)+E[na&[ir js]]A(na me) }

—g g Q [na,Pb,vl]A(na, ir)A(Pbjs)A(vl, me), (3.67)
aa Pb vl

vrbere

Cirje, ma= ~ij[],rmn+, ~erj, [ ],imn0eir, [mn]je g[nj, , re] ~[a&je]]birn ,g [in,ee]+~[a".ie]jbjm

+[~[aj i&] ~[en,je]]arm [Cre,mnbij+Ciemabej C,je,marie] ~ (3 68)

The coeff[cient of E„after substituting for w](v) from (3.44a) is

(1/[&,) P f [vl, (ir), (js)j—g [[vl najs]tA(na ir)+[vl na&ir]~A(najs)]++ Q A(na ir) [na Pb vl]A(Pbj s)}
vl aa aa pb

X{vl,&rP}e(&r)+(1/v,) P ([vl, (is),(jr)]—P [[vl,naj r]tA(na, is)+[vl,nais]tA(naj r)]

+Q Q A (na, is) [na,pb, vl]A (pbj r) }fvl sp}e(&r) . (3.69)
ao pb

This is to be compared vrith

(C'„„„j,+E„„,b;;yE.„,bj,+E„;.b;,)+(C',„„j,+E,„,b;j+E„;,bj„+E„j„b,,),
from (3.62). Using (3.29d') and (3.29f') we get

0'v„,,;,+Ev,„B;;+E,„„B;v+E„,;,J;v= (1/», ).g e(&r)(vip P}f [vl jsir] Q[[vl naj s]A (n—a ir)+[vl na ir]A(naj s)7
vol aa

+g Q A(nair)[vl, na, pb]A(pbjs) }+Ev,„,b;& E&„„bv, L&'; &,$v„, —(3./0)—
aa pb
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Thus

C v, ;,,;,= (1jt,) g P e(s) {vl,nP}(gvl js,i' —g [Lvl,na, jsjA(na, ir)+fvl, na, irjA(na, js)j

+g P A(na, ir)fat na Pb)A(Pbj s)) PE—;,;,bv, +E,,;,5»+E;,;.bv„+E,d,bv;$. (3.71)
aa Pb

The right-hand side has the requisite symmetry (i r), (j s), and (ir) (js).
Thus we have derived the lattice-theoretical expressions for (,"...;.. . g;;, b;;v, (Pl,;, „l, Ei;v,;,l, E;;,,„„,and

Q'„„.„,;,. The expressions derived here will be applied to the case of the Quorite lattice in the following paper. "
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The lattice theory of the elastic dielectric developed in the preceding paper is applied to the fluorite
lattice. Expressions are derived for the third-order elastic constants of the fluorite lattice in Axe s shell
model. The values of the third-order elastic constants and the pressure derivatives of the second-order
elastic constants are calculated for calcium, strontium, and barium Quorides on the rigid-ion and shell models.
In calcium fluoride, the calculated values of the pressure derivatives of the second-order elastic constants are
jn fair agreement with Wong and Schuele's experimental values. The static dielectric constant and its
strain dependence are also calculated for the three Quorides in the shell model.

I. DITRODUCTION

' 'N the preceding paper, lattice-theoretical expressions
~ . were derived for the electrical susceptibility, the
piezoelectric constants, the second-order elastic con-

stants, and their linear coeKcients of variatioD with

strain and electric held for an ionic lattice. This paper
will be referred to as RSII in the following. In the

present paper, these theoretical expressions are applied

to the Quorite lattice to calculate the third-order elastic

constants and the strain dependence of the static
dielectric constants of calcium, strontium, and barium

Quorides.
The reasons for the choice of the Quorite lattice are

as follows. The simplest ionic crystals to which the

theoretical expressions could be applied are the alkali

halides. However, the third-order elastic constants of

the alkali halides have been calculated already by

Bross, ' N'Ranyan, ' and Ghate. ' The strain dependence

* Work supported by the U. S. Atomic Energy Commission.

t Present address: Department of Physics, Indian Institute of
Technology, Madras 36, India. This work was carried out while

on leave from this institution.
' H. Bross, Z. Physik 175, 345 (1963).
~A. A. N'Ranyan, Fiz. Tverd. Tela 5, 177 (1963); 5, 1865

(1963) LEnglish transls. :Soviet Phys. —Solid State 5, 129 (1963);
5, 1361 (1964)g.

3 P. B. Ghate, Phys. Rev. 139, A1666 {1965).

of the dielectric constants has, however, not been
calculated. In these crystals every atom is at a center
of inversion and there is therefore no internal displace-
ment when the lattice is elastically deformed. On the
other hand, in the Quorite structure the anions are not
at centers of inversion and they undergo internal dis-
placements when the lattice is strained. The absence of
internal displacements makes the theoretical expressions
for the third-order elastic constants quite simple in the
alkali halides. There is no such simplification in the
Quorite lattice. Another consequence of the structure of
the alkali halides is the fact that the polarizability of
the ions plays no role in determining the values of the
elastic constants. For elastic deformations, the ions
behave as though they were rigid. This is not the case
for the Quorite lattice. The polarizability of the anion
inQuences the values of some of the elastic constants.
Experiments to measure the third-order elastic con-
stants of some crystals of Quorite structure are in
progress in the Materials Research Laboratory,
Pennsylvania State University.

Of the crystals of Quorite structure dealt with in this
paper, calcium Quoride has been the subject of some
theoretical discussion. Srinivasan, Rajagopal, ' and

4 R. Srinivasan, Proc. Phys. Soc. (London) 72, 566 (1958).' A. K. Rajagopal, J. Phys. Chem. Solids 23, 317 (1962).


