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A homogeneously deformed and uniformly polarized elastic dielectric is considered. For small displace-
ments of the medium from the deformed and polarized state, the equation of motion and the equation for
the change in polarization due to the displacement are derived to the first order in the deformation param-
eter and the macroscopic electric field, using Toupin’s general theory of the elastic dielectric. Born and
Huang’s treatment of the vibrations of an ionic lattice is extended to the case where the lattice is homo-
geneously deformed and has a uniform electric field. The equation of motion and the equation for the change
in polarization due to small displacements from the deformed and polarized state are derived on lattice
theory. A comparison of lattice-theoretical equations at long wavelength with the continuum-mechanical
equations yields the expressions for the electrical susceptibility, the piezoelectric constants, and the second-
order elastic constants together with their linear coefficients of variation with the deformation and the

electrical field.

I. INTRODUCTION

HE general theory of the elastic dielectric in
static equilibrium has been studied in detail by
Toupin,! Eringen,? and Grindlay.? Toupin? has also
considered the dynamics of an elastic dielectric and
arrived at the equation of motion for small displace-
ments from an initially polarized and elastically de-
formed state. Toupin has some criticisms to offer about
the earlier analysis of the problem by Born and Huang,5
and Mason.®
The lattice theory of vibrations of an ionic lattice in
an initially unpolarized and strain-free state has been
developed by Born and Huang.” They obtained the
expressions for the dielectric, piezoelectric, and second-
order elastic constants of such a lattice in terms of
second-order coupling parameters. In nonionic crystals,
the lattice theory was extended by Srinivasan® to the
case of a lattice under homogeneous strain and the
lattice-theoretical expressions for the third-order elastic
constants of a nonionic crystal were obtained in terms
of the second- and third-order coupling parameters.
(This paper will be referred to as RSI, and the notation
developed in this paper will be used extensively in
what follows.) These expressions were applied by
Srinivasan® to the case of germanium and silicon.
In the work presented here, the lattice theory of the
vibration of an ionic lattice is extended to the case when
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the lattice is initially polarized uniformly and is in astate
of homogeneous strain. The equation of motion is de-
veloped to the first power in the initial strain and electric
field. This is compared with the corresponding equation
of motion from Toupin’s general theory. Expressions
are derived for the linear coefficients of variation with
strain and electric field of (i) the electric susceptibility,
(ii) the piezoelectric constants, and (iii) the second-order
elastic constants of an ionic lattice in terms of the
second- and third-order coupling parameters.

The expressions so derived are applied to the fluorite
lattice in the succeeding paper.

II. CONTINUUM THEORY

Consider a body subjected to a homogeneous de-
formation and a uniform electric field E. Using Toupin’s*
general theory of the dynamics of an elastic dielectric,
the equation of motion for small displacements from
an initially deformed and polarized state will be
derived to the first order in the deformation parameters
and the components of the electric field. It is convenient
to use a rectangular Cartesian system of axes in what
follows.

The reference or material configuration of the body
is one free of strain and polarization. In this state let
the coordinates of a material particle be denoted by
X; (=1, 2, 3). When the body is homogeneously de-
formed, the spatial coordinate of the material particle
becomes #;. The deformation parameters ;; are given by

0%/ 0X ;= 8ij+ei;. (2.1)
The 6;; are Kronecker deltas. The Lagrangian strain
74 1s given by

nij=3 (it €22 enjers) - (2.2)
&
For a homogeneous strain, e; and 5;; are independent
of the material coordinates X,.
The polarization in the deformed medium is P and
the electric field E. Both are assumed to be uniform.
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Toupin* defines the material measure of polarization
of the medium as

7)/ 0X i

;= Z P k )

vk Axy

(2.3)

where v’ is the volume of unit mass of the material in
the deformed state and v is the volume of unit mass
of the material in the reference configuration.

According to Toupin,* one could define an energy
function 2 per unit volume of the undeformed state. =
is a function of the components m; and 7, only. This
function should be invariant to rigid rotations and to all
the symmetry operations of the point-group symmetry
of the medium.

As we are interested in developing the equations of
motion for small displacements from the deformed state
to first order in E; and ¢;; (terms involving the product
of E; and ¢; are to be considered as second-order
quantities and omitted), we shall assume that the
function 2 can be explicitly written out as a power
series in 7;; and ;. Since there are no stresses and no
electric field in the reference configuration, we may write
2=3 2 Cypmimats 22 Cojrt,mnmiiMethmn

5kl ijklmn

+2 Sopmmats 2 St ennimim
ikl

17kl

+% Z Si.kl,mnﬂ'i"]lclnmn

tkimn

+3 2 Gyt 2 Gprermit- -+ (24)
1y

17k

The symmetry of the coefficients is indicated by
brackets over the suffixes as explained in RSI. Thus
Cij.bi,mn 18 symmetric in (= §), (k=1), (m=n), as
well as (17) = (k) = (mm). Spj,kn Is symmetric only in
(t=4) and (k=1). For our purpose no higher-order
terms in the expansion Eq. (2.4) are needed.

The electric field E is given by

0T 9X;

T

. (2.5)
J éhr,- 6xi
The final equation of motion we obtain should be ex-
pressed in terms of £; and ;. The components P; that
may occur in this equation have to be replaced in terms
of E; and ;; to the first order. Equation (2.5) can there-
fore be inverted to give

Pl:z QIJEJ__Z Ei,mnemn . (2.6)
7 mn

Gy; are the components of the electrical-susceptibility

tensor in the reference configuration. E; », are the com-

ponents of the piezoelectric tensor in the reference

configuration:
2.7

(2.8)

Gii= (G4,

Ei,mn = Z giij,mn .
7
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If the material particles are given small displacements
u; from the deformed state, an additional polarization
8P, and an additional electric field 6 E;=e; are generated.
The additional polarization 6P; is given by

auk

6u,~
8Pi=pi+2 Pr——2 P; (2.9)
i dx; k Axy
Here
v 6)02
pz=—z T (210)

where 0m; is the change in the material polarization

accompanying the displacement.
The change in the electric field e; is given by

0z, 9X; Ouy
=2 S —
sklr 0X; dx; 90X
an aXz auk
+2 XY pr— —p—2 Er—. (2.11)
Jkl xX; OX; k 0x;
Here
022
8j k1= , (2.12)
0m;0Mi1
v 922
X VD=~ (2.13)
v 07rk87rz
Equation (2.11) can be inverted to give
axl axj . aup
pi=2_ Xp— <6j+z l’zr—>
gkl GXk aXl b4 (9;’0_,,‘
dx; 0x, Ou,
-2 G —— . (2.19)
reagk 0X;0X; 0X,

Here
& ke= 2 X1St,ks -
1

Using Egs. (2.13) and (2.7), we can write Xz to the
first order in E; and e;;:

v
Xkl=—/[9k.z+z ®Cret,mn)€mnt 2. SuipEp], (2.15)
v

mn P

G)[Icl,mn]: _Z qu(S[mn,vw]-"Z vapEp,mn)gwl- (2«16)
W D

This quantity is symmetric in (k=1) and (m = n):

9klp= _Z gkathglwgpt- (2.17)

wwt

This quantity is symmetric in 2 =1= p.
X;; are the components of the electrical-susceptibility
tensor in the deformed and polarized state. The linear

10 There is a misprint in Eq. (6.19) of Toupin’s paper (Ref. 4).
The sign before the last term on the right-hand side of that equa-
tion should be positive.

11 R, Srinivasan, following paper, Phys. Rev. 165, 1054 (1968).
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coefficient of variation of the component Xz; with the
deformation parameter e, is given by

(2.18)

Grip yields the linear coefficient of variation of Xz; with
the electric field E,.

If we are dealing with the susceptibility in the optical-
frequency region we can relate Gu,mn; to the elasto-
optic constants of the material.

Using Egs. (2.12) and (2.15) we get

Strt,mn1= Crrt,mn]— Gridmn.

?
8 ka==(Bj kst 2 B o, muemnt+2 EtjpinEs) , (2.19)
v mn »
Ej,ka mn=Z gjv[Sv,ka,mn

*Z (S[vw.ks]Ew,mn+S[vw,mn]EwJu) )
+Z Ew,ksttht,mn]- (220)
wt
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This is symmetricin (k= s), (m = 2), and (ks) = (mn).

Elipia=2 GioStks,vu1Gupt 2 SusGosp- (2:21)

This is symmetric in (= p) and (k=7).

&;.xs are the components of the piezoelectric constant
tensor in the deformed state. The linear coefficient of
variation of &;is with the deformation parameter
€mn 1S

Ej s imm =Ej ks,mn— Ej ksBmn. (2.22)
Ejpks) gives the linear coefficient of variation of &;,xs
with the electric field.

Using Egs. (2.6), (2.9), (2.14), (2.15), and (2.19),
the expression for 6P; can be written as

v
3Pi=—12 e[ Git X (Pijmni+Gindim+ Gnidim) mnt22 GiinFa]
/) J mn D

6%,‘

-2
is 0Xs

[Ei.js—*_z (Ei.js,mn+Ei,naaj'm+ En,jsaim—I_Ea,mnaij" Ei,mnajs) €mn

+Z (E[ip,isl_gis‘sjp‘ gspaii+gip5js)Ep] . (2-23)

This equation will be compared with the corresponding equation from lattice theory to get the lattice-theoretical

A

expressions for (P[ij,mn], gijpy Ei,js.mn; and E[ip,js]-

For the present case of a dielectric subjected to a homogeneous deformation and a uniform polarization and
electrical field, the equation of motion given by Toupin* reduces to

v 9% op 0%u; )
po—tii=2_ Cupjr R S+ Tre E; divp. (2.24)
v kil 0x0x, Kl dxp Kkl Ox0xk
Here po is the density of the material in the reference configuration.
9 022 Odx; Ox; Oxp Ox
L (225)
v pars 01peO@nrs 0X p X, 0X, 0X,
v 02 dxp Ox;
Tu=—2_ (2.26)

o 2 Opg 0Xp X,

Substituting in (2.24) for $;,ix, p1, Cir,j1, and Tx; from (2.12), (2.14), (2.25), and (2.26), and looking for periodic

;= u; exp(iwt) ,

solutions
we get
62u,-
powtti=—1 22
ire 0X,0X,

de;
+Es,ir5jp+ Er,isaip)]"*_z _J_

ir r

[Cwi'r,jc-i"z emn(Cy,ir,js,mn+é/rs,mnaij+é,ir,nsajm+ (/-wnr.jsaim) +Z Ep(C"p.ir,js"l“Ep,rsaij
mn P

[:Ej,ir+z Gmn(Ej,ir,m’n‘*'En,z‘rajm",_Ej,nraim)+Z Ep(E[jp,'ir]—gjraip)]} . (2-27)
mn P
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(2.28)

=, A
C ir,j8,mn= z'r,:‘s,mn"'z [S?.ir,J‘sEp.mn+Sp.ia.mnE7,ir+Sp.mn.t’rEp,:'a]
»

+Z [S[ir»pq]Er.jaEq.mn'*‘S[h,pq]Ep.mnEq.ir'{‘S[mn.pq]Ep.irEq,is:]+Z quthJ.irEq.iaEt,mn: (2~29)
e

er. ir,js = Z gm[Sq,ir.is— Z (S[qt.is]Et.ir+S(qt.irlEt,J's) ]— Z qutsq.irst.:‘c .
q ¢ qt

The effective second-order elastic constants for wave
propagation in an elastic dielectric are (' .. The
effective third-order elastic constants are C’;r js,mn. The
linear coefficient of variation of C’;; j, with the electric
field is given by C’5,irjs

The above equation must be supplemented with the
equation

div(e+4w6P)=0. (2.31)

In the next section, the equation of motion of a
homogeneously deformed and uniformly polarized ionic
lattice will be derived from lattice theory. Comparison
with the Eq. (2.27) will yield the lattice-theoretical
expressions for ¢y js.mn and C'p iy js.

III. LATTICE THEORY

Following the notation in RSI, the Greek alphabet is
used to designate the particles in the basis cell. Capital
letters L, M, N stand for cell indices and small letters
1, j, k stand for component indices. A particle of type
u has a mass M (u) and a charge e(u). The theoretical
expressions to be derived in the following are valid not
only for rigid ions but also for polarizable ions when
they are treated in the framework of the shell model of
Cochran.

The potential energy between two particles (L))
and (My) is ®(LN\,Mp). It is composed of two parts,

S(INMp)="B(I\Mu)+BIN\My).  (3.1)

N refers to the non-Coulomb interaction between the
particles and could involve many body forces. ¢® refers
to the Coulomb interaction between the particles,

CR(LNMu)=eNe(w)/ | X (INMp)| .

The Coulomb part of the potential depends on the
distance between two particles and hence satisfies the
translational- and rotational-invariance conditions. The
coupling parameters due to the non-Coulomb inter-
action must satisfy the conditions (2a)-(3f) of RSI,
since the total potential energy must be invariant to
rigid translations and rotations.

(3.2)

pqt

(2.30)

The lattice is assumed to be subjected to a homogene-
ous deformation. The coordinates x;(L\) of the particles
after deformation are related to the coordinates X ;(L\)

before deformation by the relation
2(LN) =X (LN+U(LN), 3.3)
where

UdLN) =2 ;X;(LN+wi(N) . (3.4)

The e; are the deformation parameters and w(A) is
the internal displacement of the M\ sublattice. The
polarization in the deformed state is given by

1 1
Pi=— X e(u)sin)=— T e, (35)

since the reference state is one of no polarization, i.e.,

2 e(u) X:(0n)=0. (3.6)

9, is the volume of the undeformed basis cell and v,’
is the volume of the basis cell after deformation. This
polarization P; is given by Eq. (2.6) to first order in
the electric field and deformation.

When the particles are given displacements #;(L)\)
from this deformed configuration, the equation of
motion is given by (31) of RSI to the first order in
U ,'(L)\)Z

MWi(IN=—-2 % % Wi (LN Mpu;(Mu) , (3.7)

V(LN Mp) = ®;(LN, M p)
+Z¢ > % ;5 (LNMu,Nv)Uy(Nv). (3.8)

Let us seek solutions of (3.7) of the type

#;(LN) =u;(\) [expiwt [ expi2xY - X(LN\)]

=u,;(\) [ expiowl][expi2ry-x(LN)]. (3.9)

Here Y is the wave vector in the reference configuration
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and y the wave vector in the deformed configuration.
To first order in the deformation,

YVi= Y,"— Z ng’Yj . (3.10)
7

In Egs. (2.23) and (2.27), the derivatives of the dis-
placements with respect to material coordinates occur.
So we shall use the first form of the solution (3.9).
Substituting this form of the solution in (3.7), we get

MNP (V)us(N) =2 0;(u) % W;i(0N, M )

Xexpi2rY -X(O\,Myu). (3.11)
Consider

2 U, (ONMy) expi2nY - X(ON,My) .
M

ELASTIC DIELECTRIC 1045

The Coulomb part of this sum is
> ®,;;(0N,Mu) expi2nY - X(ON, M)
73

+3 X C®,:(0NMu,Nv)U (Nv)
o Xexpi2rY - X(O\My). (3.12)
The first term can be written as
> €®;;(0N,My) expi2rY - X(ON, M u)
: -2 ZP:' ¢d,;(O\,Pr). (3.13)
Substituting for U;(Nv) from (3.4) into the second term
of (3.12), and taking into account the fact that the

Coulomb interaction is a two-body central interaction,
we can write the second term of (3.12) as

22 wi() [0 X CPij(ONMu, Mu) expi2rY - X(O\Mu) 48,0 3. €®;1(0N,Mpu,0N) expi2rY - X(ON, M)
i » M M

+ 8 27 €D;5(ONONNY)— 8,000 22 2
N I3

T

C‘I’;jt(O)\,O)\,Pﬂ')J"‘Z emn[au)‘ Z' C‘pﬁm(O)\,O)\,NV)Xn(O)\,NV)
mn Ny

— 37 O, (ON, M1, 0N) X n(ON, M) expi2n’Y-X(O\,Mu)]. (3.14)
M

In the above, use has been made of the fact that

O%;;(ON0N) = —3_ 3= °®;;(ONMu) ,
r M

and
CP;im(ONON,ON) = — >~ >/ €®,;,,(ON,ON, M y) . (3.15a)
r M
The prime over the summation sign means that when A=y, the term M =0 must be omitted.
From the expression (3.2) for ¢®(0\,Mu), we can write
> CD;(0NMu) expi2rY - X(O\,Mu)=expi2rY - X(\y)
MOsp)
[ (Ne(u) ” ( > . 20Y X(M)) (3.15b)
X| —eM)e(u expi2wY - ] .
"aX:0X,\3 |X(M)—X]| X—XOW)
> €®,;(0N0N,Mu) expi2rY - X(ON,Mu)=expi2rY - X(\u)
M (N#p)
93 ( expi2rY - X(M)
X[ = e0e = - s
aX0X;0x\%  |X@0O—X| /s xow

Using the theta transformation formula, Born and Huang” have shown that

expi2rY-X(M)
u | X(M)—X|

=[(1/7v.Y?) exp(— (72/R?)V?4i27Y-X)+-R % HR|X(M)—X|) expi2rY-X(M)

+(r/0R?) T G| Vot Y|/RY) expize(Tot V) X]. - (3.16)

Here R is an arbitrary parameter chosen to ensure the rapid convergence of the two sums on the right. Y, is a

reciprocal lattice vector.

21 p=
H)=— - / du,
¢

(3.17)

rl/2 £

G(e)=e¥/¢.

(3.18)
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The prime over the sum over Y, means that the origin of the reciprocal lattice should be omitted in performing
the sum. Substituting (3.16) in (3.15b) we get

2" ©@;;(0\Mp) expi2nY - X(ON,Mu) = (4r/va)e(Ne(w) (V¥ i/ V) +e(Ne(u)Qis (VM) , (3.19a)
M

37 €&,;(0NON, M) expi2rrY - X(ONMu)= (47 /v2)e(Ne(w) [i2rV ;¥ ;V 1/ Y2 ]+eNe(w)Ri(Y i) . (3.19b)
M

Here
Qis(Y ) \s)= (4/va) (Vi 3/ V) exp(—n2VY/R)—1]— R’ ZA:I' H.i(R| X(O\Mp)|) expi2xY - X(0A,Mu)
473 w2
+R'~’ - ZY;. (Yh-l-Y)j(Yﬂ*Y)zG(I;lYH—Y[ )exp(—zZ'erwX()\u)), (3.20a)
Rin(Y M) = (4m/v4)i2w (V¥ ;Y 1/ YH[exp(—m2V Y/ R — 1]+ R4 X' Hiju(R|X(O\My) |) expi2nY - X(ON, M u)
o
8t e
+i—2 (Yh'f“Y)i(Yh‘*"Y)j(Yh‘l'Y)lG(;l Y, +Y| 2) exp(—i2xY,-X(\w)), (3.20b)
2. R? va 2
92
(18D~ A,
Hiu(|£])= H(|£]).
9E:0E;08,

Now

1 9
%;[' O,m(ONON M 1) X (ON M) expi2n¥ - X(ON, M) =— —— 3/ B, (ON,0N, M) expi2r’Y - X(ON, M)

12w Y, M

4r
=—eN)e(W)[ (VY 8mnt YV mbint+Y iV d;n)/V2=2VV;V ¥V / Y]+ (N e(w) Rijm,n (Y, A) ,  (3.21)
Va
where

1 9
Rijmn(Y, M) = - —Rim(Y, M) .
2w oY,

The Coulomb part of
> Wi(ONMp) expi2rY - X(ON, Mpu)
M

can now be written as

eM)[e(w) Qi (Y, M) — 2 e(mr)Q:;(0,A) 5,0\]-!-21 2 wi)[— uRiji(Y, M) e(N) e(u) + 0aRij1 (Y, \u)e(N) e(w)

+8Ri1(0,\)e(Ne(@) — 8adne(N) 2 e(m) Riju(0,M) 142 €mn[ —e(N)e(u) Rijm,n(Y M) +e(N) 20 () Rijm,n(0,M7) ]

4w 1
+—60\)6(/L);[Y,Y]-Z Gmn(y.iymﬁjn‘f- Yij6;n+Y,~Yj5m,.—ZY,-Y,-YmYn/Yz)]
Va mn
V.V;V,
- (86— Jwi(v). (3.22)

4o
+—eNe(w)2_ 2- i2m

Va I v

The equation of motion can now be written as
M Nw:(\) =2 [C*;;(Y )+ D*io(Y \w)wi(@)+ 22 E*iimn(Y,Me) €mn 045 (1)

iwu vl mn
4r 1
+8(A) Z ‘—"I‘};[Yiyj‘z €mn(YiYm6in+ ijmafin"'_ Yiyjsmn'—zYiYiYmYn/Yz:]e(”)uj(u)
B Vg mn
+e(N) X i2nVie(wu;(w) X2 ViVi(da—dy)wi(r) . (3.23)
By 14
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Here
C*5(Y M) =3 V(0N M) expi2r¥ - X(ON, M) +eNLe()Qis(Y,hu) 8 32 e(m) Q0 Am)], (3.24a)
D* (Y \uv) = A%r N&,;:(ON, M u,Nv) expi2nY - X(ONMu)+e(N) [e(u)Rija(Y,Mu) (51— 81)
+eOIRHON)0— 300 T e Rin(OM)], (3.240)

E*imn(Y ) =3 30 3 ¥®,50(ON, M u, Nv) X n(Nv) expi2nY - X(O\, M)
M N v

+e(>‘) [5#7\ Z e(T)Rijm.n(O;N’r)—"e(ﬂ)Rijm,n(Y,)\[l,)] . (324C)

Following Born and Huang’s procedure, Y is replaced by €Y and w?, C*, D* E* and the displacement u;(\)
are expanded in powers of e. Here € is a convenient parameter which aids us in collecting terms of zero, first, and
second orders separately. Later € can be put equal to unity. We write

i) =N+ eu; VN +3eu PN+ - -, (3.25a)
w¥(eY)=e(Y)+- - -, (3.25b)
C*ii(eY \w) = C*i;(0\u)+32me > C*i5,- (O M) Y ,—2(472) €2 D C*ijrs(ON) Y Y o4+ - (3.25¢)

D* (€Y Muv) = D*;5(0 M) +1327e > D* 10, (O \uv) Vo — (47D € 3~ D*i50,rs(O N ) Vo Vgt - -, (3.25d)

E*ijmn(EY,)\,u) = E*ijmn(o;)\ﬂ)+i27re Z E*t'jmmr(oy)\ﬂ) Yr—%(%z) ¢ Z E*ijmn.ra(o,xﬂ) YrYs+ ct . (3.256)

Here
Aijee pgeen="""0054 ...,
and
1 9
2w v,

A stands for C*, D*, or E*.
Substituting in (3.23), and collecting the terms of zero order in e,

2 [C*;0 M) +22 D*i5s(0,Mun)wi(v) 22 E*ijmn(0,Me) €mn 045 (1)
in 147 mn

4
+e(>‘) Z [Y.Y:—Z emn(yiyjamn’*‘ Yiym.ajn_l" ijmaiu_zyiyjymyn/yz)]xz e(ﬂ)ui(o)(ﬂ)=0' (326)
j mn L

9, V2 i

Since X, C*;;(0\u), 3= u D* 150 uwv), 3_ 4 E*ijma(0,\), and 3, e(n) are all zero, the solution of the above equation
is
%O () =1;® , 3.27)
independent of .
The first-order equation is

2 [C*-'j(O,M)+lZ D* ;10 \un)wi(v) + 2 E* ijma(0,M) €mn J14;V (1)

=—2 2z ;O C*5,0(0 M)+ 2 wilv) 2 D¥*ij1,0(0,Mur) +22 €mn 22 E*ijmn,o(0,\2))
j& » vl n mn "

4
—e(N) 7 2 [YYVi—2 emn(Yi¥ 8mat ViV mbint ViV mbin—2YV Y ;¥ ¥V /Y5 ] 3 e(u)u; V()
Va J mn m
dr _ VY;
—_ > e@w;(v) 2 2aV @ . (3.28)
% i Y2 » k
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C*i5(0, M) = % N;(ON, Mp)+e(N) [e() Qis(0 M) — 8 2 €(m)Qs5(0M) ]

= 7}“{ N[-)\i,ﬂj J+ C[Airﬂj ]} = Vﬂ[)‘i;”'j ] ’

from (7a") of RSI.

2 C*i5.4(0 M) = % N (ONM ) X o(ONMu)+e(N) 22 €(1)Qi5.0(0,Me) = 2a[ ¥ (N, 75)+ (N6, 75) ] = va(Ns, 75)

from (7b") of RSL

D* 50, M) =3 VP;2(ON M p, Nv)+[e(N)e() (a— 85) Rij1(0, ) +e(N) e(r) 8,aRs2(0, W)

from (14a) of RSIL.

> D*i1o(0\uw) =2 37 VBija(ON M, Nv) Xo(ON M p)+-e(N) 22 () (8n— 80) Rij.s(0, M)

N Mup

from (14b’) of RSI.

[\iwl, st is not symmetric in (5= s) while [\s,»},7s] is symmetric in (7 = s).

E*,-,-.mn(o,kn)=§ § Y%, jm(ON, M 11, Nv) X o (V) — e(N) Le(t) Rijmn (0 M) — 8 2= €(m) Rijmon(0,\r) ]

Z E*iimn.c((),)‘l-‘) = E Z N‘I)iim(O)\;M ﬂaN V)X s(N V)X c(OA,M I‘) —6(7\) E 3(M)Ri.im'm(0;>‘ﬂ)

Mp Nv

(3.29a)

(3.29b)

—e(\)0udn 22 () Rija(0,Mr) ]=va{ ¥ [Ny j ol T+ [Ny jpl 1} = va[ Mi,ujpl],  (3.29¢)
=9 {V[Nipl, js T+ Nipl, js T} = va[Aipl,js T,  (3.29d)

il s = [Aipl, js Jt— [Asd 18— [Nys 16153 (3.29d%)
=va[ Ayuj,mn]t, (3.29)

=0a{ V[N, (45), (mm) ]+ [N, (75),(mn) T} = va[ N5, (5s),(mn) ],  (3.29)

from (14d’) of RSI.

N6, symn] = [N, (4s), (mm) J— (A, ) 8im
— (As,mn)d;;— (\i,51)0im, (3.29f')

from (14c’) of RSL [Ai,(4s),(mn)] is symmetric only
in the interchange of (js) = (mmn), while [\s,js,mn] is
symmetric in (j =), (m = n), and (js) = (mn).

Accompanying the displacement we have a change in
polarization 8P and a macroscopic electric field e.
Toupin? has emphasized the point that the independent
variable in the electrical field is the spatial coordinate
x; and not the material coordinate X;. So we write

e(x)=e expi2ry-x. (3.30)

The polarization wave accompanying the displacement
can also be written as

oP(x)=0P expi2wy-x. (3.31)

The contribution to 6P arises from the dipoles on the
various sublattices,

sP=Y sP(). (3.32)

e and 0P can again be expanded in powers of € as

follows: Putting y=ey,

oP=0P©4-esPMW4-3e2P@4-- - - | (3.33)
e=e¢W4-ee®W4Fele @, (3.34a)
SPO0)=(1/v4)e()u®, (3.34b)

SPD(3)=(1/va")[e()u® ()
—% 21y Ve()x(0v) ], (3.34¢)
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The second contribution to 6P®(v) arises as follows.
Following Toupin,* we may consider —div(6P@(»)
Xexpi2ry-x)v,’ as an additional charge de(v); the dipole
moment due to this additional charge is de(v)x(0v).
This contribution is also of the first order in e. This
interpretation receives support from the perfect agree-
ment between the theoretical expression 6P on lattice
theory and the Eq. (2.23) and the lattice-theoretical
equation of motion and Eq. (2.27).
The polarization of the medium is therefore

SPO=(1/v) 3 e(r)u®=0, (3.35a)

SPO = (1/v)[e()u® () =X 2wy @y 3 e(»)x(0r) ]
= (1/2)[e()u®6) —v’ T i2mysu®P].  (3.35b)

k. Born and Huang’ have shown that if e and 8P are

ELASTIC DIELECTRIC 1049
related by Eq. (2.31), then
Yi
;W= —4r—3" y;P;©=0, (3.36a)
¥
Yi
6= —dr— 3 3;8P;0
i
47 ¥i
=—— 2 il 2 e()u; P ()
va y2 i
—v, Z i27ryku(°)kP,-] . (3.3613)
k

Taking into account the fact that to first order in €un,

7)6,='Ua(1+z e7nn6m.n) )

and using Eq. (3.10), we can write ¢;(V to first order
in €nn and Pj as

4 1
ei(l)= — Z [YtYJ_Z €mn(YiYmajn'l' yjymsin"}' Yiyjsmn—'2Yiyjymyn/y2)]e(ﬂ)ui(l)(l‘)

V9, 4V2 ui

dr V;
+— '—;z Yj Z B(V)Wj(v) Z inquk o, (3.37)
7 13 k

Va

So the first-order equation of motion (3.28) can be written as

v 2 [Nug O (W) =—1s 2 i27rY.uj‘°’{(>\i,jS)+Z% Dl s Ttw@)+ 22 [N, (7s), (mn) Jemn}+e(Nes® . (3.38)

Here

[>‘i7:“j ], = D\i:“j :H_Zl [)‘7:7/‘.7. )"l]wl (V) +Z [)‘i:”j ,mn]?em" .

(3.39)

The matrix [Ni,uj]’ is of order 3nX3n, where » is the number of particles in the basis cell. It is singular since
3« [Mi,uj]'=0. Following Born and Huang,” we form the matrix {Ni,uj}’ as follows. All rows and all columns of
the matrix [M,uj] having the index A=1 or p=1 are omitted. The resulting matrix is inverted and bordered with
zeros to make up the 3%X3n matrix {Ni,uj}’. To first order in ens and wi(v),

{\i,ui} '={N,uj}— Zﬂ Zb {M,aa} [Zl [aa,8bvl Jwi(v) +2 [aa,ﬁb,mn]fem,.]{ﬂb,yj} .

(3.40)

{M\i,uj} is obtained from [Mi,uj] following the above procedure.

The solution of (3.38) can then be written as

u0=—3 2x¥ ai;O[2 {M,pf}'[(pf,jS)'l-Zl Coryh, jsTrwi®)+ 2 Lo, (45),(mn) Jema]d

1
+e(d) g iV 2 —e(p){M,p7}. (341)

P Vg

With the help of (3.35b), the polarization 6P can be written as

. 1
5}:‘(1):_1,_[—2 iZwY,ui(O)[— > e {NiyorY ((or,75)+ 2

1

va' Vg Aot

Corh s i)+ Do, 79, n1) Jes) |

A
e( )e(”){)\i,p]‘}’—z ’iZWquk(O)Pi]' (342)

V.2 k

+X M2
i Ap
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If there were no initial deformation or polarization

;O\ = —Z i2n ¥ u; A (M;]SH‘Z DY ——e(p){M,p]} ) (3.43a)

P Vg

eO\)e(p){ Mypj}. (3.43b)

1
= e()4 <m,m]+z 5O S

Va Ao 9,2

1
8P, WV=—73" e(MNu; P\ = ——Z zZerau,(O)[
Ug M

Here .
AN, js)=3 (Niypr) (or, s). (343"
pr

Comparing with Egs. (2.6) and (3.5), one can identify w;(\) with ;O (\), sP® with P, e® with E, and i27V 4;®
with ;. To the first order in ¢;; and E,,

w;(\)= -—Z ANiymn) e,,m—l—z E, > ———e(7r) {N\i,mp}, (3.442)
T Va
1
= —— Z e,,m[z e(\)A (i, mn)]-l—z E [ Z e(>\){>\z,7rp}e(1r)] (3.44b)
Vg mn ﬂa
The piezoelectric constant E; ms in the undeformed unpolarized state is given by
1 3
E;mn=—2_ e\ ANiymn) , (3.45)
Vg A
and the electric susceptibility in the undeformed and unpolarized state is given by
(3.46)

The above results were obtained by Born and Huang.”
For the case of the initially deformed and polarized lattice we substitute for w;(v) and P; from (3.44a) and

(3.44b) in (3.42), and obtain an expression for 8P;" involving only em. and E,. We compare this expression
with (2.23).

First let us consider the coefficient of ¢;® in the resulting expression. This is
v, [ 1
'—,{ N 2 e()\)e(P) ({ )\i,pj} -2 Gmn[;; Zb {)\i,(){d} {Bb,07} [:aa,ﬁb,mn]*— 2 [aayﬁbyyl]A (VZ’mn)]
Va Va“ Mp mn af a vl

1
—— 2 EREXY {M,ad}e(w){Wﬁ,vl}{Bb,pj}[aa,ﬂb,vl]])} . (347)

Va P aa Bb vl

Comparing with the coefficient of ¢; in (2.23), one gets

Giir=——" Z 2 2 % [oa,Bbplle(N) {N,aate(m){mp,pl}e(p){p],60} . (3.48)

243 o7 aa Bb ¥l

The right-hand side has the proper symmetry, namely, 1 = j = p.

®tijmn1+ Ginbjmt Gjndim= ——— Z 2 2 e {M,aa}e() {80,051 [aa,Bb, mn]"-z Laa,8bp1]A (lmn)} . (3.49)

7}“ Ap aa Bb

Using (3.29d’), the right side of (3.49) becomes
—(1/4%) f‘: 2 BZ e(N) {Mi,aa}e(o){Bb,07}{[a,Bb,mn]— Z [aa,8b00]A4 (vimn)}
—(1/v4?)0:n g.: e(Ne(p){(Mnpj}—(1/v4%)6;n ? e(Ne(p){Ni,pm}.  (3.50)
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Using (3.46), one can therefore write
®ijmn) = — (1/7)02) )\Z Z %% 3()‘) { )\i,aa}e(p) {Bb,p]} { I:aa,ﬁb,mn]—- Zl I:Ol(l,ﬁb,lll]A (Vl,ﬂ’ﬂ’t) }
- [ginéjm"l_ gjnaim_l_ gjmain_l_ giméjn]- (3.51)

The right side has the proper symmetry (¢ = j) and (m = n).
The coefficient of — 27 ¥ ;@ in (3.42), after substituting for w;(»), P, and {N,pr}’ from (3.44a), (3.44b), and
(3.40), is

76 (1

. Z)\ e(\) [A (M:,].S) +2 ema(X {\i,or} [[Pr, (]S) ,(mn) :I - Zt [pr, Tt)'mn]TA (v, ]S) - Zt [Pr; 74, ]'S]TA (Tt)mn)

va’ Lo

1
+Z Z [pT,Old,Bb]A (aa,js)A (ﬂbamn)])]—l-z E:P(_— Z {MJW}[Z; [Pryylyjs]f_zt D’rﬂ't;”l:’A (Tt!js)

aa Bb » 42 o7

T DU EGuta] . (352
Comparing with the coefficient of —du;/9X in (2.23), one gets
E[ip,js]"‘ 9¢s3jp— gaz'aij+giﬂajl= (1/7)02) %.; Z Z e(x){klyp”}@(ﬂ){ﬁﬁ;”l} [EP”,VlJS]“Zt [pT,Vl,TIf]A (Tt’js)]

+(1/v4%)8is % e(WeB)[A 7811+ (1/2a%)84p % e(N[N,B51e(B)+Gindie, (3.53)
so that
Eiipja={(1/v4? % 4;. Zl e(N){Ni,pr }e(ﬁ)wpﬂd}[[P’,Vl,jﬂ—% Lorpl,rt]A (vt,§5)1}
F[GnbistGiibent GonbiitGindis].  (3.54)

The right-hand side has the proper symmetry (i = p) and (j = ).
Comparing the coefficient of e, in the term containing — du;/8X, in (2.23) with the coefficient of e, in (3.52),
and using (3.29d"), (3.29f"), and (3.48b’), one gets

Ei.js,mn+Ei,nsajm‘l"En.jaaim'I"Ea,nmaij_‘ Ei,mnajc
= (1/7)'1) )\Z 6(7\) {}‘i’Pr} { [pr,js,mn]— Z [p?’,Tl,mn]A (Tt’js) - Z [pf,Tl,jS]A (Tt,?’nﬂ)
pr Tt Tt

+> [P"’aa:ﬁb]A (aa)m”)A (Bb,js) }+E1‘. sn0im— L, mnbis— E, jibin— E; mnbis.

aa Bb
Therefore,

E: jormn=(1/14) A}j e(\) {Ni,or }{ [or, 7s,mn ]— Zt Lor,rt,5s 1A (rt;mn) —3_ [or,rt;mn]A (rt,5s)
pr T T

+2 X [or,aa,80]4 (aa, js) A (Bb,mn) } — [En.jsaim+Em,i83in+Es,mn5ij+Ej,mn5ig:| . (3.55)

aa Bb

The right side has the requisite symmetry j =s, m = n, and (js) = (mn).
Comparing the second-order terms in e in the equation of motion (3.23) and summing over ), one gets

puwaw; =3 4x?V. rYauf“”(—%){? C*sf.n(O,MHZIZ wz(u)[g D¥ij2,ro(0Mav) 1H-22 €mn[ 20 E*ijmn,rs(0,Me) 1}
“ v " mn A

irs

+3 27V ;O W) {3 C*;j,r(O,Au)+Zl wl(")[? D*;j1,,(0\uv) J+22 Gmnl:% E*jmn,(0,M) T}

ujr A
+2 i2xY [ (4r/Va)(Vi/Y?) Z Vje(w)u; D ()] 5‘; eMNw,(\).  (3.56)
Now
)‘Z C*ij,rs(o,kﬂ) = )\Z % Ni’ij(O)\,MIJ)Xr(O)\yMﬂ)X:(O)‘:Ml‘)+; e()‘)e(ﬂ)QU.n(O’)‘ﬂ)

= —20["Clij,ra1+°Cijora]=—2VClij vy, (3.572)
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from (8) of RSI.
; D*j1,r5(0,\up) = ; % N, 1(ON M, Nv) X o (ONM ) X o(ON M)+ 37 e(N () Rijt, s (0,Ma) 30— 85, ]
H » A
== ZN N 43500, NN M ) LX (00, N'N) — X (00, M) JLX o(Ov, N'N) — X o(Ov, M "11) ]
A M'N’
+§: e(u)eN) Rijt,r o O M) (02— 80 J=—2 22 20 VByij(Or, NN\ M) X (00, M’ 12) X o(0v,N'A)
" M MIN'
+ 26(”) Z e(/‘)Riﬂ.fs(osy“) = 27)“[1/1, (]7’),(13‘)] ) (357b)
m

from (3.291).
)‘Z E*'ijmn,u(oy)\ﬂ) = Z)\: Z Z N(I)ijm(O)‘sM#:Nv)Xn(Ny)XT(O)\’M”) XI(O)\’MM) -Z e()\)e(,u)R,-j,,,, "TS(O)AP')
B

Mp Nv A

= —2vq{ Néii.[mn].n"l‘ Céii.lmnl.n} = _Z'Ua(jij,[mn],n , (3.57¢)

from (15) of RSL. ; C* s (ON) = — 0 (dir) (3.57d)
X D%t 0w = —wulobuiir T, (3:57¢)

X B, () = = (), (i) ], (8.576)

X 2w [(m/oa) (Vi/ Y?) ; Vielus (w12 eNwiN) = =20 1 i2nY 1, OPr, (3.58)

to the first order in ens and P;. Thus, (3.56) becomes

postt; V=472 T V, Y 4, O[Cis, rar+ 2 0i0) 04, (57), (i) ]+ 2 €mnCistmn1,re]

jrs vl

— 2 82w ¥ s V(W) (gsir) + 2 wi@) [l gir T+ 2 emnlug,(mn), (i) =2 2wV ve;VP,.  (3.59)

pir vl

Substituting for #;"(u) from (3.41) and collecting the coefficients of —i27¥,e;V, we get

(1/%)(2; e(B)A (ﬁ]:”’) +Z{ ‘ZUZ(V) Zﬁ Z {l‘aﬁj}e(ﬁ) X [D‘a:"lyi’]f'"z I::U'a:Vl’asjA (asiir) ]
+ Z €mn 27; Z {ﬂa3ﬁj}e(ﬂ) X [—Z D‘ayo-s)mn]fA (‘”,ir)"' [Na; (mn))(ir)]]+PrazJ) . (3-60)

Substituting for w;(») and P, from (3.44a) and (2.6), and making use of (3.53) and (3.55), it can be shown that the
coefficient of —i27xY . ¢;V agrees exactly with the coefficient of — de;/9X, in (2.27).
Now, let us consider the coefficient of 472V, ¥ %;©® in (3.59) after substituting for #;V (u) from (3.41). This is

20[1’]‘. r8) —Z (p,d,ir)A (ﬂ'a;js) - Z (p,d,’is)A ([.l,d,jf) +lZ wl(") { [Vl, (2'1’), (]S)J+ I:Vl, (is)7 (]7’)]‘“ % [[Vl,ﬂb,jS:lTA (ﬂb;”’)
+ [Vl)Bb;ir]TA (56,]'5) + [Vl,ﬁb,j?’]fA (6617'5)_‘- [Vl,ﬂb,iS]TA (ﬁb,]”)]‘l‘z > [aarﬁbﬂ’l][A (oza,ir)A (Bb;]S)
aa Bb
+A (aa,is)A (B b,jr) ]} +Z errm{ 201‘:’, [mn],rs™ Z [[ad, (jS), (mn) _IA (aa,ir) + [aa; (ir): (m”) ]A (aa,js)

+ [:Old, (.7 r); (mn) ]A (aa,is ) + [aa, (”) ) (mn) ]A (aa,jr)]
+2° 2. [ea,Bbmn ][4 (cair) A (8, j5)+ A (ea,is)A(8D,jn)]}. (3.61)

aa Bb
This should be compared with the coefficient of —8%,/9X,0X, in (2.27), namely,
Cﬂc‘r,js“'éli:,jr'l‘z emn(ZGIN,mnaij+6,ir.n45jm+Cﬂia.nrajm‘l'c—"jt,nréim+6lns,jr6im+Clir,jn.mn"l"élis.jr,mn)
+Z Ep(C"p,ir.ja+pr,is,jr+ZEp,raaij_{_Es,irajp+Er,iaij+Er,juaip+ Ea,jraz'p> . (3'62)
4
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If the lattice were undeformed and unpolarized, one would get

ZO[ij.rs] =2 (wayin) A (ua, js) =2 (uayis)A (ua, jr) = C-”ir.:il"‘ Cﬂit.z‘r . (3.63)
ua na
This leads to the Kun-Huang relation on the second-order coupling parameters
Crisirn=Cijura) (3.64)
i.e., Clij.re) must be symmetric in the interchange (i§) = (rs). The second-order elastic constants are given by
C”l'f,)'l= Cir,js_z ([td,i?’)A (ua,js) = Oij,n‘l‘éjr,u‘a—éir.it'—z (I‘ayir)A (/J'a:js) . (3-65)
na na

Substituting for w;(») from (3.44a) into (3.61), the coefficient of e Is
2Cs;,tmn1,ra— 2 { Elaa,[ js,mn 1A (aa,ir)+ Eloa,[mn,ir]14 (aa, js)+ Elaa,[ir, js 114 (aa,mn) }

=2 2 X [aa,8bpl 14 (aayir) A(8,5) A (vl;mn)— 2 { Elaa,[ jrymn]l4 (aa,is)+ Elaa,[mn,is]14 (aa, jr)

aa Bb vl aa

+ Elaa,[is, jr 1A (ca,mn)} —2 3 3 [aa,8bpi 1A (aa,is) A (Bd, jr) A Wlmn)— 3 [2(aa,rs) A (ca,mn)d:;
aa Bb vl aa

+ (aa,s1) A (aa,ir)dint-(aa,rn) A (0a,is)djmt (aa,rn) A (aa, js)dimt(aa,sn) A (aa, j7)8im].  (3.66)
Here we have used (3.29d") and (3.29{").

Elaa,[ jrymn]l=[aa,jrynn]—Cloa,[ jrymn]], (3.66")
Clea,[ jrymn]]l= Zz: [aaplmn]AWl,jr), (3.66")

from Egs. (28a), and (28b) of RSI.
Comparing this with the coefficient of enns in (3.62), one can get the Kun-Huang relation among the third-order
coupling parameters, as was done in RSI. This relation is

z[éij.[mn] N é[jn.rs] 81’m_ O[m’.rs] ajm_ Cn ,mnaij] ;
it must be symmetric in (ir) = (js). As in RSI, we can write the expression for C’ir,jo,mn as
C i isymn=Cir js,mn— 2 { Eloa,[ js,mnj]A (ca,ir)+ Eloa,[mn,ir 1|4 (aq, js)+ Elea,[ir, s 14 (aa,mn) }
=222 2 [a,8bv1]A (aa,ir) A (8, i) A(Wlmu), (3.67)

aa Bb vl
where

Cirjo,mn= éij.[mn] s Cri mad io— éir,[mn] e [é[nj,n] —C (nr.is] 10im— [0[:'11.1'3] +O[nr,.'c]:]3;'m
+[Ctniin—Crin.is1 J0rm—[Crs.mnii+Cis,mnbri—Ciomndir]. (3.68)

The coefficient of E, after substituting for w;(») from (3.44a) is
(1/va) > {[Vl’ ("),(js)]_ 2 [[vl,aa,js]fA (Old,’i?’)—l- [vl,aa,ir]’A (aa:js)]_l'z 24 (aa,ir) [aa,ﬁb,vl]A (:Bb;js)}
vl aa aa Bb

X {Vl:"'i’}e(‘"') + (1/7)“) Zl { I:Vl, (1:8), (]r) :l - Z [[vl,aa,jr]TA (aaais) + [Vl:aa’is]TA (aa7j7)]
+2° 2 A(ea,is)[aa,80,01]4 (8D, jr) Y{plmple(r) . (3.69)

aa Bb

This is to be compared with
(C-,p,ir,js'l‘Ep,raaij"l'Es.iraj:p+Er,jsaip)+(C"p,is,jr+Ep,136£j+Er.is‘sjp+Ea.jraip) )
from (3.62). Using (3.29d") and (3.29f") we get

Cﬂ ?, ir,ja+ Ep,raaij"*"Ea.irajp‘I_ Er.jaaip= (1/94) ZI 8(71") {Vl,’ll‘?} { [vl,js,ir]— Z [[Vl:aa’:js]A (G!d,i?’) + [Vl;aaai"]A (aa,js) ]

+Z % 4 (aa,ir)[vl,aa,ﬁb]A (.Bb’]s) } +Epuraav'j— Ej. iraps_ Ei,jxapr . (3.70)
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(7,:0,!'1,.7'8= (1/7-’0) Zl: 2 8(7") {VZ:WP}{[VZ,]'S,”]—Z [[vl,aa,js]A (aa,ir)—l— [yl,aa,ir]A (aa,js)]

43 2 A(ca,ir)[vl,0a,80 1A (Bb, js)} — [E; b pst Es,ird it Ei jsbpr+ Er jsbpi ] (3.71)
aa Bb
The right-hand side has the requisite symmetry (i =7), (j =), and (ir) = (js). )

_ Thus we have derived the lattice-theoretical expressions for C'ir,js,mn, Gij Gijpy Ptigmnl, Eiip.iat, Eijomn, and
C’p,ir.is. The expressions derived here will be applied to the case of the fluorite lattice in the following paper.!!
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The lattice theory of the elastic dielectric developed in the preceding paper is applied to the fluorite
lattice. Expressions are derived for the third-order elastic constants of the fluorite lattice in Axe’s shell
model. The values of the third-order elastic constants and the pressure derivatives of the second-order
elastic constants are calculated for calcium, strontium, and barium fluorides on the rigid-ion and shell models.
In calcium fluoride, the calculated values of the pressure derivatives of the second-order elastic constants are
in fair agreement with Wong and Schuele’s experimental values. The static dielectric constant and its
strain dependence are also calculated for the three fluorides in the shell model.

1. INTRODUCTION

IN the preceding paper, lattice-theoretical expressions
were derived for the electrical susceptibility, the
piezoelectric constants, the second-order elastic con-
stants, and their linear coefficients of variation with
strain and electric field for an ionic lattice. This paper
will be referred to as RSII in the following. In the
present paper, these theoretical expressions are applied
to the fluorite lattice to calculate the third-order elastic
constants and the strain dependence of the static
dielectric constants of calcium, strontium, and barium
fluorides.

The reasons for the choice of the fluorite lattice are
as follows. The simplest ionic crystals to which the
theoretical expressions could be applied are the alkali
halides. However, the third-order elastic constants of
the alkali halides have been calculated already by
Bross,! N’Ranyan,? and Ghate.? The strain dependence
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of the dielectric constants has, however, not been
calculated. In these crystals every atom is at a center
of inversion and there is therefore no internal displace-
ment when the lattice is elastically deformed. On the
other hand, in the fluorite structure the anions are not
at centers of inversion and they undergo internal dis-
placements when the lattice is strained. The absence of
internal displacements makes the theoretical expressions
for the third-order elastic constants quite simple in the
alkali halides. There is no such simplification in the
fluorite lattice. Another consequence of the structure of
the alkali halides is the fact that the polarizability of
the ions plays no role in determining the values of the
elastic constants. For elastic deformations, the ions
behave as though they were rigid. This is not the case
for the fluorite lattice. The polarizability of the anion
influences the values of some of the elastic constants.
Experiments to measure the third-order elastic con-
stants of some crystals of fluorite structure are in
progress in the Materials Research Laboratory,
Pennsylvania State University.

Of the crystals of fluorite structure dealt with in this
paper, calcium fluoride has been the subject of some
theoretical discussion. Srinivasan,® Rajagopal,® and
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