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A perturbation treatment of Kubo's basic formula for the electrical-conductivity tensor is used to derive
an expression for the Hall mobility of the small polaron. The result disagrees with those of other treatments
based on Kubo's formula, but coincides completely with that obtained previously by the present authors
via a jump-probability approach.

L INTRODUCTION
' 'N a previous paper, with the above title, the present
~ - authors have developed a treatment of the Hall
mobility of the small polaron, based on a physically
intuitive jump-probability approach. In this approach,
the Hall current is regarded as arising from the modifi-

cation, by an external magnetic 6eld, of the elementary
two-site jump-rate (i.e., the probability per unit time
for the occurrence of a charge-carrier jump between two
atomic sites). As shown in the cited work, such a modifi-
fication —in particular, one which is linear in the mag-
netic 6eld—arises from the interference between the
first-order amplitude for a direct jump between the
sites and the second-order amplitude, involving inter-
mediate occupancy of a third site. ' From elementary
kinetic considerations, it is then deduced that the trans-
verse mobility p „(related to the transverse conduc-
tivity z,„by the relation a.,„=—mep, „, where m is the
density of charge-carriers —assumed to be electrons for
the sake of definiteness) contains a component which
is linear in the magnetic field, and which is hence a
direct manifestation of a nonvanishing Hall e6ect.

Subsequently, two additional treatments of the
problem have been published, the 6rst by Firsov' and
the second by Schnakenberg. 4 The approach of both
these treatments consists of a perturbation expansion
(in powers of J) of the basic Kubo expression for the
transverse conductivity, cr,„—more correctly, its
antisymmetric part, 0 „"=2(0.,„—0„,), this being the
component relevant for the Hall eBect. Results con-
tradictory to each other and to those of FH were ob-
tained, the differences being especially striking with

~ Supported in part by the National Science Foundation.
L. Friedman and T. Holstein, Ann. Phys. (N. Y.) 21, 494

(1963), to be denoted hereafter as FH. For a description of the
basic concepts of small polaron theory, see, e.g., T. Holstein, ibid.
8, 325, 343 (1959).

'Here, it is tacitly assumed that each site has two nearest
neighbors, which are nearest neighbors of each other (e.g., as in
a two-dimensional hexagonal lattice, or in a fcc lattice). In other
cases, the interference is necessarily a higher-order process. Only
the former case will be considered in the present paper.' Yu. A. Firsov, Fiz. Tverd. Tela 5, 2149 (1963) )English
transl. :Soviet Phys. —Solid State 5, 1566 (1964)j,' J. Schnakenberg, Z. Physik 185, 123 (1965).

respect to the temperature variation. Specifically,
Firsov finds p „ to be inversely proportional to T.
LApart from the factor P=—1/~T, the temperature does
not appear in his Eq. (21).j In particular, there is
nothing suggestive of an activation process. Since the
temperature dependence of the diagonal component of
the mobility tensor p,, is predominantly of the activa-
tion form' e ~ /'~, it follows that the Hall mobility plI
as defined by the relationship p&zH/c = Ii,„&~&/p„
= 0.,„&'&/0 varies with temperature essentially as
e~."~, i.e., a negative activut~oe dependence.

In Schnakenberg's paper [cf. his Eqs. (3.21) and
(2.8)], the temperature dependence of p „& & is pre-
dominantly of the form e ~ ', i.e., the same as that of
p, . It then follows that pH varies only weakly with tem-
perature (because of the presence of algebraic factors,
ignored in this discussion).

In FH, it is found that the temperature dependence of
p,„~' is also of the activation type ( e ~"" ), where,
however, in contrast to Schnakenberg's result, the acti-
vation energy E ' is larger than E; in particular, it is
found that

E,'= (4/3) E..
It then follows that @II possesses an activation-type
temperature (~e ~s~' ~"" =e ~""r), albeit, with a
considerably smaller activation energy than that associ-
ated with the drift mobility p,&—=p,».

From the standpoint of the jurnp-probability ap-
proach, a result such as Schnakenberg's would be at-
tributed —just as in FH—to processes involving inter-
ference between the amplitude for a direct jump between
two sites and that for the two-stage process, involving
intermediate occupancy of a third site, with, however,
the important di6erence that the energy of the inter-
mediate state be noncoincident with the initial energy.
In the language of FH, such transitions would be of the
"two-site coincidence" typ" i.e., transitions in which
the energies of initial and final states coincide (as, of

Strictly speaking, the activation-type dependence is realized
only in the classical limit T))0+ (0~=Debye temperature). It may
be remarked that I T. Holstein, Ann. Phys. (N. Y.) 8, 343 (1959),
Fig. 1j quantal departures from the classical limit are small even
at T—-0.
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course, they must, in order for the over-all transition to probabihty" expression, given by the last equation on
be real, rather than virtual). In this respect, they would p. 515 of their article. A cardinal feature of Eq. (2.34)
be similar to the zeroth-order direct transitions between is the presence of two energy-conserving delta functions
two sites; it is hence not surprising that their activation- on its rhs—exhibiting the fact that only those transi-
type temperature dependence is identical. ' tions in which intermediate (as well as final) energy is

However, it is a cardinal feature of the treatment of conserved, contribute to the Hall effect in hopping-type
FH that the contributions of the three-site transitions charge transport. Aspointedout above, itisthisrequire-
in which intermediate energy is not conserved cancel in ment which is ultimately responsible for the appearance
detail; the final expression for that part of the site-jump of the activation factor {. ~ '"~ in the Anal expressions
probability which is linear in the magnetic 6eld—this for 0,„& ) and p,,„& &.

component being the one relevant for the Hall CGect-
involves only three-site transitions in which intermedi- H. BASIC PRELIMINARIES
ate (as well as final) energy coincides with the initial
energy ~ The treatment given here is based on a gencrahzed

"hopping-model" Hamiltonian of the form

any activation factor in its temperature dependence (jn, I III in, )= e, (n,)B;,B~,~,+(t.s, I V;,&sr& In,). (2.1)
does not appear to be capable of interpretation in terms
of a jump-probability picture. In particular, such an It is presupposed that the state of the system, consist-

interpretation would have to explain how the applica- 'ng of a»ngle elec«on (hole) plus lattice vibrations,
tion of a magnetic fieM (however small) gives rise to can be described as a superpositioil of "basic" states
a transverse motion of charge carriers which is Nnins It'&is -) in w»ch the electr» (hole) is located at site i
peded by energy barriers, whereas thermal activation a"d t"e»ttice i»n a given vibrational state, speci6ed
for charge-carrier motion parallel to the electric field is by a set of vibrational quantum numbers ~ ~ .g), «) ~ ~ .
still required. denoted collectively by the symbol e;. The detailed ex-

From the above discussion, it is seen that were either pressions for these basic states, as well as those for the
Schnalrenberg's or pirsov's results to be valid, one terms on the rhs of (1) are develoPed in APPendix A

would have to conclude that the Hall effect is simply Lcf. Eqs. (A40)—(A45)]. Here, let us note briefly that the
vibrational states associated with electron (hole) occu-

ityconcepts. indeed, Firsovessential. lyassertsthis con- pancy of a particular (ith) site are Lcf. Eq. (A40)
elusion m his final comment (bottom rhs of p. 1579 of harmonic-oscillator functions» not of the normal co-

Ref. 3). ordinates Q&, of the host lattice, but rather of "displaced"
in view of the above outlined situation, the present coordinates, Qi —Qi"', corresPonding to a shift in the

ary to attempt a rcderivation cqulhbrlum posltlon of thc lattice lons produced by their
interaction with the electron (hole) localized at the ith

same starting point as those of Firsov and Schnaken- site. It then follows that, in contrast to the usual tight-

erg—namely, Kubo's conductivity formula This re- binding treatments (in which the lattice-vibrational

derlvatjon has been achieved ~ it constitutes the subjc{ t state ls described in terms of a «ed ba»s, independent

matter of the present paper. of the state of the excess charge-carrier), the charge-

ection 1 and Appendix A are devoted to a recapitula- transfer term (niI Vs' I ni) (giving rise to intersite
tion of the basic elements of small polaron theory $n transitions of the charge carrier) is not diagorsal its the

is theory is used in conjunction with Kubo's ~~~~'~ ~N~N~~~ ~N~~~~ I'. As sh wn by '"s sp c'~ form

conductivity formula to derive an expression LEq Lcf. Eq. (A44)], it contains nonvanishing matrix ele-

(3 35)] for ~ &&&; this result is then shown to be ments for transitions of the type (i ~ J; 1Vxt'&=X&&'&,

lef om EH'sb s c "three-sit
tion of each mode may change by ~I or zero.

'AsshowninFHsAppendixB —inconnectionwiththeclassical Let us furthermore note that Lcf. Eq. (A44)] the
occurrence-probability approach of their Sec. II (in which the chaIge tIansfel- term may bc written lIl thc fol
lattice motion is treated classically) —the activation energy E is
the minimum vibrational energy required to effect a lattice dis- t~. I p'. .(H) I+,K —&';;/@. y. . +,
placement such that the electronic energies of two sites (including (~& I s'"

I s)=e* '*(+~'
I ~i' I

rs ') (2 2)
electron-lattice interaction} —are brought into coincidence. In
contrast, the energy E,' is the vibrational energy required to dfect where ~+& I

~ ~~ I@z) ls independent of the magnetic ~eld;
a coincidence in the electronic energies of three sites ( three-site the field dependence is contained solely jn the phase

factors ~;; as expressed by the fundamental relation7 This feature is shown explicitly in the last equation on p. 515
of FH. Namely, upon augmenting the explicitly written term on I:cf (Alg) and (A19)]
the rhs of this equation with its complex conjugate (as indicated),
the result is seen to be proportional to the product of two energy- rrs'+rrs, +a;s= (ej&c)H —As;;, (2.3)
conserving delta functions —one whose argument is equal to the
diGerence between initial and 6nal energies, the other equal to the Apart from certain generalizations this Appendix is essentially
difference between initial and intermediate energies. Note, espe- a recapitulation of FH s Sec, Ij. and pp. 5j I—$I3
cially, that the term proportional to the principal value of the for the purpose of providing a self-contained presentation which
reciprocal of the latter energy difference is purely imaginary; it is in addition, is not based on the specific two-dimensional molecular-
hence cancelled by its complex conjugate. crystal model of FH.
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namely, the sum of the phase factors around a closed
circuit of intersite transitions is equal to (—e/Ac) times
the Aux through the area bounded by the intersite
vectors dining the circuit. '

For the purposes of subsequent analysis, it is de-
sirable to make explicit mention of an additional prop-
erty of the charge-transfer term, namely, its reality in
the limit of zero magnetic field, i.e.,

&n II"ln'&=&n
I
I"ln'&* (24)

The validity of (2.4) may be checked directly by inspec-
tion of Eq. (A44) of Appendix A; from the text material
preceding that equation, it is clear that (4) rests upon
the choice of a standing-wave description of lattice-
vibration modes Lcf. Eqs. (A33) and (A34)j."

An additional property of the Hamiltonian, which
will be utilized in the treatment, is the fact that the
spectrum of the "local-site" energy e;(n,) is densely dis-
crete, i.e., in effect continuous. Inspection of Eq. (A42)
shows that, apart from a constant (which in some cases
may depend on site index), the spectrum is that of the
lattice vibrations of the host crystal; this spectrum is
continuous provided that account is taken of the fre-
quency dispersion of the normal-mode frequencies" co&,.

For the purpose of developing a formal theory of con-
ductivity, one Qnal specihcation is required, namely, an
expression for the charge-carrier velocity operator. Here,
two alternate procedures suggest themselves. One is
simply to project the usual single-particle velocity
operator, (A/sns)grad, +eA/nsc, onto the subspace
spanned by the basis

I i,n;&. The other is to project the
position operator r onto this subspace, and to define the
velocity operator as s/A times the commutator of the
projected position operator with the Hamiltonian (2.1);
thus

z

&jul vis n')= 2 {(jnJIIII»ns&&»ns Iris n'&
Pg k, ng

—
&j~nilr l»ns&&»ns I

&
I
s n'&)

This second procedure, together with the additional sim-
pli6cation of neglecting matrix elements of r between
diferent sites, i.e., introducing the "site" approxima-
tion'2

&jn Irl s,n'& ~ b' &sn'Irl sn'&= b'A;-, R' (2 6)

9 Strictly speaking, Eq. (2.3) refers to a three-site circuit; how-
ever, the generalization to an n-site circuit is obvious. It may also
be remarked here that, under certain circumstances tcf. T.
Holstein, Phys. Rev. 124, 1329 (1961); 124, 1332 (1961)g, the
quantity Af,;; may not correspond precisely to the above-defined
geometrical area; it should, however, in all cases be of comparable
order.

'') It is of course possible to employ running-wave modes in the
formalism; in that case one finds that, in place of (2.4), there exist
adjoint relationships between the amplitudes for emission (absorp-
tion) of phonons of any given running mode with corresponding
amplitudes for the "time-reversed" mode Lcf. Kq. (A31) and pre-
ceding text).

"As shown in the earlier papers Pcf., e.g, . T. Holstein, Ann.
Phys. (N. Y.) 343 (1959)j on small-polaron theory, it is necessary
to take account of this dispersion —at least in principle —in order
to obtain meaningful results for transition probabilities.

«The equality in (2.6) follows from the explicit form of the
basis set, given by Eq. (A40), together with the additional rela-

yields, with use of (2.1),

where

&jn; I vlin;&= —&n; I
V;;t i

I n;)R,;,
h

' (2.7)

(2 8)

tionship R;= J'~C(r —R;) ~'d'r. The latter equation is valid under
the various symmetry conditions postulated in the treatment of
Appendix A."Refer to Eq. (1.7) of Ref. 4, and the paragraph preceding Eq.
(23) of I. G. Lang and Yu. A. Firsov, Zh. Eksperim i Teor. Fiz.
43, 1843 (1962) (English transl. : Soviet Phys. —JETP 16, 1301
(1963)j. In Firsov's Hall-efFect paper (Ref. 3), which constitutes
an extension of I.ang and Firsov, additional contributions to the
velocity operator, linear in the magnetic field, appear Pcf. his Eqs.
(12a) and (12b)j. However Lcf. his Eqs. (17)—(19)j, these terms
apparently cancel out in the final result for the Hall-conductivity
—,'(0. „—o„)(as evidenced by its proportionality to the Qux through
the area of the basic three-site triangle; the extra terms would give
rise to a difFerent geometrical dependence). It should be stated
that the velocity matrix elements quoted from these papers are
taken in the "undisplaced lattice-coordinate" representation, in
which the lattice eigenfunctions XN&, (Q),) are those of the host lat-
tice /rather than the displaced eigenfunctions of Eq. (A40) of Ap-
pendix A of this paper/. This point should be kept in mind in com-
paring the quoted expressions with Eq. (2.7) of the present paper.

Some discussion of the above procedure is now in
order. First of all, with regard to the definition of the
velocity operator via Eq. (2.5), rather than as the aggre-
gate of the matrix elements (1/ns) (jn; I (A/i) grad,
+ (eA/c) I

in; &, it should be noted that the two de6nitions
would coincide, were the basis set Ii,n;& complete. As
is known, however, the C,(r) (which express the depen-
dence of the basic states on the charge-carrier coordi-
nate) lack this property; i.e., an arbitrary function of r
is not representable as a superposition of the C,(r). It
then follows that, within the framework of the present
treatment, in which an arbitrary state of the system it
represented as a superposition of the 4,(r), the Hamil-
tonian defined by (2.1) operates only within the sub-
space spanned by the C,(r). Such a projected Hamil-
tonian is diGerent from the original Hamiltonian, given
by Appendix Eqs. (A1) and (A2); it is hence not surpris-
ing that the associated velocity operator divers from
the standard one.

The choice of (2.5) as the definition of the velocity
operator guarantees that, within the framework of a
treatment based on (2.1), the expectation value of the
charge-carrier velocity is equal to the time derivative
of the expectation value of the charge-carrier position,
thereby ensuring particle conservation. In the opinion
of the present authors, this feature is a mandatory re-
quirement for an internally consistent theory.

There remains the question of the neglect of the inter-
site matrix elements of r, as embodied in (1.6). The
justi6cation for this step may be stated as follows.

(l ) of immediate relevance to the present paper, the
use of (2.6) leads to an expression for the matrix ele-
ments of the velocity operator I cf. Eq. (2.7)] which is
in essential agreement with those used in the European
papers. "Since a principal objective of the present work
is a critique of those papers, the desirability of basing
the treatment on the same model is self-evident.
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(2) Of more general interest is the question as to
whether the inclusion of the intersite matrix elements of
position can lead to rem sects for the Hall conductivity.
A study of this question is presently being carried out,
and will (hopefully) be reported in a future paper by
one of the present authors (TH). The principal features
emerging from this study may be summarized as follows:

(a) Subject to the symmetry assumptions introduced
in Appendix A of the present paper —in particular,
spherical symmetry, or cylindrical symmetry about the
magnetic-Geld direction —it is readily shown that the
intersite matrix elements of r are (1) linear in the mag-
netic field, and (2) depend only on the "relative" site-
coordinate R;;.

(b) The "intersite-coordinate" operator r&'& defined
by the matrix equation

(j, r&[r '&&[i r&;)= (1—f&;;—)(j,r&&(r[s n, )

may be shown to be bounded, in the sense that the ex-
pectation value of r(" in an arbitrary state is bounded. '4

(c) One now focuses attention on the contributions
to the dc Hall conductivity, which arise from the
existence of the additional velocity-term

v&'& —= (i/ jt) (Hr &'& r&"H—)

/with H given by (2.1)j associated with the intersite-
coordinate operator r(2). On physical grounds, such con-
tributions would be expected to be nonexistent, by
virtue of the fact that, since v( ) is the time-derivative
of a bounded operator, the long-time average of its
expectation value in an arbitrary state is zero. This in-
tuitive consideration is con6rmed by detailed calcula-
tion. In particular, it has been shown that no contribu-
tions of v(2) to the Hall conductivity occur up to third
order" in the overlap parameter S;; Ldefined by Eq.
(A10) of Appendix Aj. Moreover, preliminary calcula-

'4 The proof is straightforward. If one works in the "undisplaced
lattice-coordinate" representation 4';(r)&r»ov&, (Q&) one deals with
matrix eiements (j n; 'r& & (i n;)=(j (r& & (i)i&„;„;which a, re diago-
nal in, and independent of, the lattice quantum-numbers N7, (as
in standard tight-binding theory). For a periodic arrangement of
sites, the eigenvalues of r(') are obtained immediately; they are
r&»(h) = g& p'" a«(j

~

r&s& ~i) (where h is a reduced wave vector of
the reciprocal lattice). The r(') (k) are manifestly bounded; in fact,
it is readily shown that ~r"&(h) t~(pEXa'/i&p)S;;, where a is an
interatomic distance and S;; the overlap parameter Lcf. Eq.
(A12)g."Strictly speaking, these "third-order" contributions are actu-
ally of Grst order in S;; and second order in the charge-transfer
parameter J;; LdeGned as the zero-Geld limit of Eq. (A13) of Ap-
pendix Aj, i.e., they are cc:S;;J;;. The statement in the text im-
plicity presupposes the simpliGcation of regarding J;; as propor-
tional to S;;. Such a simpliGcation is in fact appropriate for the
standard case of s-type local-site functions, as well as for the two-
dimensional molecular-crystal model of FH, in which the magni-
tudes of both J;; and S;; are determined principally by an expo-
nential factor of the form e »'~0, describing the overlap of the
local-site functions. It is in this sense that terms, actually propor-
tional to S;;J;,are labeled as "third order in S,;"Pand hence to
be compared with the nonvanishivg contributions to p „of third
order in J;s, obtained, both in FH and in the present paper, within
the framework of the "site" approximation (2.6)j. Finally,
with respect to higher orders, an "mth-order" term is actually
~S..J..n-,l

tions indicate that the absence of such contributions
can be proved to all orders in the overlap parameter.

In view of the above remarks, the neglect of the
intersite-coordinate operator r(2) as embodied in Kq.
(2.6) will be incorporated into the treatment. One is
then left with Zqs. (2.1), (2.2), (2.3), (2.4), and (2.7);
these equations constitute the basis of the calculation
for the Hall conductivity, to be given in the following
section.

III. HALL CONDUCTIVITY

The basic starting point of the calculation of the Hall
conductivity,

0*v =2 0'~v &u» (3 1)

is a Kubo-type relationship, the specific form of which
reads

e'k
~*.(~) = L~"((l)-~"(0)j.

iOV
(3.2)

o&„=2rrir/P ji; r integral,

Z= Tr{e e~).
(3.4)

(3.5)

H is the Hamiltonian operator (given explicitly by
(2.1)] and t&„ t&„are the Cartesian components of the
charge-carrier velocity operator Lgiven by (2.7)].

The equivalence of (3.2) to the standard Kubo for-
mula is readily established; the details of the proof are
presented in Appendix B.

Following the program of the European papers, ' 4 let
us compute 0-,„( ) to third order in the transfer term,
(&s, ~

V;;&~& ~r&;), of (2.1). Now from (2.7), it is apparent
that the velocity operator is proportional to this term;
hence, two powers of the transfer-parameter J Lcf.
(A44)j occur already in the zeroth-order contributions of
(3.3)—i.e., those contributions resulting from the re-
placement of H by Hs Lthe latter being defined as the
first term of the rhs of (2.1)). It then follows that, to
obtain the contribution proportional to J', the opera-
tors e—~0~") and e-"~ need only be developed to erst
order in (I;[ V;,&~&

( e,).
Following the standard procedure, one notes that

e-"~ obeys the so-called Bloch equation

(d/du)e "~= He "Ir—(3.6)

In this expression e and A have their conventional mean-
ings, V is the volume of the sample, and 0—=A(&a+as)
(with o& the frequency of the applied electric field and s
an infinitesimally small, positive quantity). Finally,
F,„(Q) is the analytic continuation (regular throughout
the complex 0 plane, with the exception of a possible
discontinuity on the real axis) of the "thermodynamic"
velocity-correlation function

p

P &&(j&o&,)—= e""""—Tr{e ~&e "&&&,e "~&&«)du, (3.3)
0

where P—=1/«T (&&= Boltzmann's constant).
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Introducing the substitution

e Ijj—e 1AKOS(N)

into (3.6), one has for S(N) the equation

dS(ij)/dij= —H'( i)jS(ij),
where

H'(ij) =e"~'—H)e "~'

(3 't)

(3.9)

which holds by virtue of (3.4), and replacing (e, by
0/k Lthat is, analytically continuing F»(A(0„) to the
region immediately above the real axis in the (e plane],
one has

1 -/e e"—e e" e j)'k —e j)')

Z jjk 4 0+Ej—ej 0+ ej ek—I
ninfttte

S(0)=1. (3.10)

and Hq denotes the operator whose matrix elements are
(n, l V,, ~&)Ii) Fu. rthermore, it is readily seen that, at
ij=0, S(ij) satisfies the initial-value condition"

&iI"I j&v "«'&k I"Ii)x +I
E 0+2;—ek

e '"—e ")V*)'")&jle. lk&&k I"li)

0+ej—ek j (3.14)

One then iteratively integrates (3.8), obtaining

S(N) = 1— e"'~'H)e "'~'dij'
0

wherein the notational simpli6cation of dropping the
indices n;, etc., in the energies and matrix elements has
been introduced; i.e.,

or, in matrix notation,

(jn, IS I
in, )= S-;;S„,

e;(n;) -+ e;,

(n, l v,.&» ln, ) v, ,«).

(3.15a)

(3.15b)

(3.15c)
e"'(' &"j)j "'("'"(n;IV, ,&»In;&dg'

[ j( j) '( ')l —f
=s;,s.,„,.—(n;lv;;" ln, )

( )—'(')
Searing in mind that

(jn; I
e "2Iin-;)= t);,t')„, ,e ""&"*),—

one has, to the required order in J,
qn, le .colin, )=S,;S„,

It is now of interest to write down an expression for
the antisymmetric component of the correlation-func-

(3 11) tion tensor

e,„&.)(fl)=—,'LS,„(a)—e„.(a)g. (3.16)

This component, when inserted into (3.2), yields di-
rectly the antisymmetric part of the conductivity tensor,
o»&'=—2 (o,„—o „,); as may be seen from Onsager's gen-
eral relationship, "

(j.„(H)=o„.(—H),
e
—net(nj) e—ues(ns)

Xe ""&"')+ (n, I V, ;&~) Inj&. (3.12)
6g ng' 6s ns

One now substitutes (3.12), together with the com-
pletely analogous relationship for the operator e ~(P ")
into (3.3), and obtains (in the li,n, ) representation)

P

P»(Ijk),)= ge" ""{e—"«""e ")(in;I(j~ljn;)
g ~jk o

0,„{:' is odd in the magnetic 6eld, and is hence the rele-
vant conductivity for the dc Hall e6ect.

One inserts (3.14) into (3.16)—or, more expedi-
tiously, the expression which is gotten from (3.14) by
a cyclic permutation of the indices i, j, k of its second
term (i.e., i —+ j, j +k, k —+i); also, of c—ourse, n;-+ n;,
n; + nk, nk —+ n;, the summation g;;k, j k in front of
(3.14)being invariant to such a permutation; the result is

(je "'j "j) e"'k&"k—)')(
x&n, l v;

e;(n;) —ek(nk) )

(
e—(e—u) e;(n j) e (jj u) sj(n j)—)—

I&n, lv, &»ln, &

e;(ji;)—e, (n;)

x(jn, l(), lknk)e "'"&"")(knkl()„lin;&)dij. (3.13)

eAoerP —]
' Note that e~~ and e " o both reduce to unity at 1=0.

Carrying out the I integration, making use of the
relationship

where

miniate

—(k le Ii&(ile. l j)}&2 (3 1't)

1 e P'& —e P"
AJ e=-

ej ek (ej e() 0

e —eP~k P~s

(3.18)
(e e)2 Q2

"Refer to, e.g. , R. Kubo, J. Phys. Soc. Japan 12, 570 (1957),
especially Eq. {6.9).
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The next (obvious) step is the elimination of the ve-
locity matrix elements in (3.18) by the use of (2.7). One
obtains

& "(Q)=— Z V k' 'Vk 'V;"~k "'&k

(3.19)

where [cf. Eq. (A19) of Appendix A] Ak;, (z) is the s
component of the (vector) area of the triangle subtended

by the sites ~, j, k.
At this stage, it is desirable to utilize an additional

symmetry property of (3.19)—namely, its invariance
with respect to interchange of the indices, j and k (said
interchange implying a corresponding interchange of the
indices, n; and nk) No. ting that 8;k, , is symmetric,
whereas A».; is antisymmetric, with respect to inter-
change of the indices j and k, one may cast (3.19) in a
form which differs from the original solely in the
replacement,

where V;I„etc., are the zero-field values of the transfer
matrix elements; in obtaining the equalities of (3.20),
successive use has been made of (a) the Hermiticity of
the V;;(~), (b) Eqs. (2.1) and (2.4), and (c) the basic
flux-relation (2.3) [together with the obvious one,
n;) = —n;;, etc., which follows from (2.3), (2.4), and the
Hermiticity of the V;,(~)].

It should at this point be noted that (2.2) has actually
been derived only to first order in the magnetic 6eld. In
view of this circumstance, the replacement

sin((, H Ak;~/Ac) ) eH Ak, ,/Ac

will be used throughout in what follows. Then, upon in-

serting (3.20) into (3.19), one has

20ieH
e,„(.)(Q) =—

ZA'C

X Q V;kVk, U;, (Ak, , (z))'8, k, , (3.21)
ijk

(H) t/7' .(II) P' ..(H) ~
'k( V. k( Ir)Vk. (K) V, .(H) V„.(lr) V. .(H) V, (H))

—&[V.k(rr) Vk. (H) V. .(H) (V k(Ir) V .(H) .V, , (H))e]
=i V;kVk(U;; sin(n, k+nk+n(;)
=i V;kVk;V;; sin(eH Ak;;/A(;),

mynqrSI(;

(3.22)8jk;( ~)'k;( +@)k;(.(&) . .(2)

(3.20) where

Turning, now, to the further evaluation of 8;g,.;, one
may (after a little algebra) rewrite (3.18) in the form

and

P% sP&gg—
y.„.,(&)= Q&~

e,—ek & [(e, e)' —Q'][—(~k k;)' —Q'7—
(3.23)

where
6&
—II'

(s &'~ s&~~) ($k
' —

6~) —((, —)3'k—(,-s'() (e —r.,)
, (2s)+ y, k

(2b)

[(e—e;)'—Q'] [(ek—e ) '—Q']
(3.24)

( " s")—(" ~~)' —(~ '"—~")—(' ')—
y.~.,( )=

[(k). gk)2 Q27[(g). g,)2 Q2][(gk k()2 Q2]

(~ " (: ")(—" ~)'('—~k) (—~ '"—s'*)(—' ~')'(E'—")—
y.~. .(2&)=

[(gj g~)2 Q2][(kj kk)2 Q27[(kk g()2 Q2]

(3.25)

(3.26)

In what follows, it will be demonstrated that (1)
g;k, ;('» makes no contribution to 5',„( '(Q), and (2) in
the limit of sufficiently small Q (i.e., the dc case), the
dependence of 8,1,.;(') and 8,~.;(' ) on the local-site en-
ergies e;, e;, and ek is of the form, "e &'*1')(e; k;) l)(ck—'k;).—

(1) To prove that k(,k., ;(' ' yields no contribution to
(3.21), let us note that (a) the rhs of (3.21) is invariant
with respect to a permutation of the summation indices,
i(rk;), j(n;), k(Nk); moreover, the factor of 8,k., ;, namely,
V&kVk;V, ;(Ak;, (z))', is manifestly invariant towards
such a permutation. It therefore follows that the replace-
ment of 8;~., ;, or what is of interest here, 8;g., ;(' ', by its
cyclic average, i.e.,

y.k, .(&k) ~ k[y.k
.(&k)+ /k. .(&k)+y. . k(&k)7 (3 27)

"Note that this 6-function dependence on relative local-site
energies is precisely of the type exhibited in the expression for the

is permissible. Let us now couple the first term of
0;I,, ;(") with the second term of SI,;.;(").One thereby
obtains an expression, the numerator" of which is

(s "—s "')("—~')'(~)—")
—(s "'—& "')("—~))'("—~')
= —((,' ) ~ 8 S )(6k t )(6j—Ck)(Ek k~) .

If one now adds to this expression the numerators of the
other two such terms —namely, the first term of 51,;,,('~)

plus the second of 8;,., ~('~), and the erst term of 8;;,~(2')

plus the second of S,A,
.;(")—one readily verifies that the

resultant sum is zero, Q.E.D.

field-dependent part of the jump-probability co3&~& on the bottom
of p. 515 of FH.

'9 The denominator, consisting of the three square brackets of
(3.26},is manifestly invariant with respect to cyclic permutations,
and is thus a common factor of all the terms in (3.27}.
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(2a) The limit of 8;&, ,&'& as Q & 0: To begin, let us
note that 0;~., ;")enters into a sum over the lattice quan-
tum numbers m;, m, , eI, and that, in such a sum, the
energies e;, e;, and eq each range over a continuous spec-
trum. It is then immediately apparent that, as 0 —+ 0,
the factor Q' in the numerator of (3.23) will cause the
expression to vanish unless it gets compensated by sin-

gularities (or resonances) in the energy denominators
occurring in the vicinity of the "energy coincidences"'
e,= e,, ~;= ej„or e;= eI,. In particular, as will now be
shown, the only nonvanishing contributions to the sum-

mation (over the e;, m, , I&) occur in the vicinity of
"triple coincidences, " in which

~
e,—e;~

To prove the above statement, let us restrict the
ts;, e;, e& summation to regions which satisfy the in-

equality ~e;—e&, ~))Q. It is then clear that the only
resonances which have to be considered are those of the
square-bracketed factors in the denominator of (3.23),
occurring at e;= e; and e;= eA, , by virtue of the condition

~
e,—e~~&&Q, these are nonoverlapping —i.e., in the inte-

gration over the resonance region of one of them, the
other may be considered as constant. In an integration,
e.g., over the e,—in which e; sweeps out its spectral
range —one encounters integrations of the type

+" dg

„g2—02

the factor 0 ' resulting from such integrations is not
sufhcient to cancel the factor 0' in the numerator of
(3.23). It is thus apparent that the only possible source
of a nonvanishing contribution is the triple-coincidence
region,

~
e; e,—

~ ~
e;—e~

~

Q. For this region, the
replacement

becomes appropriate; moreover, the restriction to the
triple-coincidence region means that, in effect (i.e.,
formally) each square bracket in the denominator of
(3.23) may be replaced by si/Q times the appropriate
delta function, "e.g.,

7n—~—8(e,—e,) . (3.28)
[(e—e;)'—Q'] Q

20 It should be stated that no such singularities occur in the fac-
tors of (3.21), that is, neither in the V; s nor in A f,;;(z). t An excep-
tion to this statement is the "zero-phonon" term in V;,, which
occurs for the case of exact resonance (or, in the language of FH,
the "diagonal transitions"), when all the n; equal all the n; or nI„.
such transitions may be excluded either by FH's subtraction tech-
nique or, if one desires greater sophistication, by a resolvent,
density-matrix, or correlation-function technique in which lifetime
damping is taken into account by the infinite selective summation
of appropriate terms. The universal result of all the published
theoretical works is that, in the hopping regime, the diagonal
transitions are unimportant; they will hence be ignored in the
present paper. j

~' The integrations over the two square brackets are to be con-
sidered as mutually independent. Namely, one may 6x the n; and

Introducing replacements of this type into (3.23), one
has

To this end, let us write the rhs of (3.25) as a sum of the
two terms,

~ ~ ~ ~ ~ ~ ~ ~ ~

(-,'e e'~+2e e'& ee"—)(e&+e; 2e,)—

[(e, e~) 2 Q2][(e, e .) 2 Q2] [(e& e .)2 Q2]

eI,—e,
X

([Eg e .)2 Q2][(e . e,)2 Q2][(ey e ') 2 Q2]

It is to be noted that, in each of these terms, there occur
no denominator singularities except those associated
with the passage to the limit 0~ 0. One may then apply
the same procedure as was used above for d;I, , ;&" to
establish that, when the e;, e;, ni, summation is limited
by the restriction that, e.g., ~

e;—e&()) )Q~, the contri-
bution to (3.21) vanishes in the limit Q —+ 0. Namely, as
before, the only singular regions are

~
e;—e,

~ ~Q~ and

~
e,—e&, ) ~Q~, at which the second and third denomi-

nator brackets in both terms of d, &,
.;&"& produce (non-

overlapping) resonances. Summing over m; (or equiva-
lently, integrating over e,), one obtains, e.g., from the
region

~
e; e,

~ ~

—Q~, contributions of the form (~i/Q)
X(1/(e, —e,)') Xnonsingular, Q-independent factors;
similar expressions are obtained from the region

~
e,—e&, ~Q~. It is then seen that, subject to the con-

dition e; —e&, ~)) ~Q~, there are no further singularities
capable of producing additional factors of 0 '; the net
0 dependence is then simply 0, which vanishes as
Q —& 0, Q.E.D.

From the above discussion it then follows that one
may introduce into (3.21) the replacement

S,p. "'& ~ A8(e,—e;)8(e&,—e;),
where

+co +00

(3.30)

d &,. &'~&d(ej Ej)d(E&, e ) (3.31)

is (by definition) the appropriate normalizing factor.

sum over the n; and n&,
' such a summation is equivalent to inte-

grating over e, and 8k independently.

P—e e'*m-'5(e, —e;)8(eg e—,) . (3.29)

(2b) With respect to the term d, ~, ,~"& [given by
(3.25)], let us erst establish that, similar to the case for
d, &„,&'&, its principal contribution to the sum in (3.21)
occurs in the triple-coincidence region,
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For the integrand of (3.31), it is expedient to insert
the rhs of (3.25)—with, however, the replacements

(g p~j —s Pi')—~ pg—p~i—(r. g.,)
and

(g P~a— s P~i-) ~ pg PN—i(g~ g.)

which are valid in the triple-coincidence region. One
thereby has

It now remains to be shown that (3.35) is derivable
from the basic three-site transition-probability expres-
sion of FH. This expression (the last equation on p. 515
of FH), when transcribed in terms of the notation of the
present paper, reads fcf. Appendix equation (A18)j

eII 4x'
(oa' &(igk)= — Ai, ' ' Q Vv, Vi, V;

n&ng

g —Q2e—P&s

Xy
X

L~2—QmjLy2 —Q2jt (x—y) 2—Q23

which, with the introduction of the Dirichlet represen-
tation of the delta function, can be written as

Q2Pg 1&i —+&o

xye' (&+'—&dxdyds

Lx' —Q'jLy' —Q'jLs' —Q'j

in'Qpe &" +" arm

eai~" ~ "dn= Pe s"—(3.32. )
2

Inserting (3.32) into (3.30), one has

The x, y, s integrations factor; the individual integrals
being of standard form, one obtains (with ImQ—=As) 0)

X8(e,—e;)b(ei, —e ) (3.36)

In writing down (3.36), the argument "ijk" has been
attached to ~3'~), the order indicates that the transition
in question is from site i to site k, via the intermediate
site j.Stated more explicitly, (3.36) gives the magnetic-
6eld-dependent part of the probability that, starting
from a particular state in which the charge carrier is on
site i, and in which the vibration quantum numbers e;
are specihed, a transition occurs to site k, without re-
gard for the 6nal vibration quantum numbers eA, this
transition furthermore incorporates the effect of inter-
ference between the amplitude for the direct (i —+ k)
transition and that for the two-stage amplitude, in
which the intermediate state is specified with respect to
its site variable j but in which the sum is taken over all
possible intermediate vibration quantum numbers m, .

Following the procedure of FH (contained mainly in
Sec. 4 of that paper)" one goes over to the thermal
average of ~3 ~' (with respect to the initial vibrational
quantum numbers e,). This quantity is

0-+0
u.p. &"& —& pe ~"b(e —e;)8(eg, —r;)—

3 where
g,—Q e P&i(&i) (3.38)

(i»is&~~(zjk))=—p e ~"~"'~&vz't+&(ijk), (3.37)
Z'

which, when combined with (3.29), yields for the total
8,1, ; the replacement

0~o 2x'
pe-~'*b(e,—e,)b(ei, —e;);

3
(3.33)

when this replacement is inserted into (3.21), one has

4~'pe'(eH
,„&.&(p)=i.

~

g, »)g&.,»
3ZV Ekc

X Q —V.i, Vi, V "E '*8(e,—e;)8(eg—;).( .35)

ngngnk

& 04QieB
~""(Q) P ' E -V; V.;V;;

3ZA3c ~y'I gg
m~mgnk

Xe s"8(e—e;)8(ei,—e;). (3.34)

Equation (3.34) may now be introduced into (3.2); the
result is Pcf. (3.1) and (3.16)j

ni

is the "uni-site" partition function, i.e., the partition
function calculated with the restriction that the charge
carrier be localized at a particular (ith) site

A general expression for the Hall-current density in
hopping-type charge transport reads"

22 The treatment given here is in fact but a generalization of that
of FH's Sec.4 to an arbitrary lattice structure. It should be pointed
out that its first step, namely the averaging of co3( ) over the initial
lattice quantum numbers, n; (cf. I'H, bottom of p. 517), may be
justified a priori, without recourse to a polaron transport equation.
The reason is, in essence, that, in a system containing a single
charge carrier, the transport dynamics of said charge carrier can
scarcely disturb the equilibrium of an infinite number of phonon
modes. More specifically, such equilibrium is achieved via internal
phonon-phonon interactions )not explicitly included in the origi-
nal lattice Hamiltonian, as given by the quadratic form (A25) j,
and by interactions with the "external world" (e.g., via bound-
aries). In comparison with such interactions, the equilibrium-
perturbing effect of the single charge carrier is smaller by a factor
of the order of the number of unit cells in the sample, and hence
entirely negligible.

"Equation (3.39) is a straightforward expression of magnetic-
field-dependent rate of charge displacement per unit volume due to
elementary site-jumps, i.e., that part of the total rate which de-
pends linearly on the magnetic field.
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e l'I' by e ~", thereby obtaining
(3.39)

e
j&a&= ——p (We&a&(ijh))Ri;f;,

V 'jI 4vr'e (eHA&. ;&z&)
j(~)= ~v, v, v

3VZh ii& k hc )

Xb(e;—e;)b(e&,—e;){R&,;+R&i+R;&,

+pea. [R;R&,;+R;Rg+ R&iR;„7}.

Let us now note that the field-independent term in
the curly bracket vanishes (as it must), so that j&a& is
proportional to the external field. The associated con-
ductivity tensor is

(3.40)f;= 1/1',
4 z' Pe' (eHA&, "&z&'&

o,„= Q e e"~ ~v;ivi~v;;
3UZh i r& 'k hc )

m~ngmh

Xb(e; )—eb(e&. e,)—[x&,V'+X', V,+X;P&7'

where E is the number of sites in the sample; in the
absence of an electric field

(3.46)

where f, is the probability of occupancy of site i
In principle, f; would have to be determined by solv-

ing a transport equation in site-variable space, in which
&03&~&(ijh) (together, of course, with the zeroth-order,
magnetic-field-independent hopping rate) describes the
elementary transition process. For a spatially uniform
system, however, it is known that, for the steady-state
situation, the distribution of carriers must be spatially
uniform, i.e.,

1V=Z/Z;. (3.41)

Inserting (3.40) and (3.37) into (3.39), one has

8 1
j&~&= — P —e e"&"'&o&3&~&(jjh)Ri;. (3.42)S t/" ~go Z;

At this point, it is expedient to take explicit account of
the external electric field. In a hopping model, the pri-
mary effect of a field 8 is to modify the local-site en-

ergies, according to the formula

For the comparison with (3.35), one seeks the anti-
symmetric part of (3.46); carrying out the antisym-
metrization, and using geometrical relationships of the
form

R i——R —R =R"+R"=—R"—R&, ,'CP

one obtains

2 z'Pe' eHA&, "&z&)

e e" ~v&vi U"
3 VZh &i& hc

1tiRjSh

X b(e;—e,)b(ea —e;)[I&,;V;;—V&,;X;;7

e, (n~) = e;&'&(n~)+ea R;, (3.43) which, by virtue of the Appendix equation (A19), the
s component of which reads

Z.~ Z.g—Peg Rs (3A4)

(Z; now denoting the zero-field local partition function).
Upon inserting (3.43), (3.44), and (3.36) into (3.42), one
has [upon eliminating 1V via the use of (3.41)7

e (eHA &„&z&)4&r2

j&"&=- P e-e"(1+Pea R,)R„I—
t/g i~a hc &h

mange

X V;ivy;U;;8(e, —e;)h(e&, e;), (3.45)—

where the notation defined by (3.15a) has been intro-
duced, and where the fact that 8 is infinitesimal has been
utilized to expand the exponential factor in (3.44).

One now replaces the rhs of (3.45) by its "cyclic aver-
age, "i.e., by 3 the sum of the rhs plus two other terms
gotten by cyclically permuting the site indices i, j, k
(as well as n;, n;, n&). In carrying out this permutation,
one utilizes the relation e;=e,=ej, contained in the
energy-conserving delta functions, to replace e j"j and

where e;& '(n, ) denotes the value of e;(n;) for 8= 0. Let
us note that the local partition function thereby under-

goes the modi6cation

APPENDIX A

The system of an excess electron (hole) in a host crys-
tal will be described by a Hamiltonian of the general
foim

H=H. +Hz+H. ~, (A1)

24 These errata are herewith listed: (1) A factor of 2 should be
inserted in front of the expression on the top of p. 519. (2) The
integral in the middle of p. 521 should be multiplied by a factor
e-~~I.

2A. .&»=X. I &;
—I';;X„.=X„P;—I „.X,,

is seen to coincide with (3.35), Q.E.D.
Further remarks: The preceding treatment has estab-

lished the equivalence between the Kubo formulation
and the jump-probability approach of FH [as embodied
in Eq. (2.36) of the present paper7. A reexamination of
the detailed analysis of this equation in FH (FH, pp.
516—525, also Appendices C and D) has been carried
out; only minor errata'4 were found. An auxiliary indica-
tion of the correctness of the calculation is the coinci-
dence of the results with those of the classical occurrence
Probabil(ly aPProach of FH's Sec. II in the classical
limit, A~),((aT, as expected.
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that is, as a sum of terms describing (a) the motion of
the excess electron (hole) in a rigid lattice, (b) the lattice
vibrations, and (c) the interaction between the lattice
vibrations and the charge carrier.

The electron (hole) Hamiltonian is chosen to have the
form

II,= (1/22/«) [p+eA/c]2++ U(r —R,) (A2)

ization recipe is

I;(r) =4;(r) —', P-y/(r)S, ;,

(t/*(r)4"(r) d'r =~' *

(A9)

(A10)

with A the vector-potential of the external magnetic
field, expressed in the so-called symmetric" gauge:

(A3)

In the spirit of the tight-binding approximation, one
approximates the electron wave function by writing it
as a superposition of local-site functions p, (r) which are
eigenfunctions of "local-site" Hamiltonians

B ('&= (1/222«) (p+eA/c)'+ U(r —Ri), (A4)

is the standard "overlap" integral of linear combina-
tion of atomic orbitals (LCAO) theory. The C,(r) are
orthogonal to first order in the overlap integral.

The full electronic Hamiltonian, as given by (A2) is
now projected onto the subspace spanned by the C;(r).
In the representation of the C', (r) one has

(j~H. ~«)=(J'-p+8', )(&"—J"(H)(1—8") (A11)

where U(r —Ri) is an atomiclike potential, centered
about R;, the center of symmetry of the ith site; each
P;(r) is assumed to belong to a single nondegenerate
energy level Eo. In the absence of the magnetic field,
the P,(r) take the form

~
p;(r) (

2U, (r—R,)d'r (A12)

@.(r) e ie (HXR4) —r /2/3
«4 .(rc)

and notes that «4;(r) obeys the equation

e —,2—p+—HX(r —R,)2' 2G

(A6)

+U(r —R;) I;(r) =Ep«4;(r) (A7)

from which it is inferred that the functional dependence
of I;(r) is of the form

«4, (r) = «4(H) (r—Ri) .
[The superscript "(P)" denoting the fact that the
quantities are field-dependent. ] Furthermore, if the
zero-field functions be taken as s states (or, more gen-
erally, as in the treatment of FH, cylindrically sym-
metric about the field direction), it is readily verified
that, up to and including terms linear in the magnetic
field, N(H)(r —R;) is equal to its zero-field counterpart
N(r —R;). Since the present paper is concerned only with
linear sects, one may write

y;(r) =N(r —Ri),

the N(r —R;) may be taken as real without loss of gen-
erality. In the presence of the magnetic field, one con-
veniently introduces the gauge transformation

X[+ U/(r R)]3d pr—25,;(W,+W;) (A13)

[the superscript "(H)"denoting the fact that the quan-
tities are field-dependent].

In a regular lattice of local-site vectors R;, the t/I/'; are
manifestly equal to one and the same constant. It is
then convenient to choose the zero of energy so that
Ep+W; vanishes, and (A11) becomes

(A11')

The field dependence of the J;;(H) (which, as shown
in FH, is crucial for the theory of the Hall effect in small-
polaron theory —in fact, in any tight-binding theory)
will now be discussed. Beginning with the second term
of (A13), let us note [from (AS)7 (a) that W; does not
depend on the field, and (b) the expression (A10) for.

5;; may be written as

«4(r R.)N(r R )eie(HXR/;) r/22cd3r (A10~)

where R;i=—R;—R;. Introducing a new integration
variable

y=—r—-'(R +R )

and expanding the g-dependent part of exponential
factor to terms linear in H, one has

P.(r) e
—ie(HxRe) r /2/)c(Nr R ) (AS)

wherein the Geld dependence is contained solely in the
gauge factor.

Since the P,(r) are not in general orthogonal, it is
technically convenient to introduce orthogonalized
combinations C,(r). A sufliciently accurate orthogonal-

g. .—eie(HXR/i) ~ (Re+R/)/42c «4(~+LR. .)

X«4(g ——22R;;)(1+«eHXR/; y/2hc)drp.

Noting that the term in the integrand which is linear in
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H is an odd" function of g, and hence yields a vanishing
contribution to the integral, one has

where

S"=S"(0)ei (A14)

(A15)

with
(r,;=—eH A;;/Ac (A16)

(A17)

where
u;;+u;+a; = —(e/Ac)H A, ;,

A),;;=A;;+~~;+~;~=R,;XsK;

(A18)

(A19)

is the area of the triangle whose vertices are the points
R;, R;, and Rg.

Turning now to the first term of (2.13), namely,

4 *(r)4'(r)LZ U (r—R )jd'r (A20)

and rewriting it in the form

A*(r)4'(r)LV(r) —U'(r —R')3d' (A2o')

is clearly the area of the triangle whose vertices are the
points R;, R; and the origin.

It is to be noted that the phases nji are not uniquc-

depending, in particular, on the arbitrary location of
the origin, and, more generally, on the gauge of the vec-
tor potential. However, as shown in FH, the cyclic sum
of the phases connecting any three sites is gauge in-
variant, viz. :

some e-fold rotational symmetry about the axis R;;,
joining sites i and j. In this case U(r —R,) (and hence
the nondegenerate local eigenfunctions N(r —R;)j, as
well as V(r), possess this symmetry, so that the factor
N(r —Ri)N(r —R;)LV(r) —U(r —R,)g in the integrand of
(A23) is invariant with respect to rotations, 2mp/n
X (1&p&N) about the axis R;;. With this symmetry, it
is then apparent that I;;cannot have a component per-
pendicular to R;;, and that, hence, the scalar product
HX R,; K;; is zero, Q.E.D. Thus

(A24)

for all intersite axes possessing some e-fold (ri)1)
symmetry.

It may be remarked that, in the case thati and j are
nearest neighbors (this being essentially the exclusive
case of interest for the present paper), the required ro-
tational symmetry is fulfilled for a wide variety of crys-
tals. In particular, the nearest-neighbor axes for the two-
dimensional hexagonal lattice, considered in FH, as well
as the three-dimensional face-centered cubic lattice"
possess at least twofold symmetry.

Introducing (2.24) and (2.14) into (2.13), one then has

(A25)

where J;;is the zero-field value ofJ;,(~) )obtained by the
replacement g,(r) -+ u(r —R;) in the integrals contained
in (2.10) and (2.13)'rj.

The preceding discussion has concerned itself ex-
clusively with the form of the "projected" electron
(hole) Hamiltonian, as given by (2.11) [or (2.11')j and
(2.25). The form of the other two components (the lat-
tice term Hz and the interaction H; i) will now be
considered.

The lattice Hamiltonian
where

(A21) (j~Hz ~i)= Q ha&), (b),*b),+-2) (A26)

is the total (periodic) single-particle potential (posses-
sing the symmetry of the rigid lattice), one obtains,
upon using (2.8),

(A22)

where g;;(') is the zero-field value of ii;;, and where

K);=— m(r —Ri)u(r —R;)Lr—(R;+R;)/2 j
XLV(r) —U(r —R;)jd'r. (A23)

It will now be shown that the term in (A22) propor-
tional to K;;vanishes provided that the crystal possesses

"This is so by virtue of the above introduced assumption that
N(r) is spherically or cylindrically symmetric about the field
direction.

is taken to be a sum of contributions of harmonic-
oscillator terms, each associated with a given lattice-
vibration mode (indexed by the letter X), with e)( the
frequency and b),*(b),) the usual boson creation (destruc-
tion) operators —all pertaining to the Xth mode.

The interaction term H; ~ arises from the dependence
of the total one-electron potential on the lattice dis-
placements, and, hence, on the b~, by*. Restricting the
discussion to terms linear in the lattice displacements,
one has for the most general perturbation of the one-

"These lattices have the property such that, for any two
nearest-neighbor sites, there exists a (not necessarily unique) third
site which is a nearest neighbor to the first two, i.e., the axes R,;,
RI„, and R;f, are all nearest-neighbor axes. As shown in FH, such
lattices provide the lowest-order Hall e6ect (o- „~J').

'~ It may finally be remarked that, as in Ref. 9, it is not essential
for the argument of this paper that the quantity A»;, occurring in
the basic "fiux" relationship (A18) be equal precisely to the area
of the triangle defined by the site centers R;, I;, and RI„order-of-
magnitude correspondence is suKcient.
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electron potential due to lattice displacements

V'-4(r) =( &) "'2 LV«(r)f «+ V«*( ) «*j (A2 )

Lwhere E is the number of unit cells in the sample; the
factor (2$) 'l' is introduced to give the correct volume
dependence).

In this paper, it will be assumed that an adequate ex-
pression for HI 4 may be obtained by projecting V;~4(r)
onto the subspace spanned by the 4,(r) and retaining
only the components diagonal in the site indices. If this
recipe is followed, one has

XQ LV«;e'4«'R'fl«+ U«;*e '2«'R*'b«*j, (A28)

One now notes that, since the phases of the basic
lattice-vibration wave functions are arbitrary, they can
be chosen so as to multiply both bz and b z* by an
arbitrary phase factor s"«. (The adjoints of these opera-
tors, b),

* and b )„of course, are multiplied by the ad-
joint phase factor e "".) Choosing the phase factors so
that the quantities V),e")' are real, one may thereby,
without loss of generality, take the V« in (A32) to be
real.

One may at this point introduce the canonical trans-
formation of Refs. 3 and 4. However, in order to effect
a correspondence with the earlier treatment of the
present authors (FH), the alternate procedure of
transforming to the Pekar-Buimistrov standing-wave
modes will be followed. This is done via the canonical
transformation

where

V«;—=e '4«'R' V«(r) ~lt, (r) ~'d'r (A29)

—(2) II2gg —iwl4B-+ei1rl4B j
(2) I /2[s—i~l4B-„+pi~/4B ]

(A33a)

(A33b)

and where q« is the wave vector of the Xth mode (as-
sumed to be a "running" mode).

In the case of a periodic arrangement of electron
(hole) occupation sites i it is readily shown that V«; is
independent of the site index i, i.e.,"
&j(Z;., [2&=a;,(ZV)-I& P LV«~'2'"e«

+V«*e-,2«R;b„*j (A30)

For the sake of simplicity, (A30) will henceforth be
used, in place of the more general expression (A28).

At this point it is desirable to note the existence of an
additional symmetry, namely, time-reversal invariance
of H; & in the absence of a magnetic field. 2' With the
lattice vibrations being described in terms of running
modes, the time-reversal operation consists of (a) re-
placing the coefficients of the |l«and b«* in (A30) by
their complex conjugates, and (b) replacing each field
operator, b«(b«*) by fl «(fI «*), the notation "—X"
denoting the "time-reversed" mode of X—i.e., the mode
having the same polarization and frequency, but op-
positely directed wave-vector (q «= —q«). Carrying out
this operation, one then notes that the required invari-
ance of H; t, leads to the relations

to new Bose operators B„.Introducing (A33) into (A32),
and utilizing (A31), one obtains

Xcos(q«. R;—-242r) (B«+B«*)

S'"Q V«"
X

XSin(q«R;+4«ir) (B«+B«~)

= g;, (2/Ar) Ii2 Q V«sin(q«R;+4'Ir)Q«, (A34)

where the
Q«=—-'(B«+B«*)'" (A35)

~«—=2(»—B«*)'"2=(1/2)(~/~Q«) (A36)

the corresponding canonically conjugate Hermitian
operators.

Reverting to the lattice Hamiltonian Hz, one easily
verihes that

are Hermitian operators, playing the role of lattice-
vibration coordinates, with

Introducing (A31) into (A30), one then has

(A31)

(A37)

&j~e, ~2&=~,;g a~«(B«*B,+ ',), -
g2

=~„g-,'W«Q, 2—
aQ«2&

&jlB''- I2&=g,,(2Ã) ' 'Q e' ' '[b+b *jV . (A32)
From (A11'), (A23), (A34), alld (A37), one then has for
the total Hamiltonian

2 The essence of the proof consists in noting that the square
bracket in (2.28) must be invariant with respect to the displace-
ment operation Rs-+ R" b) ~ bye '~7

2~ Under the restrictions already incorporated into the treat-
ment, in which the sole eA'ect of the magnetic field appears in the
local-site wave functions Las given by (A8) j, it is clear that EI; f, ls
independent of the magnetic field. Hence, the discussion actually
applies for nonvanishing field, as well.

g2

&jlB'I2&= —~'~' "(1—4)+~ E —.'~«Q«'—
aQ«2J

+(2/E)il2U«sin(q«R~+42r)Q« . (A38)
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Comparing (A38) with the Hamiltonian of FH, as
given by Eq. (3.2) of that work, one notes that, with
the identi6cations

Q&, ~ (M&ds/A)'"qs,

V&, +-+ A(A—/Mo&s) '",
(A39a)

(A39b)

Ii, N&,"' )=C&,(r)&r&X»&'&(Q&—Q&"'), (A40)

where the X&&(Q) are normalized harmonic-oscillator

the correspondence between the two is complete. It then
follows that, just as in FH, the eigenfunctions of that
part of (A38) which is diagonal (in the site index) are

functions, centered about "local-equilibrium" values

Q&,
ti& = (2/N) '"(Vi/Ao», ) '" sin(q&, .R,+ ts&r), (A41)

and the corresponding eigenvalues are

N&
&'&. Q ~&ox(~ && + )+Es

X

(A42)

where

Es= (2/N)Q (V&,'/2ho»)'" sin'(q&, R,+-,'&r) . (A43)

In the representation of the states Ii, . /V&, . ), given
by (A40), the remaining (nondiagonal) part of the
Hamiltonian [i.e., the first term on the rhs of (A38)]be-
comes [cf. FH's Eq. (3.8)j

(j . . .$/yo'&. . .
I ~ I &

. . .Ngt
'&. . .)=(.. .Ng( '&. . .

I
V.,&/i& I. . . /&&Ti&'&)

=J„e /*'X~. 1——(»"'+s)v;;,~ cos'[es(R*+R/)+-'~lS
1(2

X4r„& & //„&'&W
I

— e/, p, , q' ' cos[qi —', (R;+R;)+4&rj-', (N&, "+-',&-,')"' & &&,/&&&, &&/~ i& &, (A44)
E

where

y, ;,&,=-,' [V&,'(Ao»)'1[1—cosq&, R;,] (A45)

and e;; is equal to &1, according to whether'0 q~. R;;)(0.

APPENDIX B

0, one has

e t'E"—e l'~

r,„(Q)=—P (nIv, Im)(mIv„In),
+g

e
—&™—e

—&~~
(83)

In this Appendix, the equivalence of (3.2) and (3.3)
to the standard Kubo formula for the dc conductivity
tensor"

e2 0

ZV
dy es& Tr(e /&&reiH(t//& —&X)v—

Xe iH(t/s A)v } (—81)-
will be established. A straightforward proof may be
achieved by expressing both (81) and (3.2)—(3.3) in
the representation of the eigenstates of H, i.e., those
eigenstates P (and eigenvalues, E„)of the equation

HP„=E P .
Introducing this representation into (81) and carrying
out the integrations, one has

e'It e eE eel" (nIv„Im)(m—Iv, In)
o.,„= (82)

UZI/' ~m E„—E E„—E —i ks

Proceeding similarly with (3.3), and replacing" Ao&, by

«&& The notation ( ~ Nq&/& ~
I V, ;&n&

I
~ ~ N&&&'& ~ ) is introduced

to establish the connection with the text notation of Eq. (2.1)
et seg. Here, the superscript "(II)" denotes magnetic 6eld
dependence.

"Refer to, e.g., Eq. (3.1) of Ref. 4.
32 Before carrying out this replacement, one must utilize (3.4) to

substitute unity in place of the factor e&"ri wherever that factor

(nI v„ Im)(mI v, In),
Z E„—E —0

the last equality arising from an interchange of the
summation indices, e and m. Inserting this last equality
into (3.2), one has

P (e e- e e-")(n—Iv„-Im)(mIv. In)
iQZV ~m

X
E„—E —0 E„—E

e
—P&t/s e

—P&ne'h

iZV ~~ (E —E )(E —E —0)

X (n I v„Im)(m I
v. I n). (84)

Bearing in mind the definition of 0, namely 0=h(o&+is),
one sees that, in the limit io=0, (84) coincides with
(82) ss

occurs in the integrated expression for F „(~,); otherwise, F „(0)
will not be analytic in each half of the complex plane.

3' The proof could easily have been generalized to establish the
(more general) equivalence of (3.2)—(3.3) to the expression for
0»(co) given in Kubo's original paper LJ. Phys. Soc. Japan 12.
570 (1957), Eq. (5.11)j.


