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Influence of Force-Constant Changes on the Lattice Dynamics
of Cubic Crystals with Point Defects*
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The crystal-point impurity problem is examined for the case of changes in nearest-neighbor forces around
the defect site. Using the recently developed group-theoretical techniques, expressions are found for the
frequencies of the perturbed modes due to impurities in face-centered and body-centered cubic crystals,
assuming only central forces. By solving coupled equations for double-time Green's functions, expressions
are also obtained for the defect mean-square displacement and its amplitude of vibration in each perturbed
mode. Applications are then made to recent optical and Mossbauer measurements.

I. INTRODUCTION
' "T is well known' that in the presence of defects great
- - changes in the dynamical properties of a crystal may
be obtained. The subject has been treated by many
authors and solutions have been given for the deter-
mination of localized modes produced by a point mass
defect. The method is to use the localized nature of the
perturbation to the pure crystal and solve using the
lattice Green's functions. This is possible because we
have only added a source term to the pure-crystal
equations of motion. By the same method it is also
possible to calculate the amplitude of vibration of the
defect in each of the normal modes of the perturbed
crystal. This is very useful because in optical measure-
ments, neutron scattering, and Mossbauer experiments,
it is the defect motion which determines the process.

Though the isotopic impurity has been very popular
for illustrative purposes, not too much attention has
been given to considerations of the inhuence of changes
in force constants in the vicinity of the defect. This is
somewhat unreasonable since in actual experiments
forces are usually changed as well. There have been
some calculations performed for changes of force in a
nearest-neighbor simple cubic lattice. ' This however is
an unphysical situation in which the polarizations of
the phonons are ignored and the lattice becomes one-
dimensional. An important development was the in-
troduction of the matrix partitioning techniques, ' which
admit of changes in the force constants and also take
into account the polarizations of the phonons. In the
last two years group-theoretical techniques have become
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generally available4 so that it is possible to solve for
crystals with a more complicated lattice structure. The
use of symmetry adapted coordinates is now thought
to be the most convenient approach to the problem,
and applications are now appearing regularly in the
literature. ' '

In this paper we shall examine the defect problem for
changes in nearest-neighbor forces due to impurities
substitutionally Inserted Into face-centered and body-
centered cubic lattices. Ke obtain conditions for the
determination of the position of localized and reson-
ance modes, and the defect amplitude of vibration

~
X'(O, to)

~

as a function of the normal mode frequency co

LKqs. (32) and (55), respectivelyj.
For the case of central forces only, a simple formula

(32) is given which only requires knowledge of the pure-
crystal density of states for solution. It contains two
free parameters, the mass change M/M', and the change
in the force constant at the defect site A „(0,0)/2 „'(0,0).

We discuss 6rst, in Sec. II, properties of the pure
cr'ystal which are necessary for solving the impurity
problem. Ke then examine in Sec. III the cluster of
atoms around the defect where changes take place. For
instance, for a face-centered cubic lattice we have i3
atoms in the cluster and hence 39 degrees of freedom.
Thus to get the frequencies we have to diagonalize a
39 dimensional matrix. This is treated in Sec. IV. We
make a block diagonalization of this matrix using the
lattice site symmetry and isolate the F&„mode in which
the defect moves. We then have a four-dimensional
matrix containing a large number of lattice Green's
functions. We next derive relations between the Green's
functions to reduce their number. The perturbed fre-
quencies are derived in Secs. IV and V for the fcc and
bcc crystals, respectively. To obtain the defect mean-
square displacement (I'(0)), we introduce double-time

' A. A. Maradudin, Rept. Progr. Phys. 28, 331 (1965).' T. P. Martin, Phys. Rev. 160, 686 (1967).
6 W. M. Hartmann and R.J.Elliott, Proc. Phys. Soc. (London)

91, 187 (1967).
7Nguyen Xuan Xinh, R. A. Co1dwell-Horsfall, and A.

Maradudin, J. Phys. (Paris} 26, 717 (1965).' G. Benedek and G. F. Nardelli, Phys. Rev. 155, 1004 (1967}.'T. Gethins, T. Timusk, and E. J. Woll, Jr., Phys. Rev. 15?,
744 (1967).

ioii



ioi2 P H I L I P D. MANNHEIM

Green's functions. "(u'(0)) is given by solving a set of
four coupled equations in these Green's functions
(Sec. VI). From (u'(0)) we then derive ~x'(O, co) ~. In
Sec.VII we give a few applications of the results derived
in the paper. In the Appendix we provide a method for
calculating an arbitrary lattice Green's function without
6rst having to diagonalize the dynamical matrix of the
crystal.

To conclude the Introduction we briefiy relate the
present paper to the earlier works cited above. The
block diagonalization of the F~„mode for the fcc is
equivalent to the calculation of Lehman and DeWames. '
As in the case in Ref. 3, Eqs. (23) are completely general
and make no assumptions on the nature of the forces.
Lehman and DeWames performed a numerical diag-
onalization and did calculations for both isotropic
changes of force hp'(r)/r= hp"(r), and central changes
of force hP'(r)/r= 0. A similar calculation has also been
performed by Martin' for central force changes. The
major part of the work in these two papers was in cal-
culating all the lattice Green's functions. A certain
simplification would be achieved by using the numerical
method. suggested in the Appendix. In the present work
general relations between the Green's functions have
been provided (25)—(28), such that upon restricting to
central forces, it is possible to obtain an analytic solu-

tion (32) in which only one Green's function is required.
For isotropic forces only it is also so be expected that
an analytic solution is available, though it was not
sought here. The technique is also applied to a bcc
crystal, which was not considered in Refs. 3 and 5.

Lehman and DeWames further obtained expressions
for the mean-square velocity and displacement of the
defect by means of the linear response function, and
performed numerical calculations for varying force
ratios in the cases of isotropic and central force-constant
changes. We use the equivalent technique of double-
time Green's functions and, through the Green's func-
tions, obtain analytic expressions for (u, '(0)) and

(v, '(0)). Because the form of (u, '(0)) is given explicitly,
it is further possible to obtain

~

X (O,co)
~
. In forthcoming

papers"" numerical calculations for varying central
force ratios will be reported. The fcc case has also been
considered by Hartmann and Elliott' in a study of
impurity-induced infrared absorption by the F&„mode.
Nguyen Xuan Xinh et al.~ have examined the Raman
effect in impurity doped simple cubics where the A&„
E„and F2, modes are Raman active. Benedek and
Nardelli' have looked at phonon scattering in a simple
cubic by means of the linear response function.

'0 R. J. Elliott and D. W. Taylor, Proc. Phys. Soc. (I.ondon)
83, 189 (1964).

' P. D. Mannheim and H. Friedmann (to be published).
"P. D. Mannheim and A. Simopoulos, Phys. Rev. 165, 845

(1968).

P '(t)
H=P +-', P A p(t, t')u (l)up(t').~' 2M(l)

l, l'

The atoms are in equilibrium at the sites R(l), and we
have a displacement from equilibrium u (l,t), where
o,=x, y, s, if we restrict ourselves to monatomic lattices
only. Here we have introduced the second-order force
constants A pit, P). From the Hamiltonian equations
we then obtain 3$ equations of the form

3f(t)u (l)+ Q A p(l, l')up(l')=0. (2)

Taking the time dependence of the vibrations as

u (t,t) =e' 'u (t 0)

we have

Q Pd, p(t, t') (aM(t')8 —p8(t, t')7up(t')=0. (4)

For pure crystals we can invoke translational invariance
and introduce the wave number K.

We define the dynamical matrix"

1
D. (K)=—Q A (O, t)

—*"" ' .
M l

Its eigenvalues are the characteristic frequencies a&t2(K)

of the branches, and its eigenvectors are the polarization
vectors o. &'(K), where j labels each of the three acoustic
branches, i.e.,

(6)P D.p(K)~p'(K) =co,'(K)0 '(K) .

The eigenvectors are orthogonal and normalized as

Z ~-*'(K)~-"(K)=»x, (&a)

Z ~-*'(K)~p'(K) = ~-p

Thus for each wave vector K in the first Brillouin zone
we have three eigenvalues {coP(K)), determined by the
crystal dispersion curves.

We now recall some general properties of the force
constants which will be useful for later calculations. We
assume that the forces are derivable from a two-body
potential p(r). Then by direct calculation we im-

"M. Born and K. Huang, Dynansicaf. Theory of Crysta/ Lattices
(Oxford University Press, New York, 1954).

II. LATTICE DYNAMICS OF PURE CRYSTALS

In the harmonic approximation, the Hamiltonian of
a 3E-dimensional crystal lattice is given by
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~'4(r)
A p(L,O)= —

i

(Bu (L)8up(L) o

we may rewrite Eq. (4) as

Q {A p(L, L') —Mco'8 pb(L, P))up(L')

= Q V p(l, l')up(P). (16)

We introduce the lattice Green's functions

provided l/0, the origin of coordinates. For /=0 we
have'

1 o ~&(K)op&(K)
g-p(~' l,l') = p~K R(v)-R(o (17)

EM &,~' cog(K) —(u'

A p(0,0)= —Q A p(l, 0) . 9
so that we can formally solve Eq. (16) by

(18)u (l)= P g, (;L,l')V, (P,L")u,(l").In particular for a cubic lattice, the plane x=0 is a
plane of refiection symmetry, and hence A,„(0,0) =0.
For the dynamical matrix we now have

If we restrict K to be along the x axis, then

2
D p(E,)= ——Q A p(O, L) sin'-,'E,R,(L),~ &&0

In this solution we have neglected the homogeneous
solution. This is because we are looking for the fre-

(I) quencies &a of the perturbed crystal which are to be dif-
ferent from the pure-crystal frequencies before we take
the limit X~Do. For these frequencies Eq. (4) has no
solutions, and so Eq. (18) is comp1ete. The perturbed
frequencies a,re given by the determinantal condition

(11) for a solution to Eq. (18), and it is this determinant
that we wish to diagonalize.

where we have again used the reAection planes. Using
the specific form of A p(O, l) given in Eq. (8), we then
have

D,y(K,) =0.
If we now restrict the summation on I to the nearest
neighbors only and take E at its maximum value
E, ", then

D..(K. '")= (2/M)A, .(0,0) =co,', (13)

since we have diagonahzed D p(K). Thus we see that
the maximum lattice frequency is given by

io „„'=zero —zero force constant/reduced mass. (14)

All that were needed for the derivation were the planes
of reflection of the cubic system and the nearest-
neighbor nature of the forces.

III. LATTICE DYNAMICS OF CRYSTALS
WITH POINT DEFECTS

We restrict ourselves to the case of one impurity, a
point defect, occupying a substitutional lattice site
which we take as the origin of coordinates. %e assume
that there are no changes in the lattice structure. If
we separate out the changes in mass and force constants
and introduce them as a perturbation

V„p(l,P) = —(M—M')co'8 p5(L,O) 8(L',0)+A p(l, l')
—A p'(l, l'), (15)

IV. CALCULATION FOR A FACE-CENTERED
CUBIC LATTICE

A. Diagonalization

For the face-centered cubic it has been shown that the
total representation of the cluster of the 13 atoms can
be decomposed into the irreducible representa, tions of
OI„ the site symmetry at the defect, as4

1'&ca =A ig+ A2g+2I'-'g+2F io+2F2g+ A uu+&I
(19)

We are only interested in the triply degenerate F~„
mode where the defect moves. A basis for the 4F~
representa. tions has been given' as

(20a)

expressed in terms of the unit displacements of the total
representation. The functions g„p(co; l, l') are transla-

no= u, (0,0,0),
ni ——u, (1,1,0)+u, (1,1,0)+u. (1,0,1)+u.(1,0,1)

+u, (1,1,0)+u.(1,1,0)+u, (1,0,1)
+u.(1,0,1), (20b)

np ——u„(1,1,0)+u„(1,1,0)+u, (1,0,1)+u, (1,0,1)
—u„(1,1,0)—u„(1,1,0)—u, (1,0,1)

—u, (1,0,1), (20c)

na ——u.(0,1,1)+u.(0,1,1)+u.(0,1,I)+u.(0,1,1), (20d)

"K.Dettma, n and W. Ludwig, Physik Kondensierten Ma, terie
where the primes denote the changed parameters; then 2, 24[ (~964).
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tionally invariant so that we may vmite

g-p(V') = g-p(~—l',0)=g-p{l—l') (21)

Their fuO symmetry properties are discussed in Ref. 4.
We shall also use the notation V p(110) for V p(1,1,0;
0,0,0) [noting that V p(1,1,0; 0)=—V p(1,1,0;1,1,0)g,
and V,p{00) for V p(0,0,0; 0,0,0).

To simplify the meriting @re introduce

go= g.,(000),
gi ——g..(110),
gw= g*w{110)
gw= g*.(0»),
A =gw+g, .(020)+g,.(200)+g..(220),
B=g.„(220)+2g.„(211), (22)
C=gi+g„(121),
D= g..{200)+g.,(020)—g,(220)—g„
E=g,„(211)—gw,

F=go+2g„(020)+g„(022).
%e can novr ferrite down four equations in the four
functions:

,(0)= [SV,(110)g,+SV „(110)g+4V,.(011)g
+V (00)go7+ (0)+V (011)(go—gw)nw

+[Vw, (110){go—gi) —V „(110)gg]ni

+[V.„(110)(gw
—gi) —V„„(110)ggjnw, (23a}

ni=4V. .(011)(2gi—C)nw

+[V .(110)(8gi—A —2C)—V „(110)Bjni
+[V.„(110)(Sgi—A —2C)—V„w(110)B]nw

+8[V„(00)gi+ V„(110)(A+ 2C)+ V,„(110)B
+2V,.(011)Cjm.(0); (23b)

=4 V..(0»)(g.-&)
+[V.*{110)(Sgm —B)+V*w(11o)(D—2E)3ni

+[V.w{110)(Sgw—B)+Vww(11o)(D —2&}jnw

+8[V.,{00},,+V.,{»0}B+V.„(110){2Z-D}
+2 V„(011)g,„(211)jl,(0); (23c)

nw V.,(011)—(—4gi —F)nw

+2[V..{110)(2g-C)-V.,(»o)g*,(211)j-
+2LV*w(110)(2gw —C)—Vww{1 10)g*w(»1) jnw

+4[V, (00)gw+4V„(110)C+4V,„(110)
Xg.„{211)+V,.{011)F]N.(0) . (23d)

B. Relations between Green's Functions

In principle eve couM calculate all the required

g p(l) as indicated in the Appendix and determine the

'4 "{)+1/{ }~{}
A-p{1,1,0;0)=——: ~"()-1/{)~'()

0

We shall make the simplification @'(r)=0. This
is equivalent to assuming only central forces, i.e.,
A„(1,1,0; 0)=0. We have thus only one:parameter
p"(r) to characterize the forces, since A .(0,0) =4&"(r).

frequencies directly. However, for nearest-neighbor
forces and, later on, central forces only we can simplify
the problem immensely. We can relate various g,p(l)
using the dispersion relations, Kqs. (6). We find. for
a fcc lattice

1 D (K) ~n, '(K) ~' D„„o *&(K)ow'(K)

X K.~' oiP(K) —sr' oiP(K) —oi'

D.,o,*&'(K}cr,&'(K) 1 o~, w(K) )o,&(K) ('

oiiw(K) —oi' Ã x,~ org{K)—iow

OP

1+——
~
o,&'(K)

j
'= 1+Afoi'go, (24}

cV &.~ oi (K)—&o'

using the definition of go given in Eq. (17). If we now
use the symmetry properties of g p(l), A p(l), under

Ow and expand D ptK), then we obtain

A „.(00)g,+SA ..(110)g,ySA,w(110)g,
+4A.,(011)g,=1+iiI~'g, (2.5)

We can repeat the process multiplying (24) through by
g'&~.+~~} before summing over K to obtain

A „(00)gi+A „(110)(A+2C)+A,„(110)B
+2A..(011)C=Moi'gi. (26)

on the right-hand side we should have in fact obtained
an addltlonal telIQ

j.
Q pi(xe+xw)

E K

but this is zero since

j.—P p'"'x= h(R) = 1 if R is a Cartesian lattice vector,
K

=0 otherwise.

On multiplication of (24) by p'~x*+x i before summation
we 6nd

A „(00)gw+4A „(110)C+4A,„(110)g „(211)
+A„(011)F=3foi'gw. (27)

Multiplication of Eq. (6) by o w
&'(Jt) provides the extra-

lIldependent relation

A,.{00)g,+A ..(110)B+A,„(110){2E—D)
+2A.,(011}g,w(211) =Meow'gw. (28)

C. Determination of Frequencies

For a fcc lattice we have from Kq. (8)

&"(r)—1/(r)4'(r),
&"( )+1/( )4'( ),

2/(r)&'(r).

For the changes in the forces @re now have

V ,(1,1,0; 0)= V „(1,1,0; 0)
w[4 "(r)"- 4

"—(r)a.i-tj *—



so that V .(0;0)=—(M—M')co' —8V,.(1,1,0; 0}. We
introduce the parameter X= V„(1,1,0; 0)/A „(1,1,0; 0).
Thus

4 "(&)aeI~e Aee'(00)
(30)

(&)pure ~ee(00)

We call sllllpllfy Eqs. (23) slllce tile comblnatlons of
Green's functions that appear in them are now exactly
the same as appear in Eqs. (24) to (28). After some
manipulation we arrive at

SA „(110)(1—X)[1+(M—M')&o'gp j
+XM'(p'[1+Mur'gp$ =0. (31)

Using Eqs. (14) we can rewrite this in the form

M 2&p' A, (00) )
M' ur ' A „'(00)~

1 rp,'(K)= —(1+Mul'ge) =
3X K,r'rp' —Ip'(K)

CO p(Cd 2)
d(p", (32)

CO 63

taking the limit E—+.
Here p{e") is the pure-crystal density of states per

unit e', and for co&(o„, we take the principal value, so
that solutions obtained give the resonance mode
frequencies.

The equation has several interesting features. If
X=o, which ls no change ln force, we return to the usual
equation for an isotopic impurity. Also w'e see that an
increase in force has the same eGect as a decrease in
mass, which is to be expected qualitatively. Thus in the
absence of a change in mass, an increase in force (X(0)
can give localized modes. Also the form is very useful
for calculation when only the experimental density of
states is known for the pure crystal. No detailed knowl-
edge of the dispersion curves is required.

V. CALCULATION FOR A BODY-CENTERED
CUBIC LATTICE

Here we have 8 neighbors in the cluster and hence 2E
degrees of freedom. The decomposition of the total
representation is now4

Fb„——A Ip+ Ep+F Iu+2F2p

+32 +F. +3FI„+F2 (33).
%'e now have a threefold basis for the Fg„mode which
is given'4 as

(34a)

(34b)

For the pure bcc we have

uo= u (0,0,0),

«——u (1,1,1)+u,(1,1,1)+u (1,1,1)+u (1,1,1)+u,{1,1,1)+u,(1,1,1)+u,(1,1,1)+u,(1,1,I),
n2 ——u„(1,1,1)+u, (1,1,1)—u„(1,1,1)—u, (1,1,1)+u„(1,1,1)—u, (1,1,1)—up(1, 1.,1)+u, (1,f, ,i)+u„(j,1,1)

+u.(1,1,1)—u {1,I,1)—u.(1,1,1)+u,(1,1,1)—u.(1,1,1)—u„(1,1,1)+u,(1,1,1). (34c)

'4r"(r)+2/(r)4r'(r), 4"(r)—1/(r)+'(r), 4r" (r)—1/(r)p'(r)
~(»»1'0}=—l &"()—1/()4'(), 4"()+2/()4'(), 4"()—1/()4'() .

.4 "(r)—1/{r)4'(r), 4 "(~)—2/(r)4'(r), 4 "(r)+2/(r)4'(1)
(35)

&=g..(222)+g,„(220),

(36) =gp+gpp(222) —gp„(020)—g„„(202),
2'= g,.(222)—g„,(022) .

Our approximation now is to neglect 4r'(r}//r. Thus

SA „(1,1,1;0) =SA,p(i, i,i; 0)= —A „(0,0) .

For the changes in forces we have

(39)

V= V,(11O,O) =—V (111,111)=V (111,0}
=—V,„(111,111)= —3[@"(&)pure—4"(&)aereeej (3&)

V „(00)=0,
V (00)= —(M—M')rp' —SV, (111,0). (38)

To simplify the writing we introduce

go= g (000),
gr= g..{111),
g2 =ge„(111),
Q =go+ g.,(222)+g,.{200)+g,.(022)+2g„(220)

+2g..(022),

We again write down the equations of motion of the
F~„mode

u, (0)= [SV(g,+2g,)—g, (8 V+(M —M')~2)]u. (0)
V(gl+2—g~ go)(«+—nu), (40a)

«= 8[V(Q+2E)—g&(8 V+ (M—M')ap2) ju, (0)
+V[Sgl—(Q+2R) J(«+ng), (40b)

~.=16[v(&+&+2') g.(8V+{M—M')~2}ju,(0—)
+2V[Sgu —(&+~+2')j(«+o2). (40c)

To simplify we again need relations between the
Green's functions. These are found to be, without
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neglecting p'(r) here, where the average is to be taken over the ensemble,
and 8(t t')—is a step function. We denote the Fourier3„(00)go+ 83„(111)gl+16&»y(111)g2 tlRrisfol'Ill of 'tllls fullctloll by Q~s(&o' l, l ).As ls sllowll 111

=1+%~'go, (41a) Ref. 10 we can write down differential equations for
the Green's functions of the formg „(00)gi+A „(111)Q+2A,„(111)R

=~&'g» (41b) Q s(a);/, l')=P s(co;l, l') —QP ~(co,'f, ll)V~l(li, ll)

g.,{00)g,+A,.(111)X+A.„(111)(5+2')

=Mcu'gl. (41c) XQlp(co; lp, l') . (43)

The Prescription for obtaInyng a correlatIon func-
tion from a Green~s funct]. on Is given by Zubarev

In the event of there being a localized mode we have
an extra contribution given by differentiating the
denominator. It ls4'

{N,&{0))=lim—
y~O 2 ~%Par h (3E) ' coth{-,'hPa)g) p(a)')

&&LQ,(+ b;0,0)-Q..( —~;0,0)j. {45)

Here V„l(&1,4) is the function defined in Eq. (15), andl „t th „bt,'„
We are interested in Q (~ 0 0) and, using the same

symmetry tcclllllqllcs Rs wltll Q»(0), wc call wl'ltc down
coupled equations. Unlike Eq. (18) there is also a

produce the determinantal condition we can also2

determine Q„(;0,0). Thus Eq. (43) contains more
information than is available just by looking at the
displacements. However, the similarity between the

hall follow the method of Elhott and Taylor'0 Eqs. (43) and (18) enables us to generalize equations
and introduce the double-time Green's function (23) and (40) immediately. We simply attach, (0) to

each I (l) to give Q,{1,0) and include a homogeneous
Q &(1 p; ( f)=2s—/(Al)8(t —3') term P,(l,0). The procedure is then as before, with the

(L .(&,~), (&',~')j), (42) ltfo. bothf- d. b. l tt- b.
X(1+3Eco'ga)+A „(00)(1—X)go

Q„(0,0)= (44)P.M'~'(1+ jl~'go) —A „(00)(1—X)(1+(M—iV') cu'go) j

S(s&)=
OP PM

Ql —N
I t

2'' ( A, (00))
p(e) =—,—1+

a l ( A „'(00))
(46)

3f—{p(~z)+1)'+ — (50)
APE

I (0)=Q x (O,co)d(s)), (51)

@chere cyr, is the localized-mode frequency. From this vie
can also determine

~
X'(O,a&) ). We make a normal mode

(4y) expression of u (0):

so tllRt tile colldltloll for resonance modes, Eq. (32),
novr reads

~(~)p(~)-1=0,
and 6naBy obtain

i'I (M)'
( .'(o))=

N max coth(-', hp(o)I (~)d~

m[f 1 p(cop'(I0) )'+ kIr—'~"'(~)p'(~)j
(49)

Z1 f @1-ev Ugp J&iz, Nark pj. fj (j,960) I KIlglls11 tfRQsl. :
Soviet P&ys.—Usp. 3, 320 (1960)).

where each normal mode N is threefold degenerate,
Rnd we quantize according to

d( )=W2 )'"L'( )+.I( )j. {52)
Thus

{+» (0)&=Z )X»l(0,&) ( h/12' coth(2APco) . (53)

We now' go to an integral and equate terms in Kqs.
(49) and (53), since the normal modes are independent.
Thus

h
(I '(0))=3$,—. IX '(O,co) gcothgkpau)I {(o)des, (54)

2N'
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so that

Q ix '(0,&u) i
=1/ME[(M'/M)'(1 —p(cu)S(~))'

+ (M'/M)'-', ~r'(o'v'((o) p'(oo) j ' (55)

with an obvious form for ~x'(O, o&)
~

from (50) if there
is a localized mode.

As before all of these formulas reduce to the standard
mass defect equations. '

VII. COMMENTS AND APPLICATIONS

Ke have derived expressions for the positions of
locahzed modes ~x'(0a&) ~, and (I'(0)) for the fcc and
bcc impurity problem. For the case of central forces

only we have been able to obtain expressions which
only depend on the pure-crystal density of states. Hy
taking different amounts of noncentral forces Eqs. (23)
and (40) could be solved in general, but the solutions
are not expected to be as simple. The Green's functions
method is also well suited to the determination of the
change in the density of states of the crystal. 4 The main
problem here is that resonance modes decay into the
continuum and hence broaden the distribution. An
advantage of the block diagonalization is that each
mode of the total representation contributes independ-
ently to the density of states, so that the decay of F~„
resonance modes can be calculated from Eqs. (23).
The result is

3 p(~) [1—p(~)S(~)3&'(~)+[p'(~)S'(~)+p'(~)3&(~)
hv(ru') =-

L1—p(~)S(~)j'+[~p(~)~(~)l'

where R(oo) =co'v(ra'), and the primes denote differentia-

tion with respect to co'.

It is usually the case that the frequency of the reso-
ance in ~x'(0,&o)

~
is the same as the resonance in the

density of states. However, this is not necessary. Con-

sider, for instance, when there is an isotopic impurity
which is slightly heavier than the host atom, such that
condition (48) has no solution inside the band. In the
expression for ~x'(O, co) ( the term (1—p(ar)S(oo))' will

dominate over 47r'co'v'(oo)p'(cu), so that an apparent
resonance will appear in

~

x'(O, co) j when approximately

d/(d~)(1- p(~)S(~))=o (56)

However, this is not a genuine resonance, so there will

be no broadening in the density of states at that
frcqucncy.

Since
~
x'(O, u&)

~
has been determined [Eq. (55)j we

can also calculate the mean-square momentum from

(P '(0))=M" —',hue(co)

Xcoth(-,'hpoo)Eix, '(O,s)) i. (57)

The resulting expression could also be derived by using
double-time momentum Green's functions.

To estabhsh the usefulness of Kqs. (48), (49), and

(55) we consider some recent optical experiments, " in
which localized modes were observed with diatomic
molecules as defects in rare-gas crystals. The complete
calculation and the physical mechanism responsible
for the optical activity is discussed elsewhere. " For
the pure rare-gas crystal a model for P(r) is available,
the Lennard-Jones potential. Also, a model for the
interaction between the host and the defect is available,
based on the empirical combining laws for the parame-

J. M. P. J. Verstegen, H. GoMring, S. Kimel, and B. Katz,
J. Chem. Phys. 44, 32N (1966}.

ters 0., ~, of the potential. In this model it is possible to
show that P'(r)/r«P"(r) for both the pure and impure
lattices, so that the central-force approximation is valid
here. Assuming the density of states determined by this
P(r), '" we can solve condition (48).

Localized modes are predicted for HCl in Ar at
jg cm ' and HBr in Ar at 75 cm '. The experimental
observations arc at 73 cm and 72 cm

~ respectively.
Both results indicate the strength of the change in force
constant, since on a mass-defect theoryonly there would
bc no locallzcd modes. For HBr ln Ar wc have a big
increase in force to give a localized mode. This particular
result shows that the claim that we can neglect the
change in force in a 6rst approximation when there is a
large change in mass is not valid.

An important feature of the changes in force is the
possibility of compensating the change in mass, so that
the dynamics is again that of the pure crystal, i.e.,
~x2(0,~)

~

= 1/MX. This is very valuable in op~ical
measurements, since if the introduction of a defect can
make the lattice optically active without distorting
the absorption spectrum, we see the whole density of
states in the spectrum. This will happen approximately
if Kq. (48) is solved by co=co,„.

The functions (e,'(0)), (P '(0)) are very important
in Mossbauer experiments. Formulas (49) and (57)
have been applied" to 6t the measured recoilless
Mossbauer fraction and second-order Doppler shift of
Fe» jn V», so that the change in force could be ascer-
tained. Interestingly, though both functions are aver-
ages over all the modes, they show a strong sensitivity
to change in force. In fact, from the data we obtain
de6nite evidence for an increase in force and for localized
mode production.

» J. Grindlay and R. Howard, in Proceedings of the International
Conference on I.ance Dynamics, Copenhagen, &63, edited by R. F.
%'allis (Pergamon Press, Ine. , New York, 1965},p. 129.
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APPENDIX: DETERMINATION OF AN
ARBITRARY LATTICE GREEN'S

FUNCTION

g I, sj 0,& j'= D„,

cog' |T~ oy =D~p ~

n

Q co,4o,'= D„D,„+D,„D„„+D„D,„,

& ~'j ~*'j'=D**'+D."'+D..',

(A5)

(A6)

(A7)

(AS)

Q 07j Mj+i j
0'~

j
=DssDzz —Dsz

o.,"(K)o „'(K)
z.„(K)=g

i a)' —ebs(K)

To obtain g p(is; L,l') we have to find o &(K) and
~, (K). One possible method is to diagonalize the dis-
persion relations for each K (Maradudin and Eagle,
Ref. 18). This requires a lot of computer time. How-
ever, using the dispersion relations we can eliminate
having to find o. &'(K) and rais(K). We calculate every-
thing for a particular K, so that the index will be
suppressed. Directly from Kq. (6) we have Hence

(A9)

(A10)

p nbs=g D„, (A1)
and

A,„=1/u. (D „(ar' D,.)+D,.D—,„) (A11)

2 esjiuj+i =2 DssDzs Z Dss ~ (A2) X..=1/s f(o'—co'(D„„jD„)+D„„D„—D„,') . (A12)

g; au,'=g D„PD,D„,s+2—QD „, (A3) Thus, finally,

where the sums are to be taken cyclically. Further,

g. (ass ie,s) —~6 ie4( Q eo.s)+~2( Q ~.2~. i2)

say. (A4)

' A. A. Maradudin and B. Eagle, Westinghouse Res. Memo
No. 64, 929M2-MI (unpublished).

g p(&o; l,0) = —1/EMPX p(K)e''"'""~ (A13)

giving a closed expression for g in terms of the elements
of D s(K). &t should be noticed that this is an exact
result for all-neighbor interactions, and follows from
the translational invariance of the lattice only.


