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therefore sheds light on the assumption that the
positron’s energy can be calculated as though it were
always in a single state: that assumption overestimales
the coefficient of the E?-versus-1/T curve by a factor
2.70, thereby underestimating the rate at which energy
is lost.

For purposes of comparison, it is instructive to
compute the value 4 would have if F(P,T) were at all
times a MB distribution corresponding to some temper-
ature 6’ higher than the sample temperature 6. In this
case

F(P,T)=(4//m)(6/6')**P* exp(— P*/6’)

/ " PR(PI)= @/0BXSX @ (B1Y)

/ " PE@,D)= 00,
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yielding
A=5X(%)=3.889. (B12)

If it were true, therefore, that the positron distribution
was a M-B distribution for an effective temperature
varying with time, the factor of disagreement between
the present calculation and the calculation of Carbotte
and Arora would ¢ncrease.

The basis of the surprisingly large disagreement as
to the value of the factor 4 in different distributions is
the fact that 4 depends on the sixth moment of the
distribution. It should be emphasized, however, that
effective temperatures are estimated by setting E(T'4)
=3Fk0. The estimated temperature therefore depends on
the square root of the coefficient 4. The factor of
disagreement in the effective temperature is therefore
4v/(2.70)=1.64. This factor is roughly compensated for
by the effective-mass factor, so that the present
predictions are close to those of Carbotte and Arora.
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Modifications to the orthogonalized-plane-wave (OPW) method are employed to facilitate its application
to transition metals. The procedure is to augment the basis set of OPW’s by including functions which vanish
in the interstitial regions of the crystal but represent well the outer core functions and the d-band states
near the nuclei. The bands are found to converge at a rate approximately the same as for the unmodified
OPW method in semiconductors. The method is applied to calculate the conduction electron bands of
niobium, along principal symmetry directions, to a convergence of about 0.01 Ry. The resulting band
structure is very similar to previous augmented-plane-wave calculations for other bec transition metals.

1. INTRODUCTION

HIS paper presents a method for calculating the
electronic band structures of transition metals,
based on modifications to the orthogonalized-plane-wave
method. The modified method is applied to the transi-
tion metal niobium, for which convergence of the bands
to about 0.01 Ry is obtained.

Difficulties in applying the OPW method to transi-
tion metals arise from: (1) the slow convergence for
d-like conduction states!; and (2) the fact that the
outermost s and p core states? are not completely

* Based on a thesis submitted by R. A. D. in partial fulfilment
of the requirements for the Ph.D. degree. This work was financially
supported in part by the National Research Council of Canada.

1 Present address: Cavendish Laboratory, University of
Cambridge, Free School Lane, Cambridge, England.

{ Dr. Twose died on April 5, 1967.

1 Herman found that, for the T'o5(d-like) state in diamond, a
16th order reduced secular equation (296 OPW’s) was required
to give the energy to within a few percent of convergence: F.
Herman, Phys. Rev. 93, 1214 (1954).

2 Throughout this paper the term core states is used to designate

localized but form bands of nonzero width. Problem (1)
occurs because the wave function of a d state is not well
represented by the /=2 component of a plane wave,
even if the latter has been orthogonalized to a core level
of d character. Problem (2) prevents orthogonalization
of the plane waves to the outer core levels in the usual
manner.

Following a suggestion by Herring,? which was later
used by Callaway,* the d-band convergence is improved
by adding to the basis set of OPW’s a function which
represents well the behavior of the d conduction band
states in the inner region of the core but which is chosen
to vanish in the interstitial regions. Similar cutoff (CO)
functions are added to the basis set to represent the
behavior of the outer core s- and p-wave functions,
while the plane waves are orthogonalized to only those

the corelike eigenfunctions of the one-electron conduction band
crystal Hamiltonian.

3 C. Herring, Phys. Rev. 57, 1169 (1940).

4J. Callaway, Phys. Rev. 97, 933 (1955); 99, 500 (1955).
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core levels that are completely localized (which will be
referred to here as inner core levels). The CO functions
are explicitly orthogonalized to the inner core levels.
With this basis set, the lowest roots of the secular equa-
tion in the variational calculation correspond to the
outer core bands, while higher roots give the conduction
bands. Because the outer core bands are quite narrow,
the s and p CO functions can readily be chosen to be
close approximations to the true wave functions of
these states and therefore the convergence to these core
bands (which, of course, is necessary before the higher
roots can converge to the conduction bands) is quite
fast.

Section 2 contains a more detailed description of the
difficulties which arise in applying the OPW method to
transition metals and the present modifications to treat
them. The application of this modified method to
niobium, including discussions on the convergence of
the method and the resulting band structure, is then
presented.

2. THEORY

A qualitative discussion of the two main difficulties
and the manner in which each of them will be treated is
given first. This is followed by an explicit statement of
the modifications and the required matrix elements.

A. d Bands and OPW’s

Tt was stated above that the d bands converge slowly
because the wave function of a d state is not well
represented by the /=2 component of an OPW. In
order to display this for a typical d state, an example is

RADIAL WAVE FUNCTIONS (Arbitrary Units)

(a)
(b)

+ 1
0 1.0 2.0 n
r{au)

Fic. 1. For a typical d state in niobium [k= (2w/a)(3,0,0) on the
As band]: Curve (a) is the radial wave function of the lowest
symmetrized combination of plane waves. Curve (b) is the radial
wave function of the 3d core state, after multiplication by an
orthogonality constant so that it is of the correct amplitude to be
subtracted from (a) to give the radial wave function of the lowest
symmetrized combination of OPW’s. [ is in atomic units (Bohr
radii), and 7, is half the nearest-neighbor distance.]
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presented in detail in Appendix A. The results are now
summarized and discussed.

The example concerns niobium, which has an atomic
configuration, outside closed shells, of (4d)*(5s). The
d-like conduction bands in the metal, which is bcc,
arise from the 4d states, while the core contains 3d
states. As a typical point consider k= (2r/¢)(%,0,0) on
the Ap band. This state has no /=0 or 1 components and
is dominantly /=2. The lowest symmetrized combina-
tion of plane waves with the correct symmetry for this
state has a wave-vector magnitude K= (2n/e)($)'/%
Consider one unit cell at the origin of direct space, and
expand the OPW’s in spherical harmonics about the
center of this cell. The /=0 and 1 components of this
symmetrized combination vanish. The radial part of the
I=2 component is js(Kr), the spherical Bessel function.
The function 7 j»(K7) is plotted in Fig. 1(a) for r ranging
from zero to half the nearest-neighbor distance in
niobium.

'
r(au) 2.0 n

(a)

RADIAL WAVE FUNCTIONS (Arbitrary Units)

F16. 2. For the d state considered in Fig. 1: Curve (a) is the
radial wave function of the lowest symmetrized combination of
OPW’s. For comparison, curve (b) is the true radial wave function
of the state.

The radial wave function,® P3.(r), corresponding to
the 3d core state,? is plotted in Fig. 1(b); it is shown
after multiplication by an orthogonality constant such
that it is of just the right amplitude to be subtracted
from 775(K7r) to orthogonalize the plane waves of this
set to the 3d core states. The result of the subtraction
is shown (after multiplication by a negative constant)
in Fig. 2(a), which is then the /=2 radial wave function®
of the lowest symmetrized combination of OPW’s.

For comparison, the true radial wave function of the
state under consideration is shown in Fig. 2(b). (This
is the result of the outward integration of the radial
Schrodinger equation for the niobium potential de-
scribed in Sec. 3A, for the energy of this state as listed
in Table VII). It is clear that the lowest symmetrized
combination of OPW’s is a poor approximation to the

s Throughout this paper the term radial wave funclion is used to
designate the product of » and the radial component of the wave
function. For example, for the wave function ¢uim=Pui(?)
X Y1 (0,¢)/r the radial wave function is Pni(r).
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true wave function. The problem arises because the
region of 72(Kr) for small K7 is involved, where 7,(K7)
has this undersirable shape because of the dominance of
the I(I4+1)/(Kr)? term in the defining equation of the
spherical Bessel function®:

1 I(1+1)
l:— —p+1—

2

Jir-o.

p dp? o

(Phillips and Kleinman? have shown that this term is
primarily responsible for the large value of the pseudo-
potential for />0.) Of course, this problem is also
present for /=1, resulting in slower convergence of the
OPW method for p states than for s states; but the
seriousness of the problem obviously increases with
increasing /.

Now consider adding to the basis set of OPW’s the
five functions P4%°(r)Vom(0,9)/7r for m=—2, --- 2
(where V,,(0,¢) denotes a spherical harmonic), with
P4i%°(r) chosen to have the general form of the atomic
4d function except that it is arbitrarily made to vanish
at a radius less than half the nearest-neighbor distance;
such a function is shown in Fig. 3(a). By taking a linear
combination of P4;¢°(7) and the radial wave function of
the set of OPW’s, a function can be produced which is
a considerably better approximation to the true wave
function; this is shown in Fig. 3.

It is clear for the case considered that the addition of
the cutoff (CO) functions to the basis set will improve
the convergence considerably. (The CO function is ex-
plicitly orthogonalized to the 3d core function so that
the variational calculation will converge to the conduc-
tion-band solutions.) Of course, it is not clear from what
has been said that a similar situation would exist for
all d-like points throughout the bands, and in particular,
that it would be so for a fixed form of P4;°°, independent
of energy and wave vector, as is planned here. However,
it provides the motivation to try such a procedure, and
it turns out that it works quite well (see Sec. 3C).

The trial function is cut off to vanish in the interstitial
regions for mathemtical simplicity in computing matrix
elements. But the preceding example suggests that such
a sharp cutoff is also useful in counteracting the sharp
rise of the spherical Bessel function near the zone
boundary.

B. Outer Core Functions and OPW’s

The plane waves in the OPW method should be
orthogonalized to core states which are eigenfunctions
of the one-electron conduction-band crystal Hamil-
tonian. Then, by the variational method, the lowest
roots of the secular equation will converge to the con-
duction-band levels. For simplicity, consider a case in
which the crystalline potential Vo, is of the muffin-tin

& See, e.g., A. Messiah, Quantum Mechanics (North-Holland

Publishing Company, Amsterdam, 1961), p. 488.
7J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
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(b)

(a)

RADIAL WAVE FUNCTIONS (Arbitrary Units)

(c)

F16. 3. For the state considered in Figs. 1 and 2: Curve (a) is
P00, the CO radial wave function for d conduction states. Curve
(b) is the radial wave function of the lowest symmetrized com-
bination of OPW’s. A linear combination of (a) and (b) gives (c),
an improved approximation to the true state [Fig. 2 (b)%.

form:

Va(t)=22, V(r— Rs) ’ (2.1)

where the summation extends over all lattice vectors
R,, and V(r), a spherical potential, vanishes at a value
of 7 less than or equal to 7,, where 7, is half the nearest-
neighbor distance. Now consider the bound-state solu-
tions of the Schrédinger equation for the atomiclike
potential V(7). If the wave function ¢.;m(r) for such a
solution vanishes at a value of »<r,, then a tight-
binding combination of these orbitals,

Zs eXP(1k : Rs)¢nlm(r_ Rs) ) (22)

contains no overlapping functions and is an exact
eigenfunction of the crystal Hamiltonian. It is astraight-
forward procedure to orthogonalize plane waves to these
eigenfunctions.® However, if the atomiclike solutions
extend beyond 7,, then a tight-binding combination con-
tains overlapping functions and is no longer an exact
eigenfunction of the crystal Hamiltonian.

For a typical muffin-tin potential for niobium (see
Sec. 3A), the 1s, 2s, - -+, 3d core solutions vanish before
7. (Inner-core solutions). However, the 4s and 4p bound
state solutions of V(r) extend out of the cell (outer-core
solutions); their radial wave functions are plotted in
Figs. 4 and 5, with their tails shown by the dashed lines.
The corresponding eigenstates of the crystal Hamil-
tonian occupy bands of nonzero width, which, in tight-
binding language, arise from the overlap of these atomic-
like functions. These bands have been calculated for
niobium (see Sec. 3D) and are plotted in Figs. 8 and 9.
The s and p bandwidths are, respectively, 0.03 and 0.10
Ry. Because it was clear that these bands would be of
such an appreciable width, it was decided to proceed in
the following way: The plane waves are orthogonalized
to the inner-core solutions only. Functions similar to
the 4s and 4p atomiclike states, but modified to vanish

8 For presentations of the unmodified OPW method, see T. O.
Woodruff, Solid State Phys. 4, 367 (1957); J. Callaway, Energy
Band Theory (Academic Press Inc., New York, 1964).
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0.5 i~

P4s]

F16. 4. The 4s atomiclike bound-state solution of the muffin-tin
niobium potential has been cut off, as shown by the solid-line tail,
to give 54,00 (or P4,C0).

at r<7,, are added to the basis set. (As in the case of
the 4d CO function, each of these functions is explicitly
orthogonalized to the inner-core states.) The solid lines
in Figs. 4 and 5 show how these atomiclike solutions
have been cut off for niobium. In this way, the core
states are calculated explicitly, as the lowest roots of the
secular equation in the modified OPW calculation,
while higher roots correspond to the conduction-band
states. Since the atomiclike 4s and 4p solutions have
small amplitudes at the cell boundary, they need be
modified only slightly to be converted into CO func-
tions. The calculation then quickly converges to these
core band levels by taking optimum linear combinations
of the CO functions and the OPW’s; when a sufficient
number of OPW’s have been included to produce con-
vergence to these levels, the conduction-band roots
have the same accuracy as if the plane waves had been
orthogonalized to the exact wave functions of these core
band states.

This procedure for handling the outer-core levels fits
simply into an OPW calculation, particularly when CO
functions are already being included for d states; it was

il

Fic. 5. As in Fig. 4, but for the 4p state.
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believed to be better, both for reasons of accuracy and
computational simplicity, than the obvious alternative
procedure of approximating these outer-core states by
tight-binding combinations of overlapping atomiclike
orbitals and then either orthogonalizing the plane waves
to these tight-binding functions or including these func-
tions in the basis set.

C. The Modified OPW Method

The motivation for the introduction of CO functions
has been given above. The basis set for the modified
OPW calculation consists of OPW’s which have been
orthogonalized to the inner-core states only, together
with tight-binding combinations of cutoff functions
of the form P,;°(r)Y(0,0)/r, corresponding to the
outer-core orbitals (4s and 4p for niobium) and the d
conduction states (4d for niobium); these CO functions
are orthogonalized to the inner-core functions. [Since
the P,;%°(r) vanish at a radius less than half the nearest-
neighbor distance, tight-binding combinations vanish in
the interstitial regions and contain no overlapping of
these functions.] The formulation of the CO functions
and the derivation of the additional matrix elements
required by their addition to the basis set are now given.

The Hamiltonian H is

H=T+Ve, (2.3)

where T is the kinetic energy operator and V. is the
crystalline potential. Assume that V', can be expressed
in the form

V)=, V(x—R,), 24)

where the atomiclike spherical potentials V(r) centered
on different lattice sites may mutually overlap; as in the
unmodified OPW method, there is no restriction that the
potential be of a muffin-tin form.

For simplicity, in the following derivation it is as-
sumed that the atoms in the solid occupy only the sites
of a Bravais lattice. All of the trial functions (OPW’s
and tight-binding combinations of CO functions) are
of the Bloch form; we designate them by ¢(K). It
follows that the matrix elements of the Hamiltonian
and of unity between any two of these functions con-
tain equal contributions from each cell in the crystal.
Hence, in evaluating these matrix elements, only the
primitive cell centered at the origin of direct space need
be considered, remembering that

WE) | H|$(K))= @K |¢(K))=0 for

where G is a reciprocal lattice vector.
Define the OPW’s in the cell at the origin by

$(K)= ()2 *— 3 Bu(K)nim(®)™, (2.5)

nim
(core)

K'=K+G,

where the B,;’s are orthogonality constants given by?
2 y

Bui(K)=Fn(K)Y 1n*(0x,¢x) , (2.6a)
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where

Fnz(K) = 4#(90)_1/2il/

0

00

P,.z(r)jz(Kr)rdr . (2.6b)

Here @, is the volume of the primitive cell, x and ¢x
denote the polar angles of K, Vi.(6,¢) is a spherical
harmonic, and j;(Kr) is the spherical Bessel function.
The summation in (2.5) is over the (inner) core states
which have wave functions

'pnlm(r) = Pnl(’) Ylm(0;¢)/r I}

with normalization

(2.7

L]

/ Prldr=1.
0

Define a CO function in the cell at the origin by
G ()= (1) Pui(")Ym(0,9)/r,  (2.8)

where, for m>0,

® [21+1(l~m)l “p (cosh) (2.92)

Yim(0,0)= o (H—m)!] im(cosf) cosme , 9a
241 (I—m) /2

‘ylﬁ(o’¢)=[-i( m)] Piu(cosd) sinmp,  (2.9b)
ur (I+m)!

and for m=0,
241712
Yio(0,0) = I:T] Py(cosh).

7

(2.9¢)

Here Pin(cosf) and Pj(cosf) are, respectively, the
associated Legendre function and the Legendre poly-
nomial. [No particular normalization of P,;%° in (2.8)
is assumed; normalization is taken care of by the overlap
matrix in the variational calculation (see below).] The
phase factor (i)~ is included in the definition (2.8) so
that matrix elements between OPW’s and CO functions
are real. In principle, for each radial CO function, P;°°,
it is necessary to include in the basis set the (2/-41) func-
tions P,;%0Y;,,/r, thus increasing the order of the secular
equation by (2/4+1). At symmetry points, however,
lattice harmonic combinations of the spherical har-
monics can be formed, reducing the dimension of the
secular equation. For ease of handling in such cases, the
CO functions are defined above in terms of real angular
wave functions, Yum; Ym and Y5 are simply independ-
ent linear combinations of ¥, and ¥ 5.

For mathematical simplicity, the radial functions
P ;0 are to be chosen so that they vanish at a radius
such that they do not extend into the region of overlap
of the spherical potentials [see (2.4)]. For a muffin-tin
potential, this radius can be as large as half the nearest-
neighbor distance, but it must be smaller in the case of
overlapping potentials,
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The secular equation to be solved for the energy
eigenvalues I is®

(H-wS)(A)=0, (2.10)

where H and S are square matrices with elements

Hi;=@((K)|H|¢(K),
Sii= WK [¢(Ky),

and A is an eigenvector column matrix. W is a solution
of (2.10) if the determinant of the coefficients vanishes;

det|[ H—WS]|=0. @.11)

Schematically, the matrices are of the form

g ((COIEICO)  (colz|oPw) )
_((OPW|H|CO) (OPW|H|OPW)/

The OPW-OPW matrix elements are8

(oK) | H|p(K;))= K 2:;+v(Gij)— (4m) ™ Zons (2041)
XEMF,,l*(K,‘)FM(Kj)Pz(COSG,'j) , (2128.)

(6(K) | ¢(Ky))=8ij— (4m)~ Lni 2+ 1)Fn*(K5)
X FM(K,')Pz(COSGij) . (2.12b)

Here E,; is the energy of the core state Yaim, 0;; is the
angle between K; and K;, Gi; is the reciprocal lattice
vector joining K; to K;, and »(G) is given by

for G#0:
v(G) =47 (GQo) ™ ] rV () sin(Gr)dr; (2.13a)
(]
for G=0:

2(0) = 4 ()1 / " v, (2.13b)
[ ]

.m0 has been chosen so that it is nonzero only in
the region where the potential is spherical. The usual
separation of variables technique can therefore be used,
and the spherical harmonics (and, hence, the real
angular wave functions) are eigenfunctions of the
angular part of the Hamiltonian. Thus, the effect of the
Hamiltonian operating on a CO function can be written
as

Hepn1n %= H[ (1) Pni®0(r)Y1n(0,9) /7]
= (1) EnifoGnO(r)Yim(6,8)/r. (2.14)

This defines only the product E,;°°G,;°°; the value of
E,i°° can be chosen arbitrarily. [This form is helpful
in keeping track of dimensions; the particular values
of . En;°° chosen for the niobium calculation have a
physical basis (see Appendix C).]
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Using the above definitions, the CO-OPW and CO-CO
matrix elements are (see Appendix B)

<¢nlmco IHI¢(K)>= (_')147"(90)_1/2E7Alco(ylm(oK)¢K)

X/ Gni®0(r) ju(Kr)rdr, (2.15a)
3

(@nin | S(K) )= (=) 4 (Q0) 2 Yim(Ox,¢x)

X / Pu() jiKr)rdr, (2.15b)

<¢n’l'm’co l H I ¢nlmco>= 611'6mm'Enlco

X/ Py ®O(r)Gu®(r)dr, (2.16a)
0

<¢n’l’m’ co [ ¢nlmco> = 6ll’6mm’
o

X / Py CO(r)PpCO(r)dr. (2.16b)
0

3. APPLICATION TO NIOBIUM

This section describes the application of the above
method to calculate the conduction bands along the
principal symmetry directions in niobium. The lattice
structure is bce, with lattice constant 3.304.% It is a
second-series transition metal, with an atomic con-
figuration, outside closed shells, of (4d)4(5s).

A. The Potential

As in the unmodified OPW method, a crystalline
potential which is expressed as a sum of spherical poten-
tials centered on lattice sites (2.4) can be treated readily
by the present method even if the atomiclike potentials
mutually overlap. However, in the case of a transition
metal there is such uncertainty in the choice of a poten-
tial that it is not clear how to construct an overlapping
spherical potential that would necessarily be a better
approximation to the true crystalline potential than a
muffin-tin form. Accordingly, for the purpose of com-
parison with previous augmented-plane-wave (APW)
calculations in other transition metals, a muffin-tin
potential has been used for niobium, constructed by
a prescription similar to that used by Mattheiss!
and other authors in APW calculations. In this
approximation, free-atom charge densities placed on
neighboring lattice sites are considered to overlap.
The direct potential contributions are then spherically
averaged about a lattice site, and exchange inter-
actions are represented by the Slater free-electron ap-
proximation, using a spherical average of the over-
lapping charge densities. The free-atom charge density

9R. W. G. Wyckoff, Crystal Structures (Interscience Publishers,
Inc., New York, 1948).
10T, F. Mattheiss, Phys. Rev. 133, A1399 (1964).

R. A. DEEGAN AND W. D. TWOSE

164

was calculated here from the free-atom wave functions
computed by Herman and Skillman!! in the Hartree-
Fock-Slater approximation. (The overlap of the first
five sets of neighbors was used.) The value of the
muffin-tin constant was taken to be the value of the
resultant spherical potential at half the nearest-neighbor
distance 7,. (This differs from the Mattheiss prescrip-
tion in which the muffin-tin constant is determined by
an averaging procedure, giving a discontinuity in the
crystalline potential at 7,; such a discontinuity is easily
handled in the APW method, but is unsuitable for OPW
calculations.) The muffin-tin constant was then sub-
tracted from this potential, giving finally V(r), which
vanishes at 7,. The product 7V (7) is listed in Table I.

B. The Core and CO Functions

The bound-state solutions of the atomiclike problem
with the potential V(r) have been determined; their
energy levels are listed in Table II. The wave functions
of the inner-core levels essentially vanish at radii less
than 7,; the plane waves are orthogonalized to these
levels. The wave functions of the outer core levels,
4s and 4p, are shown in Figs. 4 and 5 for 0<r<ry, with
their tails given by the dashed lines. These functions
have then been altered to vanish at 7,, as shown by the
solid-line tails. (The tails are of a cosine form, as given
in Appendix C.) Lastly, these functions have been ex-
plicitly orthogonalized to the inner core functions of
the same angular momentum to produce the final CO
functions, P40 and P4,°0. (The orthogonalization does
not alter the functions sufficiently to be visible on the
scale of these figures.)

For this potential it was found that there is no bound-
state solution corresponding to the atomic 4d level. In-
stead, the radial Schrédinger equation was integrated
outwards for /=2 and E=1.25 Ry, giving the function
shown in Fig. 6. with the dashed-line tail; this energy
was chosen because the resulting wave function is
qualitatively of a form that is easily cut off in a smooth,
way, but the choice was quite arbitrary. This function
was then altered to vanish at r,, as shown by the solid
line in Fig. 6, and then orthogonalized to Psq to yield
P390, (As with the core functions, the orthogonalization
does not alter P40 sufficiently to be visible on the
scale of Fig. 6.)

Appendix C gives the analytic form chosen for the CO
tails, the method of matching these tails smoothly to
the original functions, the procedure for othogonalizing
to the inner core states, and the evaluation of the radial
function G,;€°(r), defined by (2.14).

C. Convergence

The objective has been to obtain convergence of the
bands to 0.01 Ry. The maximum possible number of

1 F, Herman and S. Skillman, Alomic Struciure Calculations
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963).
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TasLe I. Muffin-tin potential for niboium. The value x=10.46
corresponds to half the nearest-neighbor distance.
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TasLE IL. The energies of the atomiclike bound-state solutions
of the radial Schridinger equation with the potential given in

Table I. The wave functions of the outer-core solutions extend
beyond the value of 7 equal to half the nearest-neighbor distance.

x rV(x)
(r=0.25675%, in a.u.) (a.u. X Ry)
0.00 —82.0000
0.01 —81.1273
0.02 —80.2358
0.03 —79.3396
0.04 —78.4481
0.05 —71.5670
0.06 —76.6998
0.07 —75.8485
0.08 —75.0137
0.09 —74.1957
0.10 —73.3943
0.12 —71.8392
0.14 —70.3457
0.16 —068.9114
0.18 —67.5350
0.20 —66.2149
0.22 —64.9487
0.24 —063.7328
0.26 —62.5628
0.28 —61.4342
0.30 —60.3431
0.34 —58.2605
0.38 —56.2955
0.42 —54.4355
0.46 —52.6711
0.50 —50.9944
0.54 —49.3982
0.58 —47.8761
0.62 —46.4229
0.66 —45.0343
0.70 —43.7070
0.78 —41.2258
0.86 —38.9603
0.94 —36.8886
1.02 —34.9857
1.10 —33.2288
1.18 —31.5998
1.26 —30.0856
1.34 —28.6767
1.42 —27.3651
1.50 —26.1435
1.66 —23.2930
1.82 —22.0204
1.98 —20.3254
2.14 —18.8158
2.30 —17.4598
2.46 —16.2355
2.62 —15.1284
2.78 —14.1278
2.94 —13.2236
3.10 —12.4039
3.42 —10.9685
3.74 — 9.7337
4.06 — 8.6434
4.38 — 7.6678
4.70 — 6.7904
5.02 — 6.0001
5.34 — 5.2876
5.66 — 4.6449
5.98 — 4.0643
6.30 — 3.5391
6.94 — 2.6324
7.58 — 1.8875
8.22 — 1.2785
8.86 — 0.7872
9.50 — 0.4009
10.14 — 0.1108
10.46 — 0.0000

Enl

Core nl Ry)
1s —1358.5
Inner 2s — 187.66
2p — 173.03
3s —  30.719
3p — 25.034
3d —  14.519
Outer 45 —  3.092
4p — 1498

OPW’s have been included for each band point, subject
to the conditions that the dimension of the unsym-
metrized secular matrix not exceed 200 and the dimen-
sion of the symmetrized matrix not exceed 50; these

P44
005}

1
0.0 }

=005

=0.0 |-

=05 |~

F16. 6. The function resulting from the integration of the radial
Schridinger equation for /=2 and E=1.25, for the niobium poten-
tial, has been cut off, as shown by the solid-line tail, to give S4°°
(or P4409).

conditions simply reflect computer time and storage re-
strictions. This means that in most cases 150-200 OPW'’s
have been included.

Tables III-V show the degree of convergence at a few
representative points. Table III lists the two lowest solu-

TaBLE III. The convergence of the energy of T'; (s-like).

Second
Lowest lowest

Dimension eigenvalue eigenvalue

No. of of reduced (4s core (conduction

OPW’s matrix band) (Ry) band) (Ry)

0 1 —3.018

1 2 —3.085 0.330
13 3 —3.085 0.328
19 4 —3.089 0.326
43 5 —3.093 0.325
55 6 —3.093 0.325
79 7 —3.100 0.321
87 8 —3.102 0.320
135 9 —3.106 0.318
141 10 —3.106 0.318
153 11 —3.106 0.318
177 12 —3.106 0.318
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TasLe IV. The convergence of the energy of Hys (p-like). TasLE VII. Energy bands of niobium (including outer-core bands)

Second Sym-
. . Lowest _lowest metry k (units No.of 4sband 4pband Conduction-band
Dimension eigenvalue eigenvalue  of state of 2r/a) OPW’s (Ry) (Ry) eigenvalues (Ry)
N o.“(;,f of reduced b(43 c)oze ) (COII(;u((:thI)l
OPW’s matrix and) (Ry. band) (Ry o (000) 177 —3.106 0.318
0 1 —1.335 T2 (0,0,0) 192 0.932
2 2 —1.468 1.479 T (0,0,0) 180 0.758
;g g —i-gg }.gg Hi (1,000 156 —1.517 1.406
oo . i i He  (1,00) 196 0.434
52 8 —1.495 1.424 Ha (1,000 184 1.106
76 10 —1.495 1.421 Py (333 192 0.998
92 12 —1.503 1.415 Py 345 192 —1.502 0.645 1.563
}gg }g :i'g‘l)z }-2(1)3 N1 (30 194 —3.087 0.460 0.956
156 18 ~1.517 1.406 N (30 192 0.612
Ns (330 196 1.159
Ne (3,30 192 0.990
. . ’ 1 —1.55 .
tions of the secular equation as more OPW’s are added M (f’%’o) 198 1.550 0.873
. . . Ay (3,000 193 —3.105 —1.460 0.340 0.949
to the basis set for I';, which has s-like symmetry. The A (100) 193 —3.101 —1474 0400 0.982
lowest root, E=—3.106 Ry, belongs to the 4s core band A (20,0) 193 —3.095 —1.491 0480 1.025
which, in tight-binding language, arises from the 4s A (3,0,0) 193 —3.088 —1.505 0.543 1.068
atomiclike state with E=—3.092 Ry (see Table II). Ay (5,000 193 —3.082 —1.513 0.551 1.131
Ay (3,00 193 —3.078 —1.515 0.507 1.236
TaBLE V. The convergence of the energy of I'ssr (d-like). i‘ E‘lg’g’gi igg —=3.075 ~1.513 833(8) 1.352
2 8V .
Lowest a4 (00 19 0.819
Dimension eigenvalue Ay (3,000 196 0.721
No. of of reduced (conduction Ay (4,000 196 0.627
OPW’s matrix band) (Ry) A (3,00) 196 0.546
0 1 1.486 b (00) 196 0.486
4 2 8’;2? b (30,00 196 0.449
28 4 : Ay (30,0) 196 0.768
3 : o181 Av (00 19 0.797
48 7 0.772 Ay (300 196 0.844
96 10 8%8 Ay (3,0,00 196 0.905
100 1 : Ay (3,000 196 0.974
124 13 0.767 A E;’0'0§ 196 o
132 14 0.764 z 45 '
156 16 0.760 Ay %,0,0) 196 1.089
180 18 0.758 As (3,00) 162 —1.458 0.762
Ag 1,000 162 —1.464 0.759
A (300) 162 —1.474 0.769
The second lowest solution, £=0.318 Ry, is the bottom As $,0,0) 162 —1.485 0.800
of the conduction band. Table IV is a similar listing As (3,000 162 —1.496 0.860
for Hys of p-like symmetry. Table V lists the results 45 (£0,0) 162 —1.506 0.946
for the d-like level I'ssr. The convergence of the s levels is E%,g,(l); 123 5102 —ii% (1) g;‘l) 0512
f significant 1 8858 o T - ‘
appears to be complete to the number of sign " G13) 189 —3093 —1515 0522 1059
A (3,33 189 —3.087 —1.524 0.652 1.332
TasLe VI. For some d states, the converged value of the energy 1 8
is compared with the value resulting when the basis set contains As G,3,%) 126 —1.447 0.733 0.934
only the CO functions and the lowest symmetrized set of OPW’s As Gid 126 —1.456 0.654 0.959
(2X2 reduced secular equation). As (3,33 126 —1.472 0.623 1.000
= (3300 139 —3.103 —1458 0.361 0.758 0.918
Symmetry k (Units E-one set E-converged Deviation = (33,00 139 —3.096 —1.492 0453 0.722 0.922
of state  of 2n/a) Ry) Ry) Ry) T (B30) 139 —3088 —1.524 0476 0792 0.959
Hyy (1,0,0) 0.460 0.434 0.026 Zs 3,30 172 0.733
N, 3,40 0.656 0.612 0.044 T @Gi0) 172 0.678
As ({0’,0) 0.671 0.627 0.044 PN (3,300 172 0.632
Taer (0,0,0) 0.786 0.758 0.028 % (G40 174 —1.460 0.804
T2 (0,0,0) 1.029 0.932 0.097 poN 34,50 174 —1.471 0.922
N, 33,0 1.120 0.990 0.130 s (3,300 174 —1.480 1.078
Py (333 1.051 0.998 0.053 Z (30 166 —1.455 0.940
Haw (1,0,0) 1.186 1.106 0.080 = G0 166 —1.456 0.953
N (3,5,0) 1.244 1.159 0.085 24 (3,300 166 —1.456 0.981
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figures shown. As expected, the convergence of the p
levels is slower than that of the s levels. In general, the
s and p states appear to be converging at a rate similar
to their counterparts in OPW calculations in semicon-
ductors.'2:13 The convergence of the d levels seems to be
at a rate similar to that of the p levels.

It is difficult to estimate how well converged the p and
d states are in the present calculation. Perhaps all that
can be said is that their energies might decrease by a
further 0.02-0.03 Ry if an infinite number of OPW’s
were included, although it is probable that they are
better converged than that. In this worst case, the
d-band levels relative to each other would probably be
correct to the desired accuracy of 0.01 Ry, but, since
the s levels are apparently fully converged, the s-d band
gap at T, for instance, would be in error by 0.02-0.03 Ry.

The argument which was presented in Sec. 2A to
motivate the addition of an /=2 CO function to the
basis set is that a linear combination of the CO function
and the lowest symmetrized set of OPW’s can approxi-
mate well the form of a d-band wave function. This is
indicated for T'ss» by the results listed in Table V, in
which the CO function, together with one set of OPW’s,
gives E=0.786 Ry, only 0.03 Ry above the converged
value. Table VI lists, for several d-band states, the
energies for cases in which the basis set contains only
the CO functions and the lowest symmetrized set of
OPW'’s (a 2X2 secular equation in each case), and the
deviation of these values from the converged results.!4
The deviation varies over a range of about 0.03-0.10 Ry,
and is smaller for the lower bands. The A, value in this
table corresponds to the case presented in Appendix A
and shown in Fig. 3; this is probably a representative
example for the lower d bands, but for the higher bands
this approximation would, apparently, give a wave
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function which differs more noticeably from the true
wave function.

The results discussed above suggest several possible
ways of further hastening the convergence. The CO
functions might be chosen differently to optimize the
convergence throughout the bands (the choice of the
functions used here was quite arbitrary); the addition
of another set of d functions of the same atomic char-
acter but with a different shape for the CO tail might be
useful; and the addition of a set of CO functions cor-
responding to the lowest excited atomic p state (5p for
niobium) would almost certainly improve the conver-
gence of p-like band states.

D. Band Structure of Niobium

The conduction-band structure has been computed
at the symmetry points T', H, P, and N and along the
symmetry lines A, A, and 2. The results are listed in
Table VII, including the 4s and 4p core bands; only
those energies which lie below 1.600 Ry, that is, within
1.282 Ry of the bottom of the conduction band, have
been tabulated. The conduction bands are plotted in
Fig. 7 and the core bands in Figs. 8 and 9.

The 4s and 4p core bands have total bandwidths of
0.03 and 0.10 Ry, respectively. It should be remembered
that these are the corelike solutions of the conduction-
band Hamiltonian, and therefore these bands are ex-
pected to be wider than the true core bands. This
relatively large width supports the case for treating
these states as band states in an OPW calculation,
rather than as localized core states.

The conduction bands are very similar to those that
have been calculated for the bcc transition metals by
the APW method.?*17 The difference E(Hys)— E(H12)
may be taken as a measure of the d bandwidth: this is

&
T
&
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E (RYDBERG)
E (RYDBERG)

1.0 |-
Tiz

0.5 |~
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1 1 L L L L 1
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F1c. 7. The niobium conduction bands.

12T, Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959).
13 F, Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963).

14 The term converged value is used to designate the energy values listed in Table VII.

15 T, H. Wood, Phys. Rev. 126, 517 (1962).
16T, F. Mattheiss, Phys. Rev. 134, A970 (1964).
17 L. F. Mattheiss, Phys. Rev. 139, A1893 (1965).
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Fic. 8. The 4s core bands for niobium. The dashed lines represent interpolation to states for which the core band energies
were not calculated.
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Fi1c. 10. The conduction bands for niobium (solid lines) are compared with the nonrelativistic conduction bands for tungsten (dashed
lines) as computed by Mattheiss, using the APW method( see Ref. 17).

0.67 Ry for the niobium bands, in close agreement with
the value 0.68 Ry for molybdenum (a neighbor in the
periodic table, also bec) as determined by Mattheiss!®
by the APW method, using a prescription for the poten-
tial similar to that employed here.

The Fermi surface corresponding to these niobium
bands was not calculated. However, a Fermi surface for
the group-V transition metals (vanadium, niobium, and
tantalum) has been calculated by Mattheiss'? using the
nonrelativistic band structure which he obtained for
tungsten. The niobium bands are compared with these
tungsten bands in Fig. 10. (The main difference isa
larger d bandwidth for tunsgten, since it is in the third
transition series.) Because of the close similarity, the

density of states and Fermi surface of niobium that
would follow from the bands which are calculated here
would probably be qualitatively similar to the group-V
calculation based on tungsten. (More to the point, any
differences are probably less than the possible error in
the Fermi surface due to the uncertainty in the poten-
tial.) On this basis the Fermi level is expected to be
slightly below T'ss.

No relativistic (including spin-orbit) corrections have
have been made to the niobium bands. Such corrections
would probably be less than 0.01 Ry. (Herman and
Skillman!! calculate the relativistic splitting of the 4d
level in the niobium free atom to be about 0.015 Ry; for
comparison, the Herman and Skillman splitting for the
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atomic 5d state in tungsten is 0.07 Ry, while the rela-
tivistic splitting of the d state I's; in metallic tungsten
has been calculated by the relativistic APW method to
be about half this value.)

Because the Fermi level lies near T'ss, the shape of
the Fermi surface may be sensitive to errors in the band
structure due to the uncertainty in the potential; also,
as discussed above, I'ss will split relativistically into
two levels, T'y+ and I';+, and this also might lead to
deviations from the nonrelativistic predictions.

4. SUMMARY AND DISCUSSION

With the present modifications to the OPW method
for transition metal calculations, d states converge at
about the same rate as p states; s and p states converge
at approximately the same rate as their counterparts
in OPW calculations for semiconductors. As in the un-
modified method, relatively few OPW’s are required to
bring the bands to within about 0.05 Ry of convergence,
but further convergence proceeds slowly.

The method has been used to calculate the conduction
bands in niobium to a convergence of about 0.01 Ry.

The present modifications retain most of the useful
characteristics of the OPW method, such as the use of
an energy-independent basis set and the ease with which
non-muffin-tin potentials can be handled. It may be
useful in applications which require explicit use of the
wave functions.

ACKNOWLEDGMENTS

This research was proposed by Dr. Twose and was
carried out under his supervision. Dr. Twose was
actively engaged in the preparation of this manuscript
at the time of his sudden death, and the work owes
much to his unfailing interest and untiring effort.
Helpful discussions, at various states of this work, with
Dr. J. P. Carbotte, Dr. L. M. Falicov, Dr. V. Heine,
Dr. R. A. Moore, Dr. S. H. Vosko, and Dr. E. J. Woll
are gratefully acknowledged.

APPENDIX A. d BANDS AND OPW’S:
AN EXAMPLE

This Appendix presents the details of the example
which is summarized and discussed in Sec. 2A. For a
d-band state in niobium, the lowest symmetrized com-
bination of OPW’s is compared with the true wave
function of the state; it is shown that the addition of a
CO function to the basis set can improve the approxi-
mation considerably.

Consider the point k= (27/a)(3,0,0) on the A, band in
niobium [see Fig. 7(a)]. For this point, the (unnor-
malized) symmetrized combination of OPW’s which has
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the wave vector of smallest magnitude is'®
4
YOV (r)= -21 bip(K;),
=

where ¢(K) is an OPW defined by (2.5), Ki=(27/a)
X(_%’— 1,0); Ko= (27"/‘1’)(_ %:1)0): Ks= (27"/0‘)(_%,071),
K4= (271"/0)(—%,0,— 1), and b1=bz= 1, b3= b4= —1. Ex-
panding the plane-wave portion of ¢(K;) in spherical
harmonics, and using (2.6a) and (2.7):

YOPV=3 "1 YIM(or:¢r) {47"(90,\“1/27;1.7-1(2{7)
- Zn: Fot(K)Poi(r)/r}[225 0;Y 1n* (85,05) ],

(core)

where K denotes the magnitude of K; (which is the
same for all j), (6;,¢;) denotes the polar angles of K;,
and (0;,¢.) denotes the polar angles of r.

It is readily verified that the quantity in square
brackets vanishes for /=0 and 1, but is nonvanishing for
some 7 values for /= 2. These properties simply reflect
the fact that the combination has been chosen with the
correct symmetry, A;. The /=2 component of yOFW,
denoted by ¢,OFV, is

YO W= — {47 (Qo) 1% jo( K7)+ F3a(K) Psa(r)}

X f(0,9)/r, (A1)
where the angular function is
f(ead’) = Zm (le2m(9,¢) ) (AZ)
with
an=22; b;Vom™(85,9;)- (A3)

Equation (A3) simply gives the right coefficients @, so
that (A2) is the proper =2 lattice harmonic for A,
(although it is unnormalized).

P34(r) has been determined for the niobium potential
(see Sec. 3B) and F34(K) has been evaluated from (2.6b)
by numerical integration. The product [— F34(K) P3a(r) ]
is plotted in Fig. 1(b); the quantity 4m(Qe)~1/% jo(K7)
is shown in Fig. 1(a). These have been subtracted to give
Fig. 2(a) which, from (A1), is the radial wave function®
of the /=2 component of the lowest symmetrized com-
bination of OPW’s. The true /=2 radial wave function
is shown in Fig. 2(b), obtained by integrating outwards
the radial Schrédinger equation with the niobium
potential V(r) for E=0.627, which is the converged
energy value!* for this state.

Now consider the CO functions defined by (2.8). A
linear combination of these functions with the sym-
metry As is

Ya ()= P10(r) f(0r,0:) /7.

The optimum linear combination (unnormalized),
Vi 0PV, (A4)

18 To obtain the symmetrized combinations of plane waves, see,
for example, H. Schlosser, J. Phys. Chem. Solids 23, 963 (1962).
19 See, e.g., Ref. 6, p. 497.
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for this state is determined by solving the 2XX2 secular
equation (2.10). The lowest eigenvalue is 0.671 and the
corresponding eigenvector gives ¢ in (A4). Fig. 3(a)
shows P44°0; Fig. 3(b) is the product of ¢ and the radial
wave function of ¥4V [as shown in Fig. 2(a)]. The
addition of these functions gives Fig. 3(c), which is the
radial wave function of (Yg®°+c@s®*W). This is con-
siderably closer to the true result, Fig. 2(b), than is
Fig. 2(a).

APPENDIX B. MATRIX ELEMENTS

This Appendix presents the derivation of the matrix
elements of the Hamiltonian and of unity between two
CO functions and between an OPW and a CO function,
resulting in Egs. (2.15) and (2.16).

The OPW’s, ¢(K), are defined by (2.5) and the CO
functions ¢1,%°(r), by (2.8). The Hamiltonian H is
given by (2.3) and (2.4). Since the real angular wave
function Y, can be expressed as a linear combination of
spherical harmonics, it is convenient to determine first
the matrix elements using the functions ¥,:,°° defined

by

YuimCO(0) =P (r) Y in(0,8)/7. (B1)
From (2.14) it follows that
HYninP (1) = E1€Gri(r) Y 1m(0,0) /7. (B2)

Therefore,

<¢n'l’m’ co l H ]¢n1m00>

= / drdaP v O 1m™*(0,6) EniC®Gni®(r) YV in(6,0)
=Enlcoall'8mm:/ drPn’l'co(r)Gnlco(r) y
0

where do=sin()d0d¢. Similarly,

]

("//n’l‘ m' co l l//nlmco) = 6ll’amm'/ drPn'l' co (r)PnlCO (7)-

The real angular wave functions can be written
‘Hzm(0,¢) = almylm(0’¢)+ bimY 1m(0,8)

where @i, and by, are chosen to satisfy (2.9). Equations
(2.16) immediately follow from (2.8), (B1), and (B3).
Using (2.5),

<¢ﬂlmcolHl¢(K)>= <¢nlmCO|Hl K)_Zn’l’m’ Bn’l’(K)
X(‘pnlmcolﬂl‘pﬂ’l’m'):

(B3)

where |K) is defined by
(r| K)= (Qo)~ 12 x,
But
<¢nl'mco l H I ‘pn' l’m’>= En’l’ <¢nlmco l ¢n’ l’m’> =0
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because the CO functions have been explicitly orthogon-
alized to the core functions. Hence,

<‘PnlmcolHI¢(K))= (‘pnlmco!HlK)

= Enzcofrdrda G,.;CO(r)Yz".*(G,qS)
X (@),

Expanding the plane wave in spherical harmonics,!
this reduces to

A Fi©(Q0)~ Y 1 (O b /

0

0

ArGuiCO(r)r71i(Kr) .

Similarly,
(Wnim® | $(K) )= 4 (o) %"V 1n* (O, %)

0

X / P () j(K7).
[]

Using (2.8), (B1), and (B3), Egs. (2.15) immediately
follow.

APPENDIX C. THE CO FUNCTIONS FOR
NIOBIUM

This Appendix presents the form chosen for the CO
functions, P,;%°, in the niobium calculation, and the
evaluation of G,,°°(r), Eq. (2.14), for this choice. (See
also Sec. 3B.)

To determine P,,°0, first integrate the radial Schrod-
inger equation outwards from r=0 for the correct
I value for some appropriate energy E,;°, using the
niobium potential. (This defines E,;°° of Eq. (2.14).
As discussed in Sec. 3B, the outer core bound-state
solutions were used for the 4s and 4p CO functions,
while E,;®°=1.25 Ry was chosen for the 4d.) This
function is then cut off at some r=7,, and a tail is joined
smoothly to it; the tail is chosen to vanish at r=7,, half
the nearest-neighbor distance. Denote by Q,:°°(r) the
radial wave function® resulting from this integration for
the energy E,;°°. The unorthogonalized CO radial wave
function, denoted by 5,,€9(r), is defined by

Sn%(r)=0,,0(r) for 0<r<rn, (c1)

and
S21C0(r)=b{1+cos q(r—ro)]} for

The three parameters b, ¢, and 7, are chosen to satisfy
the three conditions that the tail match Q,;°° continu-
ously with continuous first derivative at 7, and vanish
identically at 7,. Specifically,

b=Qui®rw)/[1-+cosqlra=—r0)],
q= 71'/(7'7;_ 7’0) )

and 7, is determined by a trial-and-error procedure; for
each trial value of 7y, ¢ is determined by (C4) and then &

rn<r<r,. (C2)

(C3)
(C4)
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TaBLE VIIL Parameters for the CO tails.
E”ICO Tn Ym %o
nl (Ry) (a.u.) (a.u.) (a.u.)
4s —3.092 2.6856 1.5765 0.6571
4p —1.498 2.6856 1.5765 1.1440
4d +1.250 2.6856 1.4121 1.3350

is then found by (C3). The slopes of (C1) and (C2) are
compared at r=r, and the trial-and-error procedure
continues until the slope of (C2) equals that of (C1).

The values of 7. chosen for the niobium cutoff func-
tions are listed in Table VIII, together with the cor-
responding values of 7o; the resulting functions S,;°°(r)
are indicated by the solid lines in Figs. 4, 5, and 6.

There was a great deal of arbitrariness in the choice
of the matching points 7,.. For the 4s (or 4p) function,
rm corresponds roughly to the beginning of the region
where there would be appreciable overlap if the 4s
(or 4p) bound-state wave functions were placed on
nearest-neighbor lattice sites. For the 4d function, 7,
was chosen to be slightly greater than the value of »
corresponding to the peak of Q44¢°.

Each CO function must now be orthogonalized to the
inner-core functions, so the final (orthogonalized) CO
function is

Pnlco(f) = Snlco(r)_zﬂ’ aﬂ'lcopﬂ’l(r) ’ (CS)

where
0

@n11%0= f Poui(r)Sn0(@r)dr,
0

and the summation is over inner-core states of angular
momentum Z,

The effect of operating on a CO function with the
Hamiltonian is now shown. Define ¢,,:,°° by Eq. (B1).
Then, for 0<7<7,: From (C5) and (C1),

HYin®0= H(inco (") - Z’ an'lcopn'l(’)) Yl'n(oxd’)/r
= (En0(r)Qni%(r) *‘Z’ E1801%OP (7))
XY in(0,0)/7.
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Then, from (B2)
Gni® ()= Qu® (1) = (Eni®®) ' X En1@ni®Ppni(r).
For 7,<r<r,: From (C5) and (C2),
HyYninO(r)=1+11,

I=H{b[ 14 cosq(r—70) 1V 1n(0,0)/7}

where

and

II=H{—3 1100 1°CPw (7)Y 1u(0,0)/7} .
Immediately,

II=—=3 0 En1801°Pui(r)Vin(6,6) /7.
Also,
I={—=V4+V(r) {b[1+4cosq(r—70) ]V 1m(0,4)/7}

Vin(00) (@ W+1
- ’(¢>{— | ( )'rV(r)]{b[Hcosq(f—“’)]}

r dr? 72
Ylm(o)d))
= {bq2 cosq(r—ro)+b[ 14 cosq(r—re) ]
r
I(+1)
X[ ; -+ V(r):” .
7
Therefore,

1
GMCO (7’) =
E

po {bq2 cosq(r—ro)+b[1+4-cosq(r—re)]

nl

X[I(H-l)

" +V(r):|—an EnrzanszOPnfz(r)} .

Note that only the first derivative of the tail of the
CO function has been matched at r=7,. This means
that, in general, the second derivative is discontinuous
at 7, as well as at 7,. (At the latter point the tail is a
cosine function at its extremum and therefore has a
nonvanishing second derivative.) These discontinuities
must be kept in mind when applying the kinetic-energy
operator to the CO function; specifically, G;°° has finite
discontinuities at these points and so the integrals in-
volving G»;°° must be evaluated accordingly.



