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The time-dependent momentum distribution is calculated for positrons, initially of high energy, in
contact with a low-temperature electron gas. A Boltzmann-equation approach is used; the positrons are
taken to have an effective mass different from the electron mass, as is observed experimentally, and to
interact with the electrons via the screened Coulomb interaction. High-momentum components of the
distribution decay very quickly; therefore, the Boltzmann equation is solved numerically only for momenta
in the thermal range. The distribution function is found to decay with time toward the Maxwell-Boltzmann
distribution, while depleting through annihilation. Effective distribution functions, describing the average
properties of the positrons throughout the relaxation-annihilation process, are computed for various ratios
of lifetime to thermalization time. A prediction is made of the minimum positron energy observable in

annihilation experiments.

I. INTRODUCTION

ECENT experiments of Stewart and Shand,! of
Stewart, Shand, and Kim? and of Kim and
Stewart? have probed the momentum distribution of
positrons annihilating in simple metals at low tempera-
ture. Such an experiment was suggested by Majumdar.
These experiments demonstrated that over a range of
temperatures, the positron was able to come into
thermal equilibrium with the electron gas before anni-
hilating, and the analysis showed the positron momen-
tum distribution, if taken to be a Maxwell-Boltzmann
distribution for the sample temperature, to correspond
to a positron effective mass in the neighborhood of 2
electron masses (from 1.8 for the case of sodium to
2.3 for the case of rubidium).?

Early calculations of positron thermalization time by
Lee-Whiting® suggested that the positron was able to
thermalize in times short compared to the positron
lifetime. However, recent refinement of the calculation
by Carbotte and Arora® showed that thermalization
time increased sharply as temperature lowered, so that,
for low but experimentally realizable temperatures,
thermalization time would become comparable to
lifetime. The temperature at which this behavior was
estimated to occur varied with density. The highest,
for simple metals, was for the case of aluminum, where,
for temperatures in the neighborhood of 100°K, it was
expected that positrons would annihilate before ther-
malization was complete.

Experimental observation of nonthermalized behavior
has been reported by Kim, Stewart, and Carbotte.’
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Effects of nonthermalization were seen at temperatures
in the neighborhood of 100°K for sodium and lithium,
and of 30°K for rubidium.

It is the purpose of the present paper to consider, in
more detail than has been previously reported, the
regime in which the positron thermalization time is
comparable to its lifetime. To this end, the positron
momentum distribution is calculated as a function of
time for positrons which lose energy through interaction
with the electron gas. A Boltzmann-equation approach
is used. This equation is solved numerically for the
momentum distribution. The resulting distribution is
found to relax with time toward a Maxwell-Boltzmann
distribution, while depleting itself through annihilation.
Effective momentum distributions are calculated, for
various ratios of lifetime to a characteristic thermaliza-
tion time, (varying with temperature) by suitably
averaging over time. It is found, as predicted by
Carbotte and Arora® and reported by Kim, Stewart,
and Carbotte,” that positrons annihilate in metals with
a certain minimum energy. The value of this energy is
predicted for the simple metals.

It should be noted that the Boltzmann equation
approach has been used by other authors in the related
problem of analyzing properties of positrons annihilat-
ing in gases. Application has been made to the problem
of positronium formation® and to the problem of life-
time® in the presence of electric fields. The problem in
metals is simpler than that in gases, first, because
electric fields are not under consideration, and second,
because (for reasons fully discussed in Appendix I)
only positron momenta small compared to the Fermi
momentum need be considered.

In Sec. II of the present paper the Boltzmann equa-
tion for the positron momentum distribution is set up
and reduced to a form suitable for computation. In
Sec. III, the numerical solution is presented as a
universal function of appropriately reduced momentum

(1;5‘2)' B. Teutsch and V. W. Hughes, Phys. Rev. 103, 1266
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and time variables. A discussion of the results is in
Sec. IV, with a prediction of the minimum energies
observable in annihilation experiments. Two appendices
are included. In the first, it is demonstrated that the
time development of the momentum distribution is
independent of the initial conditions assumed. In the
second, a numerical comparison is made with previous
work.

II. BOLTZMANN EQUATION

Under the assumption that the positron momentum
distribution obeys a Boltzmann equation, the distribu-
tion as a function of time is given by

d
(};n(p,t)=§(W(p; Q)n(q,)—W(q; p)n(p,1)

1
——n(py), (1)

where 7 (p,)d*pdt is the probability that, between time
t and ¢-+d¢, a positron will be found having momentum
#ip in @*p. The time 74 is the lifetime of the positron
against annihilatiion, assumed independent of momen-
tum (for the low momenta considered in the present
investigation). The function}W (p’; p) is the transition
probability per unit time for scattering of the positron
from state p to state p’. The sum on q runs over all
states of the positron. Assuming, as is customary,’ 5!
that the positron is scattered through interaction with
the electron gas via the screened Coulomb interaction,
it will be adequate to calculate this transition probabil-
ity in Born approximation. The expression for W (p’; p)
is, therefore,!

4
W(p’;p)=~;—erll (k+p—7, 0’| V|kp)|?

X3(Ee (k+p— p')+E?(p')— E*(k)— E*(p))
X fr(E(k+p—p)f(E(K), (2)

where the sum runs over all electron states, labelled by
k. The matrix element required is that of the screened
Coulomb interaction between an initial state which has
a positron of momentum %p with an electron of momen-
tum 7k and a final state which has a positron of momen-
tum #%p’ with an electron of momentum %(k-p—p’).
The energies E°(k) and E?(p) are electron and positron
energies, respectively, and are taken to be

Ee¢(k)=%%*k?/2m,

3
E»(p)=#p*/2m*, ®)

10 R. E. Peirerls, Quantum Theory of Solids (Clarendon Press,
Oxford, England, 1955), p. 127.

1S, Kahana, Phys. Rev. 117, 123 (1960); 129, 1622 (1963);
J. P. Carbotte and S. Kahana, ibid. 139, A213 (1965).

12 A, Messiah, Quantum Mechanics (John Wiley & Sons., Inc.,
New York, 1965) Vol. II, p. 736.
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where m is the electron mass and m* is the effective
mass of the positron. The functions f*(k) and f~(E)
are the usual Fermi functions

J7(E)={exp[ (E—Er)/kpf]+1},
[HE)=1-f(8),

which ensure that the electron scatters from a filled
state to an empty state. Ep is the Fermi energy, &z the
Boltzmann constant, and 6 the absolute temperature.

In the present calculation, only momentum transfer
#(p—p’) small compared to the Fermi momentum will
contribute significantly to the thermalization time.
Likewise, the energy transfer in a single scattering will
be small compared to the Fermi energy.® For these
reasons, it will be sufficient to have the matrix elements
of the screened potential in the long-wavelength, static
limit. Therefore®

©

(k+p—7p'| V|k,p)=n’eay/ VEkp 5)

will be used, where @, is the Bohr radius, ¥ the volume
of the crystal, and #%k&p is the Fermi momentum.

The distribution function #(p,) can be written in
the form

n(p,t)=exp(—1/74) f(p,2). (6)

The function f(p,f) can be shown by substitution to
satisfy an equation like Eq. (1) without the annihilation
term —n(p,)/74. Using an obvious relabelling of
momenta with the results of Egs. (2), (3), and (5), the
equation satisfied by f(p,f) can be written

d
;l;f (p,)
= (dr*cta i/ hky® Vz)Xk‘. 2 6(E<(k+q—p)+E(q)

—E*(k)—E?(p)) fH(E* (k) f~(E* (k+p—q))
X{f(q,))—exp{[E»(p)—E*(q)1/ks0} f(p,1)}, (7)

where advantage of the é-function has been taken to
rearrange the Fermi functions slightly. The time-
independent solution of Eq. (7) is evidently the
Maxwell-Boltzmann (MB) distribution

f5(p)=n exp[—£7(p)/ksb], 8)

where 7 is a normalizing constant.

18 These matters are discussed in detail by Carbotte and Arora
(Ref. 6). The rate of energy loss by the positron is found to be
extremely fast until the positron comes near thermal energies,
so that, effectively, the whole thermalization time is determined
by what happens at thermal energies.
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The sums on k and q are converted to integrals
according to the recipe

Vv
zk:—> Y /dk. ©)

The integration on k can be performed directly, since it
involves only known functions. The & function on
energies can be written in terms of momenta as

8(E¢(k+q—p)+E7(q)— E°(k)— E*(p))
= (m/1?)8{ (q— p) - [k— p(m*~+m) /2m*

+q(m*—m)2m*]}.  (10)

This § function confines k to a plane perpendicular to
q— p. The integration of the Fermi functions over this

d { o
o= (e shn) / ¢ (P~ @) (1 —exp[(f—
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plane of k produces the result

/ @k (m/ 1) (q— p) - [k— p(m*+m)/2m*
+q(m*—m)/2m* ]} f(E (k) f~(E(k+q— D))
= (am?/m*1)[(¢—p*)/|a—p]| ]
X{1—exp[ (p*—¢*)/2m*ks6]}, (11)

where terms proportional to exp(— Er/kz0) have been
neglected.

The integral on angles of q, assuming f(q,0) isotropic,
gives the well-known result

/dﬂqlq—pl“‘=47r/1), g<p

=4r/q, ¢>p. (12)

The final result is an equation for f(p,f) requiring
integration only over the magnitude of g, namely,

%)/ 2m*k 6 1} exp (¢*— p*)/2m*k 501/ (q,) — f(p,1) } dg

+ / 9(*=p){1—expL(p*— ")/ 2m*k 01y~ f (q,0) — exp[ (p*— )/ 2m*k 201/ (D)) }dg.  (13)

III. COMPUTATION OF DISTRIBUTION
FUNCTIONS

For convenience, the dimensionless reduced variables
P, Q, and T are defined, where

P=p/po, Q=q/po, T=t/l, (14)

with
hipo= Cm*kg®)V?, to=20Erm/7m* (kp0)2. (15)
The function F(P,T) of the reduced variables is defined
by
F(P/PO; t/tO) = (P/Po)2f(p,t) )

and satisfies the equation

(16)

d P
EF = 0 2 021 — 2 p2) -1
P,T) P[ f (Pr— Q1) [1—exp(Q— P%)]
X [exp(Qi—P%) F(Q,T)— Q2 (P,T)/ P1dQ
+ / (@~ P)[1—exp(P— QT

XLPF(Q,T)/Q—exp(P*—Q?)

XQF(P,T)/P]dQ} V)

Evidently, the time-independent solution of Eq. (17)
is the MB distribution (normalized to 1)

Fus(P)= (4/+/m)P? exp(— P?). (18)

Given a starting distribution F(P,0), Eq. (17) deter-
mines a universal function F(P,T) of the reduced
variables, which relaxes toward the function Fug(P).

In a physical case, the positrons start from some
initial distribution f(p,0), depending on the properties
of the B-decay source used, but independent of sample
temperature. Since the momentum unit p, depends on
sample temperature however, the starting distribution
F(P,0) should vary with sample temperature. Never-
theless, it is shown in Appendix A that all starting
distributions relax, in times negligible compared to
thermalization times, to a standard function F(P,T).
Therefore, it is unnecessary to use different starting
distributions for different temperatures. Moreover, it is
not necessary to know the correct starting distribution,
since all distributions give the same behavior.

Therefore, for practical purposes, Eq. (17) deter-
mines a single universal function of the reduced
variables P and T, useful for all temperatures which are
low compared to the Fermi temperature.

To find the function F(P,T), Eq. (17) was inte-
grated numerically, using the IBM 7040 computer at
McMaster University. Various starting distributions
were used in order to check the universality of the
function, as discussed in Appendix A. The mesh chosen
for momentum integration took P from the values 0 to
8 in steps of 0.2. Time was advanced in increasing steps,
according to the formula

T=278/1000; n=1,2,---,94. (19)
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The end point 94 was chosen since, at this time, the
distribution function was found to be only negligibly
different from the MB distribution. The size of the
time steps was chosen empirically to assure that the
change of F(P,T) in each time step would be small.

Results for F(P,T) are shown in Fig. 1, for a
starting distribution

F(PO)=mP?, P<78
=0, P>78 (20)

(1 is a normalizing factor). The function F(P,T) has
been plotted for reduced times from 0.002 to 2.048.
(Every eighth computed curve has been plotted.) The
last curve is for time 3.158, at which time F(P,T) is not
distinguishable from the MB distribution, to the scale
of the drawing. The time development of F(P,T) is
readily apparent from the figure.

Effective distribution functions, suitably averaged
over time, have also been computed. For a given reduced
positron lifetime T4, defined by

TA=TA/t0’ (21)

the effective distribution function can be defined
as the time average of F(P,T) weighted by the factor
exp(—T/T4) (which gives the depletion of the distribu-
tion through annihilation). The result is

Fo(P; TA)=(1/T2) / " F (P T)exp(~T/TIT, (2)

which is normalized to 1 if F(P,T) is normalized. For
purposes of analysis of experiments, the positron can
be taken to annihilate from the momentum distribution

The functions Fg (P ; T 4) were found for various values
of T4 by numerically integrating according to Eq. (22),
up to the time 3.158. A fraction exp(—3.158/T4) of
the Boltzmann distribution was added to this result to
complete the integral of Eq. (22). The resulting func-
tions Fz(P; T4) for a number of reduced lifetimes T4

|
0 | 2I50(MAXWELL-BOLTZMANN DISTRIBUTION )
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F1e. 1. The positron momentum distribution F(P,T) as a
function of reduced momentum P, for various reduced times 7'
(Curves are labeled by values of the reduced time.) The curve for
T=3.158 is indistinguishable from the Maxwell-Boltzmann
distribution, on the scale of the diagram. Eight curves are com-
puted for every one plotted here.
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ranging from 0.160 to 10.24 are plotted in Fig. 2. For
the largest reduced lifetime plotted, 10.24, Fp(P;T4) is
effectively the Boltzmann distribution (except for a
small tail at high momenta reflecting the early history
of the positron). For reduced lifetimes comparable to or
smaller than 1, Fx(P;T4) can be seen to differ signif-
icantly from the Boltzmann distribution.

For a given metal at a given absolute temperature the
appropriate T4, and therefore the corresponding effec-
tive distribution of Fig. 2, can be determined from
Egs. (21) and (15). The result is

Ta= /o),

a= (th(ip/vrm*kgm)‘” ) (24)

where 0p is the Fermi temperature. Values of « for the
simple metals are given in Table I.

First and second moments of the distributions have
also been computed. For the time-dependent distribu-
tion F(P,T), these moments give, respectively, the

(23)
with

F.(RT,)

DISTRIBUTION

P €

OO

REDUCED MOMENTUM

Fi1c. 2. The effective positron momentum distribution Fg-
(P; T 4) for various values of the reduced lifetime T 4. Conversion
of T4 to temperature for various metals is given by Eq. (23)
with Table I.

average momentum and energy of the positron as
functions of time. Using the effective distributions
Fg(P; T4), these moments predict the momentum and
energy to be observed in annihilation experiments for
various values of 74— that is, for various values of the
absolute temperature 6 as given by Eq. (23) with
Table I.

IV. DISCUSSION

The distribution functions calculated in the present
paper are expected, using observed values of the effec-
tive mass and positron lifetime, to fit the temperature-
dependent behavior observed for two-quantum angular
correlation data near the Fermi momentum.!?7 The
positron momentum distribution is found to relax to
the MB distribution in a few units of reduced time.
The time unit # defined in Eq. (14) can therefore be
thought of, roughly, as a thermalization time. For low
temperatures, this time can become comparable to or
larger than the positron lifetime 74. (In terms of
reduced lifetime: T'4 can become of order 1 or smaller.)
At such temperatures, the positrons annihilate from an
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effective distribution which is broader than the MB
distribution appropriate to the sample temperature;
significant effects of nonthermalization can, therefore,
be expected.

The numerical results of this work can be compared to
the results of Carbotte and Arora.® Because this compar-
ison is somewhat complicated, it is reserved to Appendix
B.

The minimum observable positron energy can readily
be calculated, using the effective positron distribution.
The positron energy is simply related to the second
moment of the effective distribution, by

wh22

E";FE(P; T4)dP
0 «m

E=

0

=kz0 / PFy(P; T4)dP. (25)
0

When Fg(P;T4) approaches the MB distribution

TaBLE L. Values of the parameter o which relates the reduced
positron lifetime 7'4 and the absolute temperature 6 according to
Eq. (23). Values of the Fermi temperature 67 and the lifetime of
the positron against annihilation 74 are taken from Ref. 4; the
effective masses are from Ref. 3.

O 1/74 a

Metal (10¢ °K) (10%/sec) m*[m (°K)

Cs 1.80 2.4 (2.5)» 9.15
Rb 2.09 2.45 3.2 10.4
K 2.39 2.55 21 11.8
Na 3.70 3.0 1.8 17.3
Li 5.49 3.5 1.8 12.7
Al 13.5 5. (1.8)» 42.6

a Experimental values of the effective mass are not available; the values
used are estimates.

(T'.>>1), the average positron energy approaches the
value
(26)

E——3ksf.
Tax1

For values of T4 comparable to or smaller than 1, on
the other hand, the energy can be computed using
Eq. (25). [The value of T, is given in terms of 6 by
Eq. (23) and Table 1.] The results are plotted on Fig. 3.
For purposes of comparison with the results of Stewart
and his collaborators!*7 positron energy is given in
terms of “effective positron temperature” 6. This
temperature is introduced naturally in fitting experi-
mental curves in cases where thermalization is complete
before anninilation.? In this fitting, the momentum
distribution is taken to be a MB distribution for
positrons of mass m (rather than m*) and effective
temperature 6z. Since the MB distribution depends on
the product of mass and temperature, the effective
positron temperature is given by

@27

0 — (m*/m)o
Tax»1l
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F16. 3. The positron energy observed in annihilation experi-
ments, expressed as an effective temperature 0z, as a function of
sample temperature. The values of the unit « for the simple
metals are given in Table I. This curve is analogous to the experi-
mental curves plotted in Ref. 7. Note that the slope of the dashed
line, which would give the positron effective temperature if
positrons were able to thermalize, is m*/m.

in the case where thermalization is complete. In terms
of the positron energy, therefore, it can be seen by
comparison with Eq. (26) and Eq. (20) that

L]

OE=§(m*/m)0/ PFg(P; T4)dP. (28)

0

The units of Fig. 3 are given in terms of the quantity
a listed, for various metals, in Table I.

The positron can be seen from Fig. 3 to annihilate
with a certain minimum effective temperature. The
predicted values of this quantity are compared with
the measured values in Table II. While the experimental
values are expected to be rough, there is a systematic
disagreement between them and the theoretical values
which is outside the range of reported experimental
error, and may be significant. The question of whether
a real discrepancy exists must await further experi-
mentation, as well as further theoretical development.

It might be expected that a likely source of error in
the treatment of experiment would be the use of a
M-B distribution (for an effective positron temperature

TABLE I.I. A compa_rison of the predicted and measured values
of the minimum effective temperature 6z. Experimental values are
those reported by Kim, Stewart, and Carbotte in Ref. 7.

Minimum 60z Minimum 6z

Metal predicted (°K) measured (°K)
Cs (36.0)» cee
Rb 37.5 ~60
K 39.2 ~100
Na 49.0 16050
Li 64.3 ~200
Al (121)= ces

® Unknown effective masses have been estimated to produce these results.
See Table I.
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F1c. 4. A comparison of the effective momentum distribution
for reduced lifetime 74=0.113 with a Maxwell-Boltzmann
distribution chosen so that both curves have maxima at the same
value of P. The two curves correspond to effective positron
temperature different by about 109, as discussed in Sec. IV.

0x" different from m*0/m) to describe the positron in
fitting experimental data in cases where the positron
is not thermalized. The general magnitude of error
introduced by this procedure can be estimated by
comparing a M-B distribution to the calculated effective
distribution. In Fig. 4, the effective distribution for
reduced lifetime 7" 4=0.113 has been plotted as a solid
line. The dashed line on the same figure is a MB
distribution chosen to peak at the same momentum,
P =192, This distribution corresponds to an effective
positron temperature 8z of

05" = (1.92)12m*9 /m
=1.38m*60/m. (29)

The value of the positron energy in the calculated
effective distribution, in terms of effective positron
temperature, is computed from Eq. (28) to be

05=1.53m*0/m. (30)

The discrepancy in these two values is about 109%,;
presumably, errors of this order can be expected if a
MB distribution is used to approximate the effective
positron distribution. It should be noted that choosing
a MB distribution which peaks at the same value as the
effective distribution does not necessarily match the
curve fitting procedure actually used.}*7 The 109,
estimate made here should, therefore, be considered
only indicative of the error to be expected.

Finally, it should be noted that the present calcula-
tion does not include effects of a possible variation of
enhancement factor with positron momentum. Since
the enhancement factor is known to be a rapidly varying
function of electron momentum near the Fermi momen-
tum,* its behavior as a function of positron momentum
is certainly worth investigating. This investigation
should not affect the theoretical results of the present
work, but could be of some importance in application
to the analysis of experiments.
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APPENDIX A

The argument that the results of the present paper
are independent of starting distribution requires two
steps. First it must be shown that, for momenta outside
the computed range 0 to 8 momentum units, the
distribution falls to zero in times short compared to the
smallest time steps used. This fact justifies the choice of
a starting distribution confined to the range 0 to 8.
Second, it must be shown that the details of shape of
the starting distribution within the range 0 to 8 do not
matter; that is, that all distributions produce identical
results after times small compared to thermalization
time.

The range of validity of Eq. (13) or Eq. (17) for the
distribution function is limited to momenta small
compared to the Fermi momentum, for several reasons:
first, because the screened Coulomb potential has been
approximated by its static long-wavelength limit. This
neglects the momentum dependence which appears for
momenta comparable to %kr but, more importantly,
neglects the coupling to the plasma oscillations of the
electron gas. Also, at momenta comparable to %k, the

(PeT)

F(RO)s 9, P2

POSITRON MOMENTUM DISTRIBUTION F(RT)

F(PO) « n axp[-4(p.72]

) IO 0 0,
0 =L .
(o} 8
REDUCED MOMENTUM P

F1c. 5. The time development from differently shaped starting
distributions is compared. After 0.064 time units, these curves
differ by less than 109%, at all mesh points. (Thermalization time
isabout 2 time units.) Development after 0.128 time units is the
samelfor all starting distributions; identical to that shown on
Fig. 1.



164

F(RT)

MOMENTUM DISTRIBUTION

REDUCED MOMENTUM P 8

F16. 6. The time development from two starting distributions of
different extension along the P axis. Use of these different distribu-
tions would be appropriate for two temperatures 6; and 6; whose
ratio was 6;/8;=0.63. After 0.064 time units (thermalization time
is about 2 time units) the difference between the two distributions
is within 109, at all mesh points.

phase space available for the positron scattering is
different from that given in Eq. (11). However, for
P>>1, the logarithmic derivative of F(P,T) will mono-
tonically increase with P [though not necessarily so
fast as Eq. (17) would predict]. It is therefore possible
to consider momenta near P=8, when Eq. (17) is
valid, in order to put an upper limit on decay time for
the distribution for all higher momenta. For P~8§, the
thermal factors in Eq. (17) ensure that the scattering-in
term will make no contribution to (d/df)F (P,T). Equa-
tion (17) then reduces to the form

d 1 r?
—ren s~ [ ow-euere
dt P»1 P Jy
=—(2PY/15)F(P,T). (A1)
This equation can be integrated directly to give
F(P,T) — F(P0)exp(=2P*T/15).  (A2)
>

This dependence can easily be checked in the numerical
results for P=7, for example. For momenta of 8 or
higher, the coefficient of T in the exponent of Eq. (A2)
is greater than 546. The characteristic time for decay
of the function for such momenta is therefore smaller
than 0.0018 time units ; comparable to the smallest time
steps considered in the present work. Therefore, it is
justified to use a starting distribution confined to
momenta smaller than 8.

However, the shape of the distribution, while known
to be confined, is not known for the earliest times, and
results might be expected to depend on the details of
this shape. In order to answer this question, F(P,T") was
computed for a selection of different initial distributions.
The time development of three different distributions is
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shown in Fig. 5. The result is that all distributions agree
within 109, for all mesh points at reduced times
T>0.064, and that agreement is essentially complete
at 0.128 time units. The time development of two
distributions which are the same except for a scaling
factor on the P axis was also investigated. (This
corresponds to using the same distribution f(p,0) with
two different sample temperatures, which would be
expected physically to be the right procedure.) The
results are plotted in Fig. 6. Evidently, agreement is
reached here as quickly as in the cases plotted in Fig. 5.

The conclusion is that the nature of the starting
distribution does not significantly affect the results
reported.

APPENDIX B

Comparison of the present results with those of Lee-
Whiting® and of Carbotte and Arora® is not completely
straightforward. These authors calculate thermaliza-
tion times according to the following prescription: at
any time, the positron is imagined to be in a single,
well-defined momentum state. The rate of energy loss
for the positron in contact with a zero-temperature
electron gas is then calculated from the transition proba-
bility. The positron is then taken to lose energy at
the calculated rate, successively passing through well-
defined states until it reaches thermal energies. The rate
of change of energy, calculated as described, is

d 4
:i;Ep(p)=_h—Z W(q; p)(E*(q)—E*(p)), (B1)

when the transition probability W(q;p) and the
positron energies are defined in Sec. II, but taken in the
zero-temperature limit (so that Fermi functions are
replaced by step functions). Using the assumptions of
Sec. II, the sum on q can be readily performed. The
result is

d
d_ECAz - (8/105) (rm*/thEp)ECAs, (BZ)
t

where FE¢a has been written for the positron energy
calculated in this manner. The Eq. (B2) can be directly
integrated to give

E¢4*=(105/16) 2 Epm/mm*)/t. (B3)

This result agrees with the prediction of Carbotte and
Arora® (generalized to take account of the positron
effective mass). The dependence indicated by Eq. (B3)
is plotted as a dashed line on Fig. 7.

However, the energy-loss process for the positron is
inherently statistical. Properly, therefore, it should be
imagined that the initial positron state decays (with
probability given by the Fermi golden rule) into a
number of possible states. The energy of the positron
should then be evaluated as an average over all states,
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F16. 7. The average positron energy as a function of time for
various absolute temperatures. Note that both scales are logarith-
mic. The unit for the time axis has the value o?r4, whose values
are given in Table I. The dashed curve is the prediction of Carbotte
and Arora in Ref. 6. Note that the solid curve corresponds to the
curve sketched by Stewart, Shand, and Kim in Ref. 2.

In the language of the present paper, the positron
energy should be defined as an average over the distribu-
tion function F(P,T),

]

E= / (#2p%/ 2m*)F (P, T)dP
0

0

PF(P,T)dP.

0

=kz0 (B4)

This energy can easily be computed as a function of
reduced time, using the distributions found in Sec. ITI.
The result is plotted in Fig. 7. The dependence of E on
T as displayed is quite interesting. First, the dependence
on absolute temperature, which might be expected
from Eq. (B4) to be strong, is, in fact, nonexistent until
the energy reaches values near the thermal value % 3z6.
Second, for energies appreciably larger than $kg6, the
curves have a dependence which, except for the constant
of proportionality between E? and 1/T, is identical to
that predicted by Carbotte and Arora. Since for smaller
and smaller 6 the energy drops lower and lower before
flattening out, the straight line on Fig. 7 must be the
true E-versus-T curve for the case of zero temperature.
Note that this curve is similar to the curve sketched by
Stewart, Shand, and Kim.?

The behavior of E with T can be understood, and
the discrepancy with Carbotte and Arora in the
proportionality constant can be resolved, by computing
the rate of energy loss directly. Time differentiation of
Eq. (B4) gives

00

d d
SRk / Pp(P,TVP. (B3)
dit 0 dt

The rate of change of F(P,T) can be evaluated using
Eq. (17). [In the limit of low temperatures, the expo-
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TasLE III. Values of the second and sixth moments (P?) and
(P¢%) and of the parameter 4, calculated for four different reduced
times. The parameter is seen to be constant for these reduced
times (small compared to thermalization time).

T (P (P9
0.032 8.32 559 2.70
0.064 5.94 564 2.70
0.128 4.24 205 2.70
0.256 3.05 71.0 2.71

nential factors in Eq. (17) are identically zero.] The
result, for low temperatures, is

d%E=k30|:— / " preT) f " (p— ragur

+/: P /: 1/Q@~P)F (Q,T)deP:l
=k30/: F(P,T)I:-—p/OP PP— 0

+1/P Q(P2—Q2)dQ], (B6)
P

after making suitable rearrangements of limits and
integration variables. The result is

d )
— 1= — (3ks0/105) f PP T)AP.  (BY)
t 0

By dimensional arguments, it can be expected that

0

/ POR(P,T)AP= A (E/k50). (BS)
0
In this event
d
—d—E= —(84/105)E3/ (k50)2. (B9)
1
This equation can be integrated to give
E*=(105/164) (ks0)*/T, (B10)

where the (presumed) constant 4 is a geometrical
property of the distribution F(P,T). In Table III values
of A are given for various times T, computed using the
distribution shown in Fig. 1. The constancy of 4 is
thereby established by direct calculation, and its value
is found to be 2.70.

The Carbotte-Arora result can be seen by comparison
of Eq. (B10) with Eq. (B3), taking account of the time
unit given in Eq. (15), to correspond to the value 4 =1.
This is just the value which would be obtained if F(P,T)
were at all times a é function in momentum. This fact
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therefore sheds light on the assumption that the
positron’s energy can be calculated as though it were
always in a single state: that assumption overestimales
the coefficient of the E?-versus-1/T curve by a factor
2.70, thereby underestimating the rate at which energy
is lost.

For purposes of comparison, it is instructive to
compute the value 4 would have if F(P,T) were at all
times a MB distribution corresponding to some temper-
ature 6’ higher than the sample temperature 6. In this
case

F(P,T)=(4//m)(6/6')**P* exp(— P*/6’)

/ " PR(PI)= @/0BXSX @ (B1Y)

/ " PE@,D)= 00,
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yielding
A=5X(%)=3.889. (B12)

If it were true, therefore, that the positron distribution
was a M-B distribution for an effective temperature
varying with time, the factor of disagreement between
the present calculation and the calculation of Carbotte
and Arora would ¢ncrease.

The basis of the surprisingly large disagreement as
to the value of the factor 4 in different distributions is
the fact that 4 depends on the sixth moment of the
distribution. It should be emphasized, however, that
effective temperatures are estimated by setting E(T'4)
=3Fk0. The estimated temperature therefore depends on
the square root of the coefficient 4. The factor of
disagreement in the effective temperature is therefore
4v/(2.70)=1.64. This factor is roughly compensated for
by the effective-mass factor, so that the present
predictions are close to those of Carbotte and Arora.
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Transition Metals : Electronic Band Structure of Niobium*
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Modifications to the orthogonalized-plane-wave (OPW) method are employed to facilitate its application
to transition metals. The procedure is to augment the basis set of OPW’s by including functions which vanish
in the interstitial regions of the crystal but represent well the outer core functions and the d-band states
near the nuclei. The bands are found to converge at a rate approximately the same as for the unmodified
OPW method in semiconductors. The method is applied to calculate the conduction electron bands of
niobium, along principal symmetry directions, to a convergence of about 0.01 Ry. The resulting band
structure is very similar to previous augmented-plane-wave calculations for other bec transition metals.

1. INTRODUCTION

HIS paper presents a method for calculating the
electronic band structures of transition metals,
based on modifications to the orthogonalized-plane-wave
method. The modified method is applied to the transi-
tion metal niobium, for which convergence of the bands
to about 0.01 Ry is obtained.

Difficulties in applying the OPW method to transi-
tion metals arise from: (1) the slow convergence for
d-like conduction states!; and (2) the fact that the
outermost s and p core states? are not completely

* Based on a thesis submitted by R. A. D. in partial fulfilment
of the requirements for the Ph.D. degree. This work was financially
supported in part by the National Research Council of Canada.

1 Present address: Cavendish Laboratory, University of
Cambridge, Free School Lane, Cambridge, England.
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1 Herman found that, for the T'o5(d-like) state in diamond, a
16th order reduced secular equation (296 OPW’s) was required
to give the energy to within a few percent of convergence: F.
Herman, Phys. Rev. 93, 1214 (1954).

2 Throughout this paper the term core states is used to designate

localized but form bands of nonzero width. Problem (1)
occurs because the wave function of a d state is not well
represented by the /=2 component of a plane wave,
even if the latter has been orthogonalized to a core level
of d character. Problem (2) prevents orthogonalization
of the plane waves to the outer core levels in the usual
manner.

Following a suggestion by Herring,? which was later
used by Callaway,* the d-band convergence is improved
by adding to the basis set of OPW’s a function which
represents well the behavior of the d conduction band
states in the inner region of the core but which is chosen
to vanish in the interstitial regions. Similar cutoff (CO)
functions are added to the basis set to represent the
behavior of the outer core s- and p-wave functions,
while the plane waves are orthogonalized to only those

the corelike eigenfunctions of the one-electron conduction band
crystal Hamiltonian.

3 C. Herring, Phys. Rev. 57, 1169 (1940).

4J. Callaway, Phys. Rev. 97, 933 (1955); 99, 500 (1955).



