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The theory of the relaxation frequency tensor for an ellipsoidal conduction band is developed, and calcu-
lated for the case of the electron and hole bands in bismuth assuming ionized impurity scattering. The
theory of Alfvén-wave propagation is developed, and the ratios of relaxation times for several different
field orientations are calculated. The results are compared with McLachlan’s data. Possible mechanisms
for the damping, including Frenkel defects, are discussed.

I. INTRODUCTION

N a previous paper! (hereafter called I) the theory of
the screening charge and potential of an ionized
impurity in bismuth has been developed. The purpose
of the present work is to apply the impurity potential
derived in I to the damping of Alfvén waves in bismuth,
using the Boltzmann equation with the scattering in-
cluded via the Born approximation

Alfvén waves are magnetohydrodynamic waves in a
plasma consisting of equal numbers of positive and
negative carriers. Their existence in interstellar space
was first proposed by Alfvén?; however, Buchsbaum
and Galt® were first to interpret certain experimental
data in bismuth in terms of Alfvén waves. The waves
themselves were first produced in transmission through
a bismuth slab by Williams,* and since then a number
of workers have reported Alfvén wave experiments in
bismuth® and antimony.® In the case of bismuth, there
is a great deal of inconsistency in the results of different
workers. Disagreements of, say, 509, in the measured
values of Alfvén-wave velocity for a given static H
field, microwave E field, and wave propagation vector
are not uncommon. There is no discernible pattern in
the experimental discrepancies; however, differences in
experimental geometry are almost certainly responsible.”

We shall compare our results with the experimental
data of McLachlan,® who measured Alfvén-wave re-
laxation times in bismuth at low temperatures (4.2°K)
and “intermediate” magnetic fields (i.e., fields small
enough so that quantum oscillations in measured quan-
tities are small, but sufficiently high so that Landau
damping is absent).
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We begin in Sec. IT by developing the theory of the
magnetoconductivity tensor an ellipsoidal carrier band
in the equation-of-motion formalism, postulating a re-
laxation frequency tensor. In Sec. III we use the
Boltzmann equation and the results of I to obtain
results equivalent to those of Sec. IT for long relaxation
times. The propagation of Alfvén waves is discussed in
Sec. IV, and the theory compared with experiment in
Sec. V.

II. THEORY: EQUATION-OF-MOTION
APPROACH

We consider an ellipsoidal band (i) of carriers of
charge ¢;, density #; per unit volume, and mass tensor
m; in Sec. ITI we find that m is the tensor which con-
nects velocity and momentum at the Fermi surface:

€p=¢€r. €))

In the case of a nonparabolic band, m is in general not
the tensor which connects force and acceleration. We
assume the system is at 7'=0, so the formalism is
simplified for a nonparabolic band.

In the presence of a static magnetic field H, an
electric field of the form E exp(—iwt), and a relaxation
mechanism described phenomenologically by a relaxa-
tion frequency tensor? v, the equation of motion is, in
cgs Gaussian units,

p=my,

mv=—iwmv=g{ E— (1/c)HXv]—mvv. (2)

This may be solved for v:

v=¢,T'E, (3)
where
T= —iwm-+mv+ (g:/c)HXI, @)
with
(HXDy=2 er;jHr. (5)
)
Using the relations
j=niqz.v=u(i)E, (6)
we obtain
eW=ng2T-1. @)

9 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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164 DAMPING OF ALFVEN
With v=0, this is equivalent to the result quoted by
Lax, Button, Zeiger, and Roth.?

III. THEORY: BOLTZMANN EQUATION
APPROACH

The method of Sec. II, while giving results equivalent
to those of the present section for |vs;|<Kw, of course
gives no information about v itself. We now proceed
to a Boltzmann (kinetic) equation formalism and
calculate v from the properties of the relaxation mecha-
nism. We assume that the system is at 7'=0, that only
ionized impurities (charge Ze, density N per unit
volume) contribute to the damping, and that the effect
of the scattering may be regarded as a small perturbation.

We assume an ellipsoidal band of carriers in plane-
wave states exp(ip-x/%), normalized to unit volume,
for which

©)

where e is energy and p momentum, both measured
from the band minimum. e is the inverse-mass tensor
“at the bottom of the band,” and F(e)=e as e— 0. In
the case of a parabolic band, F(e)=e. Velocity and
momentum are related at the Fermi energy by

F(€)=%p'“b‘p’

v=ep, ©
where
dF -1
o= (—— ) wp=m"1, (10)
de e=€f
Thus at e=er we have
G=constant
=3p-e-p
dF -1
=<—— > F(er). (11)
de e=ep

Throughout this paper, m and « will be the mass tensor
and its inverse at the Fermi surface.

The Boltzmann equation' for the distribution func-
tion f is, omitting diffusion,

j= fﬁelds+jscattering . (1 2)

Suppose a static magnetic field H is present, and an
electromagnetic wave of the form

E(x,!)= Bei®-x-o0 (13)

is propagating through the solid. In a damped wave,
K will be complex. We assume the distribution function
is of the form

F(x,0)=folep)+ fr(p)ef = *—20,

B, Lax, K. J. Button, H. J. Zeiger, and L. M. Roth, Phys.
Rev. 102, 715 (1956).

u J. M. Ziman, Electrons and Phonons (Clarendon Press, Ox-
ford, England, 1960), Sec. 7.3.

(14)
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where p includes the spin index, and
fo(e)=1,
fo(e)=0,

There will be present a scattering transition probability
W pp per unit time, for the carriers to scatter from state
p to state p’. Using the fact that

Wop=Wyp, (16)

and the fact that the scattering is elastic, Eq. (12)
becomes
f

dfo q:
._wfl(p)—_— —q;V: E;—-‘-Q—H’ (vap)fl(p)
€ c

GSEF)

(15)

€>€r.

TN WopLf2(0)—12(0)], (A7)

where )\ indicates the scattering is to be considered a
small perturbation; ultimately we set A=1. We seek a
solution of the form

f1(P)=f11(D)+)\f12(P) ’ (18)
where fi; and fi, are linear in E.
Equations (17) and (18) then give
. dfo ¢
—iwfu(p)=—q:v- E;“I-—H' (vXVp)fu(p), (19)
c
and )
. qi
— 1w f1a(p)=—H- (vXV,) f12(p)
c
+2 Woplfu(@)—fu(p)]. (20)
pl
It is easily shown that a solution to Eq. (19) is
afo
fu(p)=—g—v-(mTi?)-E, (21)
de
where, referring to Eq. (4), we have set
T=To+my (22)
with
To= —iwm-+ (¢;/c)HX]I. (23)
Writing the current as
J=jrtNe
= (01D +No)E, (24)

we obtain for the first quantity on the right-hand side
=2 ¢ifu(p)v
?

- / oy Ty B, s)
4w3hd)  de v
We have made use of Eq. (21) and the fact that
a4
dp=de— (26)

?



918

where dA4 is the area element on the surface e= constant.
Since
dfo/d€= ——6(6— ep')

at =0, we have

@27

. qiz dA
ji= / vIv-mT)-El—,  (8)
A73h3) e v
so that
w1 /( )Ty (29)
o V= vy)(m1¢g1t)—. 9
' 4r3h® ’ 9
Now it is easily shown that
dA
/ VV—= qu;(x y (30)
e=€p v

where Vp;=4x%n, is the volume in p space enclosed
by the Fermi surface. Thus

©1)

01 D=ng T,

in agreement with Eq. (7) for v=0.

We now treat Eq. (20). Assuming that fi,(p) is re-
stricted to the Fermi surface, we make use of an ex-
pansion of fj» in Chambers coordinates.’? If p, is the
polar axis (which need not be along the direction of
H), the coordinates are ¢, p., and ¢, and the volume

element is
(32)

where m*=m*(e) is the cyclotron mass about the polar
axis. Hence,

dp=m*dedp.de,

dA/v=m*dp.de

= 'm'*Pz max@ud ¢, (33)

where . max is the maximum value of p, on the surface
e=constant, and

Pz=pz maxMy _]-Sﬂgl- (34)

The use of such coordinates may at first seem cumber-
some; however, their worth can easily be established in
our present study. For example, in Chambers coordi-
nates on an ellipsoidal Fermi surface, we have the
following spherical harmonic expansion:

1
V= Z aimylm(#;‘»o)- (35)
m=—1

The value of such a relation becomes clear when we
expand fi» in spherical coordinate form on the Fermi
surface:

d 0 © l
fm(p)=qz—(;f—[v-(m§)~E+lE 2 bnYm(ue)].  (36)

=0 m=—1
17#1

The tensor § of course is to be determined. It can now
easily be seen from the above considerations that we

12 J, M. Ziman, Elecirons and Phonons (Clarendon Press, Oxford’
England, 1960), Sec. 12.7.
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immediately have

(37)

0= —ng?B,

since the integration over the surface of vV, for I>£1
gives zero contribution.

If we now let the polar axis p, coincide with the
direction of H, we have

Qs d
—H- (vXV,)=0—, (38)
c do
where Q is the cyclotron frequency:
q:H
}=— (39)
m*c

Using the familiar property of spherical harmonics,

J
—-——~Ylm: sz;m y
de

(40)

after inserting expressions (36) and (21) into Eq. (20),
we obtain the result

df 0 (f)

de

,'2 d o\€
L - (mg)E]

¢ de
dfo(€)
+¢:i 2 Wy ,
» de

d ol€) =
+ d © 2 :V-: Glel'rn(ﬂy‘P)7

de 1=0m=—1
171

v-(mB)-E

iwq;

(v'—=v)-(mT¢)-E

(41)

where the ¢;, are constants linear in E.
We now use the results of first-order time-dependent
perturbation theory for the transition probability:

2xN
IVPPI:TI Vpp |%0(e— €)d00r (42)

where V,_, is the matrix element of the potential of
one impurity, ¢ and ¢’ are the spins of states p and p/,
and N is the density of impurities. For an ionized im-
purity of charge Ze in bismuth, V,_, is given by Eq.
(28) of I:
v . l:l dme*hi? <o 1

—p = Vop—p| 1— i, p—p’

R R ¢ R R A

(43)

18 J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford,
England, 1960), Sec. 3.1. The criteria for the applicability of this
formula are the same as those for the Born approximation, to
which it is equivalent. It is easily shown that the conditions
are satisfied in the case of a screened charge in bismuth. See L. I.
Schiff, Quanium M echanics (McGraw-Hill Book Company, Inc.,
New York, 1955), Sec. 26.
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with
A Zeqih?

(44)

Vop_ ' = .
T (0w (- 1)
Here ¢; is the lattice dielectric tensor of the solid, and
Ri,p—p is defined by Eq. (29) of 1. Substituting expres-
sion (42) into Eq. (41), and integrating with respect to
v(d4/v)de, the terms in Vi, for %1, give zero con-
tribution, and we obtain
§= To—ISTo—l y (45)
where
N

16w

, a4’ d4
$4=Sji / / |V oo 120:(p— b )——.  (46)
v v
The connection of s, which is independent of H and
o, with v of Sec. IT is immediate. Referring to Eq. (22),

¢ = %iqiz ( To—l—mv)‘l

zn,-qlz(To_l—‘ To—lmVToﬂl) (47)

for sufficiently small »;;. Comparing this with the result
of the present section,

o=~ 0‘1“> +0'2('.) = ﬂiqiz(To_l— To—lsTo_l) , (48)

we see that
(49)

Thus we have established the validity of a relaxation
frequency tensor (dependent only on the band param-
eters and the properties of the scattering) for Alfvén-
wave propagation with sufficiently small damping.

Finally, in a solid such as bismuth, with several
ellipsoidal carrier bands, the total magnetoconductivity
tensor is given by

o= o,

S=mv.

(50)

where 7 ranges over all the carrier bands.

IV. ALFVEN-WAVE PROPAGATION

We now consider Alfvén-wave propagation in the
“intermediate” field region, i.e., we have | K- v| Kw<kQ,
but H (and hence @) are sufficiently small that quantum
oscillations in the density of states near the Fermi
surface are negligible. In practice these oscillations are
always present ; however, in the region under considera-
tion, they are easily averaged over in the data to obtain
such quantities as Alfvén-wave velocities and relaxa-
tion times.®

Maxwell’s equations, neglecting displacement cur-
rents, lead to the equation

j=(ic2/4rw)KX (KX E)=oE, (51)

so that the dispersion relation of the wave is the
determinantal equation

I O‘ik+ (1:62/471'0)) (K25ik'—K¢Kk) l =0. (52)
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The presence of anisotropic relaxation greatly compli-
cates the form of e, so the solution of Eq. (52) is rather
cumbersome. Following Kaner and Skobov,* we go to
a two-dimensional formalism with the following choice
of axes:

Let z be the direction of K; this is consistent with the
discussion of the previous section since we will be com-
paring our results with data for the situation K|H.
Then we can eliminate E, from the equations since,
from Eq. (51),

K.j=0. (53)
The result is then the secular equation of a 2X 2 matrix:
K2
aaﬂ,_;—”i—waaﬂ =0, (54)
where o, 3=, v, and
Oof =0Cap—0a:0.8/02:. (55)

When H is along the trigonal axis, o is diagonal, and
when H and K are along a binary axis, we have | o.4.0.5]
&K |0apo:2|. Thus in both these cases, we have oog’ =0 4.
There is no such simplification of ¢/ when H and K
are along a bisectrix axis.

The anticipated result for the observed Alfvén-wave
velocity v4 is, in the limit of small »;,

va=w/Ky=H[4xn f(m) 1+1/4) T2, (56)

where f(m) is a function of the carrier masses, # is the
electron (and hole) density, and we have set

K=K +iK,. (57)

Here 7 f(m) is the so-called “‘mass density,” and r plays
the role of a relaxation time.

In the absence of damping, and with @>w, an
ellipsoidal carrier band (7) with H along the z direction
has the following conductivity tensor!®:

C deon e Haytbi —nabs
0=~ 2 May—bi by i |, (58)
H nxzbi "'nllzbi biz/m"'

where we have kept only terms of highest order (except
in o4y and oy, where the terms in b; cancel out in the
total conductivity tensor). Here,
Maoa™= Myy— My /M. ,
Moy = MaMys/ Mo— May ,
Hyy™=Mag— Mz M
o= Myz/Maz
TNys=Maz/ Mz
bi=1q:H/wec.

(59)

“E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz.
Ag,%%(:)l (1963) [English transl.: Soviet Phys.—JETP 18, 419
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The condition 2>>w implies that
2R

Now using Egs. (58), (59), and (48), we obtain for the
single carrier ellipsoid

(60)

n¢c2 f:ca: Ezy "‘fzzbi
0. V=—I¢, éwy $uabi | (61)
HZ g'xzbi —g-yzbi >\z=b£2

where again we have kept only terms of highest order,
and
Ezz=5yy"25yz77xz+szz77:cz2 ’

foy=—Sayt SyMyzTSeaNez— SeMzyz
£y = Sza— 28 alyatS2aMys?

o= (Sye—SzeMaz) Mz

$ye= (Szz—szznyz)/mzz )

Moo= —Sz2/ M.

(62)

Now when the ¢® are summed over all carrier bands,
and transformed according to Eq. (55), the result is

o=0/+0’, (63)
where ¢y’ and ¢5 are of the form
twonc? ﬂzz’ Mz !
of=— ( , ”,>, (64)
H? Mzy  Myy
and et b
nC T T
o= "—< , z/,> , (65)
H2 EWII E?IZI

[# is now the total electron (or hole) density]. The
dispersion relation, Eq. (54), then yields

K?*=KP—K@?+2iK K,

4ri

4rw’n TN
7 86

—f o+

(66)

where f(m) is a function of the my;, and g(s,m) is a
function of the s;; and m;.
When |Ky|>>|K,|, we obtain

Ky=[(4rcn/H?) f(m) }*{1+g(s;m) /8% f*(m)],  (67)
so that, from Eq. (56),
va=H{4an f(m)[1+g*(s;m)/4*f2(m) 72, (68)
Thus, the effective relaxation time 7 is
7= f(m)/g(s;m). (69)

The application of perturbation theory to the Boltz-
mann equation, of course, depends on the condition

o>l (70)

When ¢y is diagonal, we have for the normal modes
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either

(71)
f(m) =ﬂyy,,g (s,m) = f&'uI:E“y . (72)

Actually, E has a small component in the z direction
unless oas’ =0.5. When o1 is not diagonal, E will have
nonzero x# and y components in a normal mode; in this
case the secular equation (54) must be worked out and
compared with Eq. (66) to obtain f(m) and g(s,m).
Expressions for the uqs” and £.4’ for each of the experi-
mental arrangements under consideration are given in
Table I, in terms of the mass tensor for ellipsoid 4 :

f(m) =:"‘u,,g(s;m) = Eer;E”x ’
or

my 0 0
m=10 me M4 , (73)
0 ms ms
the hole mass tensor,
M, 0 O
m®=10 M 0], (74)
0 0 M,
the s tensor of ellipsoid 4,
S1 0 0
sW=10 s s, (75)
0 S4 S3
and the s tensor for the holes,
Sy 0 0
s®=10 S 0]. (76)
0 0 S

These tensors are given in the crystal system 1=binary,
2=nbisectrix, 3=trigonal; their form is determined by
crystal symmetry.

V. CALCULATIONS AND DISCUSSION

The calculation of s, Eq. (46), was done on the
Univac 1108 computer using the band parameters of
Smith, Baraff, and Rowell (SBR).%® The calculation
was carried out in dimensionless P space as described
in the discussion in I, Sec. III. The results for s(4’ and
s are as follows: §1=2.95, sy=24.1, 5;3=5.89, s,
=—1.38, 51=69.3, S3=151.0 Z2N X 102 g sec™?, where
N is in units of cm~2. These values and the SBR mass
parameters may be used in the expressions of Table I
to obtain the ratios of the various 7’s for the different
experimental arrangements of Ref. 8. The result is as
follows: (H||1,E|2): 7(H|[1,E|3): r(H||2,E|[1): 7 (H|2,
E||3):7(H||3,E||1 or 2)=1.29:1.68:1.28:0.29: 1.00.

The relaxation times of Ref. 8 are shown in Fig. 1
together with a fit of the above calculated relaxation
times. The fit appears good, as least by the standards
of typical theory-experiment fits for bismuth. This fit
corresponds to a value of Z2N=1.16X10% cm=3, If we
assume that |Z|=1, the concentration of ionized im-

18 G. E. Smith, G. A. Baraff, and J. M. Rowell, Phys. Rev. 135,
A1118 (1964).
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purities would be about 4.29, of the electron (or hole)
concentration. Unless the sample contained very nearly
equal numbers of acceptor or donor impurities, then it
would have been uncompensated far too much for pure
Alfvén-wave behavior to result, in the range of mag-
netic fields (5-20 kG) and microwave frequencies
(300-2000 Mc/sec) used in the experiment.

TaBLE L. The pag’ and £u4' for three different experimental
geometries. The a and B here refer to principal crystal axes:
1=binary, 2=bhisectrix, 3=trigonal.

K|[Hl|trigonal:  pny’ = pa’ =5 (m1-tma) —§ (ma?/ms)+ M,
En' = Eag’ = 5§ (s1F-52) — sa(ma/ms) +-§ss (m/ms?) +S)

2mg
k||H|\binary:

+Ms

mz’ =mg—
ma+3ma

me 8 mims
,“33,="_+"
3 3 m1+3mz

+M:

my—ms

’—
M23 =My

mi+3ms

m4

£a0’ =53—4s4

my 2
+2(S1+3Sz)( )1+53
m1+3m2

m1+3me

my—ms mi—mse 3
£33’ =3 (s1452) — (51—52) +3(s1+3s52) +51
my+3ma my+3ms

ma(my—ms)

(m1+3ma)?

my—me
+ (s1—52)
m1+3ma my+3ms

(514-3s2)

£ag' =54

mi 8 mams
ngg’ =—-+4—
3 3mi+me

k|| H||bssectriz:

+M,

my—me

£33’ =3 (s1+52) — (51— 352)

mi—ms \?
+%(3S1+82)( > +Sl

my-+me M1+,

M42 2 med

p’ =mg————-
3me 3 3mi-tme

4 my ms\2/ 1 8 1 1\
+(— 1 }
3 3mitmas 3me/ \3ma 3 3mi+ms M,
e My mq?

fu'=ss—Fsy——%ss +is—
My 3mi+me me*

m4 )2—{—3 +2(4 ms My )
2(3 - ——
+§( 31+S2)(3m;+7n2 ? 3 3m1+7n2 sz

ma msy S4 4 S4
XI:%M——'% (3s1+52)

1
mo? @Bma+ma)® 3ma l 3 3my+my

1 8 1 1\ s2 8 3si+se Sh
X } f + f f
3ms 3 3matme M, 3ma* 3 Bma-tme)? M2

4 m ma\2/ 1 8 1 1\~
X (— } } .
3 37n1+7ﬂ2 3MQ sz 3 3m1+1nz M1

+M;
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Fi1c. 1. Fit of calculated relaxation times with the data of Ref. 8.
Points with error bars, Ref. 8; X, calculated.

As it is highly unlikely that ionized impurities are
responsible for the observed damping of Alfvén waves,
the other possibilities are (a) neutral impurities, (b)
dislocations, and (c) Frenkel defects. Lattice vacancies
(or interstitials) alone are ruled out since they act as
acceptors (or donors) in Bi. If the above relaxation
times were due to lattice vacancies, this would corre-
spond to an excess concentration of holes over electrons
of about 0.84%, of the electron concentration, which is
still far too high for pure Alfvén-wave behavior.

Neutral impurities, being of very short range, would
be expected to yield far more nearly isotropic relaxation
frequency tensors than the ones which are consistent
with the data of Ref. 8.16 Dislocations in bismuth would
be expected to act either as donors, acceptors or dipoles.
If they act as donors or acceptors, they are ruled out
as the dominant mechanism in Alfvén-wave damping
by the arguments applying to ionized impurities. It is
difficult to estimate the scattering properties of dis-
locations which act as dipoles of unknown moment ;
therefore this mechanism for Alfvén-wave damping
cannot be ruled out.

Suppose for the sake of argument that the damping
is due to Frenkel defects. We first need to estimate the
energy of formation ¢ and the activation energy e, for
these defects in bismuth. The vacancy left by a Frenkel
defect in bismuth acts as a charged scatterer of Z= =5,
and the interstitial acts as a charged scatterer of Z= —+35,
and thus the defect has no net effect on the electron or
hole density in the plasma. Furthermore, the number
of Frenkel defects, nr, is equal to % the number N of
scatterers with |Z|=5 in the crystal. If N’ is the
number of atoms in the crystal, and N” the number of
possible interstitial sites, we may use the formula for
the equilibrium concentration of Frenkel defects!’:

nrp=(N'N")"2 exp(—e;/2kT). n

If we assume the sample at cryogenic temperatures con-
tains a concentration of defects equal to the equilibrium
concentration at § the melting point of bismuth (which

18 C. Herring, Bell System Tech. J. 34, 237 (1955).
" C. Kittel, Introduction to Solid State Physics (John Wiley &
Sons, Inc., New York, 1966), 3rd ed., Ch. 18.
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is 545°K), we obtain, for the sample of Ref. 8, the value
e¢,=0.87 eV. If we make the approximation that the
jump frequency w; is given by

(78)

where wp=120°K is the Debye frequency of bismuth,
and if we assume a jump frequency of one cps at T'=3%
the melting point, we obtain the value ¢, =0.68 eV.

The above analysis corresponds to the following
physical situation: The defects are frozen in the solid
at a temperature not far below room temperature. The
energy of formation is somewhat lower than that usu-
ally found in solids, corresponding to the somewhat
loose packing of the atoms in bismuth. The activation
energy is lower than the energy of formation, which is
always the case in a solid.

wj~wp exp(—e/kT),
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VI. CONCLUDING REMARKS

We conclude that serious consideration must be given
to the possibility of Frenkel defects being the dominant
scattering centers in very pure, well-annealed bismuth
single crystals at cryogenic temperatures. This possi-
bility suggests the desirability of carrying out galvano-
magnetic studies, including Alfvén-wave experiments,
on irradiated and/or quenched bismuth single crystals.

ACKNOWLEDGMENTS

The authors wish to thank Dr. George Williams, Dr.
B. Gale Dick, Dr. Peter Gibbs, R. Isaacson, P. Temple,
Dr. John DeFord, Dr. Owen Johnson, Dr. William
Ohlsen, and Dr. Gerry Miller for many discussions on
the subject of this paper.

PHYSICAL REVIEW

VOLUME 164,

NUMBER 3 15§ DECEMBER 1967

Phonon Frequencies in Copper at 49 and 298°K*
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Phonon frequencies for wave vectors along the principal symmetry directions in copper have been deter-
mined at 49 and 298°K from neutron inelastic-scattering measurements. In general, the temperature de-
pendences of the frequencies were found to be smaller for the higher-frequency modes. For the lower fre-
quencies (»<3X10% cps), the frequency changes measured are consistent with the 3-4%, changes estimated
from the isothermal elastic constants. For higher frequencies the relative changes are much smaller, often
being 1%, or less. Axially symmetric force models, which included interactions to the sixth nearest neighbors,
were fitted to the data and have been used to calculate a frequency distribution function g(») at each
temperature. A comparison of the temperature dependences of the moments of these distributions with
various Griineisen parameters leads to the conclusion that Cu does not satisfy the assumption of the quasi-
harmonic model. The Debye temperature ©¢ versus temperature curve calculated with the 49°K g(») is in
excellent agreement with results from specific-heat measurements in the entire 0 to 298°K range. A fairly
strong temperature dependence for the widths of some well-focused phonons was observed.

INTRODUCTION

EASUREMENTS of the coherent inelastic scat-
tering of neutrons by solids can give directly

the phonon dispersion relations »(¢g) and, in principle,
considerable information about interatomic forces.!
However, the analyses of such measurements are always
made on the basis of a harmonic theory, whereas the
measurements are usually obtained under conditions
in which anharmonic effects are not negligible. Although
one expects a harmonic analysis of the data to yield
qualitatively correct conclusions, the development of a
truly quantitative description of the interatomic forces
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t Present address: Faculty of Physics, Technion, Haifa, Israel.

i Present address: Atomic Energy Board, Pretoria, Republic
of South Africa.

1 See for example, G. Dolling and A. D. B. Woods, in Thermal
Neutron Scattering, edited by P. A. Egelstaff (Academic Press
Inc., New York, 1965), Chap. 5.

requires a better understanding of anharmonicity. Even
the most accurate interpolation formula for the dis-
persion relations will yield a frequency distribution
function g(») of dubious value, because anharmonicity
affects differently the various physical properties that,
in a harmonic theory, depend on g(»).2 To take a proper
account of anharmonicity in a force model analysis of
dispersion curve data is prohibitively complex, however,
judging from the theoretical work in the literature.3—%
Thus, at the present time it seems that a more fruitful
examination of anharmonicity involves the measure-
ment 'of the temperature (and pressure) dependences
of the energies and lifetimes of phonons as well as the

2 T. H. K. Barron, in Proceedings of the International Conference
on Lattice Dynamics at Copenhagen, 1963, edited by R. F. Wallis
(Pergamon Press, Inc., New York, 1963), p. 247.

# A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962).

¢R. A. Cowley, Advan. Phys. 12, 421 (1963).

8 E. R. Cowley and R. A. Cowley, Proc. Roy. Soc. (London)
287, 259 (1965).



