
PHYSICAL REVIEW VOLUME 164, NUMBER 3 15 DECEMBER 1967

Theory of the Damping of Alfven Waves in Bismuth Metal*t

D. H. BROWNELL, Ja.,t AND E. H. HYGH

Department of Physics, University of Utah, Salt Lake City, Utah

(Received 31 July 1967)

The theory of the relaxation frequency tensor for an ellipsoidal conduction band is developed, and calcu-
lated for the case of the electron and hole bands in bismuth assuming ionized impurity scattering. The
theory of Alfvbn-wave propagation is developed, and the ratios of relaxation times for several different
Geld orientations are calculated. The results are compared with McLachlan's data. Possible mechanisms
for the damping, including Frenkel defects, are discussed.

I. INTRODUCTION Ke begin in Sec. II by developing the theory of the
magnetoconductivity tensor an ellipsoidal carrier band
in the equation-of-motion formalism, postulating a re-
laxation frequency tensor. In Sec. III we use the
Boltzmann equation and the results of I to obtain
results equivalent to those of Sec. II for long relaxation
times. The propagation of Alfven waves is discussed in
Sec. IV, and the theory compared with experiment in
Sec. V.

IL THEORY: EQUATION-OF-MOTION
APPROACH

We consider an ellipsoidal band (i) of carriers of
charge q;, density n; per unit volume, and mass tensorI; in Sec. III we And that I is the tensor which con-
nects velocity and momentum at the Fermi surface:

p= IV) 6p= 6p ~

In the case of a nonparabolic band, I is in general not
the tensor which connects force and acceleration. We
assume the system is at T=O, so the formalism is

simplified for a nonparabolic band.
In the presence of a static magnetic field H, an

electric field of the form E exp( —ia&t), and a relaxation
mechanism described phenomenologically by a relaxa-
tion frequency tensor v, the equation of motion is, in
cgs Gaussian units,

mv= —icemv= q, t E—(1/c)H&& v]—mvv. (2)

This may be solved for v:
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where

(4)T= icom+ mv+ (q;/c)—H )& I,
with

(H)&I),t=p s,s,Hs.

Using the relations

j=n;q;v= o(') K,
we obtain

p&') =n;q~T —'

e C. Herring and E. Vogr, Phys. Rev. 101, 944 (1956).
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' "N a previous paper' (hereafter called I) the theory of
~ - the screening charge and potential of an ionized
impurity in bismuth has been developed. The purpose
of the present work is to apply the impurity potential
derived in I to the damping of Alfven waves in bismuth,
using the Boltzmann equation with the scattering in-
cluded via the Born approximation

Alfven waves are magnetohydrodynamic waves in a
plasma consisting of equal numbers of positive and
negative carriers. Their existence in interstellar space
was 6rst proposed by Alfven'; however, Buchsbaum
and Gait' were first to interpret certain experimental
data in bismuth in terms of Alfven waves. The waves
themselves were 6rst produced in transmission through
a bismuth slab by Williams, 4 and since then a number
of workers have reported Alfven wave experiments in
bismuth5 and antimony. ' In the case of bismuth, there
is a great deal of inconsistency in the results of diferent
workers. Disagreements of, say, 50% in the measured
values of Alfven-wave velocity for a given static H
field, microwave E field, and wave propagation vector
are not uncommon. There is no discernible pattern in
the experimental discrepancies; however, differences in
experimental geometry are almost certainly responsible. 7

We shall compare our results with the experimental
data of McLachlan, ' who measured Alfven-wave re-
laxation times in bismuth at low temperatures (4.2'K)
and "intermediate" magnetic fields (i.e., fields small
enough so that quantum oscillations in measured quan-
tities are small, but su6iciently high so that Landau
damping is absent).
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With v=0, this is equivalent to the result quoted by
I.ax, Button, Zeiger, and Roth."

IIL THEORY: BOLTZMANN EQUATION
APPROACH

where

V=CPq (9)

The method of Sec. II, while giving results equivalent
to those of the present section for

i i@i((pp, of course
gives no information about v itself. We now proceed
to a Boltzmann (kinetic) equation formalism and
calculate v from the properties of the relaxation mecha-
nism. We assume that the system is at T=O, that only
ionized impurities (charge Ze, density E per unit
volume) contribute to the damping, and that the effect
of the scattering may be regarded as a small perturbation.

We assume an ellipsoidal band of carriers in plane-
wave states exp(ip x/ip), normalized to unit volume,
for which

F (p) gP &—b Pr''
where e is energy and p momentum, both measured
from the band minimum. c~ is the inverse-mass tensor
"at the bottom of the band, " and F(p)=p as p~0. In
the case of a parabolic band, F(p)= p. Velocity and
momentum are related at the Fermi energy by

where p includes the spin index, and

fp(p) =1, p& op,
(15)

fp(p) =0, p) pi .
There will be present a scattering transition probability
5'» per unit time, for the carriers to scatter from state

p to state p'. Using the fact that

5"pp =8"p p, (16)

and the fact that the scattering is elastic, Eq. (12)
becomes

dfo-~f (p) =q-'v E + H-(vXV.)f (p)
C

+& E II'. [f (P') —f (P)3
p/

where X indicates the scattering is to be considered a
small perturbation; ultimately we set ) =1.We seek a
solution of the form

f.(P) =f. (P)+V.(P),
where fit and fig are linear in E.

Equations (17) and (18) then give

dfp qs—icpf»(P)= —q, v E +—H (vXV,)f»(p), (19)

and

C= — Cg=m

Thus at e=ep we have

—t'tpf (P)=—H (vXV,)f (p)
(yp)

C

+Q Wpy'[fit(P ) f»(P)j ~ (20)

6=constant

—-P C P
1

kdp, „)

It is easily shown that a solution to Eq. (19) is

d p

fir(p)= —q, v (mTp
—') E,

d6

where, referring to Eq. (4), we have set

(21)

E(x,t)=Ee"x *- " (13)

is propagating through the solid. In a damped wave,
K will be complex. We assume the distribution function
is of the form

Throughout this paper, I and c will be the mass tensor
and its inverse at the Fermi surface.

The Boltzmann equation" for the distribution func-
tion f is, omitting diffusion,

f ffrelds+fscattering' (12)

Suppose a static magnetic Geld 8 is present, and an
electromagnetic wave of the form

with
T=—To+mv

To= —ttpm+ (q,%)HX I

(22)

(23)

q;g dfp dA
v[v (mTp

—') E]dp
4x'h' de

(25)

Writing the current as

j=3l+~ig
= (eli'l+lttrsi'&) E, (24)

we obtain for the Grst quantity on the right-hand side

ii=2 q~f»(p) v

f(X,p) =fo(e,)+fl(p)e'" * "", (14)
We have made use of Eq. (21) and the fact that

"B.Lax, K. J. Button, H. J. Zeiger, and L. M. Roth, Phys.
Rev. 102, 715 (1956).

»J. M. Ziman, Electrons and Phonons {Clarendon Press, Ox-
ford, England, 1960), Sec. 7.3.

(26)
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(37)e &"= n—q'I1
dfp/de= —b(e —ep) (27)

since the integration over the surface of v Yl for //1
gives zero contribution.

If we now let the polar axis p, coincid. e with the
direction of H, we have

at T=O, we have

g
2 dA

j;= vLv (mTp-') Kj
4+ A' e

/gal

(28)
8—H (vt(V'~)=Q —,

c Bp

so that
(38)

ga dA
0,&'& = (vv) (m To-')

4~'A' 'V

(29)
where 0 is the cyclotron frequency:

where dA is the area element on the surface e =constant. immediately have
Since

Now it is easily shown that

vv = V~0. , (30)

g sII
0=

m~c

Using the familiar property of spherical harmonics,

(39)

where Vp; ——4x'h'n; is the volume in p space enclosed
by the Fermi surface. Thus

e&"&=a q~TO '

cil—I Zm=imI l
Bp

(40)

d p =m*dEdpgd p, (32)

where m*=m*(e) is the cyclotron mass about the polar
axis. Hence,

dA/v= m*dp, dq
=~ pz maxed (33)

where p, , is the maximum value of p, on the surface
e= constant, and

p, =p, p, —1&p&1. (34)

The use of such coordinates may at erst seem cumber-
some; however, their worth can easily be established in
our present study. For example, in Chambers coordi-
nates on an ellipsoidal Fermi surface, we have the
following spherical harmonic expansion:

in agreement with Eq. (7) for v=0.
We now treat Eq. (20). Assuming that f~~(p) is re-

stricted to the Fermi surface, we make use of an ex-
pansion of f~2 in Chambers coordinates. " If p, is the
polar axis (which need not be along the direction of
H), the coordinates are e, p„and y, and the volume
element is

after inserting expressions (36) and (21) into Eq. (20),
we obtain the result

dfo(e)
iraq; — v (mI1). K

q, 2 dfo(e)
H (v&Vy)(v (mI1) Kj

c de

dfo(')
+q;P 8'yp. (v' —v) (mT,—') K

I1' dl

l =0 ~=l
l gi

where the cl are constants linear in E.
We now use the results of first-order time-dependent

perturbation theory for the transition probability":

27'
Wpy ——

~ Vp, ~'B(e—e')B.;,
It

where V~ ~. is the matrix element of the potential of
one impurity, 0- and 0-' are the spins of states p and p',
and S is the density of impurities. For an ionized im-

purity of charge Ze in bismuth, V~ ~. is given by Eq.
(28) of I:

1

v*= Z ~* I'~-(~, ~) (35)

The value of such a relation becomes clear when we
expand f» in spherical coordinate form on the Fermi
surface: VI-j = Vou-I 2 ~', u-~

(p—p') «(p —p') '
(43)f~, (p)=q, [v (mg). K+ P P b) Yi„(p,p)] (36).

dc l =Om—l

The tensor I1 of course is to be determined. It can now
easily be seen from the above considerations that we

' J. M. Ziman, 8/ectrons and Phonons (Clarendon Press, Oxford'
England, 1960), Sec. 12.7.

"J.M. Ziman, electrons and Phonons (Clarendon Press, Oxford,
England, 1960), Sec. 3.1. The criteria for the applicability of this
formula are the same as those for the Born approximation, to
which it is equivalent. It is easily shown that the conditions
are satis6ed in the case of a screened charge in bismuth. See L. I.
SchifF, QNantum Mechanics (McGraw-Hill Book Company, Inc. ,
New Pork, 1955), Sec. 26.
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Witll

4mZeq, A2

(Ir—Ir') 'i (Ir—ir')

Here a~ is the lattice dielectric tensor of the solid, and
R;,s s is defined by Eq. (29) of I. Substituting expres-
sion (42) into Eq. (41), and integrating with respect to
v(dA/v)ds, the terms in Fr, for //I, give zero con-
tribution, and we obtain

where

y= Tp 'sTp ' (45)

&ig =&pa=
16m'A"n;

dA' di
I
I' — I'P'(P —P '), (46)

8

S=HlV. (49)

The connection of s, which is independent of H and
or, with v of Sec. II is immediate. Referring to Eq. (22),

rr&'& =rs;qz'(Tp+mv) '

=I;q s(To—'—To 'mv Tp
—') (47)

for sufficiently small v;;. Comparing this with the result
of the present section,

rr ~'r =ei "&+zrsi'& = rs;q;s(Tp —'—Tp
—'s Tp-'), (4g)

we see that

The presence of anisotropic relaxation greatly compli-
cates the form of e, so the solution of Eq. (52) is rather
cumbersome. Following Kaner and Skobov, "we go to
a two-dimensional formalism with the following choice
of axes:

Let s be the direction of I; this is consistent with the
discussion of the previous section since we will be com-
paring our results with data for the situation KIIH.
Then we can eliminate E, from the equations since,
from Eq. (51),

~ j=o (53)

where n, P=x, y, and

I
trap =o ap rrazzrzp/)rzz ~ (55)

When 8 is along the trigonal axis, c is diagonal, and
when. H and K are along a binary axis, we have

I
o .o,p I« I

o po „I . Thus in. both these cases, we have o p' =o p.
There is no such simplification of 0' when 8 and K
are along a bisectrix axis.

The anticipated result for the observed Alfven-wave
velocity ~~ is, in the limit of small v;;,

The result is then the secular equation of a 2X2 matrix:

cE
r p' — -bp=0,

4m')

vg =o)/Ki ——H[4)rrrf(m) (]+I/4orsrs)$ iIs (56)Thus we have established the validity of a relaxation
frequency tensor (dependent only on the band param-
eters and the properties of the scattering) for Alfven-
wave propagation with suf6ciently small damping.

Finally, in a solid such as bismuth, with several
ellipsoidal carrier bands, the total magnetoconductivity
tensor is given by

where f(m) is a function of the carrier masses, rs is the
electron (and hole) density, and we have set

(57)K= Kr+iKs.

g —Q rr(zr

where i ranges over all the carrier bands.

Here rsf(m) is the so-called "mass density, "and r plays
(50) the role of a relaxation time.

In the absence of damping, and with 0))co, an
ellipsoidal carrier band (i) with H along the s direction
has the following conductivity tensor":

IV. ALFVRN-WAVE PROPAGATION Iszs+ bz

Pyy—gy, b;

—g„b,
gygb,

brs/m„.

non, C2 &»
eg('= —— p —b.

JI' l.,b,
(5g)We now consider Alfven-wave propagation in the

"intermediate" field region, i.e., we have
I
K v

I
«or«Q,

but H (and hence 0) are sufficiently small that quantum
oscillations in the density of states near the Fermi
surface are negligible. In practice these oscillations are
always present; however, in the region under considera-
tion, they are easily averaged over in the data to obtain
such quantities as Alfven-wave velocities and relaxa-
tion times. '

Maxwell's equations, neglecting displacement cur-
rents, lead to the equation

where we have kept only terms of highest order (except
in g,y and 0„,where the terms in b; cancel out in the
total conductivity tensor). Here,

p» —myy my' //mug ~
2/

liar) =mzzmpz/mzz mzv )

2/I „y——m..—m.„'mg. ,
rl„=m„,/m„,
rl„,=m../m. ..

b; =iq;H/prc.

(59)

(5&)j= (ic'/4)ror)KX (KX E) =eE

so that the dispersion relation of the wave is the
determinantal equation

I o;,+ (ic'/4~~)(K 6;, K,K,) I
=O. —

"E.A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz.
45, 610 {1963) )English transl. : Soviet Phys. —JETP 18, 419

52 {1964)g.
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The condition Q&&co implies that

I &'I» I ~' I. (6O)

either
f(m)=ps..',g(s, m)= P.,', Efle,

f(m) =~-' g(s m) = 4', Elis (72)Now using Eqs. (58), (59), and. (48), we obtain for the
single car xlcl ellipsoid

N,C'4*
ay(z) =

B' g,~p,.

Actually, I has a small component in the s direction
unless 0 s'=o s. When ei' is not diagonal, E will have
nonzero x and y components in a normal mode; in this,b; 61

i y,b;— X„,.X„b,~.
case the secular equation (54) must be worked out and
compared with Eq. (66) to obtain f(m) and g(s,m).
Expressions for the p s' and g s' for each of the experi-where again wc avc ept on y terms o Ig est or er,
mental arrangements under consideration are given in
Table I in terms of the IDRSS tensor' for ellipsoid A:s 2sg st'

$gy= Sgy+Syzziyz+Sgz'ggz Szzzigzziyz z

2
$yy =Sgg 2Sgzriyz+Szz Iyz

(s„,—s„zi..)/m. z z

(Sgz Szphrz)/m zzz
2

~I~g, =—S„mg, .

mI 0 0'
m('~) = 0 m2 m4

E 0 584 1@3.(62)
the hole mass tensor,

3fj 0 0
m&~) = 0 My 0.0 0 Ms.

wow when th«&') arc suited over all carrier bands,
and transformed according to Eq. (55), the result is the 8 tensor of ellipsoid 3,

O' =EFi +ByI

where eq' and 02' are of the form

sy
s(2) 0

.0
0
$2

$4

0

and the s tensor for the holes,gONC (Pgg Pgw )
~Pgw Pww / Sj, 0 0

s(&)

.0 0 S3.zc'(( 'Z. ,')..
II' &hy' kwy'

(65)
These tensors are given in the crystal system j.=binary,
2=biscctrix, 3=trigonal; their form is determined by

Ln is now the total electron (or hole) densityj. The crystal synunetry.
dispersion relation, Eq. (54), then yields

y =1t ly +yy+ 2jg iit y

4g(kg 4Vria)n

f(m)+ g(s,m),
B2 Q'2

where f(m) is a function of the m,z, and g(s,m) is a
functIon of the s;; and ~g.

When i&if» l&wl we obtam

It,= t (47'~'I/Q') f(m)]'I'L1+g'(s m)/8''f'(m) 7, (67)

so that, from Eq. (56),

wg ——P(4zrN f(m)L1+g'(s, m)/4aPf'(m) j)—"'. (68)

Thus, the effective relaxation time v is

r= f(m)/g(s, m). (69)

The application of perturbation theory to the 3olt2;-
mann equation, of course, depends on the condition

0)7'PPi, (m)

%hen e~' is diagonal, wc have for the normal modes

v. ml. cULATroms AND Drscvsslom
The calculation of s, Eq. (46), was done on the

Univac 1108 computer using the band parameters of
Smith, Baraff, and Rowell (SBR)." The calculation
was carried out in dimensionlcss P space as described
in the discussion in I, Sec. III. The results for si~& and
s(~) arc as follows: sy=2.95, $2=24. j., s3=5.89, s4
= —1.38, Si=69.3, S3=15j. 0 Z'S& j,0 "

g sec ' where
g Is 1n units of CIQ . These VRlucs and thc SBR Inass
parameters may bc used in the expressions of Table I
to obtain the ratios of the various v's for the different
experinMntal arrangements of Ref. 8. The result is as
follows: r(Hff1, Eff2):r(Hff1, Eff3):r(Hff2, EII1):r(Hff2,
Ell3):r(HII3 EII1 «2) =1»:1.68:1»:o»:1oo.

The relaxation times of Rcf. 8 are shown in Fig. 1
together with a Qt of the above calculated relaxation
times. The 6t appears good, as least by the standards
of typical theory-experiment its for bismuth. This Qt
corresponds to a value of Z'X=1.16&(10"cm '. If we
assume that IZ I

=1, the concentration of ionized im-
j& G. E. Smith, G. A. Bal'aff, and J. M. RomcB, Phys. Rcv. 135,

A1118 (j.964}.
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purltlcs wollld bc about 4.2% of tllc clcctl'011 (ol' hole)
concentration. Unless the sample contained very nearly
equal numbers of acceptor or donor impurities, then it
would have been uncompensated far too much for pure
Alfvcn-wave behavior to result, in the range of mag-
netic Gelds (5-20 kG) and microwave frequencies
(300-2000 Mc/sec) used in the experiment.

TmLE I. The y p' and g p' for three different experimental
geometries. The at: and P here refer to principal crystal axes:
j.=binary, 2 =bisectrix, 3= trigonal.

.IO.

X8.

06

Hilt
Ell3 W'llP

E Il i
H II 1

W ll3

Hll3
El!2

E ll3

t~(H))trigortat: t aa' ——t aa' ——'. (mt+ma} —sa(maa/ma)+34'a

g„'= p aa'= ~a( s+ s)asa(m—4/ma)+last(maa/maa)+St

FIG. i. Fit of calculated relaxation times vrith the data of Ref. 8.
Points anth error bars, Ref. 8; x, calculated.

k [H [bimary: tata' =ma — +34 a

5$j.+3' 2

yg2 8 tnym2

@33 = + -+3Ej.
3 5$I+3tt$2

Jtl23 f54I

twi+3m2

f54 ma
gaa'=sa —4s4 +2(sa+Bsa) — It+St

~i+3tt32 m, +Bmaj
tÃI, 552 ma —ma )a

gaa'=-', (st+st) —(sa —sa) +k(sa+Bsa) —
I
+St

)ST +3@$2 ma+Bma j
tNI tl2 tl$4 ma(ma —ma)

$23' =S4 + ($1 sa) (s],+3$2}
fÃ$+3tw2 fJgy+3tÃ2 (ma+Bma)a

tip 8 tnI.x@2

k)[H)[basectrag: ttaa'= —+- — +3ia
3 3 30$j.+5$2

F4 854
—$3 fS4 f$4

f52 358$+ttl 2

tp$42

+9'2—
tN22

( ma )a 4 ma mt)
+-:(»+s)I I+S+2-

(Bm, + maj 3 Bma+ma Bmaj
tN4 tt$4 $4 4 $4

X ~3~x —4(»j.+&2) +-
tn2' (3tN, +m2)2 3m2 3 3mg+m2

x +- -+—
I

+ --,+-(
3 1 1) a sa 8 Bsa+sa Sa

+
Bma 3 Bma+ma Mt j Bma 3 (Bma+ma)

m4 m4$'( 1 3
+- +—

I

l,B Bm, +ma Bm,j t,Bma 3 Bm, gama u, j

15j, 582 SlI, 5$2
baa' =-,'(st+st) —(st —sa) +$(Bsa+sa)

I
+St

3583,1&2 l, Bma+ma

tm4 2 t54
PIy =f53— — — +~3

3tt32 3 3ttf j.+~2

(4 m4 ma)a( 1 8
+I — —

I I
+- +—

I(3 Bm&+ma Bmaj (Bma 3 Bma+ma Ma j

As it is highly unlikely that ionized impurities are
responsible fol thc observed daIQping of Alfven vravcs,
the other possibilities are (a) neutral impurities, (b)
dislocations, and. (c) Frenkel defects. Lattice vacancies
(or interstitials) alone are ruled out since they act as
acceptors (or donors) in Bi. If the above relaxation
times were due to lattice vacancies, this would corrc-
spond to an excess concentration, of holes over electrons
of about 0.84% of the electron concentration, which is
still far too high for pure Alfven-wave behavior.

Neutral iIQpuritics, bclng of vcly sholt range vfould
be expected to yield far more nearly isotropic relaxation
frequency tensors than the ones which are consistent
with thc data of Rcf. 8. Dlslocatlons in blsDluth would
bc expected to act either as donors, acceptors or dipoles.
If they act as donors or acceptors, they arc ruled out
as the dominant mechanism in Alfven-wave damping
by the alguIQcnts applying to lonlzcd lIQpulltles. It, ls
di6icult to estimate the scattering properties of dis-
locations which act as dipoles of unknown moment;
therefore this mechanism for Alfvcn-vravc damping
cannot be ruled out.

Suppose for the sake of arguIQcnt that the dampjng
is due to Frenkel defects. %e 6rst need to estim
energy of formation ~f and the activation energy ~ for
these defects in bismuth. The vacancy left by a I'renkel
defect in bismuth acts as a charged scatterer of Z= —5,
and the interstitial acts as a charged scatterer of Z =+5,
and. thus the defect has no net effect on the electron or
hole density in the plasma. I'urthermorc, the number
of Frenkel defects, ep, is equal to ~& the number E of
scatterers with IZI =5 in the crystal. If /t'/' is the
number of atoms in the crystal, and g" the IluIQber of
possible interstitial sites, we may use the formula for
the equilibrium concentration of Frenkel defects":

Nr= (1P1P')'ta exp( —eg/2kT). (/'/)

H @re assume the sample at cryogenic temperatures con-
tains a concentration of defects equal to the equilibrium
concentration at a the melting point of bismuth (which

~e C. Herring, Bell System Tech. J. 34, 23'j (1955)."C.Kittel, Introdlctt'on to Sotlt State 2'ttysacs Uohn Wiley 8r
Sons, Inc., Neer York, 1966), 3rd ed. , Ch. j.8.



is 545'K), we obtain, for the sample of Ref. 8, the value
of=0.87 eV. If we make the approximation that the
jump frequency cu; is given by

oI;=ten exp( —e+/kT),

where cvD=120'K is the Debye frequency of bismuth,
and if we assume a jump frequency of one cps at. T=-,'
the melting point, we obtain the value ~=0.68 eV.

The above analysis corresponds t,o the following
physical situation: The defects are frozen in the solid
at a temperature not far below room temperature, The
energy of formation is somewhat lower than that usu-

ally found in solids, corresponding to the somewhat
loose packing of the atoIQs ln bismuth. The actlvatlon
energy is lower than the energy of formation, which is
always the case ln a solid.

VI. CONCLUBDTG REMARKS

%e conclude that serious consideration must be given
to the possibility of Frenkel defects being the dominant
scattering centers in very pure, well-annealed bismuth
single crystals at cryogenic temperatures. This possi-
bility suggests the desirability of carrying out galvano-
magnetic studies, including Alfven-wave experiments,
on irradiated and/or quenched bismuth single crystals.
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Phonon Frequencies in Copper at 49 and. 2W'I*
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Phonon frequencies for wave vectors along the principal symmetry directions in copper have been deter-
mined at 49 and 298'K from neutron inelastic-scattering measurements. In general, the temperature de-

pendences of the frequencies were found to be smaller for the higher-frequency modes. For the lower fre-
quencies (r &3X10"cps), the frequency changes measured are consistent with the 3-4% changes estimated
from the isothermal elastic constants. For higher frequencies the relative changes are much smaller, often
being 1 /o or less. Axially symmetric force models, which included interactions to the sixth nearest neighbors,
were titted to the data and have been used to calculate a frequency distribution function g(p) at each
temperature. A comparison of the temperature dependences of the moments of these distributions with
various Griineisen parameters leads to the conclusion that Cu does not satisfy the assumption of the quasi-
harmonic model. The Debye temperature 8& versus temperature curve calculated with the 49 K g(p) is in
excellent agreement with results from specific-heat measurements in the entire 0 to 298'g range. A fajrly
strong temperature dependence for the widths of some well-focused phonons was observed.

INTRODUCTION

"KASUREMENTS of the coherent inelastic scat-
J. ~ . tering of neutrons by solids can give directly
the phonon dispersion relations I (q) and, in principle,
considerable information about interatomic forces. '
However, the analyses of such measurements are always

made on the basis of a harmonic theory, whereas the
measurements are usually obtained under conditioris

in which anharmonic eQects are not negligible. Although

one expects a harmonic analysis of the data to yield

qualitatively correct conclusions, the development of a
truly quantitative description of the interatomic forces

~ Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.

f Present address: Faculty of Physics, Technion, Haifa, Israel.
)Present address: Atomic Energy Board, Pretoria, Republic

of South Africa.
' See for example, G. Boiling and A. D. B. Woods, in Thermal

E'eltron Scattering, edited by P. A. Egelsta6 (Academic Press
Inc. , New York, 1965), Chap. 5.

requires a better understanding of anharmonicity. Even
the most accurate interpolation formula for the dis-
persion relations will yield a frequency distribution
function g(I ) of dubious value, because anharmonicity
affects differently the various physical properties that,
in a harmonic theory, depend on g(I ) s To take a proper
account of anharmonicity in a force model analysis of
dispersion curve data is prohibitively complex, however,
judging from the theoretical work in the literature. ~-5

Thus, at the present time it seems that a more fruitful
examination of anharmonicity involves the measure-
ment of the temperature (and pressure) dependences
of the energies and lifetimes of phonons as vrell as the

' T. H. K. Barron, in Proceedings ef the International Conf@ence
on Lattice Dynavsics at CoPe~hagen, D'63, edited by R. F. %allis
(Pergamon Press, Inc., New York, 1963), p. 247.

3 A. A. Maradudin and A. K. Fein, Phys. Rev. 128, 2589 (1962).
4 R. A. Cowley, Advan. Phys, 12, 421 (196&).'E. R. Cowley and R. A. Cowley, Proc. Roy. Soc. (London)

287, Z59 (1965).


