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The screening-charge density and the potential matrix elements of a axed charge in bismuth are calcu-
lated using a density-matrix approach. Numerical values of the charge density in the three principal crystal
directions are obtained using the band parameters of Smith, Sarah', and Rowell. The resulting charge-
density oscillations are interpreted on the basis of the band structure of bismuth.

I. INTRODUCTION

'HE present study vas undertaken ln order to
explain from 6rst principles the Alfven-wave

relaxation-time data of McI.achlan. ' Neither these data
nor, for example, the dc resistivity data of Zitter' can be
explallled 011 'tile asslllIlp't1011 of (unequal) Isotloplc
relaxation times for the electron and hole portions of the
Fermi surface of bismuth. We have thus undertaken to
treat the scattering of electrons and holes by ionized
impurities; even in the purest obtainable bismuth
samples impurity scRtter1ng seems to be dominant at
temperatures near and below 4.2'K.

This paper will treat the screening of an ionized
impurity using the self-consistent 6eld (SCF) approach
due to Ehrenreich and Cohen', for the isotropic electron
gas, this method is knovrn to yieM results equivalent to
those obtained from the random-phase approximation
(RPA).' A subsequent paper' will apply these results
to the damping of Alfven waves, using the Boltzmann-
equation formulation.

The calculation of the screened potential and the
induced charge density due to a 6xed-point charge in
the isotropic electron gas at absolute zero has been
carried out by Langer and Voskoe using two diagram-
matic approaches, one due to Hubbard~ and the other
to Gell-Mann and Brueckner. a The latter approach
gives results identical to those of the SCF and RPA.
In particular, one obtains, for the induced charge
density at large distances from the impurity, the char-

* Supported in part by the U. S. Air Force 0%ce of Scientific
Research, Grant No. AF-AFOSR-901-65 and in part by the Na-
tional Science Foundation.

t' Based on part of a thesis submitted by D. H. Brownell, Jr.
in partial ful6llment of the requirements for the Doctor of
Philosophy degree at the University of Utah, 1967.

f National Science 1 oundation Graduate Trainee. Present ad-
dress: Department of Physics and Astronomy, Louisiana State
University, Baton Rouge, Louisiana.

l D. S. McLachlan, Phys. Rev. 147, 368 (1966).
s R. N. Zitter, Phys. Rev. 127, 1471 (1962).
I H. Khrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

D. Pines, Elementary Excitutzons in SoRB (%. A. Benjamin,
Inc. , New York, 1963).

& D. H. Brownell, Jr. and K. H. Hygh, Phys. Rev. 164, 916
(1N7).

~ J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959)

7 J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957);
A243, 336 (1957); A244, 199 (1958).' M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).

164

k, (trigonal)

)1

kg
(binar

oT
l

I

l

Les
I

/L
r t

L+

- ka
(bisectrix)

FH;. 1.The Brillouin zone of bismuth. The electron half-ellipsoids
at I and the hole half-ellipsoids at T project into the zone.
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acteristic "Friedel oscillations":

NI(r) =Cr 'cos2k pr,
—

where kg is the Fermi wave number m.d C is a constant.
A similar result has been obtained by Friedel' using an
independent-particle approach. We will Gnd the asymp-
totic limit of the charge density in bismuth to be the
sum of terms of the form of Eq. (I), but with a some-
what anisotropic character, as one expects from the
rhombohedral sylI1111etry of bismuth.

In recent years many experiments have been carried
out with the aim of obtaining a detailed knowledge of
the structure of the hole and electron conduction
bRnds ln bismuth. We will not go into greRt detail
about the relative merits of these experiments and the
reliability of the conclusions drawn from them. We
merely mention that it appears fairly certain that the
Fermi surface consists of three electron ellipsoids with
band minima located at points I. in the zone (see Fig.
1), and a hole ellipsoid at point T. In any case, for the
purposes of this paper the location of the band minima
is immaterial, except that we assume the minima are
separated, in h. space by distances large compared to the
maximum dimensions of any of the carrier ellipsoids.
We also mention the very close agreement between the
band parameters obtained by Smith, 8ara6, and
Rowell (SBR)Is from magnetoresistance measurements,
the magnetoreQection data of Maltz and Dresselhaus, "
Rnd the magnetoacoustic data of Sawada and Burstein. 12
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The results of these three experiments are successfully
interpreted on the basis of the so-called two-band model

proposed by Lax"; therdore, we will use this model for
our calculations.

In the two-band model, the electron energy ~ in the
conduction band (measured from the band minimum)
is given by

(2)e(1+e/eg) =-'A'k ts&o. k

c=-'A'k n&~& k, (4)

where e and Ak are measured from the hole-band

minimum. The form of e(~~ is, by crystal symmetry,

n~g 0 0
0 n 0 (5)
0 0 nlls

where eg is the gap energy (i.e., the energy difference
between the band extrema of the conduction and
valence bands), Ak the crystal momentum measured
from the band minimum, and e&" the inverse mass
tensor of ellipsoid i at the bottom of the conduction
band. In the system of axes i=binary, 2=bisectrix,
3= trigonal, e has the form

ng 0 0
0 ng n4 (3)
0 n4 ne

for one ellipsoid. (which we call ellipsoid A); the erat&

for the two other electron ellipsoids (B and C) are
given by rotating the tensor in Eq. (3) by &120', re-

spectively, about the trigonal axis. The hole ellipsoid is
assumed parabolic, with hole energy given by

The band parameters obtained by SBR are given in
Table I. The hole energy e& plays the role of the Fermi
energy for the holes.

To calculate the impurity screening and transport
properties of bismuth, we need to know only the band
parameters of Table I, and in addition, the lattice
dielectric tensor s~. If the SBR parameters are assumed,
then a value of e~ ——100 is consistent with the infrared
absorption data of Soyle and Srailsford. "We shall use
this value, which is current in the literature, and in the
numerical calculations we shall assume that the tensor
a~ is isotropic. Thus our calculation uses nine inde-
pendent parameters, all of which are taken from
experimental data.

II. SCREENING OF AN IONIZED IMPURITY

We consider the electrons in bismuth at T=0. To
begin with, we take the electron and hole half-ellipsoids
shown in the reduced zone scheme in Fig. 1, and connect
the band extrema through appropriate reciprocal lattice
translations. The result is shown in Fig. 2, In the spirit
of the SCF approach, we now consider a system of
electrons in states ik, l)=Is te'a'*, which are eigen-
functions of a Hamiltonian Hp with energy ep&, &, and
are normalized to unit volume. Here Nk, ~ is a Pauli
spinor, k is the electron wave vector, and i is the band
index. For generality, we assume the electrons are in
a medium with lattice dielectric tensor e~. In this
section, k includes the spin index.

We consider next the detailed nature of the single-
electron density matrix p. If we add to Hp a perturba-
tion potential

Hy(x, t) = V(x)e' t +tts—
and expand the density matrix in the form

+p &( iry+s/s) t—
(6)

(7)

11
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where pp is the unperturbed density matrix, then the
equation of motion for p, namely

iAp= [B,p7,

yields, on dropping the second-order term LHr(x, tt), pr7,
the expression

(Attt+is)pl= [Hs P17+PV P07

kz (trigonal)

Ji

Tmx,x I. The bismuth band parameters of Smith, Saraff, and
Rowell. ' The electron n; are at the bottom of the band. The 6rst
eight parameters listed are independent; the other two may be
derived from them.

kg

(bisecfrix)

FIG. 2. Connected electron and hole ellipsoids in bismuth,
looking (a) along the trigonal axis, and (b) along the binary axis.
Distances between band minima are not drawn to scale.

n1=8850mp '
n2= 5 742mp '
n3 =337.0mp '
n4= 2527mp '

10.9 meV

a See Ref. 1D.

F1=15.63mp ~

nas= 1.449mp 1

kg=15.3 meV
~g =27.6 meV
e= 2.75X10"cm '

tt ht. Lax, Bull. Am. Phys. Soc. 5, 167 (1960}. tt lilt. S.Bpyle aud A. D. Brailsford, Phys. Rev. 120, 1943 (1960).
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(kl /
~
k+ q, /') = (kp, /

~
kp, /') =0,poik, /&= fo(ook, I) )k,/&,

Here s is the adiabatic "switching-on" parameter; in tron band while the other is the valence band, and both
each expression the limit s ~ +0 is assumed. Using the vectors lie near the band extremum ko. In this case,
fact that

where fo is the distribution function, and
Hoick,

/&= «g, Iik, /),

we can take matrix elements of both sides of Eq. (9):
(AM+is)(k, /~loI~ k+q, /')

= («..I
—«.+, , I )(k, /I/Ilk+q, /')

+CD(«.+, , I )—fo(«. , I)j(k, /I Vlk+q, /'& (12)

Thus,

«, /I. Ik+q, /'&

fo(«.+p, I )—Io(oo~, I)
(k, /i V

i
k+ q, /'&. (l3)

«k+p, I —«I, I+/IOI+O~

The indices l and /' range over all the bands in bis-
muth. YVe now wish to show that we need retain only
those matrix elements of pI for which (a) /=/' (/' is
OIlly the llole ol' coIlclllctlo11 balld), alld (b) k aIlcl k+ q
are both in the neighborhood of the same band
extl emulTl.

Assuming that V(x) is suKciently smooth, and of
long-range character, the matrix element in the right-
hand sid.e of Eq. (13) may be approximated:

(k, /i v
t k+q, /'&= ug, Itgg+, I e'& *v(x)dx

since the band-edge wave functions are orthogonal.
Now, if /=P is any band other than the hole or con-

duction band, the band is either full or empty, in which
case Eq. (13) is identically zero.

If, say, /= l' is the conduction band, then one of the
vectors k and k+ q must be inside an electron ellipsoid
and the other outside the ellipsoid for nonzero matrix
element of IoI. Suppose k lies inside ellipsoid i Sin. ce V,
falls o6 rapidly, and since the energy denominator
increases for larger, we introduce little error if we use the
energy-versus-momentum relation (2) over all k space
(k being measured from the band minimum of ellipsoid
i). A similar argument applies for k+q inside the
ellipsoid and for the hole ellipsoid,

These arguments show that the only sizable matrix
elements of pI are those where k and k+q are in the
same band and are in the neighborhood of the same
band extremum; moreover, they show that the matrix
elements may be evaluated assuming the validity of
Eqs. (2) and (4) over all k space. Thus we may reduce
p~ to four independent density matrices p~~, p~~, p~q,
and p~II, the erst three applying to the three electron
ellipsoids and the fourth to the hole ellipsoid. Utilizing
these results, we have, setting co=0,

fo(«o+, ,,) fo(«I..')—
(k~1 „~k+q&=

' '

V„
«k+p, I «k, i+&&

where

= (k, /
i k+ q, /') V, ,

(k, /~ k+q, / )=5~ Qk, I Qp+p, pdx,

where k an.d k+q have the same spin; otherwise the
(14) matrix element vanishes.

Our anal step is one where we look at the details of
the potential V(x). We take the point of view in which

(13) the potential V(x) consists of a "bare" potential Vo
plus a screening potential V, , so that

v, is the unit cell volume, c is a unit cell, and where we
have expanded V(x) by

V(x)=p e 'p'V

Vp= Vop+ V.,
The induced electron density e~ is

(19)

The summation in Eq. (16) extends over all q space;
the approximation of Eq. (14) assumes V, is negligible
when I is outside the zone. For an ionized impurity
in the isotropic electron gas, V~ approaches a nonzero
limit as q ~ 0, and goes as q

' for large q. Ke assume,
and indeed will find, this behavior in bismuth.

Referring to Eq. (13), and setting op=0 for a static
impurity potential, we first suppose 1+1'. Then we
assume that either (a) q is suffIciently large that Vo is
negligibly small, or (b) if q is small, then the bands are
well separated and the large energy denominator makes
the right-hand side of Eq. (13) negligibly small. The
exception to (b) occurs if either k or k+q is in the elec-

III——p e *'p'*p(k~pI;jk+q)—=p e—'& *n „(20)
and V, and m& are related by the Maxwell equation

I7 sI I
—Io'(V,/ —e)j= —4m-eIII.

Thus,

so that
0 ~ol+q, s

—
0 ~ok, ~

k IoI; k+q =
&Ol+q, ~

—~ok, i+&~

y(Vp, +(4n.e'/q sI q)nIo). (23)

Substituting (20) for the left-hand side of (23) (after
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summing over k, i), we have

O &ok+q, ~ 0 &Ol, ~

nrq ——P
k, i eok+qie, ok, i+$$

I'IG. 3. Volumes in k space for
summations in E;,q.

III. INDUCED ELECTRON DENSITY NEAR
AN IONIZED IMPURITY

To calculate e&q or V, we must evaluate the sums
E;q. Treating electron ellipsoid z first, we observe that
we get nonzero contributions to the sum R,q from only
those vectors k (now measured from the band mini-
mum) and q such that either k is inside ellipsoid 2 and
k+21 outside, or vice versa. We can then separate R;»:

keS) eok+q, ) eok,i+2$

and hence
&&(Voq+ (47re'/q e[ q)niq), (24)

Vo»Z~»
k)S2 eok+qieo, k, j+2S

(29)

B$q
1—(42re2/q ei q) PR;q

where
fo(eok+q, ~)

—fo(eok, i)
8;q—=

eok+q, q
—eok, i+2S

Using Eq. (22), we have

I/„= (4 e'q/r21 ei r1)n2»)

where k does not include spin, the factor of 2 taking
Kramers degeneracy into account, and where the re-
gions S& and S2 for a typical q are shown in I'ig. 3. As
in the case of the isotropic electron gas, it can be shown
that the imaginary part of R,q is zero, that the two sums

(26) in Eq. (29) are equal and that the range of k in the
second sum may be extended over the entire ellipsoid ~

without altering the result. Thus,

(27)

so that the perturbation potential matrix element is
R;q= —4 Q

k&~ ~ok+q, ;—~Ok'

Voq
Vq=

1—(4~e'/21 ei 21) p Z;q
(28)

2Ã 60k+q z 60k i
(30)

Equation (28) will be used in a subsequent paper' for
calculating Alfven-wave relaxation times in. bismuth.

The electron energy is given by Eq. (2). Inserting
this expression into Eq. (30), we obtain

JR&q
qr3eg L1+ (2/2/eg) (k+ 21)

.22(i) . (k+ q) jl/2 L1+ (2/22/eg)k. 0/(i) .k jl/2
(31)

Now we make a coordinate transformation into the
principal axis system of e('~, letting

where the volume 5&' in K space is a sphere of radius

(3&)Ep = 2I (ep/eg) (1+02/eg) ji/2

(32)E;=—Iqk;I 2n, ,&*)/eg]'/2

Q;—=f q, I
2~„/')/egg'.

dk=I2-'L /gI8n& )I j"',
This means

where
&'.= —(1/ '&')L /2I ' 'Ij'"I(Q)(34) (38)

(35) wl ere Q—= IQ I, and

Using spherical coordinates with polar axis along Q,
(33) after carrying out the angular integration in Eq. (36)

we have

Then E;q becomes
I(Q)=—Q

' &d&{L1+(&+Q)O'"—I:1+(~&—Q)'j"2

I eg'/2I~")
I
j'"

2x'h'&g

X (36)
s ~ C1+ (K+Q)']'"—I:1+K'j'"

+ (1+E') lnfL'1+ (E'+Q)'g'" —
I
1+8'j'/2]

(1++2) ln[L1+ (It Q)2)&/2 L1++2j&/2]) (39)

For the hole ellipsoid, R2rq has the form of Eq. (29).
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Since the imaginary part of R~~ is zero, we may go from the "electron" picture of the hole band to the "hole"
picture and use Eq. (30) with the expression of Eq. (4) for the energy. Thus,

~a~=-
2s' s, (h'/2)(k+q) e&~'(k+q) —(fr'/2)k e&~&.k

In the principal axis system of e&~&, we deine

E,'—= i't'pe;;&~& pipe;,

Q.~ i'rPe, , (rr~ jl/2g (42)

space with

(48)

where mo is the free-electron mass. Using dimensionless
con6guration space units

which gives

we have
R—= (2mppg)'I'x/i'r, (49)

(2/le' 'I)"
XSA3

(43)
, (K'+Q')' —K"

where 52' is the entire sphere into which the hole
ellipsoid has been transformed. This expression is
proportional to the familiar I.indhard result:

~r 2 I(Q')+~~J(Q~)I (R)=Z(8s')—' d P e'~'"
I"+Ir.2 I(Q')+~~J(Q~)

(5o)

where the summations are over ~=A, 8, C, where

~~p= —(I/2~'&')(2/I e'"'IP'J(Q'/E~'), (44)

J(y) =1+(1/y) (I—y'/4)»
I (y+2)/(y —2)

I (45)
and and

(46)

Pr= (2/[e&"
f
eg)'I'(e'/~@pmp),

~~= (2.~/I e'~' I)'I'(e'/~op, mppg),

Q =L4mpP e~'& P]'"

Qg ——Lmp(pg/err)P e~~~ Py'.

(s1)

(52)

(s3)

The function J is independent of the band structure
of the ellipsoid band to which it applies, whereas ex-
pression (39) for I contains the parameter E~. The
reason for this is that the expression (2) for the energy
of the nonparabolic band contains an extra parameter
pg. The function I(Q) has a singularity at Q=2E~,
just as J(y) has a singularity at y=2. Equation (39)
for I can be integrated analytically; the result is
lengthy and will not be quoted here. The asymptotic
expressions for I and J for large arguments are given in
the Appendix. A plot of I(Q) for E p ——4.498 (using the
SBR parameters) is shown in Fig. 4, with a plot of
J(y) for comparison. Alternatively, the expression (39)
can be integrated numerically to obtain I if one chooses
to do so. If Q&2E~, the singularity in the integrand at
E=Q/2 must be avoided and an approximate analytical
integration done over the singularity.

For computational purposes, we used the analytic
expression (45) for J(y) in the region 0&y&16, and
the asymptotic expansion (A2) for y&16. The analytic
expression for I(Q) was used for 0(Q&11,a numerical
integration of Eq. (39) for 11(Q&57, and the asymp-
totic expansion (A1) for Q) 57.

The induced electron density around an ionized im-
purity of charge Ze is given by the Fourier transform
of Eq. (25), using

20.73—
20.0

15.0-

(3' 10.0-

5.0-

0
0

l

4.0 8.0 8996 12.0
l

16.0

I I

05-

The units of n~ in Eq. (50) are A-P(2mpeg)PI'. Here we
have assumed that a~ is isotropic.

Equation (50) for e~ must be evaluated by a three-
dimensional numerical integration. Ke have done this

Vp, ———4~Ze'/q ei q.
t

1.0
l

2.0
t

3.0
1

4.0

The integration was carried out in a dimensionless P Fro. 4. (a) Plot of I (Q) for Zg =4.498, and (b) plot of J(y).
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TABLE II. Values of e& (r), with r along the principal crystal axes,
for 2=1. Units of nj are 10"cm 3.

-50-

-tpp-

-l50-

E

O
100-

50

-25-

IOO-

-25-
~000 — a

r(A)

FIG. 5. Plot of a&(r) for (a r!!binary, (b) r!!bisectrix,
and (c) r trigonal.

S] Sg
r (It) (r!!bin) (r!!bis)

20 127 800 126 900
40 98 490 97 350
60 75 390 74 020
80 56 550 55 030

100 41 290 39 720
120 29 270 27 710
140 20 140 18 620
160 13 510 12 070
180 8939 7610
200 5979 4781
220 4194 3137
240 3188 2279
260 2640 1878
280 2308 1690
300 2034 1550
320 1736 1375
340 1390 1140
360 1014 860
380 646 572
400 323 315
420 76 121
440 —82 4
460 —155 —39
480 —163 —26
500 —129 20
520 —80 73
540 —38 115
560 —15 132
580 —15 121
600 —33 88
620 —60 45
640 —85 2
660 —98 —29
680 —95 —45
700 —75 —43
720 —43 —28
740 —5 —6

Sg
(r!!trig) r Q)
117300 760
80540 780
56 270 800
40 530 820
29 820 840
22 050 860
16310 880
12 080 900

8907 920
6487 940
4667 960
3313 980
2302 1000
1560 1020
1037 1040
676 1060
433 1080
283 1100
201 1120
160 1140
146 1160
147 1180
154 1200
157 1220
156 1240
149 1260
135 1280
116 1300
95 1320
73 1340
49 1360
26 1380

7 1400—8 1420—19 1440
—25 1460—27 1480

30
57
72
74
65
51
36
25
19
19
23
28
32
32
28
19
6—7—18—26

29—28—24—18—12—9—7—8—10—12—13—12—9

3
8

12

17
32
38
34
21

—11—21—24
—20—12

9
15
17
14

7

—8—12
—12

9

2
7

10
10

7
3—2—6—8—7—5—2
2

—25—21—15—7
0
7

12
14
14
13
11
8
4.

1—3—5—7—8

—8—6
—3—1

2
3
4
5

3
2
0—2—3—3—3—3

(r!!bin) (r!!bis) (r!!trig)

for a charge Z= 1 for R along the binary, bisectrix, and
trigonal directions; the results are shown in Fig. 5 and
Table II. The units of m~ here are 10" electrons cm ',
and the units of distance in A.

The integration in Eq. (50) was carried out in

cylindrical coordinates with polar axis Pz parallel to R.
Defining

p (p sq p s)ie

then, with q the azimuthal angle,

d P=PqdP~dqdP, .

(55)

(56)

At large values of Q, I(Q) goes as Q '. This behavior
results in a logarithmic divergence of n&(R) as R ~ 0;
for parabolic electrons, rri(0) is finite. This result for

The integration over P& was carried out using the
transformation

P,=w/(l —w)', 0&w&1. (57)

The integration over P, was performed using Filon's
rule. We estimate the accuracy of the values in Table II
to be ~10"electrons cm '.

the nonparabolic electron gas is a consequence of the
band structure [Eq. (2)j for large values of k; obviously
this expression is valid only in the neighborhood of an
electron ellipsoid, so the values of ni(R) calculated on
the basis of the above theory must be in error for
sufficiently small R. However, the behavior of e~ be-
yond a distance of a few lattice constants from the
impurity should be fairly well predicted by this theory.

The plot of mt(R!!bisectrix) exhibits oscillations with
a period of about 250 A. The plot of rr, (R!!binary)
shows these same oscillations, with oscillations of some-

what larger amplitude and a period of about 700 A

superimposed on them. The oscillations in the plot of
rri(R!!trigonal) are of smaller amplitude, and period
about 300 A. These results follow in a simple way from
the band structure of bismuth:

It is known' that the Friedel oscillations in e~ for
the parabolic isotropic electron gas arise from the
singularity in J(y) at y=2. The singularity in I(Q) at
Q=2Kp is of the same type (i.e., the expansions of

I(Q) about Q=2Ei and J(y) about y=2 have leading
terms of the same form). Furthermore, for large values
of R, the behavior of e~ will be dominated by the
behavior of the integrand of Eq. (50) in the neighbor-
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hood of those points in P space, where (a) the integrand
has a singularity, and (b), where the phase P R is
stationary for small variations of I' on the surface
where the integrand has the singularity. There are
eight such points, two for each carrier ellipsoid. If P,
is such a point of stationary phase on a surface of
singularity, then —P, is also (by inversion symmetry).
In the direction 2 (unit vector in the direction of R),
the behavior of the integrand near P, and —P, will

give rise to a term of the form

CR ' cos(RP, A), (58)

where C is a constant. One expects that C will be large
when the curvature of the surface Q=2Kp (or y=2)
at P, is small, and small when the curvature is large.

In Fig. 5, for R~~binary, the long-period, large-
amplitude oscillations arise from electron ellipsoid A.
Since

P R=kr, (59)

and P, A=0.151 in this case, we expect a period hr
=657 A for the contribution of ellipsoid A to Nq for
large R. For the hole ellipsoid, P, R=0.427, so it
gives rise to oscillations with period d,r= 232 A.

Electron ellipsoids 8 and C give rise to small-period

oscillations, but the curvature at the appropriate P,
is so large that the contributions do not show up in the
plot of eg.

For R~~bisectrix, P, R and the curvature at P, are
the same as in the binary case for the hole ellipsoid,
but now for each electron ellipsoid we have large P, g
and large curvature, so we see only the hole contribu-
tion to e~ for large E.

In the case R~~trigonal, each electron ellipsoid has
P, 2=0.299, with somewhat greater curvature at P,
than in the case R~~binary.

The hole ellipsoid has P, 8= 1.40 with large curva-
ture at P„since P, is the top of the hole ellipsoid. The
oscillations in this case are due to the electrons, with
somewhat smaller amplitude than in the other two
cases, and with period Dr=322 A.
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APPENDIX

I(0)=K p (1+Kp') '".
J(0)=2.

I(Q —+~)= (2K~'/3)Q —'+~{K~(1+2K~')(1+K ')"'—1nLK~+(1+K~')"')}Q '+{-'K '+~K '}Q-'
y {(8/9)K p'(1/K ')'"—(4/9)K p(1+KF')"'+ /~K p(1+Kg')'~'

+lK (1+K ')"'+l inLK +(1+K~')'"j}Q '+{(4/7)K~'+(13/30)K '—(1/12)K~'}Q '
+{(32/15)K p'(1+Kp')3"——,'(Ep'+K p' —-') (1+2Ep')K p(1+KF')"

+lslnL1+2Kp'+2Ep(1+Kg')'"j}Q-' (A1)

~b ~")=(8/3)X '+(32/15)3 '+(128/35)X ' (A2)

(A3)

(A4)


