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valleys such as

P(x,2)= Zn: cos(vx)e?
1

reflects negative particles only up to a small value of
energy, while positive ones are reflected up to much
larger energies.
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The lattice dynamics of the fcc lattice has been investigated using a model in which, in addition to central
forces, interatomic forces include angular forces of the type employed by Clark, Gazis, and Wallis. The
model has been applied to copper, and results are presented for dispersion curves, vibration spectra, and

effective calorimetric and x-ray Debye temperatures.

INTRODUCTION

NGULAR forces were introduced into lattice

dynamics long ago by Born! in his treatment of

the diamond lattice. However, there have been very

few investigations bearing on the applicability or other-

wise of the assumption of angular forces in metallic
crystals.

Recently, Clark, Gazis, and Wallis? have investigated
the frequency spectra of bce lattices using a model in
which, in addition to central forces, interatomic forces
include angular forces of the type introduced by Gazis,
Herman, and Wallis.® In the present paper the lattice
dynamics of the fcc lattice has been investigated using
such a model. An application has been made to copper,
for which theoretical and experimental results are com-
pared for dispersion curves, and effective calorimetric
and x-ray Debye temperatures.

ANGULAR FORCE MODEL

We consider a monoatomic crystal lattice formed by
(N41) particles. Each particle has a mass M. The
potential energy V of the crystal may be expanded in a
Taylor series.

In the following, we denote (82V/ 0%ndvs)0 by

V(u v) <u=x,y,z;v=x,y,z >
m nl’ m=0, -+ N;n=0,---, N ’

1 M. Born, Ann. Physik 44, 605 (1914).

2B. C. Clark, D. C. Gazis, and R. F. Wallis, Phys. Rev. 134,
A1486 (1964).

8 D. C. Gazis, R. Herman, and R. F. Wallis, Phys. Rev. 119,
533 (1960).

The angular frequencies w are obtained from the solu-
tion of the secular equation®s

=0, ey

u v
Z V( >6i21rk-Rn_ w2M8uv

n 0 n

where R, is the equilibrium position of the particle #.
For the fcc lattice, we denote the position of a lattice

point by
Ron=R.=3%aN,, (2)

where @ is the length of one side of the cube. In this
notation, (1) becomes

u v\
> V( >eIP'N"—w2M6W =0, 3

n 0 =

where
p=mak.

The model that we are considering employs central
forces between a particle and each of its first and second
neighbors, as well as angular forces which depend on
the changes of angles in the triangles formed by the
particle and its first and second neighbors. This type
of angular force has been used by Clark et al.2 The effects
of the more distant neighbors are neglected.

Since we only need to use terms of (92V/0u0dvn)0, We
can treat the potential energy due to the central force
interaction and the angular force interaction separately.

4 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1962).

5 R. A. Smith, Wave Mechanics of Crystalline Solids, (Chapman
and Hall Ltd., London, 1961).
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A. Central Force Interaction

If a; and a, denote the force constant for first and
second neighbors, respectively, we have the well-known
results

LA

> Va< )e'P'N"=2a15152, o)

n 0 n
and

X X .

ZV“(O )e“"Nn:4a1--2a1C1(C2+C3)+4a2512, (5)
n n
where

Cj=coswak;, S;=sinwak;, (6)

and ki, ks, and ks are components of k in Cartesian
coordinates. Other terms can be obtained by circular
permutations of the indices.

B. Angular Force Interaction

Before considering the fcc lattice, we first discuss
the angular force interaction in general terms.

There are two types of triangles in which we are
interested. One is formed by a particle and two of its
first neighbors, called type (1) triangles. The other is
formed by a particle, one of its first neighbors, and one
of its second neighbors, called type (2) triangles.

The changes in the angles of a triangle are obtained
by comparing the triangle of the equilibrium positions
of these particles with the projection of the triangle of
these particles onto the plane of their equilibrium
positions.

F16. 1. Angular force.
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Consider the triangle formed by three particles a, b,
and ¢ (see Fig. 1). Let 4, B, and C denote their equi-
librium positions; s,, ss, and s, their small displace-
ments. ny p,¢ is defined as a unit vector which is in the
plane 4, B, C and normal to the vector R4,z. We are
dealing with the angle 84 at 4. The convention for the
direction of ny,g,¢ is that, when ny 5,¢ is applied to the
particle B it reduces the angle 64. (From definition,
n4,5,c=np,4,c.) Ra,5is the position vector of B relative
to A, and R4,5=|Ra,5|.

w denotes a unit vector normal to the plane 4, B, C
in a direction such that R4, ¢, R4,5, and w form a right-
handed system. The projection of the displacement s
on the plane 4, B, Cis

Spp= (WX S5) X W. )

Since the displacement s; is small in magnitude, the
effective change in the angle 6,4 (as far as the angular
force is concerned) due to s; is given by

Spp N4 ,B,C 83 N4,B,C
- =— : ®)
R Ras

The change in the angle 84 due to the displacements
Sq, Sp, and s, 1Is

(84—Sb)'Na,Bc (Sa—So)Ma,c.5
§0.4=— + .

Rup Ra,c

The change in the potential energy due to 894 is given by
5x(304)%, (10)

where « is the angular force constant associated with
the angle 4.

For the case of the fcc lattice, the two types of tri-
angles are shown in Fig. 2. The first one is that formed
by a particle and two of its first neighbors which are

5
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Fic. 2. The first and second neighbors of the
particle O of the fcc lattice.
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both in the same plane of the coordinate axes. They are
triangles equivalent to AQ, 1, 3 in Fig. 2; particles 1
and 3 are both in the X-0-Z plane. This type of triangle
is called type (1).

The other type is formed by a particle, one of its
first neighbors, and one of its second neighbors. They
are triangles equivalent to A0, 1, 13; particle 13 is a
first neighbor of particle 1. This type of triangle is
called type (2).

There are, in all, 12 type (1) triangles and 24 type
(2) triangles, with reference to the particle 0. As shown
in Fig. 2, all 36 triangles are identical and each is
isosceles with two equal angles 6,; 6,=45°. We shall
associate with each angle 8;(f1=90°) in the triangles an
angular force constant i, and each angle 6, an angular
force constant ..

After carrying out the lengthy derivations we finally

TaBLE I. The lattice constant @, the elastic constants ¢,
C12, cs4, and the longitudinal-phonon frequency at the zone
boundary in the [100] direction »; of copper.

Temp. a C11 C12 Cia Ref- [100]1'1,
(°K) (10~%cm) 101 dyn/cm erence (102 cps)
0 3.6029s 17.62 12494 8177 ¢ 7.434
100 3.6045# 17.493 12425 8.059 ° 7.414
200 3.6093» 17.192 12295 7816 ¢ 7.364
300 3.6147° 16.839 12,142 7539 ¢ 7.3°

 Calculated from the room-temperature value by the method of R. J.

Eo(rlruézlc)ini and J. J. Gniewek, Natl. Bur. Std. (U.S.) Monograph 29,
961).

b American Institute of Physics Handbook (McGraw-Hill Book Company,
Inc., New York, 1963), 2nd ed.

°W. C. Overton Jr. and J. Gafiney, Phys. Rev. 98, 969 (1955).

d Derived from the experimental value at 300°K as explained in the text.

© See Refs. 6 and 8.

obtain the following results:

x Y\ . 16x1
> Vu( )“"'N"“ =5, (11)
n 0 = a?
X X . 321(1 16K1 4K1
)3 V~x< )“'"’* ——C1(Crt-Cy)——
n 0 = @  a? a?
X (2cos2mak,— cos2waks,—cos2waks), (12)
X Y\ .
b w( )=° (13)
n 0 =
EA AN 32K2 16K2
> sz( >€’p'N"= ——C1(C2+Cs). (14)
0 = a? a?
Equation (3) may be written in the form
|D(@)—w*MI|=0, (15)

where I is the 3X3 unit matrix. The elements of the
dynamical matrix D(g), obtained by combining the
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TasirE II. Force constants for copper at different temperatures.
All values are in the units of 103 dyn/cm.

Temp. a Qs k1/a? Kk2/a?
0 36.52 1.859 —0.090 —0.882
100 36.46 1.70 —0.0577 —0.926
200 36.29 1.415 —0.0009 —1.009
300 36.06 1.098 0.0617 —1.102

various terms, are as follows:

Dyp=2[as+ (8/a%) (k1+k2) J[2— C1(Ca+Cs) J+4asSe2

4K1
— —2>< (2cos2waky,— cos2waks—cos2waks), (16)

a
16K1
D,,= <2a1— -——>SlSz.
a2

(17

Other terms can be obtained by circular permutations
of the indices.

We determine the four force constants in terms of the
three elastic constants and the longitudinal-phonon
frequency », in the [100] direction at the Brillouin
zone boundary, given by

vo=(1/m){ 2/ M)[ort (8/0*) (krtwa) 2. (18)

The resulting expressions are as follows:
a1=30(C1a—caa)+ 31202 M (19)
as=%a(cut2c4s)— 3ntw?M (20)
K1/ ?= —}acutrveM , (21)
Ko/ @*= — 750 (C12— 3c44) — 52 M . (22)

APPLICATION TO COPPER

The above model was applied to copper and calcula-
tions were carried out in the quasiharmonic approxi-
mation at four temperatures, viz., 0, 100, 200, and
300°K. The experimental data used in obtaining the
force constants are tabulated in Table I. The disper-
sion curves have been measured only at 300°K; to
obtain the longitudinal phonon frequency at the zone
boundary in the [100] direction at other temperatures,
the following approximation was employed :

Vb(To) ~[ Cn(T)a3(T) :|1/2
75(300°)  Le1n(300)a3(300)]

(23)

The force constants calculated from Egs. (19) to (22)
are shown in Table II. The dispersion curves were
calculated from the 300°K data and are compared with
the experimental results in Figs. 3(a) and 3(b).

The vibrational frequency distributions g(») were
obtained at the four temperatures by calculating the
frequencies at 1686 points in the irreducible 1/48 of
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8f . o Sinh
* Stha " o Crbier Lo
TR ool | 4] f 7t lel
i (o]
= Frc. 3. (a) and (b):
g sf e & The dispersion curves of
" 8 copper at 300°K. The
= = curves shown are theo-
- i retical ones obtained
- g-' from the angular-force
§3r °® = model.  Experimental
g ° £ points: ® (Ref. 6), O
£, 6 (Ref. 7).
l L
10 ,é .1'5 4 2 o ' 2 s o 2 O K 10
=4 Reduced wave vector parameter, § =ak; {— Reduced wave vector parameter, §=ak;
(@) (b)
o the Brillouin zone; this gave a total of 192000 fre-
cu quencies. The histogram for g(») at 0°K is shown in
’ Fig. 4.
el The calculated effective calorimetric (6p) and x-ray
£ (61r) Debye temperatures are shown in Figs. 5 and 6,
g sf respectively, together with experimental points. The
B theoretical curves are composite ones obtained from
=Y frequency distributions at the four temperatures.
o 3l
DISCUSSION
r The force constants show a very regular behavior
A with temperature. a; and a, decrease smoothly with
increase in temperature; (ki/a?) starts with a negative
el value at 0°K, becomes almost zero at 200°K, and takes
V (102 cps) a positive value at 300°K. The absolute value of (ko/a?)

F1c. 4. The frequency spectrum histogram of copper at 0°K
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increases with temperature. The magnitude of «; is
substantially greater than that of x;, which is almost

Angular Force Model

Fic. 5. Calculated and ex-
perimental calorimetric Debye
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points: X (Ref. 10),0 (Ref.9).

100
T(°K)

120

140 160 180 200



164

340 —

F16. 6. O for copper. Solid line
shows the theoretical curve. Ex-
perimental points: O [P. A. Flinn,
G. M. McManus, and J. A. Rayne,
Phys. Rev. 123, 809 (1961)7; (]
[E. A. Owen and R. W. Williams,
Proc. Roy. Soc. (London) AlSS,
509 (1947), as quoted in T. H. K.
Barron, M. L. Klein, A. J. Lead-
better, J. A. Morrison, and L. S.
Salter, in Proceedings of the Eighth
International Conference on Low-
Temperature Physics, London, 1962,
edited by R. O. Davies (Butter-
worths Scientific Publications Ltd.,
London, 1963), p. 415.7; A [D. R.
Chipman and A. Paskin, J. Appl.
Phys. 30, 1992, 1998 (1959), as
quoted above in Barron et al.].
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negligible. A calculation for aluminum and nickel
showed that the smallness of «; is not a general result;
for these two metals «; and «, are of the same order of
magnitude.

The calculated dispersion curves [Figs. 3(a), 3(b)]
are seen to be in good agreement with experimental
points in all three directions. The experimental values
shown in the diagrams are due to Sinha® and to Cribier
et al.” Very similar results have been obtained recently
by Svensson, Brockhouse, and Rowe? using a different
method.

The frequency spectrum obtained here is very similar
to that obtained by Sinha® from a sixth-neighbor force-
constant model and that obtained by Svensson et al.,?
also from a sixth-neighbor force-constant model but

6S. K. Sinha, Phys. Rev. 143, 422 (1966).

7 D. Cribier, B. Jacrot, and D. Saint-James, in Proceedings of
the International Atomic Energy Agency Symposium on Inelastic
Scattering of Neutrons in Solids and Liquids, Vienna, October,
1960 (International Atomic Energy Agency, 1961); p. 549.

8 E. C. Svensson, B. N. Brockhouse, and J. M. Rowe, Phys.
Rev. 155, 619 (1967).

120 160 200 240 280 320 360 400
T (°K)

with one constraint among fifth-neighbor force
constants.

The theoretical curve for the calorimetric Debye
temperature is in very good agreement with the experi-
mental values at low temperatures (Fig. 5), but lies
slightly above the experimental points at medium tem-
peratures. The experimental points are due to Martin.%1

There are large uncertainties in the experimental
values of x-ray Debye temperatures; the theoretical
curve appears to be reasonably satisfactory. We may
note that the decreasing trend of 0, at high tempera-
tures is obtained only under a quasiharmonic
approximation.
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