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valleys such as

reQects negative particles only up to a small value of
energy, while positive ones are reQected up to much
larger energies.
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The lattice dynamics of the fcc lattice has been investigated using a model in which, in addition to central
forces, interatomic forces include angular forces of the type employed by Clark, Gazis, and Wallis. The
model has been applied to copper, and results are presented for dispersion curves, vibration spectra, and
eGective calorimetric and x-ray Debye temperatures.

INTRODUCTION

A NGULAR forces were introduced into lattice
dynamics long ago by Born' in his treatment of

the diamond lattice. However, there have been very
few investigations bearing on the applicability or other-
wise of the assumption of angular forces in metallic
crystals.

Recently, Clark, Gazis, and Wallis' have investigated
the frequency spectra of bcc lattices using a model in
which, in addition to central forces, interatomic forces
include angular forces of the type introduced by Gazis,
Herman, and Wallis. ' In the present paper the lattice
dynamics of the fcc lattice has been investigated using
such a model. An application has been made to copper,
for which theoretical and experimental results are com-
pared for dispersion curves, and effective calorimetric
and x-ray Debye temperatures.

The angular frequencies ~ are obtained from the solu-
tion of the secular equation4 '
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where R„ is the equilibrium position of the particle e.
For the fcc lattice, we denote the position of a lattice

point by
Rp„——R„=-', aN„,

where a is the length of one side of the cube. In this
notation, (1) becomes

ANGULAR FORCE MODEL

We consider a monoatomic crystal lattice formed by
(N+1) particles. Each particle has a mass M. The
potential energy V of the crystal may be expanded in a
Taylor series.

In the following, we denote (B'V/Bu Bv )o by

(
u v (u=a, y, s;v=x, y, s

m n
'
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z M. Born, Ann. Physik 44, 605 (1914).
~ B. C. Clark, D. C. Gazis, and R. F. Wallis, Phys. Rev. 134,

A~486 (~964).
3 D. C. Gazis, R. Herman, and R. F. %allis, Phys. Rev. 119,

533 (1960).

The model that we are considering employs central
forces between a particle and each of its first and second
neighbors, as well as angular forces which depend on
the changes of angles in the triangles formed by the
particle and its erst and second neighbors. This type
of angular force has been used by Clark t, t ul. ' The effects
of the more distant neighbors are neglected.

Since we only need to use terms of (B'VjBuvBv„)o, we
can treat the potential energy due to the central force
interaction and the angular force interaction separately.

4 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1962).' R. A. Smith, Wave Meclzanics of Crystalline Solids, (Chapman
and Hall Ltd. , London-, 1961).
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where

g; =cosxek;, 8,= s&nanak;, (&)

and Pi, k2, and k3 are components of k in Cartesian
coordinates. Other terms can be obtained by circular
permutations of the indices.

B. Angular Force Interaction

Before considering the fcc lattice, we erst discuss
the angular force interaction in general terms.

There are two types of triangles in which we are
interested. One is formed by a particle and two of its
first neighbors, called type (1) triangles. The other is
formed by a particle, one of its erst neighbors, and one
of its second neighbors, called type (2) triangles.

The changes in the angles of a triangle are obtained
by comparing the tria, ngle of the equilibrium positions
of thcsc particles with thc pro/ection of thc triangle of
these particles onto the plane of their equilibrium
positions.

A. Central Force Interaction

If u~ and 0.2 denote the force constant for first and
second neighbors, respectively, wc have the well-known
results

Consider the triangle formed by three particles a, b,
and e (see Fig. 1).Let 3, 8, and C denote their equi-
librium positions; s„s~, and s, their small displace-
ments. n~, ~,g is dined as a unit vector which is in the
plane A, 8, C and normal to the vector R~,~. Ke are
dealing with the angle 8~ at A. The convention for the
dlrcctB)n of ]fig gg, j Is that) when Ng, g, g is applied to thc
particle 8 it reduces the angle 8~. (From definition,

n~,s,c=—ns, g, c.) R~ s is the position vector of 8 relative
tow, and Z, ,,= IR„,,I.

w denotes a unit vector normal to the plane A, 8, C
in a direction such that R~,~, R~,g, and w form a right-
handed system. The projection of the displacement st,

on the plane 3, 8, C is

si~= (wX st,))&w.

Since the displacement sq is small in magnitude, the
effective change in the angle 8~ (as far as the angular
force is concerned) due to si, is given by

so~'&s, B,o

The change in the angle 0~ due to the displacements

s, sp, ands ls

(sa—si) 'na, a.c {s~—s~) 'ii~, c,a
Ã~= — — +

The change in the potential energy due to M~ is given by

—,"(st) )&,

where ~ is the angular force constant associated with

the angle 0~,
For the case of the fcc lattice, the two types of tri-

angles are shown in Fig. 2. The first one is that formed

by a particle and two of its first neighbors which are

I'io. 1. Angular force.
I Io. 2. The 6rst and second neighbors of the

particle 0 of the fcc lattice.



both in the same plane of the coordinate axes. They are
triangles equivalent to 60, 1, 3 in Fig. 2; particles 1
and 3 are both in the I-0-Z plane. This type of triangle
is called type (1).

The other type is formed by a particle, one of its
6rst neighbors, and one of its second neighbors. They
are triangles equivalent to 60, 1, 13; particle 13 is a
6rst neighbor of particle 1. This type of triangle is
called type (2).

There are, in ail, 12 type (1) triangles and 24 type
(2) triangles, with reference to the particle 0. As shown
in Fig. 2, all 36 triangles are identical and each is
isosceles with two equal angles 62, tj2=45'. %e shall
associate with each angle 84(84——90') in the triangles an
angular force constant x1, and each angle 82 an angular
force constant ~2.

After carrying out the lengthy derivations we anally

Ten . u
('K (10 ' cin)

crr crr c44 Ref- $100)v4
1044 dyn/cln erence (10I4 cps)

0 3.6029~
100 3.6045~
200 3.6093'
300 3.6147b

17.62 12.494 8.177
17.493 12.425 8.059
17.192 12.295 7.816
16.839 12.142 7.539

7.43~
7.41~
7.36'
7.3~

TABLE I. The lattice constant e, the elastic constants
c», c44, and the longitudinal-phonon frequency at the zone
boundary in the L100j direction I 4 of copper.

TABLE II. Force constants for copper at diferent temperatures.
All values are in the units of 10' dyn jcm.

Temp.

100
200
300

36.52
36.46
36.29
36.06

1.859
1.70
1.415
1.098

—0.090
—0.0577
—0.0009
0.0617

—0.882
—0.926
—1.009
—1.102

/ 16IIt)
DgII=

~
2(rr ~SISQ ~

a' &

Other terms can be obtained by circular permutations
of the indices.

%e determine the four force constants in terms of the
three elastic constants and the longitudinal-phonon
frequency I I, in the $100j direction at the Brillouin
zone boundary, given by

"=(1/ )i(2/~)L +(8/")("+ )j)'". {18)

The resulting expressions are as follows:

various terms, are as follows:

D..=2L-.+(8/")("+")X2-C{C,+C.)j+4-~,
4~1

X (2cos2rrakr —cos2rrak2 —cos2rrak3), (16)
8

a Calculated from the room-temperature value by the method of R. J.
Corruccini and J. J. Gniewek, Natl. Bur. Std. (U. S.) Monograph 29,
4 (1961).

b American Institute of Physics Handbook (McGraw-Hill Book Company,
Inc„New York, 1963), 2nd ed.

e W. C. Overton Jr. and J. Gaffney, Phys. Rev. 98, 969 (1955).
d Derived from the experimental value at 300oK as explained in the text.
e See Refs. 6 and 8.

obtain the following results:

crt= 2ii(ct2 C44)+—reive M,

cre ———4'a(ctt+2c44) ——,'rr'I I,'M,

irr/a'= ',ac44+ ,',—n I emM, —
ic2/Q — reo(cim 3c44) I err PQ M

APPLICATION TO COPPER

{19)

(2o)

(21)

(22)

x y)
~&iy ric-'o n&

x x) 32ict 16icrV„~c'I'""= — ———Ct(Ct+Ce)—
0 n) a' u'

g yp V ~&cp rim —0'o n)

tt'a z) 32ica 16ice
c,(c,+c,)."'Eo ~&

The force constants calculated from Eqs. (19) to (22)
are shown in Table II. The dispersion curves were
calculated from the 300'K data and are compared with
the experimental results in Figs. 3(a) and 3(b).

The vibrational frequency distributions g(I) were
obtained at the four temperatures by calculating the
frequencies at 1686 points in the irreducible 1/48 of

Equation (3) may be written in the form

iD(q) —oIrMI
i =0,

where I is the 3X3 unit matrix. The elements of the
dynamical matrix D(q), obtained by combining the

5152, (11) The above model was applied to copper and calcula-
tions were carried out in the quasiharmonic approxi-
mation at four temperatures, viz. , 0, 100, 200, and
300'K. The experimental data used in obtaining the

g2 force constants are tabula, ted in Table I. The disper-
sion curves have been measured only a,t 300'K to

X (2cos24riikr —cos2rrakm —cos2rruk3), (12) obtain the longitudinal phonon frequency at the zone
boundary in the L1001 direction at other temperatures,
the following approximation was employed:

I 4{T') ctr(T)a'(2')
{23)

(14)
.,(3OO') c„(3OO)o&(300)
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FIG. 3. (a) and (b):
The dispersion curves of
copper at 300'K. The
curves shown are theo-
retical ones obtained
from the angular-force
model. Experimental
points: (Ref. 6), Q
(Ref. 7).

1.0,8,6 .4 .2 0 .2
,Reduced wave vector parameter, $ = alt;

0 .2,4 .6 .8
Reduced wave vector parameter, ( a k„.

l.'0

8t-

6-
8
'Q

P

the Brillouin zone; this gave a total of 192000 fre-
quencies. The histogram for g(v) at O'K is shown in

Fig. 4.
The calculated eRective calorimetric (BD) and x-ray

(6~) Debye temperatures are shown in Figs. 5 and 6,
respectively, together with experimental points. The
theoretical curves are composite ones obtained from
frequency distributions at the four temperatures.

2-

3 4 )~5 6 7
V (i0 cps)

Frc. 4. The frequency spectrum histogram of copper at O'K
obtained by the angular force model.

DISCUSSION

The force constants show a very regular behavior
with temperature. a& and n2 decrease smoothly with
increase in temperature; (aq/a') starts with a negative
value at O'K, becomes almost zero at 200'K, and takes
a positive value at 300'K. The absolute value of (g,/u')
increases with temperature. The magnitude of K2 is

substantially greater than that of K~, which is almost
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I'rG. 5. Calculated and ex-
perimental calorimetric Debye
9D's of copper. Experimental
points:)& (Ref. 10),O (Ref. 9).
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