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Electron Reflection CoefFicient at Zero Energy. II. Computer Experi-
ments on the Reflection of Slow Electrons in the

Electrostatic Field of Surface Patches"
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Hughes Research Laboratories, Malibu, Califorrtia
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As reported in paper I, the zero-energy reflection coeS.cient of electrons at a polycrystalline silver surface
has been measured to be (7&1)%.A theory consistent with this experimental result is presented below.
This theory shows that the zero-energy reflection coefficient may be fully explained by the eGect of patches
of different work functions. The different potentials presented at the surface of a metal by the differently
oriented crystal surfaces converge exponentially to the average potential as one moves away from the
surface. The potential variation with the largest spatial period extends farthest from the surface. It will be
shown that this component alone determines the reflection behavior at the threshold of energy. Because the
surface presents a two-dimensional distribution, two independent periods must be considered which range
in their aspect ratio from a square checkerboard to long stripes. The reflection coefficient is found to be
independent of patch size and patch potential amplitude, and is (7.73+0.03)% for the stripe-type and
(5.4+0.2)% for the square-checkerboard-type patches. The reflection coefBcient jumps abruptly from
100% below the threshold of energy to some 6% at an energy immediately above threshold; therefore, It
is not surprising that recent energy ana1yses with a simple patchy counterGeld electrode of several-hundred-
millivolt patch amplitude can resolve Gne structure in the energy of less than 10 meV, as exhibited in the
energy spectrum of electrons Geld-emitted from a liquid-helium-cooled tip.

I. INTRODUCTION

&HE surface of a solid which is not a single crystal
shows a variety of differently oriented crystallite

surfaces with different work functions. The resulting
surface patches may range from a few tens of nanom-
eters to several micrometers in diameter and may cause
a variation of the potential along the surface of more
than 1 V. These variations are known to be strongly
affected by an adsorbed layer (especially of alkali
atoms).

In the plane of the surface (x,y) the potential P(x,y)
may be described by a two-dimensional series summed
over rt and m with terms such as a„sin(rtx/xp)b
Xsin(my/yp). Here x and y are the coordinates along
the surface, xo and yo are the lengths of the funda-
mental periods, and the complex numbers e„and

are the amplitudes and phases of the particular
component. There are mm such components. The
dependence of I' on the third dimension s per-
pendicular to the surface is found by satisfying
Laplace's equation AP(x, y,s)=0, which holds in the
absence of space charge. A simple exponential decrease
exp| —(st'/xps+m'/yp')'t's] results for the rt-m term.
One sees that the term which reaches farthest from the
surface, or dies oB most slowly, is the one with m= m= 1.
The fields from this term are those felt first by an
approaching electron, and they primarily determine
the behavior at threshold of energy. In the following,
we shall investigate electron trajectories in the three
simple potentials:

(a) P(x,y,s)=sinxe ',
(b) P(x,y,s) =0.5%2Lsinxe '+sin(2x+p)e '*], (1)

(c) P(x,y, s) =sinxsinye ~".

~%'ork partially supported by U. S. Air Force Cambridge
Research Laboratories under Contract No. AF 19(628)-4297.

Here (a) represents simple sinusoidal stripes, (b)
stripes with the first harmonic added at equal amplitude
and different phases p, and (c) a simple sinusoidal,
quadratic checkerboard. '

The nature of the patches themselves has recently
become the subject of experimental research. The actual
size and potential excursion of patches can be deter-
mined by a method which is essentially a re6nement
of the camera-tube technique of reading small charge
deposits by means of a magnetically focused, low-energy
electron beam. To resolve the smaller patches, the
beam must be focused to a small spot (=1 tsm); at
the same time, the electric Geld applied to the suxface
must be increased beyond a value obtained by dividing
the patch potential amplitude by the beam diameter.
This limits the experimental method, presently at
about 2-pm spatial resolution, 10-mV potential reso-
lution, and 4-kV cm ' applied field. Kith ingenious
data-processing methods, patch distribution functions
have been recorded directly and their dependence
on temperature and adsorption may be studied. '

Early interest in the reQection of electrons by patch
fields arose in connection with the study of thermal-
electron emission and how it is affected by the reQection
of the outgoing electrons. The reQection coeScients
for ingoing and outgoing electrons are simply related;
the relation can be obtained by considering an electron
gas in thermal equilibrium and in contact with the
emitter. Following the principle of detailed balancing,
corresponding (in direction and energy) electron fluxes
through the boundary between the two phases are
equated. Only the reQection coeKcient for ingoing
electrons oGers the possibility of experimental determi-

' A more detailed description of these potentials is found in C.
Herring and M. H. Nichols, Rev. Mod. Phys. 21, 185 (1949)
Appendix IV.' G. A. Haas and R. E. Thomas, Surface Sci. 4, 64 (ift66).



nation. For truly thermal energies, even this is quite
diQicult, as evidenced in the preceding paper. In their
survey article on thermionic emission, Herring and
Nichols have given a qualitative analysis of the reQec-
tion of electrons by patch fields as Appendix V. A
geometrical consideration in the phase space of the
initial coordinates and momenta gives some insight
into the behavior of the reQection coeKcient at the
onset of reQection. No trajectory computations were
made, presumably because computers were not as
practical in use at that time. The use of the simplified
potentials [Eq. (1)j is suggested there.

A more serious need for the knowledge of the electron-
reAection coefficient associated with the patch field
at a surface arises when a counterfield method is used
to obtain an energy spectrum of a beam. In this
method, the electron beam to be investigated is directed
toward a decelerating electrode; care is taken to
collimate the beam well in order to obtain the total
energy. The current acceptance by the counter6eld
electrode as a function of the potential applied to the
same electrode is plotted, and the differential quotient
of that curve represents the energy spectrum. The
difhculty arises when one strives for an energy resolu-

tion (e.g. , 30 meV) which is smaHer than the patch
potential variation (e.g., 300 mV) over the surface
of the counterfield electrode. ' How many of the elec-
trons which overcame the average potential above the
patches are really returned by the more negative
patches, and how does that rejected part depend on
the energy above the threshold? From observations
in which relatively sharp features are expected in the
electron energy spectrum (such as the field-emitted
electrons from a cooled tip), it appears that the patchy
surface behaves as a unipotential surface. This is
demonstrated by the experiments of Young and
Muller, ' Holscher, ' and von Oostrom. '

' See H. Heil and J. V. Hollweg, preceding paper, Phys. Rev.
164, 881 (1967); referred to as I.

4C. Herrmg and M. H. Nichols, Rev. Mod. Phys. 21, 185
(1949), Appendices V, Va, and Vb.

'

' H this electrode is in the form of a mesh and only the current
which passes through the mesh openings is used to derive the
energy spectrum, as has been done t H. Heil and B. %. Scott,
U. S. Air I"orce Scienti6c Report No. AFCRL-66-769, 1966
(unpublished) (available from CI'STI, 5285 Port Royal Road,
SpringGeld, Virginia); H. Heil, Bull. Am. Phys. Soc. 7, 488
(1962)j and is described in I (Ref. 3), the surface potential
variations have died o6 suSciently that they do not have any
effect on the potential over the mesh opening, and the spec-
trometer can work with an energy resolution in excess of the
patch potential variation.

6 R. D. Young and E. %. Miiller, Phys. Rev. 113, 115 (1959).
' A. A. Holscher, Surface Sci. 4, 89 (1966); the energy distri-

bution function has a sharp edge at the high-energy end, repre-
senting the I'ermi level. The electrons arrive quite orthogonally,
the stated energy resolution is 0.03 eV; the applied Geld is 70 V
cm '; the patches are assumed to vary by several tenths of a
volt, to have a size of 10 ~ cm, and to produce a 6eld of 104 V
cm '. Note the 6rst paragraph on p. 99 for the qualitative argu-
ments for the smallness and constancy of the patch-reQection
coefBcient.' A. van Oostrom, Philips Res. Rept. , Suppl. 1, 1 (1966); see
second paragraph p. 54 and Fig. 3.26 on p. 55 for a demonstration

The numerical calculations of this paper will show
that the channeling of the electrons into th'e more
positive patches is such that at threshold of energy,
only between 5.4 and 7.7/~ of the electrons are reflected,
and this percentage is independent of patch size and
patch potential variation. Although this hoMs exactly
only for orthogonal incidence and small applied field,
it also has been found to be approximately correct for
a large range of nonorthogonal angles of incidence
(&25') and for moderately strong applied fields

(about 10 ' of patch field). In addition, we find that
the small reQection codIicient remains fairly constant
with energy above threshold. Finally, from calculations
over the full range of obhque incidence, we compute
the average reAection coeScient for a distribution
which is completely isotropically incident to the surface.
This value, which was found to be 20%, also holds
for a Maxwellian, provided kT/e is smaller than the
patch potential amplitude.

Assume that. a beam of electrons is directed toward
the surface; the beam is parallel and of uniform density,
and all electrons have the same energy of such magni-
tude that only part of the surface can be energetically
reached by them. There will be deQections and reQec-

tions, which are dependent on mhere the electron enters
the Geld. The general character of the deQections will

be such that rejections mill occur above the most
negative patches, and electrons are deflected and
channeled into the more positive patches of the surface
between the positive and negative patches.

At a su%.ciently large distance so from the surface,
the patch Geld is negligibly smaB and the trajectories
are straight or very slightly curved parabolas if there
is an applied Geld. I.et us characterize the position at
which the electron enters by xo and yo. If we then study
'tile tla)ectoi'les as a fuIlctloil of tllls posltloll (xs,ys)
we shall find certain areas from which the electrons are
accepted (i.e., s(0) and we shaH find such coordinates
x,, ys for which the electron is returned (i.e. , s)ss).
The reAection coeKcient is then found simply by
counting the area from which electrons were rejected
and dividing it by the total area in the xo-yo plane.

In earlier attempts to carry out such calculations, C.
Buckey and the author used the electrolytic tank and
analog computer to trace the trajectories. However,
it was soon learned that the analog computer was not

sufficiently accurate and that the bookkeeping and
data processing of the many trajectories were prohibi-
tively laborious. Furthermore, one would be limited
to two-dimensional potentials only.

The potentials to be considered here appear as

of a resolution better than 10 meV with the tip at liquid-helium
temperature. The collector is a hemisphere made of polycrystalline
molybdenum or nickel, for which the patch amplitude far exceeds
10 mV.
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exponential and trigonometric functions only, suggest-
ing the use of a digital computer with its much higher
accuracy and speed, and its greater ability of data
digestion and selection, In this case a trajectory calcu-
lation simply consists first in de6ning the three initial
coordinates, the three initial velocity components, and
a time step; and second in increasing each coordinate
by the product of the time step and the particular
velocity component, and in increasing the velocity
components by the product of the same time step and
the particular acceleration component or force com-
ponent, which in turn is computed directly from the
analytical expression of the potential. The size of the
time step is chosen so small that further reduction
no longer changes the trajectory. ' From 100 to 1000
steps per trajectory were sufhcient, and the computer
time per step was 10 msec. The computation is inter-
rupted if s(0 (accepted) or if s&so (rejected), and
the initial coordinate xo is changed until a value is
reached for which a change occurs from acceptance
to reAection. This xo value is stored, and after com-
pletion of a complete period, the percentage of electrons
rejected is computed. The initial energy of the electron
is characterized by three energy components (the
squares of the three initial velocity components). The
amount of Rppllcd Geld which ls to bc added to thc
patch Geld appears simply as a term As in the potential.
Since the scale for time is arbitrary, we set the held
components directly equal to the components of
acceleration. This implies that e/m= i.

By far, the simplest potential is the one-dimensional
periodic potential sin@exp( —s). Calculations with it
reveal most of the characteristic features, and we shall
therefore discuss it in detail below.

IIL THE POTENTIAL sin(x)e *+As

This potential is depicted in Fig. 1. Since it is a
function of only two coordinates x and s, it can be
represented in",a perspective drawing. At the surface
(s=0) the patch potential amplitude is taken to be
unity (I V). The period does not affect the reQection
coeKcient and it is chosen such that the patch-Geld
amplitude is also unity. The applied 6eld A is taken
to be about 5% of the patch. field amplitude. The line
crests and valleys are marked, as well as the straight
potential lines which run along the steepest lateral
slope. Along the valley line a saddle point appears
the position s, at which depends on A as s,=—and
and the potential of which E,=A(1—lnA). In the
Rbscncc of Rn Rpphed held, this point dlsRppcRI's:

s, —+~. In the lower part of Fig. 1, we show the po-
tential as a function of the distance from the surface s

for the case where the applied held 2 =10 '. In this
case, the saddle point appears at the position s,=6.92
and its potential has the value 7.91 mV. For the start
of the trajectory we choose so= 14; at this position the
potential variation along x is about 1 pV. In later calcu-
lations the initial value so=9 was found to be suK-
ciently distant from the surface.

In Fig. 2, we show a variety of trajectories with
orthogonal incidence. Qnc looks onto the s-x plane;
the saddle point is marked, as are the lines along the
crest and the valley of the potential, and the lines
midway between these extremes. For each position xo
at the launch line, one can find an energy value for
which the trajectory changes from accepted to rcAected
or vice versa; this is called the critical energy. Ke show
hve such positions xo between the valley and crest
on the left side, and we indicate the critical energy
value in rneV below the launch line. One sees that
energies slightly below zero (i.e., below the energy
necessary to reach the average potential) are already
sufhcient. This results because of the suppression of I'
at the saddle point by 7.91 mV below the average
value; one sees indeed that all of the nine trajectories
pass close to that point. Those trajectories are deQectcd
into the valley and complete one or several oscillations
in it. As the xo value for the crest is approached,
substantially more initial energy is necessary for the
trajectory to be accepted. The trajectory shown on the
left has a critical energy of 940 meV (i.e., nearly
sufficient to reach the most negative part of the surface).
The character of this trajectory is discussed in detail in
Sec. IV.

If the critical energy listed below the launch line
were drawn as a function of xo, one would 6nd a very
slight change with xo up to a value of xo= —1.325.
At this value, the critical energy would rise very
steeply to a value approaching 1. The corresponding
trajectory runs essentially along a line close to and
parallel to the crest line; it then turns sharply into the
valley and either is rejected or enters into the surface.
This was surprising and led to the investigation of the
more ideal case of zero applied field (A =0). In this
case, the critical energy is zero for all values of x() up
to xo ———1.325, at which value the critical energy rises
abruptly from zero to a value close to one. After
demonstration of this fact by numerical computations,
we also were able to prove it analytically. In the next
section, me consider this case, and we shall find a
general property of trajectories entering a potential
generated from a potential distribution over a plane
surface. This theorem will greatly reduce the amount of
computation necessary and will allow us to state a
simple threshold law for the rcQection coefFicient.

' A program in v hich the time step vras varied in accordance
gath the absolute value of the acceleration sho~ed that the
number of trajectory steps could be reduced; hovrever, the time-

step calculation itself lengthened the computer time more than
the possible reduction in the requirf'A. total number of steps &gould
shorten it.
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Fio. 1. (a) The negative of the
potential P (a,y, s) =sin (x)e *+0.05
s shown above the x-y plane; one
may picture electrons entering the
terrain in the direction of the
arrows going uphill and with an
energy approaching that which is
necessary to climb the zero line
at the surface. (b) The negative
oi the potentials(a, y,s) =sin(a)s '
+10 's showing detail of the po-
tential around the saddle point
which is at s,=6.92 and along
x= —sss- (valley), as well as along
x = —s (steepest slope) and

I,'crest); the three dashed
lines correspond to the mV scale
at the left. The negative of
J' (x,y, s) is chosen in order to
convey the impression of a particle
Inoving in a terrain under the
influence of earth's gravity.
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IV. REFLECTION COEFFICIENT AT THRESH-
OLD' GENERAL PROPERTIES OF TRAJEC-

TORIES ENTERING A POTENTIAL
GENERATED BY A POTENTIAL
9ISTRIBUTION AT A SURPACE

The critical trajectory for normal incidence and at
zero applied field occurs at vs= —1.325 (that is, 13'55'
away from the crest line) and implies a percentage of
reflection of 7.73&0.03%. This trajectory is shown in
the x-s plane in Fig. 3. The regions of reQection are
marked by hatches. Three trajectories are shown, two
starting at xo ———j..326 with energies of 0.1 and 0.4
eV. '0 Both are reQecting trajectories. The third trajec-
tory —an accepting one—starts at @0=—1.324 w'ith

'0 The energy in electron volts implies that the patch-potential
amplitude at the surface is normalized to 1 g.

the energy of 0.4 eV. A closer inspection of the very
narrow transition region —I.324& xo& —1.326 shows
that trajectories between these two limits make several
oscillations within the valley before they leave either
to the left or to the right in reQection or into the surface.

It is apparent that the two rejecting trajectories are
identical except for a displacement in the s direction.
In order to prove this, consider a trajectory deter-
mined by the three initial coordinates and velocities
(&s,popo, &o,go, zo) m a poteIltlal I (s,p,s). Consider Ilext
a trajectory which starts at the same point (as,ys, ss)
in a potential which is rps times larger mE(x, y,s). The
second. trajectory is identical to the first, provided
that the initial velocities io, jo, io are multiplied by the
factor m'12, or the components of the initial energy by
the factor es. This is equivalent to the well-known fact
in electron optics that trajectories depend only on the
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Fzo. 2. Critical trajectories in the x-s plane in the potential
E(x,y,s)=sin(x)e '+10 's, orthogonal incidence; 6ve launch
positions arith the respective critical energies.

ratio of the applied voltages (if those are referred to
the emitter potential). Only the time scale for the new
trajectory is changed by a factor m '~'. Qn the other
hand~ multiplicatioIl of 'the speclic potentia~ of Flg. 3
by the constant factor es can also be obtained by a
translation of the coordinate system in the s direction
by s=ln(m). Indeed, we see that the parallel shift
between the two trajectories in Fig. 3 is of the proper
magnitude )viz. , ln(4) j.

More generally, for a potential of the form

I'(z, y, s) =I', (z,y)e-'*,

the multiplication by a constant m is equiva1ent to a
translation of the coordinate system in the s direction:

mz(g, y,s) =Pt(z, y) expI t(s—z)j-
=exp(tz)I'(z, y,s), (3)

where z=ln(m)/t. A trajectory in the potential (2)
which is represented by z(t), y(t), s(t) reads, in the new
potential (3), z(re-'~ot), y(m-'~'t), s(m 'lot)+s.

In all trajectories considered in this paper the initial
position xo, yo, so is well outside the inQuence of the
potential l P (zo,yopo) & 10 ' Vj. Consequently, a change
of the initial energy always results in a simple s shift
of the trajectory and, speci6cally, the property of a
trajectory of being critical is not affected. Only when
the initial energy is increased close to unity does the
turning-around point of the critical trajectory of Fig. 3
pass through s=o, which leads to acceptance. Thus,
the dependence of the acceptance coeflicient on energy

I l I ~j I I I
I

I
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I
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O I II
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Xo=-I924~~

+:=44
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FTG. 3.Three critical trajectories in the x-s plane in the potential
P(x,y,s)=sin{x)e ', orthogonal incidence; two initial energies:
0.]. and 0.4 eV. Note that the Uvo reflecting trajectories are
identical, but displaced by ln(4) in the s direction and that the
exactly critical trajectory comes to a point (x =3.8) where the
velocity goes through zero.

is quite simple. The coeScient is zero for energies
below that suQicient to reach the average potentia&
(called zero in Fig. 8); it then rises abruptly to 92.27%
and stays constant at this value up to an energy
which ls suQlcient to reach the most negative surface
potential (—1 V); it then rises to 100% or full ac-
ceptance. (The fashion in which the transition to 100%
occurs is dependent upon the higher harmonics in the
potential. It is not considered in detail here. Some
consideration was given to this detail by Herring and
¹chols.') lt is the abrupt rise from zero to 92.27% at
the threshold. energy which makes the high-resolution
measurement' ~' understandable.

It should be emphasized that the fact that the critical
character of the trajectory is independent of energy
applies to all potentials of the type (2), where Pt(z,y)
is an arbitrary function of x and y, and l is a real
constant. Therefore, it applies to the fundamental of
the simple stripe-type potential and to the checker-
board. -type potential of any arbitrary aspect ratio of
the fundamental checkerboard rectangle. However, it
does not apply to potentials with an applied fieM
superimposed, or at least it applies on1y approximately
in this case, as w'e have seen in Sec. III."It also does
not apply to potentials which consist of a sum of
terms with diferent l's. Regarding the latter case,
however, w'e note that one can always find a low enough
energy, such that the trajectory turning point occurs
at a position so far from the surface that the terms with
the larger / values have a negligible eBect on the
trajectory. Therefore, the reQection coeKcient at
threshold, and the abrupt rise there, are quite in-
dependent of the amplitudes of the higher harmonics,

"For an applied-6eld-to-patch-6eld ratio of 10 ', the sharp
corners in Fig. 8 are rounded so little that it would not be visible
in this figure. The extension into energies below zero is 7.9 Ines
at the most.



i.e, , of the detailed nature of the patches. The value is
7.73% for the stripe-type potential and, as we will
see later, 5.4/o for the square checkerboard-type
potential. For patches which have a rectangular rather
than square fundamental range, one may expect a
value between those t%'o numbers.

V. OBLIQUE INCIDENCE FOR THE
POTENTIAL sin(x)e *

Since the acceptance coefficient sin(x)e ' does not de-

pend on the energy, its dependence on the angle of inci-
dence is a function of some generality and was therefore
calculated. Call the angle of incidence n, dined by
n =xp/zp. As we saw in the case of orthogonal incidence
in Figs. 2 and 3, the reQection is not specular, and no
simple relation exists between angle of exit and angle
of entry. A program was written which computes the
fraction of the initial coordinates xo from which the
electrons are accepted. The result, the function A (n,),
is shown in Fig. 4 in a polar diagram. A (ts,) is fairly
constant for the first 20' around orthogonal incidence;
lt then dlops off suddenly for 0! toward 70 and ls zero
from 70' to 90', a range where total reflection occurs.
In Fig. 4 we also show the acceptance A(a„), i.e., if
xp= 0 but jp is varied, and n„=—gp/zp. A (its) is in-

dependent of ts„and has the value 92.3%.
For the more general case of a combination of initial

x and y motion, one can ask for an average acceptance
function A (tx), where ts is the polar angle off the perpen-
dicular to the x-y plane as dered in the insert to
Fig. 4. It is necessary to introduce the azimuthal angle
)t as shown and compute an average between A (ts,) and

A(n„) through all X's. The result is also shown in

Fig. 4.
Finally, for a completely isotropic electron Qow

incident to the surface, one must average A(n) over
all n's equally weighted, obtaining the value Ap ——80%
for the average acceptance coeScient. This is the value
which applies to a Maxwellian. The more orthogonal
part is almost entirely accepted, while the part with

to 0 to

90
100 80 60 40 20 0 20 40 60 80 l00

ACCEPTANCE A(a), %

FIG. 4. Polar diagram for the acceptancegcoefBcient A as a
function of angle of incidence in the potential I'(x,y,s}=sin(x)e
The three angles n„o.» and a are de&wed vrith respect to the stripe
direction in the insert; X, azilnuthal angle; for a definition of
A (n,), A (n„), A (n), and A, see text

more grazing incidence is almost entirely reQected.
However, the principle of detailed balancing must be
applied carefuHy for the purpose of drawing conclusions
concerning the reAection coeKcient applicable in
electron emission. While the average value Ao is also
a,pplicable as a transmission coeKcient for emission,
the angula, r dependence is not determined by the angle
of reQection. Since the reQection is not specular, these
latter angles are not known. During the computation
it was noticed that when that position in xo was ap-
proached at which the trajectory turns critical, the
angle of exit changed very rapidly between the limits
of about &70'. The only fact which can be readily
stated about the angular distribution of thermally
emitted electrons from a patchy surface (in the absence
of space charge) is that there is a deficiency in emission
at large angles a (i.e., parallel to the surface). This
deficiency can be seen experimentally in retarding
potential measurements of the axial energy, "where it
manifests itself as a "rounding of the upper knee. "
Total energy spectra" do not show any change in shape
if the angular distribution of the emitted current is
incomplete.

Ke give now some samples of acceptance coeScients
for a potential with the 6rst harmonic added at equal
amplitude, but with difIerent phases.

VI. THE POTENTIAL
O.Sv2Lsin(x)e *+sin(2x+ p)e s*7

From the many possible combinations with the 6rst
harmonic, we select R combQlatlon with equal ampli-
tudes of 0.542 V and four diferent phases, namely
p=0, I, 3, 5 rad. We calculate the critical energy as
function of xp and show the result in Figs. 5(a) and
5(b), all for orthogonal incidence only. At the threshold
of energy, the regions of reQection are loca, ted at the
crests of the fundamental, as we had expected from
the analysis in Sec. IV. With increasing energy, the
regions then move over to the position of the crests of
the erst harmonic. This movement mould have been
more complete if we had dered the acceptance by a
more negative value of z than zero (which is equivalent
to increasing the amplitude of the 6rst harmonic with
respect to the fundamental).

The width of the rejected region is erst constant
and equal to the case of the fundamental a,lone; at
higher energies, the range generally narrows. For the
case of p=5 rad, it first widens, branches into two
regions, and then vanishes at about half that energy,
at which it vanishes in the other cases.

In Flg. 6, %'e sho%' the a cceptRllce functions fol
three cases and the fundamental. The case p=0 rad
is deleted because it is quite similar to p=3 rad. Also

"H. Shelton, Phys. Rev. 107, 1553 (t957); P. Kisliuk, Ibid
122, 405 (1961); for an analysis of incom 1ete angular distri-
bution functions, see Heil and Scott (Ref. 5 and Heil (Ref. 5)."See Heil and Scott, Ref. 5; Hei1, Ref. 5.
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=sin(x)e ' (solid line), the functions containing also a first
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VH. THE QUADRATIC CHECKERBOARD
POTENTIAL sin(x)sin(y)e ~' NORMAL

INCIDENCE 05I Y

The additional dimension does not greatly complicate
the trajectory computation, but the additional dimen-

sion in the initial coordinate causes a laborious inte-

gration of the xs-ys area (a star-shaped figure) from

which reQection takes place. In Fig. 7 we show over
the g-y plane the equipotential lines for the square,
0(x(vr/2, and 0&y(s/2(y(7r which bounds a
positive potential hill (which constitutes one quadrant
of the entire fundamental square). In the upper square,
0&x(s/2, and s/2&y(s. (which bounds a potential

dale), reliection occurs inside the star-shaped area.
It is of interest to note that trajectories are two-

dimensional if they originate at the dashed and at the

dotted lines. The potentials in the corresponding

planes, including a s dimension, are shown at the very
top of the 6gure. The case of the dashed lines is similar

to the simple sin(x)e ' potential of Sec. IV, except
that the exponent is larger by the factor N.
consequent, steeper rise of the potential amplitude with

decreasing s makes for a larger reQection range. The
range for the potential of Sec. IV is marked by the
dash-dotted lines. The planar trajectories along the
dotted, diagonal lines are very strange because all
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trajectories are reQecting. The oscillations in those
potential valleys increase until reQection occurs; then
they decrease again, similar to the reQection of a
plasma by a magnetic 6eld with a cusped geometry.

In Fig. 8, the acceptance curves of the square-
checkerboard potential are compared with the stripe-
type potential. Orthogonal incidence and only the
fundamental period potential are assumed. The large
applied-Geld acceptance curve for the stripe-type
potential is also shown; it is a sinusoidal function.
The same curve for the square-checkerboard potential
has also been integrated numerically and appears as
the solid curve.

I

I

l

0.25 Tf'

DISTANCE ALONG SURFACE; x

FIG. 7. Two quadrants of the basic square of the checkerboard
potential P(s,y,s)=sine siny(s~*); for s=o, the lower square
marks the equipotentiai lines and the upper square (where P (0)
marks the star-shaped 6gure, within vrhich reflection occurs for
normal incidence. The dash-dot line marks the reRection-accept-
ance border for the stripe-type potential; along the dashed and
the dotted line, the trajectories remain tyro-dimensional and the
corresponding potential distributions are shown at the top in the
fashion of Flg. 1.

FIG. 8. Acceptance as a function of energy for orthogonal
incidence; solid curve, square-checkerboard potential; dashed,
stripe-type potential; the large-6eld acceptances are for the case
where the applied electric 6eld far exceeds the patch 6eld and the
trajectories may be considered unaffected by the patch Geld, i.e.,
undetected.

VDI. SUMMARY AND MSCUSSION

The reQection coefficient for electrons entering the
electric field which originates from the patches of a
polycrystalline surface changes abruptly at the threshold
of energy from 1(g% to between /. 7 and 5.4%. This is
independent of the detailed nature of the patches, their
size, or amplitude. Therefore, high-resolution energy
spectrometry with the counterfj. eld method is possible
with a patchy counterfield electrode, regardless of the
patch amplitude and size.

The angular dependence of the reQection coefficient
is calculated and shown in Fig. 4 for a stripe-type
potential. The angle of total reQection is found to be
slightly more than 20' away from grazing incidence.
The reQections are generally nonspecular. From ap-
propriate averaging, we see that electron emission
from a patchy surface is anisotropic (i.e. , it is deficient
in emission parallel to the surface). Because of the
patches, the tota1 emission is reduced by about 20%
from the emission which a nonpatchy surface would
yield. Similar calculations for the more generally
applicable checkerboard potential have not been carried
out because of the large complication of the problem. '4

Concerning the reQection coeKcient well above
threshold, it is interesting to note that negative particles
are reQected diGerently from positive particles if the
surface patch potential distribution is nonsymmetric
about its zero. For instance, a potential with sharp
and narrow positive peaks and broad, shallow, negative

'4 A general idea of the change of the star-shaped area of Fig. 7
for oblique incidence can be obtained by viewing a point source
of light through a piece of mindovr glass which has a checker-
board embossment on one surface I',such as a bathroom windows
glass). The distortion of the star vyhen the angle of incidence
is varied should be similar to that resulting if the electron optical
problem is treated.
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valleys such as

reQects negative particles only up to a small value of
energy, while positive ones are reQected up to much
larger energies.
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The lattice dynamics of the fcc lattice has been investigated using a model in which, in addition to central
forces, interatomic forces include angular forces of the type employed by Clark, Gazis, and Wallis. The
model has been applied to copper, and results are presented for dispersion curves, vibration spectra, and
eGective calorimetric and x-ray Debye temperatures.

INTRODUCTION

A NGULAR forces were introduced into lattice
dynamics long ago by Born' in his treatment of

the diamond lattice. However, there have been very
few investigations bearing on the applicability or other-
wise of the assumption of angular forces in metallic
crystals.

Recently, Clark, Gazis, and Wallis' have investigated
the frequency spectra of bcc lattices using a model in
which, in addition to central forces, interatomic forces
include angular forces of the type introduced by Gazis,
Herman, and Wallis. ' In the present paper the lattice
dynamics of the fcc lattice has been investigated using
such a model. An application has been made to copper,
for which theoretical and experimental results are com-
pared for dispersion curves, and effective calorimetric
and x-ray Debye temperatures.

The angular frequencies ~ are obtained from the solu-
tion of the secular equation4 '

(u 'v

Q V( e"'~ a" co'MB'„„—=0
&0 n

where

~gcv'" co'JjrIB =0—
o ni

where R„ is the equilibrium position of the particle e.
For the fcc lattice, we denote the position of a lattice

point by
Rp„——R„=-', aN„,

where a is the length of one side of the cube. In this
notation, (1) becomes

ANGULAR FORCE MODEL

We consider a monoatomic crystal lattice formed by
(N+1) particles. Each particle has a mass M. The
potential energy V of the crystal may be expanded in a
Taylor series.

In the following, we denote (B'V/Bu Bv )o by

(
u v (u=a, y, s;v=x, y, s

m n
'

&~=0, ",N;n=O, ",Nf

z M. Born, Ann. Physik 44, 605 (1914).
~ B. C. Clark, D. C. Gazis, and R. F. Wallis, Phys. Rev. 134,

A~486 (~964).
3 D. C. Gazis, R. Herman, and R. F. %allis, Phys. Rev. 119,

533 (1960).

The model that we are considering employs central
forces between a particle and each of its first and second
neighbors, as well as angular forces which depend on
the changes of angles in the triangles formed by the
particle and its erst and second neighbors. This type
of angular force has been used by Clark t, t ul. ' The effects
of the more distant neighbors are neglected.

Since we only need to use terms of (B'VjBuvBv„)o, we
can treat the potential energy due to the central force
interaction and the angular force interaction separately.

4 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1962).' R. A. Smith, Wave Meclzanics of Crystalline Solids, (Chapman
and Hall Ltd. , London-, 1961).


