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We note that if we expand I(co+a) in powers of a, so that if we set
we obtain for the coe%cient of a
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On the other hand, from Eq. (A13) we Gnd D
II(a)) = —(2te) ' ln' —. (86)

dI(cg)/dcu= (1/M) 1n'(D/a&)+O((1/c0) ln(D/&e) ),
Equations (4.3)—(4.5) follow directly upon appli-

(84) cation of Eqs. (82) and (86).
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An integral equation derived previously from the lowest-order nontrivial decoupling of the equations

of motion for the s-d exchange model is solved exactly. The Green s function given by this solution is wel], -

behaved at all temperatures. An approximate expression for the correlation energy of a single impurity is

derjved and used to calculate the speci6c heat. The speci6c heat is found to be of the order of Boltzmann's

constant per local moment in magnitude, to have a peak at one-third of the Kondo temperature, and to

go to zero as T" when T approaches zero.

I. INTRODUCTION

t iHE low-temperature properties of dilute magnetic

..alloys have been the subject of intensive investiga-

tion since Kondo's discovery of the scattering anomaly

in these systems. ' In a recent paper' (hereinafter

denoted Il, one of the authors showed that the equation

of motion method applied to the s-d exchange model

yields predictions in qualitative agreement with experi-

ment for the resistivity and magnetic susceptibility of

dilute alloys. In this paper the exact solution is found

to an integral equation derived and solved approxi-

mately in I. This solution permits a considerably more

careful calculation of the specific heat than was possible

in I, yielding a qualitatively diferent result which is in

reasonable agreement with experiment.

*The portion of this work which was performed at the Univer-

sity of Pennsylvania was supported by the Advanced Research

Projects Agency.' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 27 (1964).
s D. R. Hamann, Phys. Rev. 158& 570 (196/l.

The interactions among magnetic impurities provide
a mechanism which can explain the excess specific heat
C, observed in many alloys. The shape of the C, versus
temperature curves predicted from this mechanism is
dependent on the impurity concentration. ' However, in
some alloy systems, Cu(Fe) for example, the shape is

quite concentration-independent. 4 Strong low-tempera-
ture correlations between individual impurity spins
and the conduction electrons have been invoked to
qualitatively explain a number of other properties of
this alloy5 The specific-heat anomaly occurs in the
right temperature range to be related to these correla-

' S. H. Liu, Phys. Rev. 15'?, 411 (1967), and references therein.' J.P. Pranck, F. D. Manchester, and D. L. Martin, Proc. Roy.
Soc. (London) A263, 494 (1961); F. J. Chatenier and J. De
Nobel, Physica 32, 1097 (1966).' M. D. Daybell. and W. A. Steyert, Phys. Rev. Letters 18, 398
(1967); M. A. Jensen, A. J. Heeger, L. B. Welsh, and G. Glad-
stone, ibid. 18, 997 (1967); C. M. Hurd, ibid. 18, 1127 (1967);
R. B. Frankel, N. A. Blum, Brian B. Schwartz, and Duk Joo
Kim, ibid. 18, 1051 (1967).
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and I, was identified as the one-particle t "matrix" for
non-spin-Qip scattering by analogy with one-particle
scattering theory. The advanced functions 6" and t"
are defined similarly, with the sign of the ib s changed.
They are in fact complex conjugates of the retarded
functions.

tions. This evidence seemed sufBcient for us to distrust
the result of I, where no excess specific heat was found.

Despite the plethora of recent theoretical papers
on isolated magnetic impurities in metals, relatively
few workers have studied the specific heat. Engelsberg'
and Yosida and Miwa' concluded from finite order
perturbation calculations that there was no observable
excess C„.Abrikosov reached a similar conclusion based
on an infinite order sum of perturbation theory with
anomalous pairing. ' A specific heat anomaly around the
Kondo temperature TK might be anticipated on the
basis of ground state energy calculations by several
workers. ' Nagaoka, who was the first to apply the
equation of motion method to this problem, "calculated
a C, with a peak of order k around TK, and going as
k(T/Trr) as T—&0, where k is Boltzmann's constant.
His calculation" will be discussed in detail in Sec. III.

In Sec. II, the key integral equation derived in I
is solved exactly. In Sec. III, an expression for the
correlation energy is derived and the results of the
specific heat calculation, a portion of which was carried
out numerically, are presented.

II. SOLUTION OP THE INTEGRAL EQUATION

In I, the double-time Green's function method was
applied to the s-d exchange model and the equations of
motion were truncated at the lowest nontrivial order,
following Nagaoka. "The retarded one-electron Green's
function was expressed in I, Eq. (12.8), as
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FIG. 1. The cut z plane deaning the sectionally holomorphic
functions introduced in Sec. II.

The truncated equations of motion were reduced to
a single integral equation for t, Eq. (I2.22) . This equa-
tion has been solved exactly by one of the authors for
the case in which the conduction band density of states
is approximated by a Lorentzian function, using meth-
ods similar to those described here. "In I, the equation
with the Lorentzian density of states was simplified by
retaining only those parts of the integral operators
which contributed Fermi surface singularities of the
Kondo type. ' It was consistent with this approximation
to replace the smooth Lorentzian cutoG of the inte-
grands at energies of the order of the Fermi energy D
by a sharp cutoff. The resulting Eq. (I2.29) is thus
the result of an approximate treatment of a smooth
density of states, and is rot an exact consequence of
Eq. (I2.22) and a square density of states. A change of
dependent variable, Eq. (I2.30), to

Q(or) =1 2rrspt~(or), — (2.2)

where p is the Fermi surface density of states, simplified
the equation considerably. The advanced quantity Q
is defined similarly, with a plus sign and t~ on the
right, and is the complex conjugate of fs. The integral
equation for fs, Eq. (I2.31), is"

or or'+zB&—
I'

I 1+S(S+1)(-,'~~) s+~

where S is the magnitude of the local spin, f is the Fermi
function, and y= (Jp/E) is the dimensionless coupling
constant, J being the s-d exchange. In cases of interest,

6 S. Engelsberg, Phys. Rev. 139, A1194 (1965).
~ K. Yosida and H. Miwa, Phys. Rev, 144, 375 (1966}.
'A. A. Abrikosov, Physics (to be published).
K. Yosida, Phys. Rev. 147, 223 (1966); Progr. Theoret. Phys.

(Kyoto) 36, 875 (1966);A. Okiji, ibid. 36, 714 (1966);J.Kondo,
Phys. Rev. 154, 644 (1967).

'0 Y. Nagaoka, Phys. Rev. 138, A1112 (1965)."Y.Nagao)ra& Progr. Theoret. Phys. (Kyoto) 37r 13 (1967).

7 is small and negative. The complex conjugate equa-
tion gives Q. Since we believe the approximations
leading to Eq. (2.3) are basically sound, and since it
may be solved much more simply than the full equa-
tion, "we have used it as the basis of an initial specidc-
heat calculation.

It was noted in I that insofar as t is identified with

"P.Bloomheld (to be published).
3 An equation similar to this was independently derived by D.

Falk and M. Fowler, Phys. Rev. 158, 567 (1967).
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s i(s) = Ao', Q (co'), (2.5)

(2.6)

'4 D. N. Zubarev, Uspek. Fiz. Nauk Vl, 71 (1960) )English
transl. : Soviet Phys. —Usp. 3, 320 (1960)g.

"H. Suhl, Phys. Rev. 138, A515 (1965); Physics 2, 39 {1965);
Phys. Rev. 141, 483 (1966); H. Suhl and D, Mong, Physics 3, 1
(1967); H. Suhl, in Proceedings of the Internat7'onal School of
Phys7cs "Enrico-fermi, " Course 37 (Academic Press Inc., Nevr

York, 1967).
"N. I. Muskhlishvili, Singular Integral Equations, translated

by J. R. M. Radok (P. NoordhoG Ltd. , Groningen, The Nether-
lands, 1953),p. 229.

"M. Fowler, Phys. Rev. 160, 463 (1967) .

the t matrix of one-particle scattering theory, P is
analogous to the s matrix (for non-spin-Qip orbital
angular-momentum zero scs,ttering) . This analogy
should not be pushed too far. Away from the Fermi
surface, f is not the s matrix since the density of states
is not p. The identification of P as the s matrix is com-

pletely wrong when it is continued away from the
physical region of the co axis. The only requirement
that p" and 1("must satisfy is that they be the boundary
values of two functions analytic in the upper and low'er

half complex planes, respectively. "This is sufFicient to
insure the consistency of the derivation of Eq. (2.3).
The complete set of requirements derived in scattering
theory for the s matrix, while essential for the con-
sistency of Suhl s dispersion-theoretic formulation of
this problem, "do not apply to our P.

We will solve Eq. (2.3) by analytically continuing
it and its complex conjugate into the complex plane. At
this point, we will introduce a few conventions which
will be used in the remainder of this paper. We deal with
functions defined in the z plane cut along its real axis
(ro axis, Re s=co) from D to D,—Fig. 1. When we

write z as the argument of a function, we imply that
it is defined in the whole cut plane. When we write ~
as the argument of a function, we refer only to its value
on the real axis between —D and D. In this case we
attach a superscript + or —to the f'unction indicating
that the cut is to be approached from above or below.
We call functions of z which are analytic except on
this cut sectionally holomorphic (SH)." When we
refer to a function as analytic, we mean that it is ana-

lytic in the entire uncut z plane. An analytic function
is also SH. The reader should carefully distinguish
these conventions from those of Fowler, '~ who studied
the analytic continuation of Eq. (2.3) across the cut.
The singularities he discusses are on the second Riemann
sheet of our cut z plane, which we will never need to
consider.

Let us now introduce abbreviated notation for the
quantities appearing on the right of Eq. (2.3), after
first dividing the numerator and denominator by p:

co' ——,
'

X(s) =y ' —S(S+1)(z/2) 'y+ do~' (2.4)
z—M

The three functions defined above are SH."X+(~o) is
minus the function X(co) which was used in I, and given
approximately in Eq. (I3.19). In terms of these quan-
tities, the integral Eq. (2.3) and its conjugate can be
written

where

P(~) =X+(~)/Lo+~pr+(~) 1
P"(oi) =X—

(o&)/[a+A —
(ro) j,

&=v '+S(S+1)( /2)'v.

(2.7)

(2.8)

(2.9)

Note the difference between u and the constant entering
the right side of Eq. (2.4), which is crucial.

Now using the Plemelj formulas, "we can show from
Eqs. (2.4)-(2.6) that

9'r+( ) —~r (~) =LX+(~) —X (~)]f'(~), (2 1o)

ps+(co) —ys-((o) =LX+((o) —X (to) jets(oi). (2.11)

&pi+ yr (X+——X )X——/(a+q, ), (2.12)

(p,+—ps
—= (X+—X-)X+/(g+yi+), (2.13)

where cv is understood as the argument of all functions.
If we multiply Eq. (2.12) by (a+q» ) and Eq. (2.13)
by (a+&pi+) and add the resulting equations, we find
that all plus-minus product terms cancel, and we can
write the sum as

$&ipi++&V s++V i+9 s+—(X+) '7

=Lout +iivs +~i 9s —(X )'j (2 14)

I.et us consider the function of z of which the two sides
of Eq. (2.14) are boundary values. It is at least SH
since it consists of sums and products of SH functions.
Equation (2.14) states that it is continuous across the
co axis from —D to D. Therefore it is analytic. From
Eqs. (2.4)—(2.7), we see that it goes to the constant
—b' at infinity, where

f =q-' —S(S+1)(w/2) s~.

Therefore it must be a constant everywhere:

(2.15)

(s) +~(s) +v' (s) v' (s) —X'(s) = —&' (2 16)

"Better known as 1 (/&xi )e=P/x+srrS(x). See Ref. 16, p. 42.

Note that the functions y~ and q2+ introduced here
do not occur in the integral equations, but represent
analytic continuations of the "physical" functions q»+
and q2 around the ends of the cut. If we substitute
Eqs. (2.8) and (2.7) in Eqs. (2.10) and (2.11), re-
spectively, we find
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Thus we have been able to exploit the analytic structure
of the integral equation to find a relation between

py aild p2.

of Eq. (2.23) goes to zero at the ends of the cut as
(z+D) "(z D)—, where n and m are positive integers.
Then the function

To proceed, let us solve (2.16) for y2,

(p, (z) =[X'(z) b'—ap—i(z) ]/[a+pi(z) ] (.2.17)

Taking the minus limit of Eq. (2.17) and substituting
it in Eq. (2.12), we find after a little algebra

(o+~i+)/(&+v i )

—1 n, lnH (a)')
P(z) [(z+D)n(z D) m]—i exp ku'

2X'Z —D 2 —|'d

(2.24)

is also SH, satisfies Eq. (2.18) on the cut, and has no
zeros in the finite s plane. The most general SH function
satisfying Eqs. (2.5) and (2.18) is

= [X+X +a' —b']/[(X )'+u' —b']) (2.18) &+V i(z) =I'"~(z) ~(z), (2.25)

where all functions have argument co. Note that

a' —O'= S(S+1)m'. (2.19)

H(ar) =[X+X +S(S+1)~']/[(X )'+S(S+1)s'].

(2.20)

Equation (2.18) is an example of the Riemann-
Hilbert boundary problem of the theory of analytic
functions. It occurs in the solution of linear singular

integral equations, and has been studied extensively. "
Let us define the right side of Eq. (2.18) as

where E"~ is any polynomial of degree I+m (with
leading term az"+" as

~
z ~~~). The integer e+m is

called the index in the study of the general Riemann-
Hilbert problem.

The index is determined by the net change in Im
lnH(co) as &v goes from D to D. Fro—m Eq. (2.4), we
see that ImX+=+( f—-,'), and that ReX+ is even and
diverges logarithmically to —~ as co approaches
&D. Therefore H(&D) =1, and 1nH(a&) must go to
integral multiples of 2~i at these points. The numerator
in Eq. (2.20) is real and positive, since X+=(X )*.
%e can establish that the real part of the denominator
is positive by noting that

Taking logarithms of both sides of Eq. (2.18),

1n(a+pi+) —1n(a+(pi ) =inH.

Equation (2.21) is satisfied by the SH function

(2.21)

Re[(X ) '+S(S+1)~']= (ReX—
) 2—(ImX ) 2

+S(S+1)7r'

&S(S+1)x' —(ImX ) '

in[a+(pi(z)]=ina —(2iri) ' , lnH(a)')
(2.26)

which may be verified using the Plemelj formulas. '
The constant lna is determined by the behavior of the
left side as

~

z ~~~. Exponentiating Eq. (2.22) we

see that a SH function satisfying Eq. (2.18) is

—1 D, lnH((o')
ii+q i(z) =a exp . d&o', . (2.23)

2' Z —D Q —Q)

So far, we have only established that Eq. (2.23)
is a particular solution. Ke can multiply the right hand
side of Eq. (2.23) by any analytic function (poly-
nomial) and still satisfy Eq. (2.18).However, doing so
would violate the requirement that pi(z) —+0 as

~
z ~-+~

imposed by the definition of &pi, Eq. (2.5). There is
one other possibility. Suppose the right-hand side

f"(~) = (1/a) X+((o) exp(2zi) , lnH(co')
dGO

M —
(c& +zb

Therefore, the phase of H stays between ~-', x, an
»H(~) has the same value at ~D. This proves that
the index is zero, since we can fix the branch of lnH
by requiring lnH(&D) =0. Then the integral in Eq.
(2.24) cannot diverge logarithmically as z-++D, so
the exponential cannot have zeros at either point, and
~=m=0.

Since the index is zero, Eq. (2.23) is the unique
solution to the boundary value problem to which the
set of integral equations has been reduced. The re-
tarded "s matrix" found by substituting Eq. (2.23)
in Eq. (2.7) is

(2.27)
"Reference 16, pp. 230-234. For a simple treatment, see R.

Balescu, Statistical 3fechanics of Charged Particles (Interscience
Publishers, Inc., New York, 1963), pp. 390-405. It is instructive to place this in another form. In Ap-
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pendix 8, we show that

dd
, Im in'(i0'). (2.28)

D S—GP

Multiplying the right side of Eq. (2.2"l) by unity ex-

pressed as the ratio of the two sides of Kq. (2.28), we

can show

—X+

L (X+)'+5'(5'+1) ~']u'

Xexp(2~i) ' d(o', (2.29), In
i
II((o')

i

cv —a)'+ih

The solution is now' expressed as a product of the ap-
proximate solution found in I, Kq. (I3.21), and a
correction factor formed by the exponential.

It is easy to find the magnitude of fs using Eq.
(2.29), since the principal value part of the integral

only contributes to the phase. %e obtain

[
iI" ~ ['=X+X /LX+X +S(5+1) ']. (2.30)

%ithin the parallels drawn in I between the quantities

appearing in this theory and those in Suhl's theory,
Kqs. (13.2'I) to (I3.30), this result is identical to
his. i5 Fowler conjectured that Eq. (2.30) should be

true for this theory' by analogy with Suhl's theory.
It is important to recognize that Eq. (2.30) is not,

by itself, the solution of the integral equations. Equa-
tion (230) only specifies this solution within a factor
unimodular on the co axis. As we have shown, the solu-

tion is uniquely speci6ed by the integral equations.
There is a further parallel between this solution and

that of Suhl's theory. The function X(») has no zeros

at high temperatures. Below a particular temperature

TE (the Kondo temperature), it has a conjugate pair
of zeros on the imaginary axis, which can be considered

to "emerge" across the cut from the second sheet of

X. It is clear from Eq. (2.27) that P" acquires one of

these zeros in its physical region (upper-half » plane).
Suhl's early solution of his equations used an integral

representation for the non-spin-Aip s matrix which

did not permit these zeros to emerge across the cut.
This resulted in inadmissable poles in the physical

region for the spin-Rip scattering amplitude, which

should have been canceled by the emerging zeros. Suhl

and %ong overcame this difhculty by taking a factor
containing these zeros out of the integral representa-

tion. '5 In our equation of motion theory, including both
this treatment and the approximate treatment of I,
this property emerged quite naturally.

The concept of index introduced in establishing the

uniqueness of our solution Eq. (2.23) to the boundary

problem Eq. (2.18) is sufficiently important to merit
further discussion through an example. Fall and Fowler
have shown" that the ansatz made by Nagaoka'0 in
his treatment of the equation of motion method below
TK is in fact the solution of an integral equation ob-
tained from Eq. (2.3) by dropping the 8(5+1) terms.
Let us apply the present method of solution to this
equation. Since the right side of Eq. (2.19) is made
zero, Kq. (2.20) is replaced by

H~((a) =X+/X—, (2.31)

where we have appended the subscript Sfor"Nagaoka. "
Once again, we determine the index by examining the
phase change of H~ from —D to D. For high tempera-
tures, the phase change is zero, so the index is zero. For
temperatures below TK, however, ReX goes to zero
near +=0, the phase change becomes 4x, and the index
becomes 2. The fundamental solution (that with no
zeros) de6ned by Eq. (2.24) for this new boundary
problem is easily shown to be

&+err (») = . . X(»),
(»-») (»-»2)
» id» iA)— (2.33)

where s& and s2 are arbitrary. There are only two
choices of »i and»2 which permit f"and f" to be analytic
in the appropriate half planes and complex conjugates
of each other, as we may establish by substituting
Eq. (2.33) in Eqs. (2.16), (2.7'), and (2.8). They are
2~

——id, s~ ———iA and sI ——s~ ———iA. The corresponding
f's are

(2.34)

——(&o i6) /(o&+—id) . (2.35)

The high-temperature solution is also Eq. (234), and
implies no scattering. The alternate low-temperature
solution Eq. (2.35) predicts the maximum non-spin-
Aip scattering permitted by unitarity at the Fermi
surface, and as pointed out by Fowler, no spin-fop
scattering. '7

%e see that in this case, bhnd use of the integral
representation Eq. (2.23) might have led us to over-
look the zeros in Eq. (2.33) and hence the solution.
Eq. (2.35). However, examining the index told us of
the existence of another solution below TE. Because
the formalism we have used takes care of zeros emerging
from cuts automatically, as we hive shown by example,
we feel con6dent that nothing of this sort has been
missed in our solution of Eq. (23) .

~~(») =X(»)/L(»+i~) (» —i&)], (2.32)

where +id are the positions of the zeros of X.The most
general solution is now
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III. SPECIFIC HEAT

The average internal energy of the metal-impurity
system is

ponential is essentially unity since ReX is large. From
Eq. (2.20), we see that ln

I
H(pi)

I
is small, for the same

reason, except perhaps for co TK. Here it is still small
for T)TK, but is of order unity for T&TK. For the
present argument, let us replace it by

(E)= —4 g pif(ip) ImGpP(pp) dpp, (3.1) »I&( ) I=A(T)0(TK-I I), (3 4)

which can be veri6ed using the exact equation of motion
(I2.5) and the general relation between Green's func-
tions and thermal averages Eq. (12.7). LActually,
Eq. (3.1) represents a free energy, since single particle
energies are measured from the Fermi surface. ]

Following the procedure used in I to derive the
integral equation, we will evaluate the k sum in Eq.
(3.1) using a Lorentzian density of states of width 2D
at half-maximum. This leads to

D ~ codco
. , Lf(-) -!)I1-~'(-)),

(pi+iD) '

(3 2)

where Eo is the energy in the absence of the impurity.
In deriving the integral equation, the function (pp+iD) '
was replaced by its value at the origin and a cutoG.
While we believe this procedure was adequate in that
context, where the integrand also had a singular factor
and fell o6 more rapidly, it is not adequate here. To
illustrate this point, let us substitute Nagaoka's solution
Eq. (2.35) in Eq. (3.2) and do the integral at T=0. We
6nd

(E—Ep) = —2A/i'd+0 (LP/D) . (3.3)

Since 6 is of order TK, the second term is extremely
small compared to the first. If we had replaced (p& —iD) P

by its value at co=0, however, we would have missed
the large first term and found only the second. Close
examination shows that the large contribution comes
from the product of the imaginary parts of (pp —iD) '
and fs In I, this la.rge contribution to Eq. (3.2) was
overlooked in calculating the speci6c heat, as it was in
Nagaoka's 6rst paper on this subject. ' ln a later
paper, Nagaoka redid this calculation using a less direct
expression than Eq. (3.1), and found exactly the large
term in Eq. (3.3)." Since he used a square density
of states, we see that the result is insensitive to details
far from &p=0, despite the fact that Imf" at large pi

makes the major contribution. This is extremely im-
portant; otherwise no result for P based simply on the
Fermi surface anomaly could be consistently used in
the energy calculation.

Next we must decide whether the imaginary part of
our P contains a term which could lead to a tempera-
ture-dependent correlation energy of the expected
magnitude. We will examine the form given in Eq.
(2.29). For TK((Ice I(D, the coeflicient of the ex-

where 8 is the unit step function, and A is a function
which is unity for T=O and 0 for T)TK. Then. Eq.
(2.29) reduces to

P"(pi) exp(2si) 'A(T)
—rz pp —pp +ib

Now for co&&TK, we can expand both the integrand
and the exponential, obtaining

Imps(pi) —TKA (T)/(ir(p) . (3 5)

(pi+iD)-' (ra-iD) '/D4 Ic I(D
(3.6)

This gives the same leading term as in Eq. (3.3) when
applied to Nagaoka's solution. Nevertheless, making
this approximation forces us to assume some degree
of uncertainty in the numerical coeS.cient of the speci6c
heat.

Inserting Eq. (3.6) in Eq. (3.2), and taking the
complex conjugate in the integrand of this expression
(which is real because of the symmetry of the in-
tegrand), we find

(E—Ep)=m. 'D ' ~(~+iD) 'I f(~) lj—
X(1-0"(~)j~ (3.7)

From Eq. (2.5), we see that the integrals

~" 'Lf(~) -ply" (~)~ (3.8)

This result is similar in magnitude and form to the
behavior of Imp~ at large pi. Instead of Nagaoka's
h(T), however, we have (2~) 'TKA(T), which is
(4') ' times the zeroth moment of ln

I
H

I
in the

approximation Eq. (3.4) . The function H contains all
the physics. Since only its value for co TK seems im-
portant in the correlation energy, we have established
the consistency of our treatment. Finally, we note that
the large contribution to the correlation energy comes
completely from the factor correcting the solution
found in I.

Having determined the sort of result we expect, let
us develop a method to calculate it. Direct application
of Eq. (3.2) is not easy. Neither is it advisable, since
it involves f outside the range of the original approxi-
mation. The most expedient approximation is to let
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are just the coefBcients in the asymptotic expansion of

qi(s) for
~
s ~&&D,

(3 9)

Since we intend to do exact mathematics from Kq.
(3.7) on, there is nothing inconsistent about considering
this asymptotic limit. The c„are most easily found from

Kq. (2.23). We can make an asymptotic expansion of
the integral in the exponential,

where

Q —~—(22ri) I-
n=l 2'

, lnH(oI')
dc' ) (3.10)

d„=—(22ri) ' ol" ' lnH(ol') dol'. (3.11)

Then we can write

00 CCI

a++ —=a exp g —,
n=l S n=l

(3.12)

expand the exponential, and equate the coefficients of
like powers of s. This gives"

ci/a =di,

c2/a =d2+ 2 di,

c3/a =d3+did2+ edl i

c4/a —d4+dld3+2d2 +2d2di + (1/24) di'. (3.13)

+D/(42r) +72r3T4/(60D') 2rT2/(6D) . (3—.14)

These steps reduce the energy calculation to a
straightforward numerical procedure, but it would

be helpful conceptually to have a simpler expression.

The function X is essentially constant over the over-

whelming portion of the integration range in Eq.
(3.11), and the significant temperature dependence of

the integrand is concentrated in the region of small
ol'. The moments di, d2, d3, and d4 are successively less

temperature-dependent since this region is weighted
less and less heavily as the power of 40' in Eq. (3.11)
increases. The odd moments d2 and d4 are calculated

"M. Abramowitz, in Handbook of Mathematical Pgnctions,
edited by M. Abramowitz and I. A. Stegun (Dover Publications,
Inc. , New York, 1965), p. 13, Eq. 3.6.23.

The part of Kq. (3.7) not involving f can be calculated

essentially exactly. Our final expression for the correla-

tion energy in terms of the c„ is

(E Ee) =c2/(3rD) —2ic3/(3rD') —c4/(3rD')—

analytically in Appendix 8 and illustrate this point.
The even moments di and d3 can be estimated by assum-

ing X to be constant. These considerations indicate
that a single term, the did2 term of the c3 formula in
Eq. (3.13), contributes all the important temperature
dependence. Using the small y limit

we arrive at

(3.15)

(&—&o) —(23') ' doI lnH(ol) +c (3.16)
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FiG, 2. The computed specific-heat results. For curve a,
TK=10'K, D=2X10"K, and y= —0.125, For curve b, TK=
10'K, D=10"K, and y= —0.105. For curve c, TK=1'K, D=
2)&10"K,y= —0.097, and the curve is shifted one decade to the
right. The vertical scale is Boltzmann s constant per impurity.

where c is essentially a constant for temperatures of
interest. This is exactly what one would obtain by
making the identification suggested by Eq. (3.5)
between the zeroth moment of lnH and Nagaoka's
b, (T) and substituting in Eq. (3.3). Therefore the
crude argument in the beginning of this section is
essentially correct.

A numerical computation was carried out based on
Eqs. (2.20), (3.11), (3.13), (3.14) and (AS). In per-
forming the numerical integration for the d„, the choice
of an evenly spaced mesh of points in the variable
ln

~

oI ~, with a lower limit of In(0.012'), optimized
computing eKciency. It was found impractical to
study the correlation energy as a function of tempera-
ture directly because the individual terms in Eq. (3.14)
are very large compared to the change sought. Instead,
differentiation with respect to temperature was carried
through the above-mentioned equations, and the specific
heat was computed directly. The complete calculations
confirm that Eq. (3.16) is a good approximation.

The specific heat was calculated for 5=—', over a
wide temperature range for three representative pairs



of values of the Kondo temperature and Fermi tern-
perature. The results are shown in. Fig. 2, plotted on
a semilog scale for maximum clarity. The points from
the three calculations fall essentially on a universal
curve, depending only on T/Tx, except for the small
deviations shown.

The C, results have some interesting features. If
they are plotted on log-log paper, the points from all
three calculations form excellent straight lines from
the lowest calculated T, T/TK 10 ', ——to nearly T/TK
10 '. The slope is 0.57, so this theory predicts

(3 17)

for T well below T~. This is especially interesting
because Anderson has recently calculated C„~P'
on the basis of the low-lying excitations of a new' varia-
tional ground state for dilute alloys. " We may con-
jecture that our result of 0.57 will go asymptotically
to 0.5 in some appropriate limit, like smaO y. No such
trend is evident among our computed values, but the
actual range of y is not large. Unfortunately, our
computer programs are not capable of being pushed
to the extreme ranges of the variables demanded by
really small y.

Thc Rica undel the curve ln Flg. 2 glvcs thc entropy
change between low and high temperatures which we
6nd to be 0.45k per impurity, where k is Boltzmann's
constant. For a spin--', impurity, one might expect an
entropy change of k ln2=0. Nk, on the basis that
correlations remove one spin degree of freedom from
the system at low T. Wc believe this discrepancy is
simply a matter of the numerical coe%cient of our
approximate energy expression Eq. (3.7). Multiplying
the right side of Eq. (3.7) by 2 would make the entropy
k ln2 within. the numerical accuracy of the computation.

It is not possible to integrate the C, function to
produce a single number for the correlation energy
change between T&&TE and T&&TK. The deviations of
the three calculations from a universal function at
high T probably represent perturbation-theory terms,
and produce deviations ln the energy of the order of
TK, the expected anomalous part of the correlation
energy.

The speci6c heat was not calculated for spins larger
than -„since the susceptibility calculation in I indicated
that the compensation of larger spins is not properly
described by a model whi. ch permits only orbital s-wave
scattering.

IV. CONCLUSIONS

We have shown that the integral equation based on
the decoupled equations of motion for the s-d exchange
model with a contact exchange interaction possesses

a unique solution. This solution is in agreement with
that of Suhl's scattering theory in all features that we
consider essential. "

The exact solution modi6es the approximate solution
found in I by a factor which can be shown to contribute
essentially all the speci6c heat. A particular part of this
factor bears a strong resemblance to Xagaoka's low-
temperature approximate solution to this same prob-
lem." Thus despite the inability of his solution to
predict correct temperature dependences through its
exclusion of spin-Rip scattering, ~ it correctly describes
the net change of the anomalous part of the correlation
energy (that proportional to TK) between T&)TK and
T=0.

Our solution has led to a very reasonable looking
curve of the specific heat as a function of T/Tx. We
find that its magnitude would have to be increased by
a factor of approximately ~ to bring the calculated
entropy into agreement with the value expected from
the removal of one spin degree of freedom.

Agreement with the measured C„of Cu(Fe) is found
within the relevant uncertainties. The susceptibility
data' indicate a spin of between —,

' and 2 per Fe atom
at high temperatures. To treat this case properly, the
model must be generalized to take account of the d-like
character of the exchange potential. It has been sug-
gested that as many d-wave scattering channels saturate
as T~0 as there are unpaired electron spins on the
impurity, and that the channels are approximately
independent. " This indicates that the spin —', result
times a factor of 3 or 4 should be compared with the
measured C, . Entropy considerations indicate a factor
of 2 or 2.3. The observed peak value of C„ is 2.2 times
our calculated result. 4

The entropy associated with the measured C„ is
estimated as near k ln2 per Fe atom in Ref. 4. Our
results indicate that the falloff of C„well away from
the peak (both above and below) is less rapid than
the extrapolations used to calculate this value. A correc-
tion in this direction will reduce the discrepancy between
the entropy obtained from C, and that expected from
high-temperature susceptibility measurements.

Plotted on log-log paper, the lowest temperature
measurements (0.4—1.1'K) form reasonably straight
lines but with widely diGering slopes that do not vary
systematically with concentration. ' Therefore Eq.
(3.17) cannot be adequately checked. The feature of
our calculated results which seems in best agreement
with the Cu(Fe) data is the position of the C„peak at
3 TK using the value of TE——1O'K for this system
inferred from resistivity measurements. ' To be fully
consistent, the resistivity should be calculated from
our exact solution and 6t to the data to determine
7"K, but we believe that we would find a value near the
quoted onc.

» P. %. Anderson (to bc published}. "J.R. SchDcGcl, J. Appl. Phys. $8, fI43 (I9(jg}.
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Upon examining (A6), (A7), and the asymptotic form'4

of PL—',+(ro/2«T)], one sees that we have chosen the
constant of separation (2«T)' so that each of the
square brackets in (A7) is a digamma function; thus
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APPENDIX A

Here we derive an expression for X+(ro) which is
essentially exact. Let

It is clear that Eq. (AS) describes the end-point log
singularities correctly within terms of order exp
( D/T).—A similar expression for this integral was
given by Falk and Fowler, "but they neglect the end-
point singularities.

Using Eq. (A8) in X+, the Kondo temperature,
defined as the temperature at which X(0}=0, is

~( f(oi) s d,
D Q) —M'+Zi5

(A1)

Now consider

(A2)

Let us change the variable of integration to ~"=co'—
2miT. Utilizing the periodicity of the Fermi function
in the imaginary direction, we find

(A9)TK =D exp(b+0. 1256),

where fi is given by Eq. (2.15).
II 1.

(A3)
ro M +15

B—27riT

x((v+2«T) =
—D—2+i T

APPENDIX 3
Now let us deform the integration contour from that
indicated in Eq. (A3) and shown by a dotted line in

Fig. 3 to the solid line in Fig. 3. In doing so, we pick
up a contribution from one of the poles of the Fermi
function on the imaginary axis and obtain

Here we prove Eq. (2.28). First, we will show that
the function

X'(s) +S(S+1)s'

2vri T -n f( c)0—-',

oi+7rzT n s~~T ro —co —+z—8
has no zeros. Following Eq. (2.26),

Re['X'(s}+S(S+1)s'])S(S+1)rr' —[ImX(s)]'.

x(re+2«T) =x(co)—

d gl f(co ) s
(A4)

Gl —c0 +15
(&2)

To evaluate the integrals over the two end pieces
of the contour we assume T((D, replace f sby &s-
in the first (second) integrand, and obtain

2«T D' (oi+2«T) '—
x((v+2«T) =x(co) — . +s»

re+ 7I ZT D —M

tu" PLANK (2n+I) 7r i T

(AS)
QP+ i8

XNow the digamma function can be considered to be
defined (within a constant) by the recurrence formula"

+s ~~~~ ~mm ~~~ eaaa+aea~

4(s+1) =4(s)+1/s. (A6) -0-2 giT 0-2g iT

Equation (As) is a similar recurrence formula:

(re+ 2«T) '—D'—x((v+2«T)+ ,'ln-
2% ZT

24 Reference 20, p. 259, Eq, (6.3.18)."Reference 20, p. 258, Eq. (6.3.5).

co' —D' o) FIG. 3. The original contour of integration for Eq. (A3) and
—x(ro)+r ln + &+ . (A7) the deformed contour {solid) leading to Eq. {A4).The x's are the

(2«T) s 2rri T poles of the integrand.
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Let z=co+iT. Then

~
fmx(s) ~=

D

, I f(~') —2]d '
GO
—Cd t

&f . . , IIf(~') —l I
d '

dCO

2 D (a& ru')—'+T'

1 ~ t
dM

2 (Gl —07 ) +T

t
1k'

2 ~M +T

Therefore substituting in Eq. (82),

Re[X'(s)+S(S+1)~'7&-,'x'

From Eq. (84), we see that the function

1n{LX'(s)+S(S+1)1'/6'}

(83)

(84)

(85)

cut,

ln {{X'(s) +S(S+1)gr']/a'}

LX+((o') j'+S(S+1)&2

(s—(o') 'ln Ao .
2+i D LX (M'1 j'+S(S+1)x2

From Eq. (2.20) and the relation X+= (X )*, we see
that Eq. (86) can be rewritten

-', In{LX'(sl+S(S+1)x']/a'}
—1 n, Im in'((a'}der', . (87)2' —D S—Cd

Exponentiating Eq. (87) gives Eq. (2.28). Note that
Eq. (84) also proves that the function $X'(s) +
S(S+1)m'j'f2 is SH.

Since Im 1nH is an odd function of eo', the asymptotic
expansion of Eq. (87) as s -+~ contains even powers of
(1/s) only.

The coeKcients of this expansion are the d„defined
in Eq. (3.10), with e even. Carrying out the expansion
of Eq. (87) using Eqs. (A8), (2.4), (2.15), (2.19)
and the asymptotic series for the digamma function'4
yields

Q = —D'bg2/(2a'),

D'{b-g+I (b'/") !jg"-}/(«') (88)

has no singularities except the cut of X(s), no zeros in
the finite 2 plane, and goes to zero at inhnity. Therefore
it can be represented by a Cauchy integral along the

where
g2=1 —(3) (~&/D)'

g4 =1—(x'x) (~2'/D)'.


