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A general treatment of the resolvent operator in Liouville space using the Goldberger-Watson approach
is presented. Exact, formal expressions for the matrix elements of the resolvent, as well as approximate ex-
pressions based on an iteration procedure, are given, The formalism is then applied to the study of the line
shape of atomic transitions in the presence of both weak collisions and an intense radiation 6eld. The de-
pendence of the line shape on the intensity and spectral composition of the Geld is discussed, and expressions
for shifts and widths are derived.

l. INTRODUCTION

~ ~

~LARGE class of line-shape problems might be
abstracted as follows: Two uncoupled systems

are brought into interaction at time l=o. As a result
of this interaction, one or more particles (or quasi-
particles) are emitted, scattered, or absorbed. The line-

shape problem is to find out how the probability of such
processes depends on the energy of the particles (or
quasiparticles) involved.

From a theoretical standpoint, the simplest line-shape
problem is that of an isolated atom in an excited state,
making a spontaneous radiative transition to the ground
state. Heitler' has developed a method to treat this
problem; namely, his theory of damping phenomena.
What causes the line to shift and broaden in this case
is the coupling of the atom to the vacuum radiation
field. %e are talking here about the nonrelativistic
problem, although Heitler has treated the fully rela-
tivistic case. The idea of the damping theory is quite
simple. Starting with an initial state containing the
vacuum 6eld and the excited atom, one calculates the
probability that the atom is in the ground state and a
photon of energy Acr is present. This probability is a
function of the time t. Taking the limit for l —+~, one
obtains a function of cv which is the line-shape function.
If the transition takes place via an intermediate level
and two photons are emitted, one calculates the proba-
bility that the atom is in the ground state and two
photons are present. Summing over all possible fre-
quencies of the photon emitted in one of the transitions,
one obtains the line shape of the other transition. In a
similar fashion one can treat many other problems such
as absorption, resonance Quorescence, scattering, etc.
Heitler's method is a particular way of handling the
time-evolution operator e '~' which determines the
time development of a quantum-mechanical system
whose Hamiltonian is B.This method, in a more general
and elegant mathematical form, has been discussed
extensively by Goldberger and Watson. '
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In actual experimental situations, one never has an
isolated atom. As a consequence, the line shape of
radiative transitions is usually determined by factors
other than the radiation field, such as collisions with
other atoms, Doppler effect, external fields, etc. Con-
sider, for example, the problem of collision broadening
of spontaneous radiative transitions in a gas in thermal
equilibrium. Since it is the collisions that keep the gas
in equilibrium, the effect of the vacuum field is negli-
gible compared to the effect of the collisions. Thus, in
such problems, the natural broadening can normally be
neglected. As far as collision (pressure) broadening is
concerned, there has been a considerable amount of
work, but no attempt will be made here to give a com-
plete list of references. For a review of the older work,
the reader is referred to Breene's' book. More recently,
Baranger4 was really the first to present a fully quantum-
mechanical treatment of the problem. Although his
approach is fairly general (within the frame of the
impact approximation), the emphasis is on applications
in plasmas where the long-range forces pose special
problems. Later, Fano' approached the problem from
a different point of view. He used the Liouville repre-
sentation, as developed by Zwanzig, ' to study the
motion of the density operator of the gas. Attention is
focused upon one atom which is undergoing the radi-
ative transition and an average over the degrees of
freedom of the rest of the gas (which is regarded as the
thermal bath) is taken. A similar approach to the prob-
lem of quantum relaxation (of which pressure broaden-
ing is an example) is that of Lax. r The main difference
between this and Fano's work is that Lax does not use
the Liouville representation and works in the time
domain while Pano works in the frequency domain.
Otherwise, both authors study the density matrix and
eliminate the bath variables. In addition, Lax is more

'R. G. Breene, Jr., The Shift and Shape of Spectral Lines
(Pergamon Press, Inc. , New York. , 1961).

4 M. Baranger, Phys. Rev. 111, 481 (1958); ill, 494 (1958);
112, 855 (1958); and in Atomic and molecular I'rocesses, edited by
D. Bates (Academic Press Inc. , New York, 1962), Chap. 13.

5 U. Pano, Phys. Rev. 131, 259 (1963).' R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); and in Lectures
in Theoretical I'hysics, edited by W. E. Brittin (Interscience
Publishers, Inc. , New York, 1961).

7 M. Lax, J. Phys. Chem. Solids 25, 487 (1964).
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interested in broadening due to anharmonic effects in
crystals rather than in pressure broadening, although
the two problems are quite similar. Finally, a slightly
different treatment of pressure broadening in the
impact approximation has been given by Cooper' and
also by Davis. ' Both authors use the density-matrix
formalism.

Problems such as pressure broadening, broadening
in neutron scattering by anharmonic crystals, etc. ,
have one basic feature in common which distinguishes
them from the problem of natural broadening. In the
first class of problems, the broadening is caused by an
interaction different from the one that induces the
transition; in the case of natural broadening it is the
same interaction that causes the transition as well as
the broadening, as Brout" has pointed out. Now,
although natural broadening is usually negligible when
other broadening effects are present, it is not generally
true that the broadening due to the Hamiltonian that
induces the transition is also negligible. The existence
of high-intensity light sources (lasers) makes it possible
to observe" transitions in which the effect of an optical
frequency field is comparable to that of the collisions.
This is because the initial field state contains a large
number of photons and it is not the vacuum state as in
natural broadening. Karplus and Schwinger" have dis-
cussed an analogous phenomenon in the microwave
region using a different approach.

It is the purpose of this paper to present a method
for treating line-shape problems, in which broadening
caused by the Hamiltonian that induces the transitions
and broadening caused by other interactions are treated
on an equal footing. The present approach, which
has been motivated by Fano's' work, exploits the for-
mal similarity between the time-evolution operator
exp( —iHt) governing the time development of the wave
function, and the time-evolution operator exp( —iI.t)
in the Liouville representation governing the time
development of the density matrix. A treatment of the
line-shape problem in slow neutron scattering by
anharmonic crystals using the techniques of damping
theory and cast in terms of the operator exp( —iHt) has
been given by Akcasu and Osborn. "

In Sec. 2 we study the relevent operator in LiouviHe
space. The analysis proceeds along lines similar to those
of Goldberger and Watson' and results in a set of inte-
gral equations satisfied by the matrix elements of the
resolvent operator. These equations are then used for
a perturbation calculation to lowest nonvanishing order.

As an application of the method, we study in Sec. 3
the line shape of induced optical transitions in a gas
taking into account both broadening caused by the
radiation field and broadening due to weak collisions.
The assumption is that the collisions are weak so that
a calculation to the lowest nonvanishing order is a good
hrst approximation. What we have in mind are collisions
between neutral atoms where no long-range forces are
involved. Most of the time the atom suffers weak col-
lisions that perturb its state very little. Strong collisions
must be well separated in time; i.e., the time between
strong collisions must be large compared to the duration
of the collision. Under these conditions and as long as
the interaction is small enough not to cause overlapping
of the lines, perturbation theory can be used (see, for
example, Baranger's' third paper, Sec. 4). Thus, as far
as collisions are concerned, we have rederived with a
different method Baranger's result for isolated lines for
the case in which both initial and final state are per-
turbed. But at the same time, we allow for broadening
effects due to the radiation field and study the depen-
dence of such effects on the intensity and spectral
composition of the field.

2. FORMULATION

and

(2.i) reads

FIs= Hs+H~+H~-

V= Vc+ VsR+ VPB

H=H'+ V.

(2.2a)

(2.2b)

(2 3)

Let ~a), ~b), . be the eigenstates of It' with energies

The total Hamiltonian of the problems we shall be
concerned with can generally be written as

H =Hs+ FIP+FI~+ Vo+ Vs"+V~", (2.1)

where H~ shall be referred to as the "system" Hamil-
tonian, B~ as the "perturber" Hamiltonian, and II~
as the "radiation" Hamiltonian. It will be understood
that the total Hamiltonian is broken up in such a
fashion that the eigenstates and eigenvalues of II~, B~,
and H~ can be found. The term V~ represents the inter-
action between system and perturber; V~~ represents
the interaction between the system and the radiation,
while V"~ stands for the interaction between perturber
and radiation. In some cases, the total Hamiltonian
can be broken up so that V~~ either vanishes or can be
neglected. Here, however, we shall retain it for the sake
of consistency. Introducing the notation

s J. Cooper, Rev. Mod. Phys. 39, 167 (1967).
9 J. Davis, Proc. Phys. Soc. (London) 90, 283 (1967).
~ R. Brout, Phys. Rev. 107) 664 (1957)."E.B. Aleksandrov et al. , JETP Pis'ma v Redakstiyu 3, 85

(1966) t English transl. : Soviet Phys. —JETP Letters 3, 53
{1966))."R.Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948}."A. Z. Akcasu and R. K. Osborn, Nuovo Cimento 38, 175
(1965).

H'ta)—=cs. iu). (2 4)

It is assumed throughout this paper that all Hamilton-
ians have been divided by A.

If now p(t) is the total density operator, its time evolu-
tion is governed by the Schrodinger equation

(2.5)
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Introducing the I iouville operator L defined by"4

I.ab; a'b'=+aa'~bb' IIbb' ~aa' p (2.6)

diagonalizes II', the I.iouville operator L' is also
diagonal, i.e.,

where the asterisk denotes complex conjugation, (2.5)
can be written as

Iab; a'b' (&a "b)baa'ebb't

from which it follows that

(2.16)

(dl«)u(~) = &L'—(~).

Note that in matrix form this equation reads

(d/«)P b(~)= 2 L b; 'b'P 'b'(~) ~

albl

One can now write the formal solution

(2.7)

o

1

S—L ab;ab a "a+—&b
(2.17)

Using a well-known operator identity, g(s) can be2.8)

written as

p(t) =e(~)p(0) (2.9)
:(-)=- —,= —+ -I'S(), (2»)

z—I'—11 ~ Io s, Io

of (2.7), where%I(t) is a Liouville time-evolution oper- rom which we obtain

~{')—~ zIt—

Since L is a Hermitian operator, '1l{t) is unitary. It
should also be noted that I. can be written as

gs+gP+gc+gR+IBR+IPR=+0+II (211)

1
o. ' ..()=-

COa+Gd b

X(bacbb'+Q I.,b, a'b' ga'b' cj(S)) t (2.19)
al bl

8'; '(s) =
(2.12)

f1+~.d; .erg.";,d
"c+"'

+ g I.,„,, b. , „()j. (. o)
a'b' (gcd)

S()—=1/( -~)
in terms of which 'll, is expressed as

where the meaning of the symbols become self-evident
where we have used (2.17).

when compared to Eqs. t', 2.2j.
onsider diagonal matrix elements for which 2.]9)

gives
Taking the Laplace transform of (2.10) one is led

to the resolvent operator

w(~) =
27ri

e ictus(s)g—s
For off-diagonal matrix elements g,b,d (with ah~cd),

(2 13) we introduce the operator F(s) defined by

(2.21a)

(2.21b)

g.b, ."(s) F.b; .=—d(s) g.d, ."(s)

P,d, ,g(s)=- 1 .

Substituting into Kqs. (2.20) and (2.19), we obtain

F.b; cd(~) =
"a+~t

+00

w(t) = ——
2mi

dx e '*'g(x+) (2.14) + Z 'ab; a b'~ b'; ca'(s)) (2.22)
a'b '(&cd)

where
(2 13)

and
g(x+) =—lim g(x+ie)

e-++0,
Bc% «(s)(s "c+"d I.cu;ca

where the contour C on the s plane runs from i&+ ~ to
ie—~ with e being a positive number. That this is the

appropriate contour is easily seen if one recalls that H
has real eigenvalues which, by virtue of (2.6), implies

that g(s) has all its singularities on the real axis. For
t&0, (2.13) becomes

and x is a real variable. Thus, the problem of calcula-

ting matrix elements of the time-evolution operator is

reduced to one of calculating the corresponding matrix

element of the resolvent and then computing the in-

version integral. However, often one is not interested in

the inversion integral because the resolvent operator
itself can be used directly to give the line shape.

Now we proceed to study the matrix elements of g(s).
First, we observe that, in the representation that

' U. Fano, Rev. Mod. Phys. 29, 74 (1957).

ah —~'
~ a'b'; a"b" =~a'a~a"a~b'b~b" b ~

It is easy to verify that they have the property

(2.24)

PabI'cd Pabst (2.23)

which shows that they indeed are orthogonal projection

Z 'cd; a'b' I'a b; cd) =1. (2.23)
a'bl (g cd)

At this point it is convenient to introduce a set of
orthogonal projection operators I' ' defined by



SPECTRAL LINE SHAPE 87

operators. If 0 is any operator in I iouville space, one
can show that

and

(~ fl)a'0' a" b "flab a" b"'4' a~V0 (2.26a)

gab — Q Pab
a' $' (Qa b)

(2.27)

That these operators have the projection property

Q 'Q '=Q ' is a consequence of Eq. (2.25). Finally,
one can readily verify that P ' as well as Q" commute
with L' or any other operator diagonal in the {~

u)}
representation.

Let us now introduce the operator R(z) defined by

(QP'). b, .","——Q..b., „bb.".5b- b. (2.26b)

We shall also need a set of projection operators Q"
defined by

LQ—LO+ QcdLIQcd (2.34)

which is a Hermitian operator commuting with Q'd,

one can show that

R(z) —LI+LIQcd QcdLI
s—J.&

(2.35)

from which it is obvious that

The structure of Eq. (2.32) suggests that R,„, ,„
plays the role of a shift-width function, except that it
does not refer to a single level but to a pair of levels. In
fact, it will be seen later that it is a combination of the
shifts and widths of the levels

~
c) and

~
d). In order to

separate shifts from widths, we need to study the oper-
ator R(z) somewhat further.

By introducing the operator

R(z) —=LIE(z) .
Because of Eqs. (2.21b) and (2.22), we can write

(2.28) R"(z) =R(z*) . (2.36)

Now, starting with Eq. (2.31) and following a procedure
similar to that of Ref. 2, we obtain

F= JiF= R,
s—I ' z—J-'

(2.29) R(z) —Rt(z) = 2iR—t(z)

Imz
from which it follows that

P.b, „d(z) = R,b ,d(z) . .
~a+&b

X- Q'"R(z) . (2.37)
(Rez —L') '+ (Imz) '

(2 30) Because of (2.36) we can write

Note that the last two equations are good for calculating
oA-diagonal matrix elements only. Substituting now

(2.30) into (2.22) and using the projection operator Q'"
we obtain

lim R.d .d(x&i0) =—D.d(x) WI', d(x) . (2.38)
e ~+0

Combining this with (2.37) and using the identity

R(z) = LI+LIQcd R(z)
s—L'

(2.31)
we obtain

lim = z8(x—L0),
c +0 (x LO)0+02

which is an integral equation for R(z). This operator
can also be used in (2.23) if we observe that the last
two terms inside the brackets are nothing else but
R« , «(z). Thus Eq. .(2.23) immediately gives

I', (x) = {R"(x+)8(x—L")Q'R(x+)},d, ,d, (2.39)

which is positive definite and represents a width. The
shift D,d(x) can be calculated through the dispersion
relation'

g,d, .d(z) =
00c+~d Rcd; cd(&)

(-'.32) +- r„(x')dx'
D.d(x) =L,.d; .d' —— (2.40)

As for the off-diagonal matrix elements of rI(z), from
Eqs. (2.21a) and (2.30) we obtain

B.b; d(z)= R.b; '(z)
Z (Oa+00b

X . (2.33)
z M +00d R d; d(z)

Now we have expressed all matrix elements of the re-
solvent in terms of R(z) and we have an integral equa-
tion for R.

7l QQ X vY

where P denotes the Cauchy principal value. Introduc-
ing (2.38) into (2.32), we obtain

lim g,d, „cd(Xeric) = . (2.41)
x—00.+(vd —D,d(x) air„d(x)

For the off-diagonal matrix elements of b(z), one has
Fq. (2.33), where R b, ,d is still to be calculated. For
this we have the integral equation (2.31) which we can
iterate and truncate after a certain term depending on
the process under consideration and provided the
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coupling is weak enough for the perturbation calcu-
lation to be meaningful. The iteration proceeds as
follows:

From Eq. (2.31) we have

~.b; .S=L.b; .dI+2 IV.b; "b K b; .d
a' b'

I ab; cd +~ah; abRab; cd

+ P IV.b . , R. b „d, (2.42)

In the following sections we apply this formalism to
the study of a line-shape problem. There are a few
mathematical questions concerning the analytic proper-
ties of g(z) and R(s) not touched upon at all. The
reason for this omission is that Goldberger and Watson'
have examined these problems in connection with the
resolvent (s—H) ' and the associated R operator. Their
considerations can be carried over to the present for-
malism almost verbatim.

where, for simplicity, we have set

3f=LIQc"51I(s L')j. (2.43)

3. LINE SHAPE OF INDUCED ATOMIC
TRANSITIONS IN THE PRESENCE

OF WEAK COLLISIONS

Iterating Eq. (2.42) once, we obtain

~ab; cd Iab; cd +~ab; abRab; cd

+ Q Il-jab; a'b' ja'b'cd,
a' b' (Qa b)

+ 2 2 IVab a bIVa b . 0 &a"0" .d, (2.44)
/ b/ (Q b) II bt/

which, upon separating the term for a"b"=ab, becomes

~a b; cd jab; cd +{7Vab; ab+ Z jVab; a'b tVa b''; c b}'
a'b'(ga b)

X+ abed+ P jt-'jab; a'b La'b'; c'd
I

a'b' (Qab)

+ 2 2 IVab a'b ~a b'' a"b'"~a" 0 cd (2"4~)
a'b'(Qab) a"b" (Qab)

This process can be repeated. Kith every iteration, one
obtains a new term containing E,b. ,d as well as other
terms. The terms containing E,b, ,d give contributions
to the shift-width function. To see this, we neglect the
last term in Eq. (2.45). This term is of order higher than
the second in I. . Solving then for E,b, ,d we obtain

»I ab; cd + ~ crab; a'b'&~a'b', cd
a'b' (gab)

(2.46)
1—fV, b-,d

where we have introduced

IV, b .d(s)=—IV,b, b+ Q IV b, b M, b', ,b. (2.47)
a' b' (ga b)

It is evident now that 8', b. ,d is a shift-width function
and that further iterations will contribute terms of
higher order to both the numerator and the denominator
of (2.46). This equation represents an approximate ex-

pression for R,b. ,d up to second order in I. . Also,
8" b. ,d is calculated up to second order in 1.», which is

quite satisfactory for many practical applications. The
numerator, however, must be calculated to higher order
in some cases. For example, in the case of Raman scat-
tering by a crystal the lowest nonvanishing term in the
numerator will be of sixth order in LI (recall that LI
contains all interactions between the unperturbed parts
of the Hamiltonian).

H= jjs+HP+ Vc+HR+ VsR,

where II8 is the free Hamiltonian of the atom of interest
(system); HP is the sum of the free Hamiltonians of the
atoms of the rest of the gas; V~ contains the interaction
between system and the rest of the gas, as well as the
interaction between the atoms of the rest of the gas;
II~ is the Hamiltonian of the free radiation Geld and
V~~ the interaction between system and radiation. We
shall also use the notation

H'= Hs+ HP+ HR, —
V= Vc+ VsR

Tht. total I.iouville operator is now written as

(3.1a)

(3.1b)

I=Ls+LP+LR+ jc+jsR= LO+jI (3 2)

where the meaning of the symbols is obvious.
The starting point for the study of the spectrum will

be the Fourier transform of the autocorrelation func-
tion of the dipole-moment operator, as discussed by
Baranger. ' Thus the quantity we wish to calculate is

C (0I) =m-' Re dt s'"' Tr{yy(t)p}, (3.3)

where y is the dipole operator of the atom„p is the total
density operator at f= 0, and Imago ~ +0. Fano' notices
that

Tr{yy(t)P}=Tr{ys *"(Py)}, (3 4)

from which it easily follows that the spectrum is

C'(~) =~ ' Im Tr{yB(~+=~)(Py)} (3 3)

As an application of the forma, ism, we study in this
section the spectrum of the induced transitions between
atomic states, for the case in which the radiating atom
undergoes collisions with other atoms. Ke think of a gas
and focus our attention upon one atom (the atom of
interest) which is undergoing a radia, tive transition.
This atom —to be referred to hereafter as the system-
can at the same time interact with the rest of the gas
via collisions. We adopt the usual model used by Baran-
ger, ' Fano, ' and others. The total Hamiltonian may be
written as
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If the initial state contains E(b&) photons per unit fre-
quency, the power absorbed, or emitted by induced
emission, in frequency interval dbi about a&, is P(co) Cko,

where
P((v) =—(4b0'/3c') Ã(ai) 4 (bi) . (3.6)

We shall follow Baranger' and others in calling 4(ai)
"the spectrum" although, strictly speaking, the spec-
trum is P(cv). This equation does not contain spon-
taneous emission. The spectrum of spontaneous emis-
sion is obtained from (3.6) by letting 1V= 1. The effect
of collisions is contained in C(&a) as shown in Refs. 4
and 5. But C(b&) also depends on 1V(a&). This gives rise
to the natural line shape in the case of spontaneous
emission when the initial state of the radiation 6eld is
the vacuum state. The focal point of this section is to
find the dependence of 4 (&a) on the initial state of the
6eld taking into account at the same time the effect of
collisions. Thus, from here on and throughout this
section we study C (cu).

Let us consider the representations that diagonalize
Hs, H~, and H~, and denote the eigenstates by In),
Ip), , I p)I p'), , and Iib), Im), , respectively.
The respective energies will be denoted by co, cop

&o„, b&„,&b„,ar„.We mean by I e) the photon num-
ber representation. Consequently, e stands for a whole
set of numbers specifying the number of photons in
all modes. We shall make the usual assumption' that
initially there is no significant correlation between the
system, the rest of the gas, and the field. In addition,
we shall assume that the system and the rest of the gas
are in thermal equilibrium. Then we can write

the diagonal matrix elements of g. Introducing now the
quantity

(H.b(~))=Z Z pn'p-"B. b; .b(*'=~), (3 9)

the spectrum reads

I'( ) = — I™2 I
ye-I'p-'(B. ( )) (3 1o)

The summation over n and P represents a sum over all
lines of the atom. The shape of each line is determined
by (B.b)

We now turn to the study of (g,b(x+)). Using Eq.
(2.41) and making use of the fact that co,—ub ——~d —

&os,

we obtain

B.b(x") =— —.(3»)
x—co +(op—D.b(x)+ir. b(x)

To calculate r, b(x), we use Eq. (2.39) and limit our-
selves to the lowest-order nonvanishing contribution.
For this we approximate R by L' Lsee Eq. (2.35)j.
Substituting into (2.39) and recalling the definition of
the projection operators we find

rab(X)=W P Lab a'b' La'b' ab
a' 5'&ab

Xb(x L;b, , b ')—. (3.12)

Froin the definition of I.,q. , q, one can show that, for
u'b'/ab, we have

p=pp p (3 7) L.b: "b'L"b; .b'-
I
v- I'~bb+

I vbb I'4;,
where p~ is diagonal in the o. representation and p~ is
diagonal in the p representation. The same assumption
can not be made about p~ because, for laser light, p~
will in general possess off-diagonal matrix elements in
the photon number representation. However, one can
show" that the presence of these matrix elements is of
neither mathematical nor physical consequence in the
case of single-photon emission or absorption. Ke shaJ1
therefore treat p~ as if it were diagonal.

Noting now that y operates on system states only,
(3.5) gives

C( )= — 'Im & Iys-I'p-'

which if substituted into (3.12) yields

r.,(*)= p Iv.. I'~(x—I... ., , )

+m Q I Vbb I'8(x— Lab, b '). (3.1.3)

Recalling tha, t I-a'$', a' t, a' Gpg and Iab', ab' a—bib. , We Can Write (3.13) aS

r.,(x)=~ P IV...I'S(x ~..+~b)

+~ p Ivb, I's(x—~.y~b). (3.14)

XP P pyp pnn gain, syn; ann, syn(x+= ai) ~ (3 g)

To compress notation somewhat, we shall use the single
index a instead of ape, the index b for /pe, etc. Note that
a and b differ only in the system indices, and this is
due to the fact that y operates on system states only.
Ke shall also use the notation &,~ instea, d of &,~. ,~ for

Consider now D,b(x) as given by (2.40). First, note thatI,~, ,~ = V, —V~g. Often these diagonal matrix ele-
ments will vanish; for example, in nonrelativistic radi-
ation problems. Here, we shall neglect them, assuming
that they vanish or that the or's have been so redefined
as to incorporate them. Substituting I', b(x) into (2.40)
and performing the integration over x', we obtain

"P. Lambropoulos, C. Kikuchi, and R. K. Osborn, Phys. Ilev.
144, j.08i (1966).

D.,(x)=P g yp P ——.(3.15)
a +a X 6)a +bi b b &b X—Ma+ 0)b



P. LAM 8 ROPOU LOS

Having now expressed D ~ and I'
~ in terms of the inter-

action V we can substitute into (3.11) and then into
(3.10), thus obtaining

C'(~) =x-' 2 I yp- I
') .-'

P,a

I', g(&o)

X —,(3.16)
(Gl 07~p D~b(OP)) +F~g (td)

where ~ p
——~ —cop, and the brackets indicate a statis-

tical average as in (3.9). If one can replace averages of
functions by functions of averages, and if D(co} and
F(co) are slowly varying functions of &u, (3.16) becomes a
superposition of l,orentzians each of which represents
one atomic line.

Let us now calcu)ate the widths and shifts more
explicitly. Using the expansion in terms of the modes
inside a cubic box of vol.ume 0, the Hamiltonian of the
free radiation field reads"

Z»{ok' p'kl+ g) ~

where k denotes the photon wave vector, A, is the polari-
zation index taking on the values j. and 2, and the crea-
tion and annihilation operators obey the usual boson
commutation relations. The single-mode states are
defined by

(3.18)

where n~~ assumes non-negative integra1 values. The
interaction between system and radiation field can now
be written as"

2vre' '" y ek),
V "=— 0 '"P (u q"+a ) (319)

m9~ (~„)1 /2

where e~), is the unit polarization vector of the kX mode
and p is the momentum operator of the electrons of the
atom of interest in the center-of-mass system (bary-
centric system). ' In writing V8" as in (3.19), we have
neglected the term which is quadratic in the vector
potential A of the field and have made the dipole ap-
proxirnation e+'"'~1.At the end we shall let the volume
of the box approach infinity and shall replace the sum-

I', g'(x) = m
~

V~» ~
~

5(x—M~ co +Mp+co )

+
O'X)' (~PI))

X8(x co+ ct)~+cop~+Ql&~), (3.20)

where V' will not be specified further for the time being.
To calculate F,P(x), we take Vs~ as given by

(3.19a) and calculate matrix elements of the form
V. [ j,q'), I„~qIp". We then substitute into (3.14),
express the matrix elements of the position operator r,
replace the summation over k by integration according
to

where 0 is the volume of the box and dQ is the differ-
ential of the sol~d angle, i.e., dQ= sinld@d„. After some
straightforward manipulations, we obtain

mation over kP by integration. The states of the radi-
ation field are now written as / nqq, nq. q. , ) or
~{as~~}) for short. The energy of such a state is

co =P~q co~mqq, where» = kc and c is the speed of light.
Recall now that V is the sum of V8~ and V', where

the first commutes with variables of the rest of the gas
while V' commutes with variables of the radiation field.
Then, in a matrix element of the form V„,appearing in
(3.14), there will be contributions of two kinds. First,
there will be contributions diagonal in the photon states
in which V~~ does not contribute, and second there
will be contributions diagonal in states of the rest of
the gas in which V' does not contribute because of the
assumptions we have made earlier. Thus V, will con-
tain contributions of the form {n'({nqq'}

~ ~

VP~
~
n, {n&q})

summed over n' and {Nqq'}, and contributions of the
form (n'(p'~ V'~a, p) summed over n' and p'. Similar
considerations apply to V~ ~, except that n and n' are
replaced by P and P', respectively. It is clear now that
F y(x) can be written as the sum of two contributions
F,t, '(x) and F,P(x), where the first contains matrix
elements of V' and the second contains matrix elements
of V's. For F ~'(x), we have

F, t,s(x)=$ Q (o d»d+~k
~
eked'ra'e

~
~{x ~n' »+xp)

+e 2 ~..' d»d&»~~(», fI)lee~ r -I'E~(x ~- »+~p)+~—(x ~-+»+~p)]

+$ Q cop p'

d»dQ»ieger

rp. pi'8(x —(o +up+(op)

+& Q cup p' d»dQa&INg(», Q)~eg), rpp~'P(x ce +cop+»—)+b(x co„+cop »—)], —
P', I

(3.21)
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where rc), (co)„Q) is another notation for I),)„ i.e., the
number of photons per unit frequency, per unit solid
angle, and of polarization X. The constant $ is defined. by

&=—p'/47rkc'. (3.22)

In order to simplify (3.21) somewhat, we shall introduce
the quantity S(Mi) defined by

For this de6nition to be consistent with the properties
of the delta function, we shall take ))(x=0) = ~i. Lastly,
we note that in the first and third terms (which are
independent of the initial photon flux) we have the
quantity

dQIe), ), r. .I'.
S(M),) I

r ~
I
'=—Q dQrc), (co)„Q) I e),), r ~

I
'. (3.23)

Obviously, S(M),) depends on the spectral composition
of the state of the radiation 6eld. Assuming now that
S(M),) is not singular, we can perform the integrations
over +k. The result is written conveniently in terms of
the step function )){x) defined by

(3.24)

This can be simplified if one calls 8 the angle between
kandr . Then,

Ie),), r...I'= Ir...I'sin'G).

One can now perform the integration over the solid
angle obtaining (gm/3) I

r
I
'. With this result and Eq.

{3.23) we have eliminated (at least formally) the de-
pendence on angle. The integrations over frequency
can now be performed using the step function. The
result is

8(x.) (g=~/3) (2 M---'I r- -I '(* M-—+Mp»(x M-—+Mp)+& &-™--'I r- -I'
X{(X—ada~+ Mp) S(X cd a~+Mp) r/—(X Ma~+cd p) y—(Ma~

—X—Mp)S(Ma~ —X—
cop) ))

(cuba~

—X—
cop) }

+(g /3)EZp Mp p'Irp pl'(M=x Mp)n(—M=x Mp)+—ZZp Mp p'Irp pl'

X{{M, x cdp )—S(G—), x Mp )—17{M
—x Mp)—+ (x—M+ M—)pS(x—M +Mp )rJ(x—G),+cdp )}. (3.25)

It is now trivial to write experssions for the shifts if we use Eq. (3.15). Again, to lowest order in V, we
obtain the sum of two contributions: the collision contribution D, c,'(x) and the radiation contribution D, ), (x).
The first is given by

D c,'{x)=P
a' n'(«O) X Cdal MOI+MP—+CdO—

and the second is given by

8m

D.P(x) =—5 2 M- -'I r- -I'P
a'

P'O'(&PP) X—G)a—Cd&
—MPH+M&1

(3.26)

+(AM--'Ir--I' P
MiS(Mi)

de)& +P dMi
X—COa' MC+Mp O

M~S(M~)

X—Ma +Mi+MP

Sx
+—(ZMp p'Irp pl'P

3 p' 0 X Ma+Mp'+M(:

+&& Mp p'Irp pl' P- copS(Mi)
do)& +P

X—Ma+ MP~+ My 0 X Ma+Mp' Lk
(3.27)

This completes the derivation of expressions for
shifts and widths to lowest order in perturbation theory.
Although this approximation is quite adequate for a
large class of line-shape problems in atomic and molec-
ular processes, one can straightforwardly obtain
higher-order corrections by continuing the iteration
of (2.35).

To elucidate the results we have obtained thus far

let us look at a special case. Assume that I"
~ and D, ~

are much smaller than co p. Then, the averaged quantity
in (3.16) will be a function of co highly peaked at co=M,p.
If, at the same time, F,c,(M) and .D( c)Mare functions
slowly varying in the vicinity of co p, one might replace
them by their value at co p. Note that a necessary
condition for F(co) and D(co) to be slowly varying is that
S(co),) be slowly varying. From (3.25) and (3.27) we
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find that the radiation contributions to I' and D at cc p are

1'.~'(~.p) = (gx/3)5 Z. ~..'Ir. -I'n(~-)+5 2 ~.-'Ir"-I'{&(~-)n(~.")—&(~-")~(~".))
e'

+(g i3)GZ pp'Irp pI'~( pp)+(2 ~pp'Irpp I'(~"(~pp)n(~pp) &—(~p p)~(~p p)) (32g)
pf pl

Sm

D.P(x)=—&P a..'Ir. .I'P
rx'

d&k =+52 ~en'
I
ra' n I

&A+ (&A)
+p

8' MIc——&2 ~pp'Irp pl'P d ~
— &Z—~pp'rp p P

3 p' Glpp&
—

bpIc p'

6)gX(co/j, )
kg +P

QPpp~
—R@

cogrV(G) y)
dCD&g ~ (3.29)

~pp'+Q)y

Thc colllslon contrlbutlorls to I Rnd D RI'e obtained fl om
(3.20) and (3,26) by setting x=a&„p. Thus we obtain

F.g'((e p)=s. P I
V „,.„'I'b(~, co„—„)

&'u'(«x}

+~ 2 I
l'p ',pn'I'&(~pp ~n') (3 30)

p'u' (Hpn)

D-p'(~-p) = P
& p'(+rxp} GPrx~ —07&~&

"H. Bethe, Phys. Rev. 72, 339 (1947).

To the extent that the assumptions made are valid,
the spectrum (3.16) becomes a superposition of Lorentz-
ians. The widths and shifts are now seen to consist of
the widths and shifts of the levels n and I9 of the system.
Consider, for example, Eq. (3.29). The 6rst term is the
natural width of the state In). Because of the step
function g(a ), only terms for which &o &co, give non-

vanishing contributions to the sum. This is to bc
expected since the natural width is due to the fact
that the state In) can make spontaneous transitions but
to lower levels only. Similarly, the third term represents
the natural width of the state P). The second term
represents the width of the state n) due to the presence
of photons. The 6rst term inside the curly brackets
contributes only for co„&co, while the second contrib-
utes only for cu &~ .. Clearly, the 6rst is due to emis-

sion of photons and the second is due to absorption.
The two contributions are additive. Similar consider-
ations apply to the fourth term which refers to the
state IP). Each of the terms analyzed above has its
corresponding term in the expression for the shift
D,P(co p} Here, howe. ver, the vacuum shifts lead to
infinitics —a well-known fact—which can be eliminated

by cutoff procedures. The simplest way to do this in
thc nonx'clatlvlstlc Rpproxllnatlon ls by using Bethe s
method. The induced shifts —the second and the third
term —will not lead to infinities as long as the integral

is 6nite. This will generally be true for actual light
sources since the integral represents the total energy of
the initial state of the field. . The total radiation width
of the spectral line n ~ P is the sum of the widths of the
two states In) and IP) while the total shift is the dif-
ference of the shifts.

In a similar fashion, the colhsional width of the line

consists of the sum of the collisional widths of the states
Io,) and IP) as shown by (3.30); the collisional shift is

given by the di6erence of the two shifts as shown by
(3.31). Finally, the collisional width is added to the
radiation width, and the collisional shift is added to the
radiation shlf t.

The fact that the hnal collisional width is the sum
of the widths of the states In) and IP) stems from the
approximations made in calculating the widths. It was
assumed that V' connected only diff erent atomic
states and F as given by (2.39) was calculated to the
lowest order, which implies that E(s) was approximated

by I.' (see Eq. (2.31). The meaning of these approxi-
mations is that wc have considered only inelastic scat-
tering and it is na, tural, as Barangcr' has shown, for
the probabihties (or cross sections} to add incoherently.
Additional effects come into play, however, when one
considers elastic scattering as well. In that case the
transition amplitudes for scattering from the two atomic
states subtract and the absolute square of their dif-

fcrclicc gives Rn additlonRl contribution to the width.
This is analogous to the phase-broadening CR'ects dis-

cussed by McCumber" and I,ax."The way to obtain
such contributions in the present formalism is to
calculate F(x) more accurately and allow for elastic
scattering (see, for example, Fano's procedure in Ref.
5, Sec. 5). Note that R(s) Lsee Eq. (2.31)]is essentially
a transition amplitude and broadening from elastic
scattering will come through matrix elements of E
diagonal in atomic states.

One still has to perform the averaging indicated by
the brackets in (3.16). The quantities that depend on
the statistical variables are the shifts and widths. The
crudest way of handling this problem is to replace
averages of functions by functions of averages. %C then

'8 D. E. McCumber, Phys. Rev, 135, A1676 I,'1964),
' M, I.a, Phy. R . 145, 110 (1966), App di A,
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obtain

(3.32)

The vacuum radiation shifts and widths can be taken
out of the brackets. The average induced radiation
shifts and widths are obtained from (3.28) and (3.29)
by simply replacing N(or) by (N(co)). This averaged
spectral density is a quantity that one can determine
experimentally by measuring the energy of the light
source as a function of frequency. To compute the
averaged collisional shifts and widths, it is usually
adequate to use an expansion in powers of the gas
density. If we write V' as a sum of binary interactions,
then, to lowest order in perturbation theory, we obtain
shifts and widths that are linear in the gas density. In
fact, one obtains expressions similar to those for the
induced radiation shifts and widths except that. (N(~))
is replaced by the gas density and the dipole matrix
elements (with the associated constants) are replaced
by scattering cross sections (see Ref. 4 and 5).

Now let us consider the various assumptions we have
made and discuss the manner in which the spectrum
will be affected if they are not valid.

Replacing the average of a function by the function
of the averages can be regarded as a 6rst approximation.
If the deviations of the shifts and widths from their
average values are not suKciently small, the approxi-
mation can be improved to any desired order by ex-
panding the function in a Taylor series around the
average values. For example, to second order in the
deviations from their average values, the shifts in (3.32)
give rise to an additional contribution to the width. It
appears, however, that, as far as collision and radiation
broadening are concerned, Eq. (3.32) will often be
satisfactory.

The above statistical approximation could be made
directly in (3.16). Then, we would have an expression
in which the averaged shifts and widths would be
frequency-dependent, while in (3.32) they have been
replaced by their values at co=~ p. The vacuum radi-
ation shifts and widths [see (3.25) and (3.27)j are
indeed slowly varying functions of x so that replacing
them by their values at co ~ is an excellent approxi-
mation. The dependence of the induced shifts and
widths on x is mainly determined by the function N(a»).
If this function does not vary slowly in the vicinity of
or p, then the averaged shifts and widths will be fre-
quency-dependent. Thus, the presence of a strong
radiation field appears to have two effects. First, it may

shift and broaden the line because of its intensity. This
is the type of phenomenon observed by Aleksandrov
et a/. ,

"who report a shift of an optical transition in

potassium vapor due to the inQuence of a ruby-laser
pulse. The broadening of the line is analogous to the
effect that Karplus and Schwinger" studied in connec-
tion with microwave absorption. The second effect
that the strong field may have is to make shifts and
widths strongly frequency-dependent, thereby altering
the shape of the line. As pointed out earlier, for this to
happen (N(or) ), should be a function rapidly varying in
the vicinity of ~ p. For laser sources, one wouM expect
(N(co)) to be something like a Lorentzian or a Gaussian;
generally a peaked function. Depending on the width
of this function and the position of its center with
respect to co p, it may be possible to observe a change of
the shape of C (&o). Such changes could be observed in
absorption experiments and resonance fluorescence, as
well as in stimulated emission. It should be pointed out
that the induced broadening is a resonance phenomenon
in the sense that only photons of certain frequencies—
determined by the spectrum of the system —are effective
in causing it. This can be seen from Eq. (3.28) where
only values of N(or) evaluated at the frequencies ~
and copy. appear. Of course, this is a consequence of the
fact that the width reAects the probability for the atom
to make real transitions out of a certain state. The
shift, however, is associated with virtual transitions
and, although Eq. (3.29) does contain resonance de-
nominators, it is an integral over the whole spectrum
that determines its value. The resonance denomi-
nators simply cause certain parts of the spectrum to
weigh more than others. In view of the above remarks
it is evident that a light source with a narrow spectrum
that does not coincide with a transition may cause a
shift but leave the width unaffected. This seems to be
the case in Ref. 11, although no line-shape measure-
ments have been reported.

Before closing this section, we should note that in a
gas as envisaged here Doppler broadening will, in
general, be important. This means that we have to
include the motion of the center of mass of the system.
The recoil of the center of mass leads to the Doppler
shift which when averaged over all possible directions
gives rise to an effective width. Its inclusion into the
present formalism is straightforward.


