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High-Temperature Behavior
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In this, the first of a series of papers on the nondegenerate Anderson model, there is presented a graphical
representation of the equations of motion of the d-electron Green’s function such that the intra-atomic
Coulomb energy Ufi,#.. is treated exactly. In this paper, the high-T" behavior of the system is studied. It is
found that the magnetic susceptibility is given by
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where xp is the usual temperature-independent Pauli paramagnetism of the host metal; this expression
agrees (except for the replacement W—2U | 1—2¢ | y/x) with that obtained by Scalapino. The method of
derivation makes it clear that the existence of a Curie-law susceptibility at high T is intimately connected
with the Kondo anomaly present in this model.
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The resistivity is found to be given by
the coefficient of the logarithmic term differing from the value 3A/w (ez—e;) obtained in the s-d model. This
discrepancy is due to the finite lifetime of the d electron, an important feature of the Anderson model,
contrary to the remarks of Schrieffer and Wolf. An even more important lifetime effect (at low T') is the
replacement of In (W/7T) by In [W/I'(T)], where I'(T) is a nonanalytic (in A) function of T such that
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I'(0) is of order T, and I'(T) —0 with increasing T [although I'(T) 0 for all T].

I. INTRODUCTION

HIS is the first of three papers on the nondegenerate

Anderson model of localized magnetic moments
in metals.2 This model was proposed by Anderson in
1961 to explain the magnetic properties of a dilute solu-
tion of magnetic atoms in an otherwise nonmagnetic
host metal.

The model consists of a gas of independent conduc-
tion electrons interacting with localized @ electrons.
The d electrons, however, interact with each other via
an atomic Coulomb exchange energy such that the
state of two d electrons on the same atom is ener-
getically unfavorable as compared to the singly oc-
cupied state. The Hamiltonian for the system is, in the
notation of second quantization,

= Z ekvcka TCka'_!— Z eda'da"rda-'_ Uﬁ+ﬁ—-
k,o a

+2 V(dafckv'}‘ckafda), (1'1)
k.o

where V=V* and 7, =d,1d,, etc. The energies ez and
& are given by (we set i=up=1 throughout)

(1.2)

ek,,=ek-—-oH,

* Present address: Department of Physics, University of To-
ronto, Toronto, Canada.

1P, W. Anderson, Phys. Rev. 124, 41 (1961).

2 L. Dworin, Phys. Rev. Letters 16, 1042 (1966) . In the present
paper, and in two succeeding papers, the analysis leading to the
results stated in this letter (in several cases incorrectly) is pre-
sented. At the time the letter was written, the existence of the
nonanalytic width I' was not recognized, nor the necessity of
going beyond the lowest-order iteration of the integral equation
obtained for the Green’s function G¢° ().
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and
ew=€e3—goH, (1.3)
where
ea=e—tU, 0<EL], (1.4)
and where
G=€f (1.5)

According to Anderson, the most favorable value of
¢ for the presence of a local moment (that is, for a
temperature-dependent magnetic susceptibility ap-
proximating a Curie law at high temperatures) is
£=1, However, we shall see that the values £=0, %, and
1 require special care, and so in this paper it shall be
assumed that £0, 3, 1.

If, following Anderson, we define the energy A by

A=7V?%(er), (1.6)

where p(er) is the density of conduction electron states
at the Fermi surface, and if we regard er to be of order
U, the inequality

USA>T

shall be assumed throughout.

Despite the fact that the model was constructed so
as to yield a Curie law susceptibility for finite U and
A=0 [making condition (1.7) the interesting regime],
a number of authors have studied the model within the
Hartree-Fock approximation.®# In this work, however,
we shall treat the interaction U exactly. Aside from
the importance of such a treatment as regards the

(1.7

3 G. Kemeny, Phys. Rev. 150, 459 (1966).
( ‘7. )R. Schrieffer and D. C. Mattis, Phys. Rev. 140, A1412
1965).
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magnetic impurity problem, this approach affords a
comparison with the Hartree-Fock approach, which
might elucidate both methods in other contexts.

In this paper we shall present a graphical representa-
tion of the equations of motion of the Green’s function
of the d electron in Sec. II. In Secs. IIT and IV, we
shall examine the first few terms in the perturbation
expansion in powers of A/U of the Green’s function
as obtained from the graphical representation.

The first few terms of an expansion of the magnetic
susceptibility in powers of A/U, the interaction U
having been treated exactly, have been obtained inde-
pendently by Suhl and Fredkin,® Nagaoka,$ Scalapino,’
and Hamann® (for the case {0, U— o such that (U
finite) as well as the present author. It is found that
the magnetic susceptibility of the system has a per-
turbation expansion of the form [neglecting terms of
order exp(—ptU) ]

N (A) <£)2 w ]

X Xp+T[1+O i +0 - In T+ ,  (1.8)
where x, is the usual temperature-independent suscepti-
bility of the conduction electrons, and where an arbi-
trary energy cutoff W (which might be thought of as
the bottom of the conduction band) has been introduced
for convenience, the density p(er) being set equal to
a constant p.

This result is not trivial and requires a delicate
cancellation of terms which would not have been
guessed at. We shall derive this result in Sec. III, but
our main interest lies in the temperature regime for
which the perturbation expansion (1.8) is no longer
valid. We see from Eq. (1.8) that A/U is not the only
parameter in the problem, but rather the parameter
(A/T) In(W/T) also enters.

From Eq. (1.8) we see that the perturbation expan-
sion “breaks down” for temperatures of order T,
where

T.=W exp(—U/A). (1.9)

By now the presence of logarithmic terms is not
surprising, in view of the discussion of Schrieffer and
Wolf® concerning the relationship between the Anderson
and s-d exchange models.’® Nevertheless, because of
the finite lifetime of the d electron in the Anderson
model, we might anticipate a major difference between
the two models; namely, we might expect the d lifetime,
of order 1/A, to enter the argument of the logarithmic
functions, such that the logarithmic terms are no
more singular than (A/U) In(W/A), rather than
(A/U) In(W/T).

We shall show (in Appendices B, C, and D) that

® H. Suhl and D. R. Fredkin, Phys. Rev. 131, 1063 (1963).
6Y. Nagaoka (private communication).

7 D. J. Scalapino, Phys. Rev. Letters 16, 937 (1966).

8 D. R. Hamann, Phys. Rev. Letters 17, 145 (1966).

9 J. R. Schrieffer and P. A. Wolf, Phys. Rev. 149, 491 (1966).
1J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
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whereas all the logarithmic terms are indeed of the
form (A/U) In(W/A) for the case where both levels
s and ey are greater than the Fermi energy (or both
less), for the case considered here, where ¢; is less and
esv greater than the Fermi energy the effect of the
finite d lifetime on some of the logarithmic terms is
much reduced. That is, because of the finite d lifetime,
some of the logarithmic terms are of order (A/U) In
{W/[T+T(T)]}, where T'(T) is a temperature- (and
energy-) dependent width of order T for 7—0. Further,
I'(T) decreases with increasing T'; unlike the A(T)
which appears in the work of Nagaoka,'* I'(T) is finite,
though small, for all 7" and shall be neglected in this
paper, where only the high T behavior is discussed. The
existence of a nonanalytic (in A) width which is finite
at all T implies that perturbation theory is essentially
invalid at all 7. Although the behavior of the system
changes (smoothly) for 72T, we find no phase transi-
tion, in contrast to the s-d exchange model theories of
Yosida,'* Nagaoka,!' and Kondo.

We shall discuss the high-temperature magnetic
susceptibility in Sec. III and resistivity in Sec. IV.
Our result for the resistivity differs somewhat from
that obtained by Hamann,* in that he did not consider
the self-energy effects which are an essential feature
of the Anderson model. Our result thus also differs
from the high-T resistivity as calculated in the s-d
model .1

In the second paper of this series we shall make use
of the graphical representation to obtain a linear [for
the case £U, (1—§)U<KW] integral equation for the
d Green’s function.

II. MATHEMATICAL PRELIMINARIES
Following Zubarev,“ we define (4 | B) by

A1 By=i [ atexplion CA®, BO)L), (21)
0
where B has the property

exp(—BerN) B'exp (BerN) =exp(—Ber) B.  (2.2)
We shall be interested in the functions G (w) and
G’ (w), defined by

G (@) =(de | ds7),
and
Gue® (@) = (Cio | Crs™), (2.3)
respectively, because the thermal averages n,= (d,'d,)
and fi¥ = (Cx,'Cis) may be obtained from these functions

1Y, Nagaoka, Phys. Rev. 138, A1112 (1965).

12K. Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto) 35,
204 (1965).

13 J. Kondo (private communication).

“D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English
transl,: Soviet Phys.—Usp. 3, 320 (1960) ].
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F1c. 1. Representation of the operators
d_,'d_,d,. In this and all subsequent figures,
the operators df, af, etc., are written with
the bar below the letter, rather than above,
as in the text.

ia.e
ae
oe

by performing an integration over w:

n=n"1 f_oo do f(w) ImG# (w), (2.4)

where f(w) is the Fermi function {exp[8(w—er) J4+1}7*
and

fo=nt [ ® dof() MG (w).  (2.5)
It may readily be seen that
G (w) =VDeGs (o), (2.6)
where we have introduced the notation
Dyo=(w—e+raH)™ (2.7)

From the identities V=V* and e=e_, the re-
lationship

Gaif () =G (o) (2.8)
follows from Eq. (2.1), and hence the relation
G’ (0) = — D8 1w+ V2D Dp'GE () (2.9)

also follows. Equation (2.9) is valid for a single im-
purity, or if the factor Nid s is added to the second
term on the right, for a sufficiently small concentration
of fixed, but randomly located, noninteracting impurity
atoms.

Using Eqgs. (2.8) and (2.9), we find that the thermal
averages fin? =fi’ = (Crs'Ctie) and mi” =na? = {Croas")
are given by

Sie” =1 (ko) O 1y
(w—ekv) (w_ekw) ’

(2.10)

4t /j; dw f(w) V2 Im

and
e =1 f 4o f(w)V Im G(w)
o — €ko

— w

(2.11)

In order that the interaction U be treated exactly,
it is convenient to introduce the auxiliary functions
Go—d’ (w) defined by?

Ga-—da ((1)) = <ﬁ—adcr ‘ duT>9
= <(1“ﬁ—a) da l daT>,

for a=1

for a=—1. (2.12)

1 This method, which was originally used by J. Hubbard [Proc.
Roy. Soc. (London) A276, 238 (1963)] was suggested to the author
by D. R. Fredkin.
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Thus
Gd”(w) =G+d” (w) —I-G_d"(w) . (213)

From the equation of motion i(dA/dt) =[4, A,
we obtain the equation

@Goi (@) = = 1"+ (etsF1aU) Gao (w)
+(2n,—1) ‘k/:, V{Guni+Gand —Gaad'}
+(1—7a) ;,T_: VGr, (2.14)
where we have used the notation

G(dd) = <d—¢r 1-d—a(:kv l dI.TT )y

Gand = (d._,TCk__Ud, | A >)
Gi={(Cr | d,7), etc., (2.15)
where
Ne=1, for =1
=0, fora=-1, (2.16)
and where
na_r’:n__”, for a=1
=1—n=, fora=-—1. (2.17)

The advantage of using the auxiliary functions Ga—¢°
is seen from the simple way in which U enters the equa-
tion of motion of these functions.

From Eq. (2.44) we may at once obtain G#®(w),
the value of G#(w) for the case V=0:

nwe | 1—n—c

GFO(w) = ~{ } (2.18)

+
w—ep—U w—eg

The equations of motion for the quantities Gana’,
Gy, etc., may likewise be obtained. If we extend our
notation by writing

Ga+(kd)k1‘7 = <’ﬁ/r/Ch—ﬂ,d—oJerw ‘ daT >, o= +1

=<<1_7’L¢)Ck—-v,d—aTckW l ddT>; a=-—1,

and
Gvay @i sk = {Cr—o'0—ods CloCro | do),

etc., then the equations of motion for the higher-order
Green’s functions from which G#(w) may be obtained

Fic. 2. Representation of G (w).

|

=%
[-%
o
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to fourth order in ¥ may be written as

Gand = —na "+ (erot€tr—€a—) Gand+ Z V{Gayi® —Gund} +VG.o-
k1

Gany’ = erGuai’ + Z V{Garpr® — G’} + VG
k1

WG aad = =i+ (ctrteiotU—es) Goad =VGid+ 2 V{Gaare+Garpd}-
k1
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(2.19)
(2.20)

(2.21)

WGe eyd = — (27)&_ 1) <ﬁ—ka1—v1‘Ck—o‘>_ (1 _na) %klk_a‘l“ (ek—a-ek1——o'+€du+77aU) Ga(klk)d”'}' (277&— 1) ; V
2

XAG ooy @i = G oty eiya” } + (na—1) VGawya™+ (na—1) + ; VGe-tirrd — (1a—1) VG-  (2.22)
2

szx+(dk)d10 = (27]&_' 1) <dvTCk1—a'd—dTCk—a>+ (Ek—o— ed——0+€k1ﬂ_naU) sz+(dk)k1+ (277&_ 1) kz 14
2

X AG awy gy k" — G toady 1 (ayi” } — Z VGa, iy + (1—14) VGayd+ V Gayiaaes’
k2

(2.23)

wGa.;. (lcd)kla = (27’(1 - 1 ) <da TCkluCk—vd—vT > + (ed—a - ek——a+ €k10+7laU) Ga+ (kd)k1 ™ VGa+ (dd) k1”+ kz VGa+ (kka) k1
2

+2na—1) 2 V{Gaa @it — Gty oty i} + (1—1a) VGaay - (2.24)
k2

wGa.;.(kzk)kla = (27]a - 1) <Ck2——dTCk—odnTCk1rr>+ (ekla—" €p—g™ Glcz—a) (;a_;.(ltrzlc)kl‘7 - VGaq.(dk)klo—}_ VGa+(k2d)k1¢+ ( 1 "'7701) VG(k2k)d6

+(27a—1) D V{Gamy oyt —Gaemyes e’} (2.25)
k3

WG ks’ = (kg €t—o—€h1—) G itk —NaV G @tk +V Gar iy d®+ (1—1a) VGpras

+(20a—1) 2 V{Gay taorkd — Gy} (2.26)
k3

WGa+(dd)k1 = (27101 - 1) <daTCk1¢rﬁ¢r>+5k ,ana+(dd)k1+ ( 1 _7101) VG+dU+ kz vV { er+(dk2)klv - d+(k2d)klu}
2

wG® = .G+ VG

Equations (2.14) and (2.19) to (2.28) are clearly
the first several in an infinite hierarchy of equations.
A few comments might be made about these equations.
It should be noted that the inhomogeneous terms of the
successive equations are thermal averages of greater
and greater complexity. These averages may be eval-
uated by considering the appropriate Green’s function
and performing the required integration, as in Eq. (2.4).
It is clear that an infinite set of self-consistent equa-
tions for the thermal averages would result from such
a procedure.

In the next paper we shall show that this procedure
may nevertheless be carried out by considering only
the lowest-order terms in powers of A/U [although all
powers of (A/U) In(W/T)7], leading to a single self-
consistency equation, namely that for #°. In this paper
we shall be content with the first few terms of an ex-
pansion in A/U and hence this procedure poses no
difficult problems, although it should be noted that
when the interaction U is treated exactly the ther-
mal averages cannot always be approximated by
their “natural” truncation (e.g., {(d,'Cr,d_,TCr)5=
(dsTCrio){d—"Cr), even to lowest order in A/U, as
shown in Appendix F).

+(20a—1) 2 V{Gun s —Gan oy i} (2:27)
k2
(2.28)

III. A GRAPHICAL REPRESENTATION OF Gy (w)

It is desirable to represent the equations of motion
(2.14)ff. graphically. It is clear that as we start with
the Green’s function G4 and proceed to an infinite set
of equations for more and more complex operators, the
graphical structure will be that of a tree with a more
and more complex branch structure as one proceeds up
the tree. The only novel feature of such a structure is
that we must introduce the auxiliary Green’s functions
(for example, G,—) in order that the interaction
U be treated exactly. One such representation is as
follows:

I. Represent each creation and destruction operator
by a dot labeled by the state (e.g., —d) if a destruction
operator and by the state with a bar above it (e.g., —k)
if a creation operator. Draw a vertical line and place
all dots referring to spin o on the right; those of spin —¢
on the left. Each interaction is represented by a verti-
cal wiggly line, and each statistical factor i, #°,
Sur, etc., by a solid line. The diagram is ordered in the
vertical direction. Since we are interested in G, we
start by drawing three dots, representing the operators
d—', d—, and d, (see Fig. 1).
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d d Kk d
N
e (/ik
d 4 d d ¢ & 4 4 9
(a) (b) (c)
d d
k
k k
OO § E\J o k} [e]
d d d d d d d d d
(d) (e) (f)
d d K,
OO
7l
o
d d d
(9)

F1c. 3. Representation of G ® (w).

II. Each diagram is terminated by connecting all
dots which appear at the top of each wiggly line except
for a single dot which must always appear at the top of
some wiggly line on the right (although the wiggly line
may consist of just a single dot, as in the zeroth-order
diagram, Fig. 2). To the figure on the left consisting
of two “d” dots connected by a solid line we associate
the factor G£©, given by Eq. (2.18). This factor com-
bines both the statistical factor (#=2 or 1—#"7) asso-
ciated with the solid line and an energy denominator
(see below). We note here that to the order con-
sidered in this paper, all statistical factors except three
(the averages {d—'Ciold; Cri), {(d-o'Cr—oCri'd,), and
(#°Cis'Cio)) may be factored into the product of
lowest-order thermal averages, and as a result we shall
terminate almost all diagrams by connecting the upper
dots pairwise.

III. To go to higher order in ¥ we must change one
of the “d’s” to a “k”, indicating this by the vertical
wiggly line. To such a line from a “d” to a “k” or a
“E” to a “d” we associate the factor —V; to a line from
a “d” to “k” or “k” to “d” we associate the factor V.
The solid line from % to ki, on the left, represents the
statistical factor fir,~; on the right, it represents fi’,
where fi? is given by Eq. (2.10). Likewise, the solid
line on the left from & to & represents the factor —ng
and on the right, it represents —nq4”, while the solid
line from d to d represents the factor —#»~7 if on the
left and —#»° if on the right.

There are two additional sign factors associated with
each diagram,. There is the factor (—)¥+, where N, is
the number of creation operators at the top correspond-
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ing to conduction electron states with spin ¢. There
is also a sign factor corresponding to the number of
permutations required to bring the conduction-electron
operators to the order required for the statistical aver-
ages from the following order: first, all creation opera-
tors with spin —¢ in the vertical order of appearance
(from the bottom), then all destruction operators with
spin —o in the reverse order, then the corresponding
product of the spin-s conduction-electron operators
(to this end, the d operator in the factor #;4° should
be imagined to go to a creation operator at the very
top).

IV. To each horizontal line we associate the factor
Dy, etc., where @, b, ¢, etc., are the labels of all the
highest dots appearing on the wiggly lines up to and
including that line. There are, however, two exceptions
to this rule, due to our treating U exactly.

(1) We must write Doy, as Dogyuga™.

(2) There must always appear more than one “d”
dot at the top of the wiggly lines; thus we must add the
two dots as shown at the top of Fig. 4(b) and (g).
These dots, when they are not connected, and when no
single “d” dot appears on any line above them [as in
Figs. 8(b), 3(d), 3(c), etc.], correspond to the differ-
ence of denominators

D a+d+Uw - D a+dm-

If they are at the top they must be connected by a
solid line and the factor G#© is taken as in Rule II.
If a single “d” dot appears on the same side above
these dots and the single dot is not connected by a
wiggly line to these double dots [as in Fig. 8(b)], we
connect these dots with a double line and write the usual
denominator D, 4 or D,_¢” to the line on which these
dots appear. In satisfying the first paragraph of (2),
we do not count the dots connected by a double line.

If they are connected by a solid line, but are not at
the absolute top [as in Fig. 3(d)] the factor

- [D"‘*'MWDH-(HUW' .. (1’1,_”) +Doy "Dy -+ (1—n a')]

appears instead of the product G#QDudDypd”-- -,
etc., where D, 4%, Dy d°, etc., are the “usual” energy
denominators appearing on the even lines above the
connected dots.

In the case where one or both of the double dots are
connected by a wiggly line to some higher line as in
Fig. 3(c), the energy denominator

D a+d+UW —D, a+dw

is to be associated with the line on which the double
dots appear, whereas the denominator D40’ is to
be associated to all even lines above these dots until
(and including) the lowest level to which one of the dots
is connected is reached.

All possible diagrams consistent with the above
rules are to be drawn. These rules will be made clear
by considering the second-order terms given in Fig. 3
and the fourth-order terms in Figs. 4, 5, 7, 8, 10.
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d d k3 d d ks ke ke
ki K K
S L} b 4 q kq Q
d d d d d d 4 d d
d dd ddd d d'd d dd
(a) (b) (c) (d)
ke k2 d d
d d d d
IR g ¢ wh| ¢ g ¢
d dd d dd d d'd d d'd

(e) (f) (qg)

F16. 4. Representation of those fourth-order singular terms which reduce to second-order In W /T terms upon self-energy renormalization.

The terms of Fig. 3 yield, in the order in which they If we define the quantity Ay [represented by

appear: Fig. 3(b) and 3(g)] by
; V(Dayw*—Dg#) (—na) Dy e AW =V2 Y fi o (D@04 Dogyy_?) 444,  (3.2)
k
—_ (- T (2g—Do —o0, a(0)
,g,;l V3 (D= Dat") D0 fi i) G © and Ey [represented by Figs. 3(a) and 3(f) ] by
+Z V*(Dayw? — D) D@07 Dygyy? (—n~) Ewy=V Z Na? (D), @~D o —Dogrv—?), (3.3)
k k
—; ViL(Dayv®) o+ (D) *(1—n~) IDir we may thus write G#® (w) as given by (3.1) as
2 [ o [ LA - .
+; Vi(Dars®' = D) Dasors Doy (=) UGy ® = —U? {n—a+ Ew’+ © ‘g v y 3;]A

- Z V(Dav® —Da®) Dagyv—i* (—1ad ™)
%

-U 20—2¢.—U
_Z V2(Dd+Uga__Ddga)D2d+U_ (S0 1) GEO. —-21A< _,,+ —€dg ) (20—2¢; )
U (w—ea—U) (w—éas)
(3.1)
The first two terms in the above expression are UAw [+ (w—e—U) /U]
proportional to Aln(W/T) for | w—er |<<T'; the next - (0—ete—U) (0—ez)
three terms represent self-energy corrections of order A,
while the last two are of order (A/U) In | W/U(1—-2¢) |. F{(0—€—U) (w—es) }:, (3.4)
d k d d ks d d k d d

:x
=
=
[[-%
ao
x
2
o»-&
[1-%
Qo
::&
=
=X
n
ao

k3
k2
k4
/1 ;
ddd
(d)

d d d d d d dd
(a) (b) (c)
k2 k2 k2 ke
K o ks ] e o K o
B A ylbe N
d d d d d d d dd d d
(e) (f) (g) (h)

Fie. 5. Representation of fourth-order terms whose real part is of order (A/U In W/T)2.
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where we have set

Z (w—e€rg) 1= —1mp.
&

The reader may verify that Eq. (3.4) is the same as
would be obtained by truncating the equations of mo-
tion by writing

Gy’ =G oar’ = Gagar =0, (3.5)

and

(3.6)

Gy d =i %0k 1,GS,

and setting G (w) =G @ (w) in the right-hand side of
Eq. (2.14), which may be written, using Eqgs. (3.5)

"+ Ew+ (w—ep) /U— (1—£)+3i0/U}
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and (3.6), as
Gadaz (w_'edo_naU)_l{ _na—u"’— (1_7)04> Z V2quDkU
k

+(20a—1) 27 VG (D 4Dy 0o Doy y_7)
k

— (2a—1) 2 V2Gsfi (Dy@ 994 Dygyyy_9)
k

- (27711 - 1) Z Vﬂdk—a(Dk(2”—1)"-—D2d+U_k") } s (3.7)
k

and adding G/ +G-7.

It is clear that if we set G#®(w), which appears in
the graphical representation equal to G (w), we would
automatically be summing all diagrams which may be
obtained by iteration of the lowest-order one (Fig. 3).
We would then obtain an expression for G,7(w) which
would agree completely with Eq. (3.7):

G (@) =~U

{(0—ear— U+2iA) (0—eag+2iA) / U+ A o7/ U} °

(3.8)

It should be noted that A4 )’ =1“I(_w)—”* and Ew’'= —E(_w)"'"* (i.e., er— €265+ U —ep, n":’_l—n“”, etc., see
Appendix A), so that it may be seen from Eq. (3.7) that Giaw’@—G-aw % as it should (in all our approxima-
tions we shall be careful to maintain charge conjugation symmetry) .1

The function 4y given by Eq. (3.2) is singular in the limit 7—0 for | w—er [<KT. To see this, we note that
if we change the summation over £ to an integration over e, assuming a constant density of states p, we may

write Eq. (3.4) as

oo’ /‘”W J(N)d\
"0 Vew o—NF2g0H

2 2xT

™

where ¥(x) is the digamma function.”
For | w—er+2g0H |KT, Aw’ has the asymptotic

form?®®

A 20(1-2¢)y . irgoH .
A"=; {ln,'—(;T——“| 45 (i) + ng -—zrﬁ},
(3.10)
where we shall use the symbol 6 to mean
=0, <3

=1, £>% (3.11)
throughout, and where Iny=Euler’s constant
(0.577+--).

It should be noted that the arbitrary cutoff W has
been replaced by 2Uy(1—2£) /7 in Eq. (3.14) for 4y
as a result of our keeping both terms in the sum ap-
pearing in Eq. (3.4), a procedure not followed in
Scalapino’s paper with the consequent appearance of
the unphysical parameter W in his expansion (1.8).

A {xﬁ [_1__i(w+2gaH—6p)

ep+W

fN)ax

W w+>\—zeF—U(1—zg)+i"}
]—¢ [1_i[U(1—2$)+ep~w]]}

2 2aT (3.9)

Likewise, for | w+2goH [>T, Ay is given by
U(1-2¢)

W—€p

A
A(w) =— {ln
™

+ir—inb(er—w—2goH) —iw@}.

(3.12)

The function Ey is also singular for w_lep. How-
ever, in order to evaluate E,?, we must obtain ng?,
which is given in terms of Gawy by Eq. (2.11). Because
we wish to study the perturbation results in this paper,
let us begin by evaluating E,’ to lowest order in A/U
by using the zero-order expression Gyw’® as given by
Eq. (2.18) in Eq. (2.11) for na?. We readily obtain
the result

oS a(0)
%qu(l)=l_/ / dw f(w) Im ——Gd(w)
T J—o W €xg
:V{(1~n~,)fd LA 1 } (3.13)
€dr— €ko et U —éi,

16 The importance of examining the charge symmetry of all expres:sions obtained was pointed out to the author by J. R. Schrieffer.
1 A, Erdélyi et al., Higher Transcendental Functions (McGraw-Hill Book Company, Inc., New York, 1953), Vol. p. 15.
18 Reference 17, p. 47, Eq. (7), making use of the fact that ¥ () = — Indy.
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Using this value for #a’@, the real part of E(,’ may be found to be

A
ReEw’®={3(Dayw’+Da) } Redw’+%(Daw”—Ds”) —In
T

A
+% (n°— —”) (Dd+UW_ de) X {RGA (w)"-l-; (ln

1-¢

1-¢
1—2¢

+In (3.14)

=)

where we have written f7=1 and fqy°=0. We see that the lowest-order perturbation expression for ReE, is

singular, as claimed, being proportional to Red ().

The imaginary part of Ew’® may likewise be obtained:

ImE(,,,)"(z) =—A {(1 —n°

€— W

s}

) [1—f(w+2g<fH)]_n,f(w+2goH)}
€,1+ U—w

(1—wn°)(1—-0) 7’0

(ertw—U(1—28) —2er)  (egtw+26U —2ep)

]». (3.15)

From a study of the equations of motion, Egs. (2.14 ff.), it might be supposed that Eq. (3.4) is in
fact correct to order A/U. However, Eq. (3.4) is not quite correct.
To see this, consider the diagrams of Fig. 4(a)~4(d). These terms yield, in the order shown, the expression

- Z (Dayv® —Dg°) (D) *( Dictiy—a-" — Diyier—a®) i Oy o Ji 00 15Ga

k->k3

— 2 V4(Daw* — D) (D) 2( Do arr® — Doty d®) fr™ Snin I O kG

k—>k3

+ 2 V4 (Dayv®—Da) (Di) 2( Diyty—a—" — Dicyis—d®) i 05 G

k->ka

+ 2 V4(Day®— D) (D) Ditrrasv™ — Diags d®) [ S jiGarf

k—ko

If we sum over &, we find that only the diagrams (a)
and (b) contribute, yielding the expression

- ;(Dm”—Daﬂ”) (D)2(2iM) G, (3.17)

where we have set fa=1, fo;u=0.

The sum Y i fi(Di)? would, if taken as it stands,
yield a term 1/w, so that expression (3.17) would ap-
pear to be of order i(A/U)2U/w for | » [>T, and thus
although of order (A/U)? even more singular than
(A/U) In(W/w). We shall see in Appendix C that
because of the finite lifetime of the d electron, the factor
2:A(Dy?)? gets renormalized:

2iA (Dk“) 2—% { [w—ek,—l—il‘ (w—ek,) ]-1
— (0= t-diAte )1}, (3.18)

where I'(w) is a nonanalytic (in A) energy and tem-
perature-dependent width of order T’ for 7—0. I'(w)
decreased with increasing T' (and w) and though finite
for all T is small for 7>>7T, and may thus be neglected
in this paper (it plays an important role for 7 ST,
as will be shown in the succeeding two papers). Thus,
because of the renomalization of the denominator
(Dy)?, expression (3.17) may be written
—1[A (0) —A (0+4iA) JDayu DG ®,  (3.19)

and hence is seen to be of order A/U. The diagrams

(3.16)

(e)—(h) of Fig. 4 likewise contribute the term

—3[Ew " —Ewiny1DaivDyre,  (3.20)

where we have written 4°(w) |, as 4 (w) and E~7(w) | ;=0
as E7(w).

If we add these two terms to G#@, as given by Eq.
(3.4), we obtain

UG#®(w) =—U? {n“’—i—E"(w) 3B — Ewrainy™]

+@—2iAn‘” Ir(.v.)—e,;k,—U (2w—2¢;—U)
U

U (o—e—U)(0—ew)

-U

{47(0)+3[A () —A (0+4iA) ]} (o +w—ef—U) }
(w—exr—U) (0—ea5)
X{(w—e%—U) (w—es) }71. (3.21)

In Appendix B we study the self-energy corrections
to the denominators D;®~0e and Dyg,y_;° which enter
into the expressions (3.2) and (3.3) for 4°(w) and
E°(w). We show that

Dk(2g—1)a
—{o— e+ (2g—1)cH+iT[w—ea+ (2g—1)cH]} 7,
(3.22)
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and
Dyyv—i—[w—et+oH— (2¢,4+U) +2iAT1,  (3.23)

where again we may neglect the I' term for T°>T,
while the 2¢A term in Degyy—y is irrelevent (we have ex-
plicitly excluded the case é=3%

From Eq. (3.21) we may obtain the magnetic suscep-
tibility and other interesting physical properties of the
system for high 7' (the resistivity will be discussed in
the next section).

From Eq. (2.18) we find that for H=0,

ReG#® (&) = — (1—28) /20, (3.24)
while from Eq. (3.21) we find, for H=0,
ImGs® (ep) =A(1—¢+8) /[£(1-8)20%],  (3.25)

where we have made use of Egs. (3.14) and (3.15).
From Eq. (2.9) we see that the conduction-electron
scattering matrix Tiw (er) is given, for H=0, by

T (@) = V?Ga(er) . (3.26)

From Egs. (3.24) and (3.25) we see that to lowest
order in A/U the “optical theorem”

ImTkk(fF') =1 Z l Tkk’(eF) l 25(6]9_610’) (327)
k!
is not satisfied;
mV1-¢1- ] aVeli—¢1-H] ;)

Ug(1-p) U9

so that the phase shift §(er) is complex, unlike the case
where V is treated exactly and U=0." It is interesting
to note that the difference

ImTw(er) —mp | Twn(er) [2=3mpV*/[4E2(1—£)2U7]
(3.29)

is just 3mp | 7ix(er) |2, where 7w (er) is the spin-flip
amplitude appropriate to the s-d exchange model® if
we use'the lowest-order expression 7=J/4, where

TJ=2V2U/[(ea—er) (et U —er) ] (3.30)

Thus our T (er) satisfies, to lowest order in A/U,
the optical theorem appropriate for a spin-§ impurity?

ImT(er) =mp[ | Turer) 43 | mia(er) 2],  (3.31)

although there is no intrinsic spin-flip amplitude in the
Anderson model (remark we are considering the case
H=0).

By integrating the imaginary part of Guw’® as given
by Eq. (3.21) over w with the weighting factor f(w),

19 P, W. Anderson, in Proceedings of the Interndtional Confer-
ence on Magnetism, Nottingham, England, 1964 (The Institute
of Physics and the Physical Society, London, 1965) p. 17.

20 H. Suhl, Lectures presented at the 1966 International School
of Physics “Enrico Fermi” Varenna, Italy ps 61, Eq. (54) (to
be published).

21 Reference 20, p. 75, Eq. (72b).

22 Reference 20 p- 82 Eq. (82).

LOWELL DWORIN

164

the self-consistency equation, Eq. (2.4), for #°, E may
be obtained.

After much algebra one finds
A A
SR St
TR TE:

n'=1—n"+4;(§) n+nr)

L 22 ey

(3.32)

where j(£), k(¢) and M (§) are functions of £ of order
unity, and where fo=f(es). Equation (3.32) may be
written as the two equations

w4n=14+5A/U) (1—kA/2U), (3.33a)
and

nw—nw=goH/T, (3.33b)

thus showing that the Curie-law susceptibility obtains
to first order in A/U. For a constant density of states
the susceptibility of the conduction electrons may
readily be shown to be just the usual Pauli suscepti-
bility.

Although this method of computing the magnetic
susceptibility furnishes a zero-order (in A/U) term
in the susceptibility from a second-order Green’s func-
tion, it is useful in that it shows that the Curie-law
susceptibility arises from the Fermi function f(w—+2goH)
appearing in the imaginary part of 4°(w) and E°(w),
and thus is a consequence of the “Kondo anomaly”
[the real part of A°(w) and £°(w) yield in Inw/T term].
Indeed, if we had set®

1—n—°

n_U
G, 0(2) — — !
¢ {w—ed,-{-— UA42iA " w—egt-2i0

we would have obtained

nw—n*=0(gsH/U),

}, (3.34)

(3.35)

resulting in a temperature-independent susceptibility.

We may also obtain the second-order term in the
suceptibility by noting that the free-energy F(V) may
be given by

v ’
Fn=rO)=[ ), (336)
0

where we have defined

H(V')=V" Y (d,'CeotCro'd,), (3.37)
k,o
so that
Vv
F(V)—F(0)= / V' AV’ > {dy Crot-Crotd )y,
0 k,o
(3.38)

3 This expression was suggested by B. Kjollerstrom, D.
Scalapino, and J. R. Schrieffer, Bull. Am. Phys. Soc. 11, 79 (1966)
The authors recognized the inadequacy of the expressmn as regards
the magnetic properties.
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Using Eq. (2.12) we may write
E(V)—F(0)

=1r“1/V a2 Y [7 dof(w) Im
0

G (w)v
k,o0 ¥ —co w—

v? ©
==% [ vy [ daf@) ReGe @),
4 0 —00
(3.39)

where we have dropped the principal-value term
P/m de[1/(w—e)].

If we insert expression (3.21) for G#(w) into Eq.
(3.38), we obtain

A -
F(V)=F(0) =%~ {n—v«» In ;/—J;'i;;_—_—ﬁ '
€F —€dg

+(1=#~®) In

}

U? Red o (00 —n—o®)

(w—ege—U)2(w—eg0)?

€do

47D st

(3.40)

where we have kept all second-order terms but only that
fourth-order term proportional to Re4’(w).

It might be noted that no InW/T term appears in
ReG#®(w) for H=0 [and thus the leading InW/T
term in Tw(w) is of order (A/U)® for H=0, agreeing
with the results for the s-d model]. Upon summing
over ¢, making use of the fact that Red’(ey+2goH)
is given by RedA(er)+O[(2g0H/T)*], we find that the
last term of (3.40) is just

) (£>2 H2@In | 2U(1—28)v/nT |
U Te(1—§)n? ’

so that the free energy as given by (3.39) may be
seen to be the same as obtained by Scalapino.

(3.41)
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k7
OO k ey
4 d ke
ks o
Ka S S
d d ke “3
P
1 3 9
k
d d d
(a)
ke
k5 (o)
kq d d
d d ke k3
K
! d d
K
d d d
(b)

Fi1c. 6. Representation of those eighth-order singular terms

which reduce to order (A/U InW/T)? upon self-energy renormal-
ization.

IV. G/®(w) AND THE DC RESISTIVITY

In this section we continue our study of the perturba-
tion series by computing G#® (w). From a knowledge
of ImGy® (er) we may obtain, using Eq. (3.26), the
J3In(W/T) correction to the resistivity.

It is not hard to see that the fourth-order terms repre-
sented by Fig. 5 have a real part proportional to
[(A/U) In(W/T)P. In the order shown, the terms
(a)—(d) yield the expression

B z§ V4fifi ™ (Dayv*— D) Di® % Diyiy—a-0% — Dieys—a®) Dit G — 3, VYfiy™ (Dayw®— Do) Dy?
k1 k,k1

X (Drpty—d—0" — Dy —d%®) Dipy @ DG 0

— 2~ VH(Dayv™—Di#*) Doy (Dastt1-k® " — Dariey % 0%) Difi™ S oy fof 1 G ® ()

k—ks3

-2 V4(Darv® — D) Di¥ (Day 451,27 — Doty 927) Doy [ S oo fi™ 011, 4G @ (o).« (4.1)

k—>ks3

Upon summing over £ and k1, we obtain

—2[4e(w) +2i(0— ) ATA () i (9—g) ] 2L PG (0)

t1—5U ) (4.2)
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ddd
(f)

Fic. 7. Representation of fourth-order terms whose imaginary part is of order A/U(A/U In W/T).

(e)
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ky d d
k (o]
d d'd
(q) (h)

where we have neglected terms of order A/U In(¢/1—¢), etc., and have set & =&, =¢r in the term (Dgyvpr—s® 97—

Dd—[—kl—k(z_g)”) .

The terms of Fig. 5(c)-5(h) are also of order [A/U) In(W/T) . In the order shown, they yield

- Z V3(Dayv?®— D7) D% 99 ( Dy y—a-0"° — Dieyio—a”) D nan ™

k1

— Z V3(Dd+Uga__Ddaa) Dk"(DHkl—d——UW_DMkl—dW) Dk1(29—1)t7 L7y e

k,k1

+ > V3(Dayv* — Dir®) Dogyvr—° (Digrayv @ — Diyyai®9%) Diffi™ 8p ey — 1)

k->kg

+ Z V3( Dy — D) D (Dio—itey4a® ) fi Ot oo —11d~°) Dogyv—s+.

k—->ko
The contribution from these terms may be written

—{[47(w) +2i(0—§) AJLE~ (w) —iAJ[(1—n)£0

(4.3)

+uo(1—0) (1—£) J+[E (0) —id/UILA (0) +iA(0—&) 1} Daw™ Do /[E(1—£) U (4.4)

In addition to these “irreducible” terms of order
[(A/U) m(W/T)]?, there is another set of ‘‘irre-
ducible” terms of the same order represented in Fig. 6.
These terms are nominally of order (:A%/TU)? but
because of the self-energy renormalization discussed

in Sec. ITI and Appendix C, they may be shown to be
of order [(A/U) In(W/T) ] [just as the (A/T) term
was shown to be of order A/U InW/T in Sec. IIT].

The contribution of Fig. 6(a) (where k—k; and
ks—ks are also included) is given by

> V¥(Daw—Ds°) (D)*(Diptr—av®— Diyrrd®) fo7°

k,k1,k3,kg

Upon summing over k; and k; (and relabeling the
variables), we may write expression (4.5) as
> V4(2iAD¢?) (Dipy—av®°
k,k1

— Dioy1y—a®9) (2IAD) fified G ()
so that upon making use of the renormalization Eq.
(3.18) we obtain

X (Disrs—d® 27— Dieys—a®7) (D) ( Disi—a-0"" — Digris—") fos ™[ fies G (@) . (4.5)
where we have set ¢, =¢,, =€ in the term
(Diepiy—a—v® 07— Dy y-a®0°) .
From Fig. 6(b) we likewise obtain
O A () —A (i) T (@
B (o 4i) J2DE (4

Dgy? Dyo°

WA() ~d(ot4in) s

G (w), (4.7)

E(1-9U -
In Appendix D we show that the self-energy re-
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normalization leads to the replacement
A(w) +id(0—8)—3[A (0) +A (0-+4i8) +2i0(0—£) ],

(4.9)
and that

E~(0) —iA{(1=n)80+n(1—-0) (1—§)}
—E () +E—(w+4A)

—2A{(1—n~8+n(1-0) (1-5}], (4.10)
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in Egs. (4.2) and (4.4); we again have neglected the
T(T) term in the argument for T>>T,.

We have now examined the fourth-order ‘irre-
ducible” terms having a real part proportional to
[(A/U) In(W/T)J. In order to obtain the leading
logarithmic term in the resistivity we must also examine
the “irreducible” terms of order :A/U[(A/U) In(W/T)].
These terms are represented in Fig. 7 (only those
fourth-order terms yielding a nonzero contribution are
shown). In the order shown they yield

= 2 Vi *fer (Dasv" = D#*) (Dartras®7 = Dy 1H0%) Doy i Di 0D
k.1

— 2 Vi (Darw* — Do) D7 Doy (Dairsiin® — Dasyiin®®) GF
k,k1

— 2, V3(Dayv* — D) Dagyr—i® ( Daytrpagts @7 — Dy, 07407 D), Go—Doy, P

k,k1

— 2 V3(Dav*— D) D@ Doy 17 ( Dayvrsin® — Dot i~ W™

k,k1

+ Z Vsz(zg_l)U(Dd-f-Umr_ Ddga') (Dk-}-k[—d,-[lw_ Dk-)-k1—dg‘r) <d~qTCk—odcr Tcky:)

k.1

+ 2 V(Dayv" — D) D ( Dottt — Diptiy—i) {d—s Ciroly ' Cir)
k,k1

— 2 V¥(Dayv” — D) Daayu—

k,k1

— 2 VA(Dav™—D#) D (Ditasv—11"2 — Doy gty @297) (Ciyo ' d_oly "Cr ).

k,k1

It should be noted that the thermal averages
(@—1Cr—ols'Crie) and {Ci—o'd_od,'Ci,) are required.
These averages are computed to order A, with U treated
exactly, by studying the equations of motion of the
required Green’s functions in Appendixes F and G.
We shall see below that the last two terms of Eq. (4.11)
do not contribute for H =0. If we leave these terms aside
for the moment, the contribution from the first two
terms is found to be

20i[ (1—6)/(1—£) —6/£147 () Dayu® DG (),
(4.12)
while the contribution from the third through sixth is

found to be, taking into account the self-energy re-
normalization, to the order required,

0 1—6
) S

+i(6—1) A Day" D[ E? () +E~(w) ]
U .

A _
-+ 5 Dd+UWDdW[E+q (w) +E; (w) ]

(1—n)(1-6)

A 1.
U[s(”9)+ 1—¢

+znv+<1—n«><1—s>]

¥ (Diraisr® 27— Diriar®07) (Ci 'd_ody " Cryo )

(4.11)
Ao | A
XDaw Dt e e —g)
X[A,(w){ [“ —o(1— 9]
+(1—) [w—sa—m]

L [ 0(15 E)]Hl ") [0 5 §(11 S)}}
44 (w) {a~—>~o‘}] Dy Do, (4.13)

where we have written

Ef(0)=V Z (@—"Crolls'de) (D207 — Dygiy_10) ,
%

(4.14)
and N _ _
B (0) =3[E~ (w)+E~(o+4iA)],  (4.15)
and
By (w) =3By (o) + B (0+4iA)],  (4.16)
and
A(w) =3[A (0) +A (w+4ir) . (4.17)

In addition to the terms of Eq. (4.12) of order
1A/UA (w), there are two other terms which must be
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considered represented by Figs. 3(b) and 3(g) for which k#k. These terms are given by

+ 2 V(Dayw*— D) D[ {fiCitys'Crio) (Day 451" = Ditt6—1:°°) + {Cits—o "Cii) D" ]

k,k1

+ Z' V(Dasv" — D) Doayv—i°[ (t—Cr—o ' Crts—s) (Darv4114" — Daprs—1%°) + (Ci—o ' City—o ) D" ]
k,k1

In Appendix E we show that only the term propor-
tional to (A_,Ci;—'Cr—) contributes for a constant
density of states. [For a density of states of the form
p(e) =pW?/ (e,—er)2+W? the remaining terms enter
with a coefficient G;© (ep4iW), so that for U¢ and
(1—§) UKW these terms, which would otherwise
result in a nonlinear integral equation for Gyw?’, as we
shall show in the succeeding paper, may be neglected.]

(4.18)

Further, we show in Appendix H that the contribution
from the (#_Cr—'Ci—) term, which arises from the
region e;~e;, just cancels the last two terms of (4.11)
for H=0.

We have listed all the “irreducible” terms which go
into Gyuy’®. If we incorporate these terms into the
second-order (iterated) expression, Eq. (3.8), we ob-
tain, for | w—ep [<<T and H=0,

3iA
Giwy=U"" {n“'— (1-%) +—;7+~%E(w) —1E(w+4iA) +[26(1—8) UTH{[4 (0) +2i (0—§) A E(w) + E(w+4iA]

—iALE0+ (1-6) (1—§) JH[E(w) —id/ULA (0) +4 (0+4iA) +2iA(0—£) T}

—[4(1=5 UT'[4 (w) — A4 (w+4id) JLE(w)

i+

X [A () +A4 (o+48) +2i0(0—§) ]+

where R(£), S(£), and T'(¢) are functions of £(.S and T
being odd under charge conjugation, R even) which
go to zero as U— (£-0). In order to obtain the
(A/U)2InW/T contribution to ImGy(er), we must ex-
pand expression (4.19). In addition, we must remember
that E(w) has an imaginary part of order

i In(W/T)/U%(1—¢) when ImGi®(w),

as given by Eq. (3.21), is used in Eq. (2.11) for #.

Thus
) IR0

X {(0=0') 7 (w0to' —2e—U)
A(1—E48)

= rEi—gr @)

where we have set ImGy® (0) =ImG;® (er) and added
the second term as a convergence factor, a procedure
valid to the order required.

iA(1—¢+8)

E®(w) = T (i—p)

(4.20)

— E(w+4id) ]+

AT (£) A (w)
U(1-9)

iAR(£) A (w) | iAS(E)E(w)}
U (1—¢) | Ug(1—¢)

(0) A (orh4it) 2 (1-20)+TU%(1~0) TTA ) +2iA0-5)]

-1
—[4Ut(1—¢) T[4 (0) — 4 (w+4id) ]2} , (4.19)

ddks
W
dds\k
dd d
(b)
dd &
4d ks kk  — ¥ |d
kl . k|.=
k dd k dd
dd d dd d

Fic. 8. Second-order self-energy corrections to Dy@o1)e,
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The complete fourth-order contribution to ImG,(er) of order (A/U)2 InW/T is thus

AA(ep)

Gl = #1070

Hi—5U {%E“‘)(ep) +

{2(1-26)—2(1-20)(1-28)+2:(1-H[1+8+(1-0) 1 -5 1}

n [R(E)AA(eF)  SEA(1-28)A(er) (1—28)AT(£) A (er)

e-pwr | 21—

3AA (GF)

28(1=¢)°0? ]

(1—22)(1—20)]

X [35(1—&’)4- 1

3(1-20) A (er) _A(1—28) A(er)
#(1-pUr 21—V

_ 38(1-2)[3(1~26) —2(1—2¢) J4 (er)

282(1-5) 02

+[5(1-20) —2(1-28) ]

[2(1—2¢) —3(1—20) —2¢(1—-6) +26(1—¢) ]

28(1—-9202

}, (4.21)

In the limit £—0 (with £U =er—e¢; finite), we obtain, making use of Eq. (4.20),

A2In | 2yU(1—-28) /«T |

(er—ea)’r

lim Imde (EF) =
&0

9N In | 2yU(1—2¢) /«T |

4(EF—€d) g

If we compare our expression for ImGy(er) for £—0
with the expression obtained by Hamann,? we see that
whereas our ImG,;® (er) agrees with his, our ImG(er)
has the coefficient 9/4 whereas his has the coefficient 3,
which is just such as to result in a logarithmic term in
the resistivity which agrees with Kondo’s result if
Eq. (3.30) is used for J and a constant density of states
is used in the s-d model. This discrepancy arises from
the effects of the self-energy renormalization, Egs.
(3.18), (3.22), (3.23), (4.9), and (4.10) [leading to
a factor § rather than 2 in each of the expressions in
Eq. (4.21) and thus $X$ rather than 2X$ in (4.22)7].
We thus find that because of the finite “d” lifetime the
leading logarithmic term in the resistivity in the
Anderson model differs from that obtained in the s—d
exchange model. This difference calls into question the
argument of Schrieffer and Wolf, which implies that
the Anderson and s-d exchange models are essentially
the same, at least as far as the logarithmic divergences
are concerned. We have already mentioned the non-
analytic width I'(T), which also represents a lifetime
effect and will play a major role for T<T., as will be
discussed in the succeeding paper, so that it would ap-
pear that the finite d lifetime is an important aspect
of the Anderson model.
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APPENDIX A: CHARGE-CONJUGATION
SYMMETRY
If we define the operators D, and Eg, by
d,'=D,,
d¢=DaT,
C ,WT = E]W,
Cio=Es,", (A1)
it is clear that the D’s and Ej’s satisfy the usual fermion
commutation relations. Further, if

e—ew=tU+gocH2U Y-e4—er=(1—§)U—geH (A2)
and

€g— EFT2ER — Ekgy (A3)
then the Hamiltonian (1.1) goes into 3C;, where
3eo=0C+3(—V), (A4)

where 3¢(V) is given by (1.1) with D_, and E,
replacing do and Ci,, respectively, and where

3Co=2e4+U~+2D ex—2exN. (AS)
k

It is readily seen that
<d—ch—adcr I daT>—V,w_><(1_D—01D—¢)D¢rT l Dv)—f’,m,

(A6)
the 3Co term being absorbed in the altered free energy.
By taking the complex conjugate, and making use of
the definition (2.1), we may write

<( 1 _ﬁ/—o) D, l Do)—f/.w = <( 1 "‘ﬁ/—-c) D, l DvT>*—~§.—m
(A7)
so that
G-aw 2 =Cracw™,
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where Gaaw?’ is the d electron Green’s function in the
charge-conjugate system ((é21—§, n*—1—n"7, etc.).

APPENDIX B: SELF-ENERGY CORRECTIONS

The InW/T parts of 4°(w) and E°(w) arise from a
sum of the form D i[ fi/(w—e)]. It is therefore of
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interest to consider the possible self-energy corrections
to the denominator, since D i fi/(w—e44A)] is of
order In(W/A) for AST. The In(W/T) part of A°(w)
[Fig. 4(b)] admits the four self-energy correction dia-
grams shown in Fig. 8. Using the prescription given
in Sec. ITI, we find that these terms yield the expression

— 2 V4(Dav* — D) (Ditrtart® — Dicterra®) (fi 8kes) (D@ 07)2( fioy™ S ) G ©

k->k3

— > V4(Daw*—Dy#) (Dy@9) 2Dy 4197 ( T Ok es) GE@

k,k1,k3

— 2 V4(Daw*— D) (Ditir—iv” — Dieir—a") ( fi” Sties) (De@07)2( £~ 8t 5) G ©

k->k3

— > V4(Dayw? — D) (D;C09)2( 1577 8k k) Diorrey—a G ©.

k,k1,k3

(B1)

It may be seen that the imaginary parts of (B1) vanish as exp(—U/T), whereas the real part contributes a term

—2AcHg/nt(1—£) U to the self-energy:

D@D

1

o+ (2g—1+2Ag/7t(1—§) U)oH—¢;,

(B2)

This term, proportional to H, is the expected Knight shift of the d electron resonance line due to the interaction
of the d and conduction electrons.

It might be noted that the imaginary terms do not vanish (being 2¢A) if both €; and egyv are either greater than
the Fermi energy or both less (though both within the conduction band), so that in these two (nonmagnetic)
cases, the logarithmic terms are of order A/U InW/A.

Let us next consider the A%/U part of the self-energy. The diagrams representing the A%/U self-energy terms are
shown in Fig. 9. There are two types of terms—those representing the A/U correction to the energy denominators
appearing in the lowest-order expression for the self-energy, (C1), and the second-order “irreducible” self-energy
terms in which the lowest-order energy denominators appear. The contribution to the from the diagrams of Fig. 9
yields, for H=0; in the order shown,

—Zk: V8(Dayo—Da) Di fiGo ¥ {[— (Dryarviin—Diyas) Distiss— (Divis—a-v— Dictin—a)?

k1,k2
X Digy it~ (Ditas—ks— Dita—t1) Dier2+0—1—k2 (Dict-arv—ra— Dira—is) + (Dittr—a—0 — Dipty—a) Ditbribo—2a-v
X (Disti—a-v—Dirria) = (Diyarv—y— Diyaty) *Disoasv—ts—ts— (Diis—a—v— Dioti—a) *Divtirtr—2a-0 1 fir fra

+[ (Drrarv—1— Diva—tr) Disi—ts Dirasv—tyt (Dietir—a-v— Ditir—a) Diri—raDirtr—a—v

+ (Ditarv—ks— Diyatr) Dikot(Disth—av—Disyr—a) frat (Diyry—a—v— Diyir—a)

X Dieyro—ios( Diota—torrr— Dira—to) frat ( Di—trtatr — Di—tra) Di—ty2arv—rs

X Dy—rrrarv+ (Digbi—a—tv — Distri—a) Dirorta—20—0Drpi—a—v+ (Dieyki—a—t — Dietrr—a) Doy

X Diytio—av+ (Ditsrarv — Dirrra) Diykotr Dieprarv+ (Di—ryrasy — Di—trra) Di—trta

X Dyt (Dietr—a—— Dirir—a) Diyrr—aDistr—o 1 frr} +

It may be seen that the real part of the self-energy
vanishes, while the imaginary part is given by

AN T /7 U2 (1—§)2=7(J p)T,

where we have used Eq. (3.30) for J. This imaginary
self-energy term is the expected Korringa width due
to the interaction of the d electron with the conduction
electrons.

We have thus found that the imaginary part of the
self-energy goes to zero as 7—0 to order A%/U. Let us
suppose this to be true for all higher-order terms in
A/U. Tt does not follow that the exact imaginary self-

(B4)

(B3)

energy is zero. To see this, consider the denominators
Dy_y1a40% — Dy 1114 which appear in the first term
of (B1). These denominators may be written as
D (w—e,te;)Y, where the exact Green’s function

G# (w) may be written
Gf (w) =N°(w)/Dr(w), (BS)

and where

UD*(w)® = (w—eg) (w—es—U). (B6)
From Eq. (3.8) we see that the real part of D’(w)

vanishes at | w—ep |RonTe/2y (for T=0), while the
imaginary part is of order A/U&(1—§), where T, is
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Fic. 9. Fourth-order self-energy corrections to D;®—Ve,

To=(2U |1-2¢ | v/7) exp{—[£(1-§)7U/AT},
rather than the tentative expression (1.9).
Thus, as a rough approximation, for 7'=0,

V2 Y Im(Diiyyaro— Ditra) fin
k1

= —A( fayvib—o—farr—o) + (ATe/2v) (1/A)
=O(A) +O(A2/U) Freee +O(Tc) ’

with a similar result for the other terms in (B1). We
have already seen that the terms analytic in A go to
zero as T—0 (at least the first two, and we conjecture
that all do), so that for 7—0 the imaginary part of
the self-energy is just the nonanalytic (in A) contribu-
tion. More exactly, if we write this térm as I' (w—e; 7€)
(its dependence on T being understood), then
I'(w—e+1e) satisfies, to lowest order in T, the equa-
tion (for H=0)

I'(w—e+ie) = —N.A.P. %f_w A/ {[f(') + (o —er) /U A+ (0—ex+i€) /U — (1—£) +-3iA/UID1(A+)

—[f@)+ (o' +er) /U~ (0—eatie) /U—(1—§) —3iA/UID~(4—)},

(B9)

whereD(A) is the exact denominator of Ga(w) [Eq. (3.8) is just the second-order approximation; the required
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expression will be obtained in the succeeding paper ], and where

V2

A= a3 %

+[err== (w—exti€) +o’ — U (1—2¢) 24T (£ (0+e) +0’)— U (1—2¢) T

We note that T'(w—e,~+1€) satisfies the identity

T'(w—e+ie) = —T'(—wte—ie), (B11)
where T' is the charge conjugate of T' (i.e., —021—6;
f21—¢; see Appendix A). From Eq. (B4) we see that
the intrinsic width of the d electron resonance line
T(T)4n(JP)2T—0(T,) for T—0.

> (fir—%) ([ (w—etie) +o’ il (£ (0—e) +0' — e ) — e I

(B10)

Since D(A+)—0(U) for T>>T,, we see that T'—0
for T>>T, (though I is finite at all 7') and thus in this
paper where we are considering 7>>7T, we may neglect
T" with respect to T[T is at best 0(T,) for 7—0].

Consider now the self-energy corrections to the
In|U(1-2¢)/W | part of A°(w) [Fig. 3(g)] given
by the four diagrams of Fig. 10. These terms yield the
expression

— 27 V4(Dayv" — D) (Daasr—1) *Diiyai® ( fi™ S yey) G ©

k—~>kg

— > V4 Dayv" — D) (Daar—i) D ae® 0 ( fi™ B ) G

k—>ke

— 2 VA Dayv* = D) ( fi Srs) ([ Srasts) (Do) *(— Dipyat?+ Diyaryv) G2

k->k3

— 2 VA Dayw™— D) ( fuf Strn) (= Diyietd® 2+ Dyt ® %) ( fi™ Sk.ks) (Daayv—i? ) ?G @

k—k3

These terms do not cancel for w~’¢; and hence, even
for the case £=%, the terms involving > xDeayu—ifi™
yield expression of order In(W/A) rather than In(W/T).

APPENDIX C: SELF-ENERGY CORRECTIONS TO
2iA(Dy)* TERM

The self-energy corrections to the 2¢A(Dy)? term
are of two types: those that modify the coefficient
(2¢A) and those that modify the denominators Dj.
To first order in A, only the latter appear. The correc-
tions to the first Dy are represented by Figs. 11(a)-
11(d), with an equivalent set of diagrams (not shown)
modifying the second Dy?. The contribution from Fig.

(o)

(d)

(c)

Fi1G. 10. Second-order self-energy corrections to Dy

(B12)

[[-N
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Fic. 11. Second-order self-energy corrections to 2:A (Di?)2.
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Fic. 12. Fourth-order self-energy corrections to 2:A (Dy?)2.

11(a)-11(d) may be written
— 2 V(D — D) (D) * D1 ( Dipter—a-0" — Dietir—d®® ) ffie "G

k-ko

— 2 V¥(Dayv*— D) (Di?)*Di—tra® *° ( Diprza—v" — Dicyo—i®) i i G

k->ko

— 2 V¥(Dayv*— D) (Dif)*(Dirir—i—v" — Dipiy—®) (Dicpin-a—v") ffios G

k—~kg

— 2 V¥(Dasv*— D) (Di€)*( Doty arv* — D) (Dipp—a—v™) [ s G (C1)

k—>ke
The last two terms give no contribution; from the first two we obtain
Dy—Dy_gi°. (C2)

From Fig. 11(e) we see that the product 24A (Djy_s,1%)2 is the first term in a series:

2iA 1
w—e,+21A)% 14402/ (w—e;,+21A)2
_ 2iA
T (w—en2iA)2+4A?
=3[ (w—ew) 1 — (w—ex,+4iA) 1] (€3)

The second-order (in A) corrections to the denominators Dy’ are represented in Fig. 12(g)-12(j). These self-
energy terms may be written (for H=0) as

2iA(Dyp—gin®) L1+ (20ADy:%) 24+« + = (

2

LA
2t T F=—V* > { (Drssr—av—Dirrh—a) [ Dirri—ts(Di—trsasv— Diiorra) + Dty ia—sav
k1,k2

X (Ditro—a-v— Diyrr—a) 1+ (Di—trar0 — Di—tyra) [ Dk—tr—rsr20+0 ( Dottt — Di—io—a) + Di—iyiho
X Ditir—a-0— Ditrs—a) 1} fir frry  (C4)
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where we have written
Dy—Di_gin—25a%m)°- (C5)

The second-order correction to the (2¢A) term is represented in Figs. 12(a)-12(f) (there exists a similar set
where £ is replaced by ki, etc.; not shown). These terms yield

. A2
2vy "[} =T kZIc { (Dk1+k—d—U - Dk1+k—-d) 2 (Dk+k1—k2+Dk+kl+k2—2d—'U)f ke ™ (DHkkd‘U —Diyir—a)
1,02
X [ Diris—a— (2Dpprs—to+ Diprrgr-20-0) + (Diepky—aDiir o) 1+ (Dityriarr— Di—ta) ®
X ( Di—ts—kst+2a40+ Dictro—i) fro— ( Di—trtasv— Dio—tra)
X[ Dty a1 (2Dityist Dirr—tor2a40) + DictrgaDirko—is ]} frrs (C6)

where we have written
2iA—2iA+ (2iA/U)y. (c7)
Thus, to second order in A we find
52 { 1 N 1
U Y [w—ea+2iA+2iy(A2/U) I [2iA42iy(A%/U) B/[w—ea+2iA+2i7(A2/U) P

%A (D) —2iA+2i

1[ 1 1
2 [w—Ek_w—ek+4iA+4’i(A2/U) ’Y]}’ (c8)

where we have made use of the fact that ¥ =1, neglecting terms of order (A/U)*T, as may be seen by comparing
expressions (C4) and (C6) for ¥—v with expression (B3) for the second-order (in A) self-energy correction to
D@ s, Again we see that the perturbation terms vanish for 7—0; whereas there exists a nonanalytic tempera-
ture and energy-dependent self-energy ¢I':

1 1 1
y )2
2iA(De) _)5 [w—ek,-i-il‘ (w—ertie)  w—ep,+4A+F (LA U)y+--- ] (C9)

APPENDIX D: SELF-ENERGY CORRECTIONS TO (A/U)n*(W/T) TERMS

The self-energy corrections to the (A/U)? In?(W/T) terms are of two types; the corrections to the D;®De
term (which has been considered in Appendix B) and the self-energy correction to Dy. These latter correc-
tions are represented, to first order in A, by Figs. 13(a)-13(e). The contribution from Figs. 13(a)-13(d) may be
written
— 2, V8(Dayu®— Da#®) (D) Dy~ ( Ditoa—i-0"" — Dietsegd®®) Dis® D157 St et S Ob oG @

k->k4
— Y, V8(Dayu®— D) (D) *Ditx+a® ° (Diphs-a—0" — Diihs—i®) Dis i Ot s fos ™ Oba0iGa*®

k->kq
— 2 V8(Day—Di) (Dif)*(Diesrr—a-0°" — Divtir—a") Diotro—a-0"" Dies® %3 8t fios™ Ot G
k—>k4
— 2 V¥(Dayw— D) (D) *( Ditarv—1®""— Dt atia® %) Ditry—a—v*"Dis® i 8t s fios™® O G (D1)
k->k4
From these terms we see that It is easy to see that upon inclusion of the exact

propagators we have, as in Appendix C,
Dyo0i—E[ Dip—it”+ Dipsin—sia¥vyys--° - (D4)

Dy¥—Dy—2:°, (DZ)

whereas from Fig. 13(e) (plus kr—ks, ks—hks, etc.) we

see that Digi” is the first term in the series APPENDIX E: VANISHING OF THE fuu,(k5<k1)

Dj2in® (14 (2ADg:a%) 2+ + +) TERM OF A’(w) FOR U, (1—HUKW
1 1 There is an additional term which would appear
=(w_ek,+2m) 1— (2i0)2/ (w— e+ 2iA) 2 to be of order +(A/U)[(A/U) In(W/T)]. This term

corresponds to Fig. 3(b) [which gave rise to A7(w)
=1 (w—er,) '+ (0—ex,+4i4) 1], (D3) when the factor fy &, is replaced by fix,° for k#ki],
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where, using Eq. (2.9),

= [ tafy 1|

Thus this contribution from Fig. 3(b) is given by
v
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4
— 2 7 5 (Dd+UW _Ddgv) Dk(zg_l)a[Dd-}-U-!-k-le(%_0) +Dd+k—klaa ( 1— n—v) :’
™

kb1

x [ a st {

Gi (o) ] ,
(' —€4—g) (' —€11—5) do’. (E1)
el b } (E2)
(w'_ék_.v'i‘ia) (w’_ekl_,+1,5) (w'—ek_q—-zé) (wl—ekl—a_15)

Let us consider the summation over %, first. We note that

)Y

. . =O;
(0 —ey—s—18) (w—ea_v~+en,+go H —ex+ie)

so only the first term in integrand contributes, and by closing the contour in the upper €, plane we find

n—a‘

4 ©
-2 YW* (Dayv® — Dyg*) / de’ [
k —00

However, we now note that all ¢ denominators have
positive imaginary parts, and hence upon performing
the sum over £ we see that this term gives no contri-

ka ke
dd ks dd k3
- ko . ko o
d d d d d
ky foms Y ki «
o dd o dd
d d d d d d
(a) (b)
ke ke )
T3 R ] ‘5
kz k2
d d
kq ° 'ﬂ 9
k dd e dd

Fi16. 13. Second-order self-energy corrections to Dy’.

(1—n™) ]

w—eg—e+o' +goH+ie4id | w—ea—eto +goH+ie+id
X [f(w’>Gd-f(w'+ia>

— -1 e L.
E—— ][w &+ (2g—1)oH+i€] (E3)

bution. If we had considered a Lorentzian density of
states function p(e) =pW?/(ex—er)2+W?2, the above
procedure may be carried out, leading to the result
[to order (A/U)%]

. 2 @ "’ ' *
— & (Dusor— DGO W) [ o g et
- o w—w' 1€
(E4)
where
GO W) [iW'I‘EU riW—(l-f)U  (B9)

Thus this particular 4(A/U)2In(W/T) term [which
would in general lead to a nonlinear integral equation
for G#(w) in contrast to the linear equation obtained
in the succeeding paper] may be dropped in the limit
tU, (1—§) UKW. 1t is of interest to note that had we
written the truncation approximation, Eq. (3.6), as

Gawnd = ( fi Ok a i) G (), (E6)

we would in effect be including expression (E4) with
W =0, whereas the equation which would give the exact
perturbation result, Eq. (E4), with W>>tU, (1—§)U, is

Gy d =15 0k, G (@) +finy °GF (0 —ex+er,) . (E7)

Equation (E4) is not quite correct, however, in that
while we allowed for the energy difference ¢—e, in
the argument of G#(w), we set (W CyoiCry)=
%7 {Cr1—'Cr—). We shall see in Appendix H that this
is a valid approximation to the order required for k=4;;
for k>2ki, however, the above analysis holds only for
the explicit terms (Cryo'Crio) and (w°Cy,,'Ci,); the
term (#°Cr—'Cr—) (k5%k1) does yield a contribution
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contribution is cancelled by an additional fourth-order
term, and thus plays no role; even for H>0 this addi-

ke tional term goes to zero as U—o (with ¢; finite) and
kk d d ki d d 1y
o—0 5o thus plays no essential role.
ool § !
k d d k d d APPENDIX F: EVALUATION OF (d_,{C;_,d,TCs )
(@) (b)
The thermal average (d_,'Cy—d,'Ci,) may be ob-
tained from the equation
d Ky <d—nTCk—od¢rTCk1v> = (CklﬂTduCk—ﬂTd—¢>*a (F1>
Z\ %. d d d d Kz z where
T T
ey lg E/g b (Culd Gt
c) o
( (d) e f doo £(0) T(Crsdsdy | Copo™er (F2)
If we define F?(w) by
k
d ! (Ck—qu—qdv l Ck10T>wEFkk1a (w)> (Fs)
2\0 E we see that F’(w) is a quantity very similar to G (w)
k d d and may be computed to any order of A/U by means
(N of the diagrammatic representation presented in Sec.
Fic. 14. Representation of (Clyodody | Clito). III. The lowest-order diagrams are shown in Fig. 14.

Diagrams (c) and (e) of Fig. 14 do not contribute
of order A/U (because this contribution comes from for the same reason fi, for ki>%% does not contribute
the region e~Jeq, rather than er, we nevertheless obtain  to 4°(w) (see Appendix E). The remaining diagrams
a linear integral equation). However, for H=0, this yield

Fue? = Daayyso{ =V {ira ™) (Diyrarr1® 97 — Diyyat® %) — Vitra = Diyras®™9°
— VDt (0" Disgasv—® 0"+ (1=1°) Dieyyas @)+ Vi DitGa} . (F4)
The quantity (fz7°) must be evaluated. We may write

<ﬂkd_”ﬁ">=1r-1 /;‘” f(w) ImG(dd)k‘”(w) . (FS)

It is clear that to the order required
Gank™ (@) =3VGyi(w) [Di o+ Di—sis™ ], (F6)

where we have allowed for renormalization effects. The denominator Dy is likewise to be renormalized as shown
in Eq. (D4) (we neglect T for T>>T.). If we integrate over w in Eq. (F2) we obtain, to lowest order in A/U
(neglecting the ¢H terms in the denominators),

(—o'Chole"Choe) = Vi~ [Mﬁ‘]_{_{%/w de f(/) Tm {%ﬁgjﬂl}

a+U—e, — €hg
e T e s
+ (Ekl—mfﬁg;k(e(z—&) + (ery—2ea— gk-ll-ek) (ex—ea) ]+ Vi (i) [(Ed—ek) {22‘::: — e —€ry)
+ (ex—ea) {:::— U—e,) + (ert-e— Zed—f;}) (ery—ea—U) ]+ Vi (1=m) [(%U_ekl){;i;::kl]_ﬁk_ekx)

, fa . fa ] . c[ Joarv—
TNa—a—U) (a—e) ' (en—e) (e +ea—2e—U) VY (ea—ery) (2ea+U—er—exy)

+ fes " Ju ]} (F7)
(a—e) (atU—e)  (arv—en) (2a+U—a—e,)
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APPENDIX G: EVALUATION OF (Cj,_,fd_,d,}Cy,)

The thermal average (Ci,—'d_ods'Ci) may be ob-
tained from the equation

(Curs'dad'Car) = [ o (@) TmGusi~*(w),  (G1)

where
Gl (w) = (d_.,"Ck_,,d., l Ckl.,T). (G2)
The graphical representation of the lowest-order
terms of Gu(w) is given in Fig. 15. Again we note
that diagrams (c) and (e) give no contribution upon
summing over % and % for the reasons presented in
Appendix E. The remaining terms yield

G = D707\ —V (a7 ) ( Dieyky—a—0" — Dieyier—®)
— Viar Diioy—a® — V2D PGS+ Vsz,”fk—’

X[ Diyiy—av"~+ (1—57) Dyy 1 71}, (G3)
where the denominator Dy is to be renormalized as in
Eq. (D4).

Upon performing the integration over w called for
in Eq. (G1), making use of Egs. (F5) and (F6), we
obtain

(Cri—o'd—ods'Cro)y=Vna® (%fk_fwl—d)-l—{? f_ ” do’ f(&') Im {GM"(“”)} [fk—fk+k1—d-v_fk-fk+k1-d]

at+U—ey

€4 €fy

Jerbi—a—v ]

€a—€ W' — e
—_ Vkaun—-v [ fk + fkl
(a+U—e,) (a—e)  (e—e) (atU—e) (eatU—er) (ea+U—er)
V2o (1 —a— fk fkl fk+k1——d :l
Vi (l=n") [(6d~6k1) (—er)  (ers—er) (a—er) (ea—ery) (a—er)

fk fh

—_— V2fkan—u l:
e , Jia

1

(er—ex,) (s—ea—U) + (e —€x) (ékl—éd—U):l

1= |

(&r—er;) (e —€q)

APPENDIX H: EVALUATION OF (n—Cj_,1Ci,)

In this appendix we examine the thermal average
(#Cr1—'Cr—). We shall see that to order A/U this
average is given by

Wi kg (=81 0y) (°Cry—e ' Crs)®,  (HI1)
where for H=0 we may write
(AChyoCre)® = (Ciis 'd0d, 'C)®,  (H2)

if we consequently sum over % and ;.

1
T en—er) (n—ea)  (er—ea) (er,—ea) :”

(G4)

Let us first consider the case k=Fk;. The thermal
average (d—'d_Ci—,'Ci)® may be obtained from
the equation

(A= sCrysChg)y =71 / ° flw) ImSi¥® (w) dw, (H3)
where

8¢ () = (Chg | Cis). (H4)

The graphical representation of S¢® is given in
Fig. 16(o) and 16(a)-16(f). These diagrams contrib-
ute the expression, in the order shown,

Si¥® = Dyoyo® 4 Dy~ Z { =V (Ditiy—a—v 927 — Dy 119 27) (%48, ) — V Dipty—a @21,

k1

F+V (Dytyyai™ = Dietyrd %) (AWsa = )+ V Di—rd % 00a™ } + V(D)

X 22 { fir 1 (Ditr—a—v 927 — Diy13—a2°) ++ Dig iy for s ( Doty 9" — Dy i)
k1

+Dk—k1+d_w kl—u_n—o-(DHkl_d(ﬂ—Dd_f_Dk_kH_d—w) } .

(H5)
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k2
k k ht 3
) ad - 4 4 Molad
OO0 [+] o (] (o]
dd K d dk ddk ddk
(o) (a) (b) (c)
k2 d d Ky .
1(_1 ﬁ _g_—g kyq ;-=§ 1(_1 ;::.3 5-2_ E—% Fic. 16.(%‘”%$§ffls%1;§l§n of
ddk ddk dd k ddk
(d) (e) (f) (g)
k2 Ky d
M | 34 z 4 d Eh d d
ddk ddk ddk
(h) (i) (1)
To lowest order
. R V [ Gii(w
iy =Gy =2 [ o gta) 1m [ S
T Jeoo W €g
=Vnfi/(a—ea—U), (Ho)
so that we may write (HS), upon summing over %; and integrating over o,
21A ® d
(0T dsCratCrs) = n—a(z)fk—o_l__i_ (nn7—1)O Re Sf(w)do , (H7)
™ —c (w_ek—v)2

where we have neglected a term proportional to iAf In| (1—£)/%|, etc. We note that (n’+#—1)® =0, so that
to order A/U, (nCi_, Cr—)=n""f;"". We chose to keep all terms of order A/U explicit, rather than include
the contributions of Figs. 16(e) and 16(f) as part of the renormalization of the denominator D, in Fig. 16(o)
[the product (D;~")? would likewise be renormalized as in Eq. (C9)] so as to show that the term n~7f, is
the correct one, at least to order A/U, rather than

%n""/ dwf(w) Im(Dk“”+Dk~4¢A‘”) . (H8)

The graphical representation of (#7°Ci—,'Cir—) is presented in Fig. 16(g)-16(j). We note that diagram
(j) does not contribute, upon summing over %k and ki, as discussed in Appendix E. In addition, for H=0
diagrams 16(g)-16(i) are equivalent to diagrams (d), (b), and (a) of Fig. 15, respectively, so that we obtain
Eq. (H2). As a result for H=0, the contribution from the last two terms of Eq. (4.11) [the contribution of
Fig. 7(g) and 7(h)7, is cancelled by the second-order contribution of Figs. 3(b) and 3(g), corresponding to
the term (A Ci;— ' Crq)-



