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Anderson Model of Localized Magnetic Moments. I.
High- Temperature Behavior
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(Received 27 June 1967)

In this, the 6rst of a series of papers on the nondegenerate Anderson model, there is presented a graphical
representation of the equations of motion of the d-electron Green's function such that the intra-atomic
Coulomb energy Uk+n is treated exactly. In this paper, the high-T behavior of the system is studied. It is
found that the magnetic susceptibility is given by
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where xp is the usual temperature-independent Pauli paramagnetism of the host metal; this expression
agrees (except for the replacement W-+2U

( 1—2g ) y/s) with that obtained by Scalapino. The method of
derivation makes it clear that the existence of a Curie-law susceptibility at high T is intimately connected
with the Kondo anomaly present in this model.

The resistivity is found to be given by

( 9A 2U(1 —2g) y

the coeKcient of the logarithmic term diGering from the value 3d/m. (eg—ed) obtained in the s-d model. This
discrepancy is due to the 6nite lifetime of the d electron, an important feature of the Anderson model,
contrary to the remarks of Schrieffer and Wolf. An even more important lifetime e6'ect (at low T) is the
replacement of ln {W/T) by In PW/I'(T) g, where r {T) is a nonanalytic (in a) function of T such that
I'(0) is of order T„and r (T) —

&.0 with increasing T t although r (T) 80 for all Tj.

I. INTRODUCTION

f &HIS is the first of three papers on the nondegenerate
.Anderson model of localized magnetic moments

in metals. "This model was proposed by Anderson in
1961 to explain the magnetic properties of a dilute solu-
tion of magnetic atoms in an otherwise nonmagnetic
host metal.

The model consists of a gas of independent conduc-
tion electrons interacting with localized d electrons.
The d electrons, however, interact with each other via
an atomic Coulomb exchange energy such that the
state of two d electrons on the same atom is ener-

getically unfavorable as compared to the singly oc-
cupied state. The Hamiltonian for the system is, in the
notation of second quantization,

@,Cs, Ck,+g eg,d. d.+Un'

+Q V(d. 'Cr.+Cs, td, ), (1.1)

where V= V* and n+=d+td+, etc. The energies e~ and
el„are given by (we set fr =ps= 1 throughout)

II' = 6Js
—OH,

~ Present address: Department of Physics, University of To-
ronto, Toronto, Canada.

' P. %. Anderson, Phys. Rev. 124, 41 (1961).
2 L. Dworin, Phys. Rev. Letters 16, 1042 (1966). In the present

paper, and in two succeeding papers, the analysis leading to the
results stated in this letter (in several cases incorrectly) is pre-
sented. At the time the letter was written, the existence of the
nonanalytic width I' was not recognized, nor the necessity of
going beyond the lowest-order iteration of the integral equation
obtained for the Green's function Gq'(cd).

c~=6g goH) (1.3)
where

and where
es=ep fU, —

kg —6 Jg ~

0(f(1,

According to Anderson, the most favorable value of

] for the presence of a local moment (that is, for a
temperature-dependent magnetic susceptibility ap-
proximating a Curie law at high temperatures) is
P=-', . However, we shall see that the values )=0, rs, and
1 require special care, and so in this paper it shall be
assumed that )AO, s, 1.

If, following Anderson, we de6ne the energy 6 by

h=s.Vsp(eg), (1.6)

where p(es) is the density of conduction electron states
at the Fermi surface, and if we regard eg to be of order

U, the inequality
U»h»T (1.7)

' G. Kemeny, Phys. Rev. 150, 459 (1966).
4 J. R. SchrieBer and D. C. Mattis, Phys. Rev. 140, A1412

(1965).
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shall be assumed throughout.
Despite the fact that the model was constructed so

as to yield a Curie law susceptibility for 6nite U and
6=0

t making condition (1.7) the interesting regime],
a number of authors have studied the model within the
Hartree-Pock approximation. ' ' In this work, however,
we shall treat the interaction U exactly. Aside from
the importance of such a treatment as regards the



ANDERSON MODEL OF LOCALIZED MAGNETIC MOMENTS 819

magnetic impurity problem, this approach affords a
comparison with the Hartree-Fock approach, which
might elucidate both methods in other contexts.

In this paper we shall present a graphical representa-
tion of the equations of motion of the Green's function
of the d electron in Sec. II. In Secs. III and IV, we
shall examine the first few terms in the perturbation
expansion in powers of 6/U of the Green's function
as obtained from the graphical representation.

The first few terms of an expansion of the magnetic
susceptibility in powers of 6/U, the interaction U
having been treated exactly, have been obtained inde-
pendently by Suhl and Fredkin, ' Nagaoka, ' Scalapino, ~

and Hamann' (for the case $~0, U~oo such that $U
finite) as well a,s the present author. It is found that
the magnetic susceptibility of the system has a per-
turbation expansion of the form [neglecting terms of
order exp( PfU) —]

g' 6& &&' W
7f =X„+—1+0 —i+0 —

~

ln —+ ~ ~, (1.8)
T U) U) T

where x„is the usual temperature-independent suscepti-
bility of the conduction electrons, and where an arbi-
trary energy cutoff W (which might be thought of as
the bottom of the conduction band) has been introduced
for convenience, the density p(e&) being set equal to
a constant p.

This result is not trivial and requires a delicate
cancellation of terms which would not have been
guessed at. We shall derive this result in Sec. III, but
our main interest lies in the temperature regime for
which the perturbation expansion (1.8) is no longer
valid. We see from Eq. (1.8) that 6/U is not the only
parameter in the problem, but rather the parameter
(6/Tl ln(W/T) also enters.

From Eq. (1.8) we see that the perturbation expan-
sion "breaks down" for temperatures of order T.,
where

T,=W exp( —U/d).

By now the presence of logarithmic terms is not
surprising, in view of the discussion of SchrieGer and
Wolf' concerning the relationship between the Anderson
and s-d exchange models. " Nevertheless, because of
the finite lifetime of the d electron in the Anderson
model, we might anticipate a major difference between
the two models; namely, we might expect the d lifetime,
of order 1/6, to enter the argument of the logarithmic
functions, such that the logarithmic terms are no
more singular than (A/U) ln(W/6), rather than
(6/U) ln(W/T).

We shall show (in Appendices 8, C, and D) that

whereas all the logarithmic terms are indeed of the
form (6/U) in(W/6) for the case where both levels

ez and es+rr are greater than the Fermi energy (or both
less), for the case considered here, where es is less an.d
t.~p greater than the Fermi energy the eGect of the
finite d lifetime on some of the logarithmic terms is
much reduced, That is, because of the finite d lifetime,
some of the logarithmic terms are of order (6/U) ln

IW/tT+I'(T) jI, where I'(T) is a temperature- (and
energy-) dependent width of order T, for T-+0. Further,
I'(T) decreases with increasing T; unlike the A(T)
which appears in the work of Nagaoka, "I'(T) is finite,
though small, for all T and shall be neglected in this
paper, where only the high T behavior is discussed. The
existence of a nonanalytic (in 6) width which is finite
at all T implies that perturbation theory is essentially
invalid at all T. Although the behavior of the system
changes (smoothly) for T T„we find no phase transi-
tion, in contrast to the s—d exchange model theories of
Yosida "Nagaoka, "and Kondo. "

We shall discuss the high-temperature magnetic
susceptibility in Sec. III and resistivity in Sec. IV.
Our result for the resistivity diGers somewhat from
that obtained by Hamann, '4 in that he did not consider
the self-energy effects which are an essential feature
of the Anderson model. Our result thus also diGers
from the high-T resistivity as calculated in the s-d
model. "

In the second paper of this series we shall make use
of the graphical representation to obtain a linear ['for
the case $U, (1—$) U«W$ integral equation for the
d Green's function.

II. MATHEMATICAL PRELIMINARIES

Following Zubarev, "we define (A
~
B) by

(A i
B)=s dk exp(t'tot) ((A (t), B(0)j+), (2.1)

We shall be interested in the functions Gs'(&o) and
Gs&"(to), defined by

Gd'(~) = (d.
~
d. '),

and

G»"( ) =(c
I c."'), (2.3)

respectively, because the thermal averages I,= (d.td. )
and fz ——(Cs, tcs, ) may be obtained from these functions

where 8 has the property

exp( PeFX)B exp(—Pei 8)=exp( Per )'B. (2.2)—

'H. Suhl and D, R. Fredkin, Phys. Rev. 131, 1063 (1963).
Y. Nagaoka (private communication) .' D. J. Scalapino, Phys. Rev. Letters 16, 937 (1966).' D. R. Hamann, Phys. Rev. Letters 17, 145 (1966).

9 J. R. Schrieifer and P. A. Wolf, Phys. Rev. 149, 491 (1966)."J.Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).

"Y.Nagaoka, Phys. Rev. 138, A1112 (1965)."K.Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto) 35,
204 (1965).

'3 J. Kondo (private communication).
&4D, N. Zuharev, Usp. Fiz. Nauk 71, 71 (1960) )English

transl, :Soviet Phys. —Usp. 3 320 (1960}j.
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FIG. 1. Representation of the operators
d,td P,. In this and all subsequent 6gures,
theoperators d~, cy~, etc., are written with
the bar below the letter, rather than above,
as in the text.

Thus

GI ((u) =G~s'(o)) +G~'(o&) . (2.13)

o&G ~ (o&) = n„—'+ (e~+rf U) G,~'(o))

From the equation of motion s(dA/dt) =LA, H j,
we obtain the equation

by performing an integration over co'. +(2))a—1) P V {G(ss&k'+G(sk&s —G(ks&s }

do) f(o)) ImGsa(o&) ) (2 4) +(1—)),) P VGk, (2.14)

where f(o)) is the Fermi function {exptIff(o)—ek) j+1}—' where we have used the notation

and

do& f(oi) ImGkk (o)). (2 5)

It may readily be seen that

Gk(a'(o&) = VDk'Gs'(a l,

where we have introduced the notation

Dk"'= (oi ek+r(rH—) '. (2 'I)

From the identities V= V* and Eg=6 k the re-

lationship

here

for 0.=1

=0 for 0.= —1,

G(dd)k = (d a d aCka I da ))

G(dk)s (d-a Ck~da
I

da )&

Gi,'= (ck. I d, t), etc.,

(2.16)

Gdik (o&) =Gkia'(o))

follows from Eq. (2.1), and hence the relation

(2.8) for 0.=1

for n= —1. (2.17)

Gkk" ((0) = Dk'f')k, k +V—'Dk'Dk"Gs'(o)) (2 9)

also follows. Equation (2.9) is valid for a single im-

purity, or if the factor E,8&,I, is added to the second

term on the right, for a suKciently small concentration

of fixed, but randomly located, noninteracting impurity
atoms.

Using Eqs. (2.8) and (2.9), we find that the thermal

averages fkk,'=fk, k'= (Ck, tCk, ) and rkks'=rssk'= (Ck da )
are given by

fi k, f(sk.) f'&k —k,

do) f((d) V' Im
Gd'(o&)

CO
—

6A:~ M —5I I~

The advantage of using the auxiliary functions G ~
is seen from the simple way in which U enters the equa-

tion of motion of these functions.
From Eq. (2.44) we may at once obtain Gs ('&(o&),

the value of Gd'(o)) for the case V =0:

G a(0) ((s)
e 1—m+

07—Egg
—U M —

Gag

(2.18)

Ga+(kd) kl (rtaCk a, d—a Ckra I da k)—

The equations of motion for the quantities G(~I,)g,
6&, etc., may likewise be obtained. If we extend our

notation by writing

and
CO G'(~)

d(d f(o)) V Im

(2.10)

(2.11)
and

= ((1—)s.) Ck, s tCk,. I
d, t),

G(kd) (dka)akim
= (Ck a "d ada Ck2aCk a I

—da )—&

In order that the interaction U be treated exactly,
it is convenient to introduce the auxiliary functions

G &'(o)) de6ned by"

etc., then the equations of motion for the higher-order
Green's functions from which Gz'((0) may be obtained

G. ;(~) = (n .d. I
d.t), fol 0.=1

fol n= —i. (2.12)
p(G. 2. Representation of Gz'&'& (k)l .

n This method, which was originally used by J. Hubbard /Proc.
Roy. Soc. (London) A27'0, 238 (1963)gwas suggested to the author

by D. R. Fredkin. d d
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to fourth order in V may be written as

(c&G(dk)d = Sdk + (6agr+kdcr ikd-cr) G(dk)d +P V {G(dk)kg G(kk)d j +VG+d ~

k1

G(dd)k'=kk. G(dd)k +p V{G(dk,)a' —G(a,d&a'}+VG+d .
kI

(dG(kd)d '&kkd + (&d+cr&d-Ir+ U &k-Ir) G(kd)d UGyd +g U {G(kd)kl +G(kkl)d j
kI

(2.19)

(2.20)

(2.21)

(dG (k,k)d'= —(2))a—1) (n~Ck~ Ck~) (1—&)a)—~k,&c '+(kk ~k, .+~d +naU)Gn(krak)d'+(2n —1) g U
k2

)({G(„,,) (dk, )d' —G(k,„)(k,»d }+(g)
—1) VG(„k)d + (P 1)+—Q VG (k,»k,a —(&)

—1) VG(kgd&d' (2. .22)
k2

(dGn, (dk)dg'= (2&t —1) (4 Ckg .& —Ca )+(&k &d .+—&a~—nU—) G, ( dk) kg+(2&)a —1) p U
k2

X {G(dk) (dkg)+kg G(kgd)c(dk)kg } P VGa+(kgk&kg + ( 1 'ga) VG(dk)d +UGa+(dd)kg (2 23)
k2

(dGac (kd)kg = (2r)a 1) (dcr CkgcrCk~d —g )+ (ed cr e—k cr+~kg+crrj aU)Gag. (kd)kg VGac. (dd)kg +P VGac. (kkg)kg
k2

+(2n —1) g V{G(kd)(dkg)+kg G(kd)(kgd)~kg j+(1 n. )—VG(kd)d' (2 24)
k2

(dGa, (k,k)k, = (2»a —1) (C.. .Ck .da Ck,a)+(kara kk~ dkg~)Ga+(kgk)k, —UGa, (dk)kg +VGa, (kgd&kg +(1 )&al VG(kgk)d

+(2)) —1) Q V{G(k,a)(dk,),k,
'—G(kg)(kggd)~, '}. (2.25)

Gn-(kik)k2 (kkacg+~k~ dkl~)Ga-(klk)k2 &nUG(dk)k2 +UGa (kgk)d +(1 ))a) UG(kid)a2

+ (27)a 1) Q V{G(dkg) (krk)kg G(kgd) (klk)kg } (2 26)
k3

(dGa+(dd», = (2&)n —1) (da Ck„n, )+kk,.Ga+«d», +(1 )) )VGa+d +—g U{G.+«k, )k, —Gn+(k, d&k, }
k2

+(2na —1) g V{G(dd)(dk,),k,
'—

G(dd)(kgd)rkg }. (2.27)

MGa'= da.Gk'+ UkGd . (2.28)

Equations (2.14) and (2.19) to (2.28) are clearly
the first several in an infinite hierarchy of equations.
A few comments might be made about these equations.
It should be noted that the inhomogeneous terms of the
successive equations are thermal averages of greater
and greater complexity. These averages may be eval-
uated by considering the appropriate Green's function
and performing the required integration, as in Eq. (2.4) .
It is clear that an infinite set of self-consistent equa-
tions for the thermal averages would result from such
a procedure.

In the next paper we shall show that this procedure
may nevertheless be carried out by considering only
the lowest-order terms in powers of 6/U { although all
powers of (6/U) ln(W/T)], leading to a single self-
consistency equation, namely that for e . In this paper
we shall be content with the 6rst few terms of an ex-
pansion in 5/U and hence this procedure poses no
dificult problems, although it should be noted that
when the interaction U is treated exactly the ther-
mal averages cannot always be approximated by
their "natural" truncation (e.g., (d, tCk„(E tCk, )W
(d tCk„)(d tCk ), even to lowest order in A/U, as
shown in Appendix F).

IIL A GRAPHICAL REPRESENTATION OF Gd'((d)

It is desirable to represent the equations of motion
(2.14) G. graphically. It is clear that as we start with
the Green's function Gg and proceed to an in6nite set
of equations for more and more complex operators, the
graphical structure will be that of a tree with a more
and more complex branch structure as one proceeds up
the tree. The only novel feature of such a structure is
that we must introduce the auxiliary Green's functions
(for example, G ~a) in order that the interaction
U be treated exactly. One such representation is as
follows:

I. Represent each creation and destruction operator
by a dot labeled by the state (e.g., —d) if a destruction
operator and by the state with a bar above it (e.g., —A'l

if a creation operator. Draw a vertical line and place
all dots referring to spin 0- on the right; those of spin —o.

on the left. Each interaction is represented by a verti-
cal wiggly line, and each statistical factor eke, e,
fkk, ', etc. , by a solid line. The diagram is ordered in the
vertical direction. Since we are interested in G ~ we
start by drawing three dots, representing the operators
d t, d, and d (see Fig. 1).
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d cl cl

{e)

Flo. 3. Representation of Gq &'& {co).

ing to conduction electron states with spin o.. There
is also a sign factor corresponding to the number of
permutations required to bring the conduction-electron
operators to the order required for the statistical aver-
ages from the following order: 6rst, all creation opera-
tors with spin —0. in the vertical order of appearance
(from the bottom), then all destruction operators with
spin —0 in the reverse order, then the corresponding
product of the spin-0- conduction-electron operators
(to this end, the d operator in the factor Nlq+' should
be imagined to go to a creation operator at the very
top) .

IV. To each horizontal line we associate the factor
D,+~', etc., where a, b, e, etc., are the labels of all the
highest dots appearing on the wiggly lines up to and
including that line. There are, however, two exceptions
to this rule, due to our treating U exactly.

(1) We must write DM+, ' as Dsd+Ir+,".
{2) There must always appear more than one "d"

dot at the top of the wiggly lines; thus we must add the
two dots as shown at the top of Fig. 4(b) and (g).
These dots, when they are not connected, and when no
single "d" dot appears on any line above them Las in
Figs. 8(b), 3(d), 3(c), etc.], correspond to the diBer-
ence of denominators

II. Each diagram is terminated by connecting all
dots which appear at the top of each wiggly line except
for a single dot which must always appear at the top of
some wiggly line on the right (although the wiggly line
may consist of just a single dot, as in the zeroth-order
diagram, Fig. 2). To the figure on the left consisting
of two "d" dots connected by a solid line we associate
the factor Gg&sl, given by Eq. (2.18). This factor com-
blIlcs both flic statlstlcal fRctol' {B ol 1 B) —asso-
ciated with the solid line and an energy denominator
(see below). We note here that to the order con-
sidered in this paper, all statistical factors except three
(the averages {d tCs d.tCs,.), (d .tCs Cs,.td, ), and
(nCs, tCs„)) may be factored into the product of
lowest-order thermal averages, and as a result we shall
terminate almost all diagrams by connecting the upper
dots pairwise.

III. To go to higher order in V we must change one
of the "d's" to a "k", indicating this by the vertical
wiggly line. To such a line from a "d" to a "k" or a
"k" to a "d"we associate the factor —V; to a line from
a "d" to "k" or "k" to "d" we associate the factor V.
The solid line from k to k~, on the left, represents the
statistical factor f&s, ', on the right, it represents fly,',
whC1'C fili lS glvCI1 by Eq. (2.10). Llkewlse, tllC solid
line on the left from k to d represents the factor —e~ '
and on the right, it represents —e~, while the solid
line from d to d represents the factor —n if on the
left and —n if on the right.

There are two additional sign factors associated with
each diagram. There is the factor (—)~+, where X+ is
the number of creation operators at the top correspond-

If they are at the top they must be connected by a
solid line and the factor Gg{ ) is taken as in Rule II.
If a single "d" dot appears on the same side above
these dots and the single dot is not connected by a
wiggly line to these double dots Las in Fig. 8(b)], we
connect these dots with a double line and write the usual
denominator D~d,"' or D ~" to the line on which these
dots Rppcal'. In satlsfylllg tile first palRglRpll of (2),
we do not count the dots connected by a double line.

If they are connected by a solid line, but are not at
the absolute top Las in Fig. 3(d) ] the factor

appears instead of the product Ggw)D, ~~" D~~"' ~,
etc., where D+~", D~q", etc., are the "usual" energy
denominators appearing on the even lines above the
connected dots.

In the case where one or both of the double dots are
connected by a wiggly line to some higher line as in
Fig. 3(c), the energy denominator

ra D re

is to be associated with the line on which the double
dots appear, whereas the denominator D~~U" is to
be associated to all even lines above these dots until
(and including) the lowest level to which one of the dots
is connected is reached.

AH possible diagrams consistent with the above
rules are to be drawn. These rules will be made clear
by considering the second-order terms given in Fig. 3
and the fourth-order terms in Figs. 4, 5, 7, 8, 10.
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k2 d

k)

d d d

{o)
d d d

{b)
d d d

(|:)
d d d

(d)

k) d d

kp

kg 0

ddd
{e)

d d d

{f)
d d d

(g)

d d

{Il)

FIG. 4. Representation of those fourth-order singular terms which reduce to second-order ln 8'/T terms upon self-energy renormalization.

The terms of Fig. 3 yield, in the order in which they
appear:

Q V (Ds+v" Da") (——~~a ') D~"~"'

—P V'(D~v" D~")Da"—' "'(fa '4 a ) GZ"'
k, ky

+P V'2 (D&+v«D/s) D&(20—1)aD&+v«( ~ e)—
—g V2L(D v«)2/ —~+(D «)2(1—/ —~) jD„~

+g V (Dd+v Dd ) D2d+v kDa'+v —( I )

—P V(D~v« D8') DM+v —~'( —+as ')

—p V'(D~v« Dg') DM+v g—~( fg 'bI„I„)Gg~~'.

(3.1)

The 6rst two terms in the above expression are
proportional to 6 ln(W/T) for ! a& —ey!«T; the next
three terms represent self-energy corrections of order 6,
while the last two are of order (6/U) ln! W/U(1 —2g) !.

If we define the quantity A[„~' I represented by
Fig. 3(b) and 3(g) ]by

A(~)'= V' Q f~ '(DI,['U "'+Dm~v ~')+id, (3.2}

and E[„& Lrepresented by Figs. 3(a) and 3(f)j by

&( )
= V Q &~~ '(Do[2' " —DM+v ~ ), (3.3)

we may thus write Gg[2~ (co) as given by (3.1) as

Go 6~ U 31k
UG [ '[2&= —U' e '+E()'+d co) Gl

U U

t' s&—eg, —U& (2a)—2' —U)
!

—2ih! rc '+
i (~—~~—U) (~—~a.)

UA|„) [e '+[ —g.—U)/Uj}
(M Qg U) ((0 6~)

+ I (co—e~—U) (co—es,) I (3 4)

d

kg

d d d d kl
kg

kq
0

k

d d d

(a)
d d d

(b)
d d d

(c)
d d d

(&)

kp kp

k)
0

d 4I k d d

d d d

(1)

k) kq kq
0

k

d d d d d d d d d

(e) (f) (g)
Fze. 5. Representation of fourth-order terms whose real part is of order (b,/U ln 5'/T)».
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where we have set

g (M t—~) = —$1lP'
k

~|,'dk)kI, ~t,'kd)k1 —
C(kopeck)k1

=01 (3 5)

G(krak)d fk ~—k,kgb y

Rll(i setting GI(M) =Gg()(0)) 111 thc light-hand sldc of
Eq. (2.14), which may be written, using Eqs. (3.5)

The reader may verify that Eq. (3.4) is the same as
wouM be obtained by truncating the equations of mo-
tion by writing

and (3.6), as

G g' ——(~—ed, —)) U)-'I —I +(1 —g.) Q V'GgDk

+ (2n —1) g V'G+d'(Dk +Dk(2~"'+D2~v k')

-(2~.-1) X: V G'f.—(D."-"+D. .-")
—(2&.—1) g V~,;-(D.( ).—D„,.;)}, (3.7)

and adding G+g+G~'.
It is clear that if we set Gg(0)(co), which appears in

the graphical representation equal to Gd'(or), we would
automatically be summing all diagrams which may be
obtained by iteration of the lowest-order one (Fig. 3).
We would then obtain an expression for Gg(&o) which
would agree completely with Eq. (3.7):

I~-'+E(.) + (~—~~)/U —(1—P+3i~/U }Gr(~) = —U '
I (o& ed. U+—2ia—) (a ed,+2—ia)/U +g(„) /U}

' (3.8)

It should be Ilotcd 'thRt. A((g) =A.(~) RIld E(~) = E(~) ~ —(1.c. kp —@~+qg +U —qp yp~~1 —~ & et(
Appendix A), so that it may be seen from Eq. (3.7) that G+z(„)'~~—G~(„) '*, as it should (in all our approxima-
tions we shall be careful to maintain charge conjugation symmetry) ."

The function A(„) given by Eq. (3.2) is singular in the limit T~O for } ~—ck }(&2'. To see this, we note that
jf we change the summation over k to an integration over @, assuming a constant density of states P, we may
write Eq. (3.4) as

'"+~ f()()dX '|'+w f(X){h0'— + +i7r
co X+2ga H, ~ s—s)+X—2k1 —U(1—2$)

1 i[U(1 2$)+~k——co]

2 27rr

1 i (k)+2go H o)—
2 2xT (3.9)

where p(g) 1S tllc dlgamma fullctlo11.
For } ~ o,+2g{rH }((2—, A(„)' has the asymptotic

form"

2U(1 —2$)y, . ixgoH
ln + ', (i~)+ i~e, --

~r ' 2T

Likewise, for } co+2goH }))T,A(„)' is given by

U(1 —2t)
Al i'= — h +{ i 8{ a 2g—B) ~—e}— —

M —6p

(3.12)

where we shall use the symbol 0 to mean

(3.13)

The function E( )' is also singular for ~ k). How-
ever, in order to evaluate E(„)', we must obtain Ndk,
which is given in terms of Gq(„) by Eq. (2.11). Because

t) =0, $(2 we wish to study the perturbation results in. this paper,
let us begin by evaluating E( )' to lowest order in 6/U
by using the zero-order expression G@„)'0) as given by

throughout and where in'r =Euler's constant Eq. (2.18) in Eq. (2.11) for Ndk'. We readily obtain
(0.577*.~ ). the result

It should be noted that the arbitrary cuto8 8' has 6+„&~(0)
been replaced. by 2U7(1 —2f)/~ in Eq. (3.14) «r &( ) ngp(" = dk) f({d)Im-
as a result of our keeping both terms in the sum ap-
pearing in Eq. (3.4), a procedure not followed in (r (r

Scalapino's paper with the consequent appearance of =V (1—e) +n .
flic llnpllyslcRl pal'R111ctcr W 111 111S cxpaIls1011 (1..8) .

"The importance of examining the charge symmetry of all expressions obtained was pointed out to the author by J. R Schrieger
A Erdelyl 8f 8/. , II$gh8f TPQssclINtfc/ I'QscksoÃs (MCGlavr-HIll gook CoInpany, Inc, Qe~ gork y95g) gaol p

'8 Reference 17, p. 47, Eq. (7), making use of the fact that P(-,'}= —ln4p.
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Using this value for m&1, &'&, the real part of E~„~' may be found to be

1—(«~(-)'"&= Ik(Dd+v"+D"') I «A(-) +h(Dd+v" —Dd") —»

6}' 1—$+,'(e' —-n ') (Dd+v" Dd—")X ReA(„)'+—
~

ln +In
1—2$ 1—2$

(3.14}

where we have written fg=i and fd+v'=0. We see that the lowest-order perturbation expression for ReE(„&' is
singular, as claimed, being proportional to ReA~„)'.

The imaginary part of E~„~'"& may likewise be obtained:

[I—f((o+2goH) j f((o+2goH).
m ((g)

— s
ed —M ed+ U —(o

(1-m ) (1-0) e'0
(3.15)

}(ed+(o—U(1 —2$) —2e) ) (~d+(o+2$U 2e);)—

From a study of the equations of motion, Eqs. (2.14 ff.), it might be supposed that Eq. (3.4) is jn
fact correct to order 6/U. However, Eq. (3.4) is not quite correct.

To see this, consider the diagrams of Fig. 4(a) —4(d) . These terms yield, in the order shown, the expression

—Q (Dd}.v"—Dd") (D}')'(D&+):,~~" D~) i—~")g), '4, ,),f)' &):,a,Gd
k~k3

—z I"(Dd+v" D"') (—D~') '(»~+d+v" D~ ~+—d")fk, '&k, ,k, fk' &k,k,Gd

+ Z v'(Dd+v" Dd") (D~ —) '(Da+),-d v" D~-~,~"—)f~ &a,~,G+d
k-+I(:2

+ Z I"'(Dd+v" —D ")(D ) '(D +d+ "—D +d/—)f~' o G+ '—. (3.16)

If we sum over k, we Gnd that only the diagrams (a)
and (b) contribute, yielding the expression

(e)—)(h) of Fig. 4 likewise contribute the term

't T"( ) ~(+4 —
d) -'7&d+v"—Dd" (3.20)

—p' Q (Dd+v})' Dd") (D),') '(2i—h)f},'Gz, (3.17)

—-,'I A ((o) —A (o)+4i 6) ]Dd+v' Dd' Gd'(o&, (3.19)

and hence is seen to be of order 6/U. The diagrams

where we have set fd =1,fd+v =0.
The sum

graf),

'(D~~)' would, if taken as it stands,
yield a term 1/(o, so that expression (3.17) would ap-
pear to be of order i(h/U)'U/(o for

(
(o ~&&T, and thus

although of order (6/U)', even more singular than
(g/U) in(g /(o). We shall see in Appendix C that
because of the inite lifetime of the d electron, the factor
2ih(D}, )2 gets renormalized:

2ih(D}, )~- -'zI l(o @,+iI'—((o @,)] )—

((o o) +4ih+ ~ )-'I—, (3—.18)

where I'(&)ios a nonanalytic (in 6) energy and tem-
perature-dependent width of order T, for T +0. I'((o)-
decreased with increasing T (and (o) and though finite
for all T is small for T&&T„and may thus be neglected
in this paper (it plays an important role for T &T„
as will be shown in the succeeding two papers). Thus,
because of the renomalization of the denominator
(D), )', expression (3.17) may be written

where we have written A ((o) ~,~ as A. ((o) and E ~(o)) ~,~
as E ((o).

If we add these two terms to Gg"&, as given by Eq.
(3.4), we obtain

UGd'('& ((o) = —U' I '+E'((o) +2/E(„& ' E(„+,,-—]-—
(o—ed.—U (2(o—2' —U)+ — 2ihe ~—+

U U (o)—ed, —U) ((o—od, )

}A'( )+ [d( )—A( +4'A}]}(e y —d,—o})
(~—&~—U) (~—~d.)

X I ((o—od.—U) ((o—ed, ) I
—'. (3.21)

In Appendix 8 we study the self-energy corrections
to the denominators DI,"' " and D2~g I, which enter
into the expressions (3.2) and (3.3) for A'((o) and
Z ((o) . We show that

D (20—1)(r
k

~I(o—e+(2g 1)oH+iI')or —e}+(2g—1) —HjI ',

(3.22)
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and

DM» ~P(o @+—aH (2e—d+ U) +2ihf ', (3.23)

where again we may neglect the I" term for T&&T„
while the 2id, term in D2d+~ & is irrelevent (we have ex-
plicitly excluded the case $=-', ) .

From Eq. (3.21) we may obtain the magnetic suscep-
tibility and other interesting physical properties of the
system for high T (the resistivity will be discussed in
the next section) .

From Eq. (2.18) we find that for H=0,

ReG„'0' (ez) (1 2~) /2 U

while from Eq. (3.21) we find, for H=0,

the self-consistency equation, Eq. (2.4), for e,', E may
be obtained.

After much algebra one finds

(f& 1) fw& T~ t' goH'1+
2

+~(g)
U2 T&'

(3.32)

where j($), k($) and M(]) are functions of P of order
unity, and where fz=f(ed)—. Equation (3.32) may be
written as the two equations

1m'(2)(qp) =g(1—$+P)/[P(1 —$)2U~] (3 25)
and

I +e '= (1+j6/U) (1—kh/2U), (3.33a)

where we have made use of Eqs. (3.14) and (3.15) .
From Fq. (2.9) we see that the conduction-electron

scattering matrix T». (e~) is given, for H=O, by

T»'(M) = V'Gd(EF) . (3.26)

From Eqs. (3.24) and (3.25) we see that to lowest
order in 6/U the "optical theorem"

ImT»(&i i s' g I
T» (") I

'~(~i —") (3»)

is not satisfied;

~H'[1 —5(1—5) ] ~V'~[-' —5(1—5)j 3.28
U2 2(1 ()2 U2(2(1 ()2

so that the phase shift 8(ei;) is complex, unlike the case
where t/' is treated exactly and U=O."It is interesting
to note that the difference

ImT»(~i ) —irp
~

T»(~i ) ~'=3spV'/[4P(1 —$)'U']

(3.29)

is just 3sp
~
rkk(ei) ~', where rki (ei) is the spin-flip

amplitude appropriate to the s-d exchange model" if
we use'the lowest-order expression a=J/4, " where

J=2 V'U/[(e, —e~) (e„+U —ey) ]. (3.30)

Thus our T» (ei;) satisfies, to lowest order in &/U,
the optical theorem appropriate for a spin-~ impurity"

ImT»(~&) =s&[ I T»(~~) I'+3
I
r»(~i") I'j, (3 31)

although there is no intrinsic spin-Rip amplitude in the
Anderson model (remark we are considering the case
H=0).

3y integrating the imaginary part of G&~„~ &" as given

by Eq. (3.21) over a& with the weighting factor f(~l,
» P. W. Anderson, in I'roceedings of the International Confer-

ence on Magnetism, Eottingham, England, 1964 (The Institute
of Physics and the Physical Society, London, 1965) p. 17.

' H. Suhl, Lectures presented at the 1966 International School
of Physics "Enrico Fermi" Varenna, Italy p& 61, Eq. (54} (to
be published}.

2' Reference 20, p. 75, Eq. (72b).
"Reference 20, p. 82, Eq. (82).

m e =gaH/—T,- (3.33b)

thus showing that the Curie-law susceptibility obtains
to first order in d/U. For a constant density of states
the susceptibility of the conduction electrons may
readily be shown to be just the usual Pauli suscepti-
bility.

Although this method of computing the magnetic
susceptibility furnishes a zero-order (in 6/Ul term
in the susceptibility from a second-order Green's func-
tion, it is useful in that it shows that the Curie-law
susceptibility arises from the Fermi function f(cv+2go H)
appearing in the imaginary part of A (~) and E'(id),
and thus is a consequence of the "Kondo anomaly"
[the real part of A'(~d) and L~'~(a&) yield in in'&/T term].
Indeed, if we had set"

g o'(2) . + . , (3.34)
(d E~+U+2ZA M ed +2&A

(3.36)

where we have de6ned

H;(V') = V' Q (d.tC»+Ci„"d.), (3.3'l)
k, o

so that

P(V) P(O) = V' dV' Q (d, tCi.+Ci,.td, )v. .

(3.38)

3This expression was suggested by B. Kjollerstrom, D. J.
Scalapino, and J.R. SchrieGer, Bull. Am. Phys. Soc. 11,79 (1966).
The authors recognized the inadequacy of the expression as regards
the magnetic properties.

we wouM have obtained

e' n, =0(goH/U—), . (3.35)

resulting in a temperature-independent susceptibility.
%e may also obtain the second-order term in the

suceptibility by noting that the free-energy P(V) may
be given by
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Using Eq. (2.12) we may write

F(V) —F(0)
-y2

d(V')' Q do&f(o&) Im

k6

k4

If 0

pd(V')' do& f(o&) ReG4'(o&) v,

(3.39)

d d

where we have dropped the principal-value term

deL1/(o& —e) 7.
d d

{a)

If we insert expression (3.21) for G& (40) into Eq.
(3.38), we obtain

6P' 6drr
—U

F(V) —F(0) =Q —e '«ln.
Ir VC W+ed, —U

+(1—ri &") ln
W+ed,

U' ReA(„i~(44' —e "')
do& f(o&)

(o& e~ U) (o& ed~)

(3.40)

kp

k,

k4

(A)' H'g' ln [ 2U(1 2&)y/7rT ~—
i, U] TP(1 f)'ri— (3.41)

so that the free energy as given by (3.39) may be
seen to be the same as obtained by Scalapino.

where we have kept all second-order terms but only that
fourth-order term proportional to ReA (o&).

It might be noted that no lnW/T term appears in
ReGg&'&(o&) for H=O Land thus the leading lnW/T
term in Tss(o&) is of order (A/Uls for H=O, agreeing
with the results for the s-d model7. Upon summing
over o, making use of the fact that ReA (e&+2goH).
is given by ReA(e&;)+0/(2goH/T)'7, we find that the
last term of (3.40) is just

{b)
FIG. 6. Representation of those eighth-order singular terms

which reduce to order (n/U 1nW/T)' upon seif-energy renormal-
ization.

IV. Gg ' (I) AND THE DC RESISTIVITY

In this section we continue our study of the perturba-
tion series by computing Gs'&4&(o&). From a knowledge
of Imp&4&(es) we may obtain, using Eq. (3.26), the
Js ln(W/T) correction to the resistivity.

It is not hard to see that the fourth-order terms repre-
sented by Fig. 5 have a real part proportional to
$(A/U) ln(W/T)7'. In the order shown, the terms
(a)—+(d) yield the expression

—Q V'fa, 'fs (Dd+v" D~")Ds"' "'(Ds—4.s,~v" Dk+s,~') Ds,'Gg —gV'fj, 'fg,~(Dg+—ri" D„~)D„—
k,kI

X ( k+s4-M-U s+srM )Ds Gd

k,kI

—Q V'(Dd+ri" —D~")Ds~ij—s (Dd+v+s4 —s Dd+s4 —ih ) Di;fi. 4,s,fi„k,, &,4G„«(o&)
k-+kg

—Q V4(Dg+ri" —Dg )Dp'(Dg+ri+s s, «s& —D~s s,«s&')Ds~g s40'fgbs, s,fs, 'bs, s4Gg&s&(o&). (4—.1)
k~ks

Upon summing over k and k~, we obtain

D4+v"Ds"Ga (~)—2PA (o&) +2i(8—$) A7LA (o&) +iA(8 &)7—
f(1 k) U— (4.2)
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d d k d d

d d d

(tt)

d d d

(b)

d d d

(c)
d d d

(&)

/I'
0

.k~ d d
0

(e) (f) (9) (h)
Fro. 7. Representation of fourth-order terms whose imaginary part is of order n/U(n/i7 in ~/7').

where we have neglected terms of order 6/U in((/I —p), etc., and have set ea=ea, =,z in the term (D~v, „(s—g)~

Dd+aa —a ) ~

The terms of Fig. 5(c)-5(h) are also of order [6/U) 1n(W/T)]s. In the order shown, they yield

—Z V'( d+v" D"')D'" "'—(Dwa, ~ v" Dwa, ~"-)Da;—~da;fa

—Z V'(Dd+v" Dd") Da'(D—a+a, d~" Da+a-, d")—Da, &" "fa'rrda-
k,kI

+ g V'(Dd+v" Dd") DM+v—a'(Da, +d+v a&' "' Da,+d a&' '&—') Da&'fa '8a, a, ( —gda;)
k-&k2

+ Q V'(Dd+v" Dd")Da'(D—a a,+d's " )fa'4, a, ( trad ')DM+v—a+'- (4.3)

The contribution from these terms may be written

—I[A (~)+2&(il —&) ~3[&' '(~) —s~][(&—& )Ã

+ra '(~ —il) (& 5))+[—~ ( ) ~/Uj—[A'( )+s~(0 ()jID —"D"'/2(& 5) Uj —(44)

In addition to these "irreducible" terms of order

[(d/U) ln(W/T) ]s, there is another set of "irre-
ducible" terms of the same order represented in Fig. 6.
These terms are nominally of order (ill/TU)s but
because of the self-energy renormalization discussed

in Sec. III and Appendix C, they may be shown to be
of order [(6/U) 1n(W/T)]' [just as the (iA/T) term
was shown to be of order 6/U lnW/T in Sec. III].

The contribution of Fig. 6(a) (where ka—+kt and
kafka are also included) is given by

V'(Dd+v" Dd") (Da') '(Da+—a,~ v Da+a,~")fa-, '
k,kI,k3,kg

X(Da+aa d.~" "' Da+a, d's " ) (Da;—)'(Da,+a,~ v" Da,+a,~")fa, 'fa'f—a;Gd (~) (4.5)

(Dapa, ~ v" " —Da+a,~i' " ).

Da+a ~" " ) (2iDDa, s)fI, f—j„Gd'(au), (4.6)

so that upon making use of the renormalization Eq.
($.18) we obtain

((o) —A ((a+4s/a) j[I. '(a))

Dd+U DcP
(to+4ih) ] . (4.g)

5(&—5) UD~U' Da'
a[A (co) —A((o+4ih) O' Gg(ao) (4 '/)

5(&-8U In Appendix D we show that the self-energy re-

Upon summing over ka and ks (and relabeling the where we have set ea ea, ea=in t=he term
variables), we may write expression (4.5) as

g V'(2s/aDa") (Da a d vi

From Fig. 6(b) we likewise obtain



normallzatlon lcRds to thc rcplaccmcnt

A(~)+1;~(8 3—)~2P-(~.)+~(~+4i~)+&i~(8 k—)j,
(4 9)

a- (~) i~I (1 I—.)y-+I (1-8)—(1 g—]
&,'P—E-(m)+E(co-+4ih)

—2iht (1—11
—&8+m- {1—8) (1—

&) ]], (4.10)

in Eqs. (4.2) and (4.4); we again have neglected the
I"(T) term in the argument for T))T,.

have no%' examlncd thc foul th-order lrrc-
duciMe" terms having a real part proportional to
L(A/U) In(W/T)g'. In order to obtain the leading
logarithmic term in the resistivity @re must also examine
the "irreducible" terms of ordering/U[(A/U) in(W/T)].
These terms are represented in Fig. "I (only those
fourth-order terms yielding a nonzero contribution are
shown) . In the order shown they yield

—Z V'f~ f» (Dd+v'" —D8 ) (Dd+v+»-d'~"' —Dd+» a"~" )D~v a D»1'g "'Dd'
k,kI

—Q V'fi 'f» '(Dd+v" Dd")—D11' "'DM+v»'(Dd+v+1»" —Dd+1-»") Gd
k, k1,

—Q V'(Dd+v" —Dd")D~v~ (Dd+v+»-d"+" —Dd+» a"'+"')D-»~"' Nd» f~ '
k,k1

Q V (Dd+v Dd ) Dk DM+v kg (Dd+—v+ki» D-d+k») fk -11»d
k,kI

+ g V'n" "'{D~v" DZ)(D—~»~v" »+» "—)(~ «&.«».&
k,kI

+ Q V'(Dd+v" Dd") D—a (D~»~~" D~»~—")(~ 'C» A. 'Ck, )
k,kI

—Q V'(Dd+v" Dd")DM+—v ~ (D1 d-~v" " —A+d-d' "') (CI, '& 4 'Cp )
k,k1

—Q V'(D v"—D ")D~ (Ds+d v 1""'—D~d ~ " "') (C~ '&M 'C1.)

It should be noted that the thermal averages
g~tCs d~1C», ) and (C» td~, tC1,) are required.
These averages are computed to order 6, with U treated
exactly, by studying the equations of motion of the
required Green's functions in Appendixes F and G.
We shall see below that the last two terms of Kq. (4.11)
do not contribute for H =0. If vrc leave these terms aside
for the moment, the contribution from the erst two
terms ls found to bc

A ((d)

5(1—5) Uk(1 —5)

5(1—k)X ri'{ru) n" —8{1—$)

(1-&)8+{1—e') -k(1-8)

» 3(1-8)/(1-8-8/6& ( )D~' D:G.-( ),.

(4.12)

8(1-~) ${1—8)+n' $—8 +(1—e') 8—g—
(1-&)

vrhile the contribution from the third through sixth is
found to be, taking into account the self-energy re-
normalization, to the order required,

. 8 j.—8i —— —Dd+vg'Dg'E ((o)
1—$ U

+Z(N) IO~ —0'] Dd+vg Dj'~, (4.13)

where % c have %ritten

E ( )=V+(d C d d.)(D~&" '1 —D „),
(4.14)

+ (8—1) —D+ "D "LE ( )+& ( )j E (~) =2LE ( )+E (~+4~&)j, (4.15)

+~ D~v"D—"R+ (~)+&+ (~)jU

(1-~ )(1-8)—-', (e 8)+ +trs'+(1 —e ) (1—()U 1—$

E+ (~) =2LE+ (~)+E+-(~+4~&)j, {4.16)
and J((o) =yfA ((o) +A (a)+4ih) j (4. .1y)

Ill add1tlon to tile terms of Eq. (4.12) of order
~~/U~(~), there are two»other terms which must be
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considered represented by Figs. 3(b) and 3(g) for which kcWk. These terms are given by

+ g')'(D.+o"—Da")D." "[(n C»-.'C. )(D.+v+~~,"—D.+.—.,")+(C» 'C~ )DZ 3

+ Z' )'(D+ " D"—)D + "[{n--C 'C -)(D+ + "-D.+—» "')+-(C -'C»-)D& 3 (4 Ig)

In Appendix E we show that only the term propor-
tional to (n .C» tCI, ,) contributes for a constant
density of states. [For a density of states of the form

p(cq) =pW'/(eI, —cp)'+W', the remaining terms enter
with a coeKcient Greco'(c~+iW), so that for U$ and

(1—(1 U«W these terms, which would otherwise
result in a nonlinear integral equation for Qq{„), as we

shaH show in the succeeding paper, may be neglected. ]

Further, we show in Appendix H that the contribution
from the (n Cc, tCc ) term, which arises from the
region @, cq, just cancels the last two terms of (4.11)
for 8=0.

Ke have listed all the "irreducible" terms which go
into G~{„){+. H we incorporate these terms into the
second-order (iterated) expression, Eq. (3.8), we ob-
tain, for

~
cv —er ~&&7 and II=0,

3ik
G~(„)——U—' n '—(1—$) + +-', E(c0) ,'E(co+—4—id)+[2/(1—$) U] '

f [A (co) +2i(8 $) rQ(E—(ca)+E(co+4ihj

id[$8—+ (1—8) (1—$)]+[E(c0) id/—U][A (c0) +2 (~+4ih) +2i 6 (8 $) j}—

—[4&(1—&) U7
—'[A (o)) —2 (cd+4ih) j[E(co) E(s)+4ih)—j+ +id'($) A ((o) ihS($) E{c0)

U'P(1 —&)' Uk(1 —5)

&&
—](1—$) + —(2U)

—'A (a&+4ih) — (1—2() +[U'$(1—$)j '[A (co) +2id (8 $)]-32 {co) . 2ib

2U U

AT(g) A (co)
g [A (~) +3 ((u+4ih)+2ih(8 $1j+-

U%(1—5)
—[4'(1—g) $-'[A(~) —A(~+4i~) ]', {4.19)

where R(f), S(f), and T($) are functions of ](5and T
being odd under charge conjugation, Z even) which

go to zero as U~~ ($~0). In order to obtain the

(6/U) 1I1W/T contribution to 1m'(6r), we must ex-

pand expression (4.19) . In addition, we must remember

that E(a&) has an imaginary part of order

cP 2 ln(W/T) /U'f (1 /when ImG—pc@(a),
as given by Eq. (3.21), is used in Eq. (2.11) for nc,~

Thus

ih' 1— ')
Ec'& ((u) = dc0' f(cd' )

U2~2P (1 P)
9

X I (Gl (0 ) +(N+c0 2' U)

i~(1—$+P) ~( ) (4.20)
vr O'P (1—r") '

where we have set 1m''(c0) =ImG~'@(e) and added

the second term as a converg|"QQQ factorq R procedure

valid to th.e order. required,

d. d d

(a)

d d d

(c)

FIG. 8. Second-Order self-energy corrections to Bq~~&.
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The complete fourth-order contribution to ImGe(e);) of order (A/U) s InW/T is thus

ImG„(4) (e~) = $g(4) (e)„)+ I 2(1—2$)' —2(1—28) (1—2$)+2)(1—$) t 1+$8+(1—8) (1—$)jI
Aa(;)

(1-a U
' 4e(1-~)'U'

g((l Ag (eel () (P) A(1 —2$) A (ep) (1—2() AT($) A (e) )
&'(1—k)'U' 2P(1—5)'U' 2P(1 5)—'U'

X 3$(1 5) +—
(1—2f) (1—28) 3AA (e).)

2]2( 1 $) 2U2
—+L—',(1—28) —2(1—2$) j

X — L2(1—2 ) —l (1—28) —25(1—8)+28(1—5)j
4$(1 8U—' 2P(1—5)'U'

3A(1—2$) f-,'(1—28) —2(1—2])jA(e);)
2P(1—$) 'U'

In the limit ~0 (with fU =ez ez fin—ite), we obtain, making use of Eq. (4.20),
A'in) 2 U(1 —2

(4.21)

9A' In
~ 2yU(1 —2$) /s T

~

4(e) —ed) 's.

If we compare our expression for ImGe(ee) for $~0
with the expression obtained by Hamann, '4 we see that
whereas our ImGe(s)(ee) agrees with his, our ImGe'(ee)
has the coefficient 9/4 whereas his has the coeflicient 3,
which is just such as to result in a logarithmic term in
the resistivity which agrees with Kondo's result if
Eq. (3.30) is used for J and a constant density of states
is used in the s—d model. This discrepancy arises from
the effects of the self-energy renormalization, Eqs.
(3.18), (3.22), (3.23), (4.9), and (4.10) Pleading to
a factor -', rather than 2 in each of the expressions in
Eq. (4.21) and thus ss g-,' rather than 2Xss in (4.22) $.
We thus 6nd that because of the 6nite "d" lifetime the
leading logarithmic term in the resistivity in the
Anderson model diGers from that obtained in the s—d
exchange model. This diGerence calls into question the
argument of SchrieGer and Wolf, which implies that
the Anderson and s—d exchange models are essentially
the same, at least as far as the logarithmic divergences
are concerned. We have already mentioned the non-
analytic width I'(T), which also represents a lifetime
effect and will play a major role for T&T„as will be
discussed in the succeeding paper, so that it would ap-
pear that the finite d lifetime is an important aspect
of the Anderson model.
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APPENDIX A: CHARGE-CONJUGATION
SYMMETRY

If we de6ne the operators D, and EI„by
d, t =D„
d, =D,~)

CI ~=Eg,
CI =E~t, (A1)

it is clear that the D's and E&'s satisfy the usual fermion
commutation relations. Further, if

e) eg, =$U+ go H~~—U+e—e,—eJ = (1 f) U —go—H —(A2)

and
(A3)@g—Gg~Ep —61 )

then the Hamiltonian (1.1) goes into X„where

X,=Xe+X(—V), (A4)

where X(V) is given by (1.1) with D and Ez
replacing do- and CI~, respectively, and where

Xe=2ee+U+2+es 2' N. —(A5)

It is readily seen that

(d tv~.
~
d.t), ,„~((1 D tD )D.t

~
D.);...—

(A6)
the Xp term being absorbed in the altered free energy.
By taking the complex conjugate, and making use of
the definition (2.1), we may write

((1—n )D, ') D.) v,„=—((1—n )D.
~
D.t)* v,

(A7)
so that

G-d(cu) e— 'fr+&(~)
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where 6 ~(„) is the d electron Green's function in the
charge-conjugate system ($+~1—$, 22'—&1—22 ', etc.).
APPENDIX 8: SELF-ENERGY CORRECTIONS

The inW/T parts of 2'(00) and E'((0) arise from a
sum of the form pk[fk/((0 —gk)]. It is therefore of

interest to consider the possible self-energy corrections
to the denominator, since gq[fk/(0) g—k+ih)] is of
order ln(W/6) for h&)T. The 1n(W/T) part of A ((0)
[Fig. 4(b) ] admits the four self-energy correction dia-
grams shown in Fig. 8. Using the prescription given
in Sec. III, we 6nd that these terms yield the expression

—Q &'(Dd+U" Dd"—) (Dk 2,+d+V-" Dk 1—,+4"-) ( fk '"0k k ) (Dk'2g "')'(fk 4 2 ) G "'

Ir 4(D Vgg D grr) (D (2g—1)g) 2D grr( f —rr g )G rr(0)

k,kI,kg

—Z ~'(Dd+U" —Dd") (Dk+kl ~~" Dk+k, d"—) ( fk, -4 k ) (Dk'20 "')'( fk '
&k k )G '"'

k~k3

p'4(Dd Ugg D„gg) (Dk(20—Or) 2( f —rr p )D ggG rr(0)

k,k1,k3
(81)

It may be seen that the imaginary parts of (81) vanish as exp( —U/T), whereas the real part contributes a term
—26VHg/gr)(1 —$) U to the self-energy:

D (2g—l}0

(0+ (2g—1+2hg/gr& (1—g) U)aH gk— (82)

This term, proportional to H, is the expected Knight shift of the d electron resonance line due to the interaction
of the d and conduction electrons.

It might be noted that the imaginary terms do not vanish (being 2ih) if both dd and gd+v are either greater than
the Fermi energy or both less (though both within the conduction band), so that in these two (nonmagnetic)
cases, the logarithmic terms are of order 6/U lnW/h.

Let us next consider the 52/U part of the self-energy. The diagrams representing the 1412/U self-energy terms are
shown in Fig. 9. There are two types of terms —those representing the d/U correction to the energy denominators

appearing in the lowest-order expression for the self-energy, (C1), and the second-order "irreducible" self-energy
terms in which the lowest-order energy denominators appear. The contribution to the from the diagrams of Fig. 9
yields, for II=0; in the order shown,

—Q V0(Dd+V Dd) Dk fkGd' —Y I [—(Dk4.d+V+k, Dk+d 11)2Dk~—k 2, (Dk+k,~ U —Dk+k,~)2—
k ky, k2

XDk+kl —kl+ ( k+d+U kl Dk+d kl) D—k+2d+U (rl k2(Dk+d+U k—l —Dk+d kl)—+ (Dk+kl~— U Dk+kl~) Dk+kl+kl 2d U——

X (Dkl+kd UDkl+k -d) -(Dk+d+U-kl Dk+dkl)—D~2d+-U —kl —kl (Dk+kl d UDk+k—l —d) Dk+kl+kl 2d-U]fkl fkl- —

+[(Dk+d+U k, Dk+-d k—,) Dk~kklDk+d+-U k,+ (Dk—+kl~U Dk+kl~—) Dkl+k klDk+kl~—V

+ (Dk+d+U kl Dk+d——kl} Dk+kg —kl(Dkg+~~ Dkg+~)fkg+ (Dk+klM UDk+kl —d)—
XDkl+k —kl(Dk+d —22+V Dk+d —kl)fkl+ (Dk kl+d) V Dk—kid)—Dk kl+2d+U kl—-
XDk kl+d+U+ (—Dk+kl d U Dk+kl d) Dk+kl+kl 2—d UDk+klM V+ (—Dk—+kl d U—Dk+kl -d)—Dk+kl kl- —

XDklyk-d —U+ (Dk-kl+d4-V Dk —klyd) Dk+kg —klDk-klan-dyV+ (Dk kl+d+V Dk—kl—yd) Dk kl+d-
XDk+kl —kl+ (Dk+kl d UDk+kl d) Dk+klM— Dk+kl kl]fklI ~— (83)

It may be seen that the real part of the self-energy
vanishes, while the imaginary part is given by

44I(22'/~U2$2(1 ()2 —~(jp) 22' (84)

where we have used Eq. (3.30) for J. This imaginary
self-energy term is the expected Korringa width due
to the interaction of the d electron with the conduction
electrons.

%e have thus found that the imaginary part of the
self-energy goes to zero as 2"—&0 to order LP/U. Let us

suppose this to be true for all higher-order terms in

5/U. It does not follow that the exact imaginary self-

energy is zero. To see this, consider the denominators
Dk k,+~Ug —Dk k,+dg which appear in the 6rst term
of (81). These denominators may be written as
D'( g(kg+0k, ) ', where the exact Green's function
Gd'((0) may be written

Gdg(M) =Ng(0)}/D (0)},
and where

UD'(00}(') = (00 dd, ) ((0—gd, —U). (86)
From Eq. (3.8) we see that the real part of D'( )(0

vanishes at
~

(0 —02
~

mTg/2y (for T=O), w. hile the
imaginary part is of order 6/U/(1 —$), where 2; is
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ks

d d

d d d

(a)

d d

d d

k

d d d

(b)

k4

k4

d d d

(c)

d d

k~

d d d

(d)

d

kp
0
d

(Id d

(e)

k4 d d

d d d

(&)

k4

d d

d d d

(g)

d d

d d d

{h)

d

kp

6
d d d

(i, )

)k
dd d

(j)
k4

d d d

(k}
dd d

(E)

d

kg

d

kp

d

kg

dd d

(m)

a

(n}
d d

(o)
dd d

(p)
FrG. 9. Fourth-order self-energy corrections to DI,&'g ') .

given by

T,= (2 U
~

1—2$
~ y/~) exp f

—L&(1—$) ~U/~5 I,
rather than the tentative expression (1.9).

Thus, as a rough approximation, for T=0,
V' g Im(Dk k,pd+U

—Dk—ki+d)fki

~(f~+n+k- f+k-)+(~T /—2v) (1/~)
=0(h)+0(h'/U)+ ' +0(T )

with a similar result for the other terms in (81). We

(I}y) have already seen that the terms analytic in 6 go to
zero as T +0 (at least the f—irst two, and we conjecture
that all do), so that for T~O the imaginary part of
the self-energy is just the nonanalytic (in 6) contribu-
tion. More exactly, if we write this term as I'(i0 ek+ie)—
(its dependence on T being understood), then
I'(ce—ek+ie) satisfies, to lowest order in T„ the equa-

(38) tion (for H=O)

m

I'(a) —e +ie) = —N.A.P. — des'Igf(io')+(Oi' —ek)/U+(ei ek+ie)/U (1——$)+3ih/U—5D '(A+)

Ef(co )+( +ee«)/U (co ek+ie)/U (1 $) 3eh/U5D '(A ) I (B9)

whereD(A~) is the exact denominator of Ge(cd) [Eq. (3.8) is just the second-order approximation; the required
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expression will be obtained in the succeeding paper), and where

V2 g {y,: ', )—I (~ (~ kk—+i a) +~'~iI'(~ (~—;)+~' kk—.)—ak, ]-
x U$(1—3)

+I ak + (s) k-k+ia) +(o' U—(1 2—$) +~I'(+ (ka+kk) +c 'a) —U(1 —2$) j 'I (810)

We note that I (h) tk—+M) satisfies the identity

I (6&—Ek+$E')= —'I (—ka+6k —16),

where I' is the charge conjugate of I' (i.e., —~~1—8;
$+~1—$; see Appendix A). From Kq. {34) we see that
the intrinsic width of the d electron resonance line

I( T) +m(JP)' T—+0(T,) for T—0.

Since D(A&)—+0(U) for T&)T„we see that I'—&0

for T&)T, (though I" is finite at all T) and thus in this
paper where we are considering Tp+7; we may neglect
I' with respect to T[1' is at best 0(T,) for T~0$.

Consider now the self-energy corrections to the
ln

) U(1—2$)/W ( part of A'(cu) LFig. 3{g)j given
by the four diagrams of Fig. 10. These terms yield the
expression

—Q I"(Da+v" —Da") (DM+v k') 'Dk, +a-k" ( fa 4-,k,)Gd'"

—Q I"(Dd+rJ" —Da") (DM+v k')'Dk, a.d 2' "'(fk '&k,k,)Ga'"'

Q I '(Dd+U" Dd") (—fk '
~k, ks) ( fk,' 4, ,kk) (D2dyV-k')'( —Dk,yd k "+Dk,ya -k+U)Ga'"'

Q I (Dd+U Dd ) ( fkg ~kg, kk) ( Dkg —k+d +Dkg-Ir+dyU ) ( fk ~k,kk) (DM+U k) Gd- {812)

These terms do not cancel for cv eI, and hence, even
for the case $=-'„ the terms involving Q~Dkd+v k'fk '-
yield expression of order 1n(W/6) rather than ln(W/T).

APPENDIX C: SELF-ENERGY CORRECTIONS TO
2ih(Dk')' TERM

The self-energy corrections to the 2ih(Dq~)' term
are of two types: those that modify the coeKcient
(2ih) and those that modify the denominators Dk'.

To first order in 6, only the latter appear. The correc-
tions to the first Dk' are represented by Figs. 11(a)-
11(d), with an equivalent set of diagrams (not shown)

modifying the second Dp'. The contribution from Fig.

kp

kt k1
Cf Cf d d

(d)
kg

Cf d k3

Cl Cf Cf Cf Cf

(c) (d)

FIG. 1Q. Second-order self-energy corrections to D ~+g I,. I'IG. 11. Second-order self-energy corrections to 2ih (DI, )'.
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d d

d d 2dd d

kp

d

d d d

(a)

kg

d d d

(b)

d d

k5

kg o-o
dd ky

k)

kp
d d

d. d d
(e)

gd d
(g)

d d d
{h)

d d d
(j)

FxG. 12. Fourth-order self-energy corrections to 2'(DI, }'.

11(a)—11(d) may be written

—g V'(Dd+v" Dd") (Dk')—'Dk+k, ~"(Dk+k, d v" Dk+km-") fi'—fk, 'Gd'

—Q V'(Dd+v" —Dd") (Dk')'Dk k,+d" "'(Dk+k, d v" Dk+k, d")fk'f—k, 'Gz

—Q V'(Dd+v" Dd") (Dk')'(—Dk+k, d v"—Dk+k, ~") (Dk+k,~ v")fk fk, Gd'-
k~k2

—Q V'(Dd+v" Dd") (Dk') '(D—k k,+d+v" Dk k,+d") (Dkpkk~ —v")fk fk2 'Gd'. - (C1)

The last two terms give no contribution; from the first two we obtain

From Fig. 11(e) we see that the product 2ih(Dk k,k') is the first term in a series:

2iA

+2'~)' 1+4~'/ ( — +2

2ih

(~d —kk.'+2~6) '+4dP

=kf(M —@ ) —(id —dk, +4$A) (C3)

The second-order (in 6) corrections to the denominators Dk are represented in Fig. 12(g) —12(j). These self-
energy terms may be written (for H=O) as

Q2
21 'r = —V g {(Dkz+k~ vDkz+k —d) fDk~+k k2(Dk kk+d+—v —Dk km+d) —+Dk+k&+kz M U——

k1,k2

X (Dk+k2~ vDk+km~) )+ (Dk~—,+derv
—Dk k,+d) [Dk ki kg+.2d+v (Dk kg+dyv

—Dk km~) +Dk k,+k,

XDk+k,~v Dk+k, d)])fp, fk„(C4)—
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where we have written
Dk ~ak—mid —2i(LL /U) y ~

The second-order correction to the (2iA) term is represented in Figs. 12(a)-12(f) (there exists a similar set
where kq is replaced by ka, etc. ; not shown). These terms yield

+2
2&7 = V g I (Day+a d v--Day+a d) (-Da+kg km+ D—a+kg~ka-I v)fkg— (Da+kg d v——Dki+k d)-

kI,kP

X[Da+k&M—v(2Dk+k~~2+Da+k~+k2-2d~) +(Dk+k~-dDk+kq —k2) ]+(Dk aq+d+—v Dk—ki+d)

X (Dk kg ka-+2d—+v+Dk+km 4)fk—2 (Dk kg+d+v -Dk kid)-

X[Dk kl+d+—v (2Dk—kl+ka+Dk —kl-ka+I+v) +Da kl+dDa+kakll Ifkl-~

where we have written

Thus, to second order in 6 we 6nd
2iA—+2iA+ (2iA2/U) 7. (C&)

+2
2i A (Dk') &2ih+—2i —7 I—

U [ed —e +2iA+2i7(A'/U)]' [2iA+2iy(Aa/U)]'/[ro —e +2iA+2iy(h'/U)]'

(C81
2 ki —ek id —ca+4kB+4'a(LP/U) y

where we have made use of the fact that y= f, neglecting terms of order (&/U)'2", as may be seen by comparing
expressions (C4) snd (C6) for y —7 with expression (83) for the second-order (in 6) self-energy correction to
jgk~2g

—~~. Again we see that the perturbation terms vanish for T~O; whereas there exists a nonanalytic tempera-
ture and energy-dependent self-energy il'

j.
2iA(Dk )' I—ek.+iI'(ki —ca+&) id ek.+4iA+—(4ib'/U) 7+- ~ ~

(C9)

APPENDIX D: SELF-ENERGY CORRECTIONS TO (8/U)'In'(W/T) TERMS

The self-energy corrections to the (6/U)a 1n'(lV/2") terms are of two types; the corrections to the Dk&'g '&'

term (which has been considered in Appendix 8) and the self-energy correction to Dk'. These latter correc-

tions are represented, to 6rst order in b, , by Figs. 13(a)—13(e) . The contribution from Figs. 13(a)—13(d) may be
written

—Q V'(Dd+v" Dd") (Da—')'Dk, +k~"(Da+a ~-v" Dk+km") DkP—' "'fk, '4, ,kd fs' 4.kaad "'
k k4

—Q V'(Ddpv" —Dd") (Dk')'Dk k,+d" "'(Da+k~d~" D~k~") Da;—fa'&k k, f~, '4, k,od'"
k~k4

—Q V'(Dd+v" —Dd") (Dk')'(Dk+k-d-v" —Dk k ~")Dk+k~ v"Dk" "fk'4k fa '&k k Gd'"'

—Q Ve(Ddiv" —Ddg') (Dk')'(D~d+v a," "'—Dk+d+k, " " )Da+k~~"Dkp~"'fi, 4,k, fa, &k, ,k,&d'" (&I)

From these terms we see that It is easy to see that upon inclusion of the exact
propagators we have, as in Appendix C,

whereas from Fig. 13(e) (plus ka~k4 ka—+ka, etc.) we

see that Dk 2;q is the first term in the series

Dk—a'a (1+(»ADk-k*'k')'+' ' )

~k—»& ~gL~k-iT' l Dk-4', -4i(h /U)y+"

APPENDIX E: VANISHING OF THE y...(k&k,)
TERM OF A'(cd) FOR $U, (1—$)U«W

1

(ad ek.+2iA) 1—(2ah)—'/(ki ek.+2ih) '—

=4[(~—«) '+(&—«+4aA) 'j (D3)

There is an additional term which would appear
to be of order e(A/U)[(A/U) 1n(W/T) j. This term
corresponds to Fig. 3(b) [which gave rise to A (id)

when the factor f~ '8k, » is replaced, by f», for k/k&$,
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where, using Eq. (2.9),
V' ", Gg '((o')

fi,&„'=— f(~') Im, , da)'.
71 —co Gl CP ~ 07 —61c1~

Thus this contribution from Fig. 3(b) is given by

t/r'4—Q z —(Dg+rI' Dg"—) D&&'~'&'[Dg+p~&, »"(n ')+De~)»«(1 —n ') ]2x'

(E1)

Gg '(a)'+i5) Gg ((u' —ib)

—co (co ek~+z6) (Ql t»g'+ ll) '(M 6&t,~ 18) (co ggg~ z5)

Let us consider the summation over k~ 6rst. We note that

=0,
i'c (~ &a &~) (~ &a-v+Q +go'H &i+ i&)

so only the 6rst term in integrand contributes, and by closing the contour in the upper ej„plane we And

OO—Q —(D~o« Dg«) —d&v

Jg —QO

S-~ (1—m ')
M Qg ty—+M'+—gO H+$C+l8 M—Q —6&&+M'+g0'H+Z6+$5

&(, . [(v—
e&,+ (2g—1)O.H+ie] '. (E3)(~' —e-.+&)

However, we now note that all eI, denominators have
positive imaginary parts, and hence upon performing
the sum over k we see that this term gives no contri-

bution. If we had considered a I orentzian density of
states function p(e&, ) =pW'/(eq —e&)'+W', the above
procedure may be carried out, leading to the result
[to order (6/U)']

ky

d d

ky

d d
iLV . ", , Gg ((o')*—(D„+~0 D„«)Gg&'&(—iW) d ' f(~')

7r —CO 07—M +16

d d d

(o)
ky

d d d d

d

k)

d d

(b)

where

Gd(0&(iW) =— S—' 1—S
iW+$U iW (1—$)—U+. (Es)

Thus this particular i(d/U) 2 in(W/T) term [which
would in general lead to a nonlinear integral equation
for Gz'(&o) in contrast to the linear equation obtained
in the succeeding paper) may be dropped in the limit
$U, (1—$) U«W. It is of interest to note that had we
written the truncation approximation, Eq. (3.6), as

Gp„&&a'= ( f& f'», &,+f&» ') Ga (~), (E6)
d d

(c)
p-o k7
d d

d d d

(d)
k6

we would in effect be including expression (E4) with
8'=0, whereas the equation which would give the exact
perturbation result, Eq. (E4), with W))$U, (1—j) U, is

G(&,L&a'=f& 'f'», »Ga'(~)+fi» Ga'(~ —»+~»).

d d kp

d d d

(e)
FiG. 13. Second-order self-energy corrections to DI, .

Equation (E4) is not quite correct, however, in that
while we allowed for the energy difference t.&—e&, in
the argument of Gg (&o), we set (m 'C&„ tC&, )=

(C&„~Ca .). We shall see in Appendix H that this
is a valid approximation to the order required for k =k&,

.
for kQkq, however, the above analysis holds only for
the explicit terms (C»~~C&,+,) and (e 'C», tC&„); the
term (e 'C» tC& ) (krak&) does yield a contribution
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kl d d
e 0

k d d

(a)

kf d

(b)

contribution is cancelled by an additional fourth-order
term, and thus plays no role; even for HWO this addi-
tional term goes to zero as U—+~ (with ed finite) and
thus plays no essential role.

APPENDIX F: EVALUATION OF (d fCk, d, )Ck„)

The thermal average (d tCk, d, tC&„) may be ob-
tained from the equation

ki (d, tCk d, tCk„) = (Ck„fd.Ck fd )*, (F1)
kl Cf

(c)

where

(Cki. 'd.Ck 'd )

d(o f(ed) Im(Ck td .d.
~

Ck,.t)„. (F2)

d d

(9)
Fro. 14. Representation of (Ctk df,d,

~
Ctki, ).

of order A/U (because this contribution comes from
the region ej, ~d, rather than ~~, we nevertheless obtain
a linear integral equation). However, for H=O, this

If we define Fkk, (&d) by

(Ck-'d~
I C» ') =—Fkkr'(~) (F3)

we see that F'(co) is a quantity very similar to Gd'(&o)

and may be computed to any order of A/U by means
of the diagrammatic representation presented in Sec.
III. The lowest-order diagrams are shown in Fig. 14.

Diagrams (c) and (e) of Fig. 14 do not contribute
for the same reason fkk, for ki&k does not contribute
to A'(&u) (see Appendix E). The remaining diagrams
yield

pkk'=Dsd+v k'{—&(rtkd -'tk')(Dk d+v O' "' Dk ~——P '1—') —«kd 'Dk+d —ki' ' '
&'fk~Dk;—(~'Dk, ~pv k'1' "+(1 ft') Dk,+d —k" "')+&-'fk 'Dk;Gd~j (F4)

The quantity (rtkd 'n') must be evaluated. We may write

(Nkd-'n') =~ ' f(td) ImG(dd)k '((o). (F5)

It is clear that to the order required

G(ddik (~) =el'G+d '(~)LDk +Dk~'a 'j, (F6)
where we have allowed for renormalization effects. The denominator DI„ is likewise to be renormalized as shown
in Eq. (D4) (we neglect I' for T»T,). If we integrate over o~ in Eq. (F2) we obtain, to lowest order in A/U
(neglecting the aB terms in the denominators),

G -fr(

ed+ U eki il —m Ql ek—z

fM+v k fkt+d+v k f2d+v-—k fki+d k— — — 2d+U —A:

X
&d &kg ed+ U —ek, (ed+v —ek, ) (2ed+v —ek —ek, )

+ ' +&' .(f.-)—
(ekr —ed —U) (ed —ek) (ekr —2ed U+ek) (—ek ed) (ed ek) (2ed+v ek ekr)

+ +&'f~ '(1—& )
(ek —ed) (ed+U ek&) (eki+ek —2ed —U) (e» —ed —U) (ed+v ekr) (2ed+U ek eke)

+p'2f -&rfse

(ek —ed —U) (ed —ek,) (ek, —ed) (ek, +ek 2ed U) — — (ed —ek, ) (2ed+U ek eki)— —

(ek, —«d) (ed+U —ek) (ed+v —ek, ) (2ed+U —ek —ekr)
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d d

APPENDIX G: EVALUATION OF (Ck, ,'td, d, }'Ck, )
The thermal average (C/, „ td d tCk ) may be ob-

tained from the equation

d k d

(0)
dk d

(b)
(Ck, td d.tCk, )=s '

where

do/f(o/) ImGkk, '(o/), (Gi)

d k)

d k d

(c)
d k d

(t))

kq

dk d

Fzo. 15. Representation of (d, /CD g,
~

Ctk&, ).

G„;( ) =(d C, d. ~ck.. ). (G2)
The graphical representation of the lowest-order

terms of Gkk, (o/) is given in Fig. 15. Again we note
that diagrams (c) and (e) give no contribution upon
summing over k and k~ for the reasons presented in
Appendix E. The remaining terms yield

Gkk;=Dk"' " { V(njk—n')(D—k+k, s Ug Dk+k, ~—g')

Vn~k —'Dk+k, ~" V'Dk,—fk Gs'+V'Dk, fk

X[e'Dk+k, ~ v' +(1 n') Dk+k, —M' j}, (63)
where the denominator Dk, is to be renormalized as in
Eq. (D4).

Upon performing the integration over co called for
in Eq. (61), making use of Eqs. (F5) and (F6), we
obtain

I+-. & fi fk/. k, s&—

) x
G+s (o/ ) fk fk+kr ~—fi ~k+k,~—

es+ U —ek, @—ek,

fk fk, k+ki —d—U—V'kn
(eg+U ek/) (ek ekr) (ek/ ek) (eS+U ek) (eS+U eke) (eS+U ek)

( )
fk fk fk+k/ s

&d &k] &k &k I &k I &k &d &k &d &ki &d &k

k kI
V'fk'n '—

(ek —ek/) (Ek eS—U)—(ekr —ek) (ekr —eS U)—

( G4)

APPENDIX H: EVALUATION OF (n 'Ck, tCk )

In this appendix we examine the thermal average
(n Ck, tCk ). We shall see that to order A/U this
average is given by

n 'f 'f/, ,+(1—8, ,) (n 'C, tC )"', (H1)

where for II =0 we may write

(n Ck, 'Ck )"'=(C., 'd .d. 'Ck. )"',

if we consequently sum over k and k&.

I.et us first consider the case k=k~. The thermal
average (d td Ck tCk )&" may be obtained from
the equation

(d .td Ck tCk .)=~ ' f(o/) ImSk &s/(o/) do/, (H3)

where
Sk (o/) = (n 'Ck .} Ck .t). (H4)

The graphical representation of Sk'&@ is given in
Fig. 16(o) and 16(a)—16(f). These diagrams contrib-
ute the expression, in the order shown,

Sk'" =Dk 'n '"'+Dk ' Q I
—V(Dk k ~~" " Dk~k ~« " ) (n n~k—, ')—VDk+k ~« " nsk, '

kI

+V(Dk k,+d+r/ " Dk-k,+s ")(n—'nk/d -')+VDk k,+d "nk,d '}+V'(Dk ')
X Q {fk,-'n (Dk+k, s p&'-'&' —Dk+k,~« '~ )+Dk+k,~fk,—-+fk, ~n~(Dk k,~+v " Dk k,+;")—

kI

+Dk k,+s 'fk, ' n '(Dk+k,-~« '& +—D-k~,~ ")}.-— (H5)
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0
d d k d dk

(o)
d dk

(b) (c)

d dk

(&)

ddk
(s)

ddk
(f)

ddk

(g)

FIG. 16. Representation of
&~ '&tk .~

Ckl .&.

ddk
(h)

J&

(~)

dd k

())

To lowest order

V G+r '(~)
(n~ 'n') = (ngk 'n') =— d(v f((u) Im

00 M 6Icg

= Vn'fI, '/(eg rg U)—, — (H6)

so that we may write (H5), upon summing over k& and integrating over &o,

2id
(d td Cq tCI, )=n '&@f~ ~+ (n'+n '—1) &'& Re

f((o) da)

M 6)g~
(H7)

where we have neglected a term proportional to iaaf l,
' ln

~
(1—$)/$ ~, etc. We note that (n'+n '—1)~0~=0, so that

to order 6/U, (n 'C~, Ck, )=n 'fI, '. We chose to keep all terms of order 6/U explicit, rather than include
the contributions of Figs. 16(e) and 16(f) as part of the renormalization of the denominator DI, 'in Fig. 16(o)
[the product (Dq ')' would likewise be renormalized as in Eq. (C9)j so as to show that the term n 'fr, ' is
the correct one, at least to order 6/U, rather than

—m '
2 Ao f(co) Im(Dg +DI,~,g ) .

The graphical representation of (n 'Cq, Cq ) is presented in Fig. 16(g)—16(j). We note that diagram

(j) does not contribute, upon summing over k and kz, as discussed in Appendix E. In addition, for H=O
diagrams 16(g)—16(i) are equivalent to diagrams (d), (b), and (a) of Fig. 15, respectively, so that we obtain
Eq. (H2). As a result for H=O, the contribution from the last two terms of Eq. (4.11) [the contribution of
Fig. 7(g) and 7(h) j, is cancelled by the second-order contribution of Figs. 3(b) and 3(g), corresponding to
the term (n 'Cg, tCg )


