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Ke obtain high-temperature power-series-expansion coeKcients for the spin--, Heisenberg model for the
simple cubic, body-centered cubic, and face-centered cubic lattices. The speciGc heat is carried to 10 terms;
the susceptibility series, to 10 terms for the loose-packed lattices and 9 for the close-packed one. The co-
ef6cients of the 4th, 6th, and 8th powers of magnetic 6eld are carried to 8 terms. We analyze these series
and conclude that the critical points are 0.5972, 0.3963, and 0.2492, respectively, with an error of perhaps
10 '. The critical index for the susceptibility is y=1.43&0.01 and the gap parameter 26=3.63~0.03 for
all three lattices.

j.. INTRODUCTION

F THIS paper presents the results of calculations,.performed over the past three years, which have
aimed at taking the computation of high-temperature
expansions for the Geld-dependent free energy of a
Heisenberg model ferromagnet, for spin ~~and with
nearest-neighbor interactions only, as far as is prac-
ticable with available computers. It confines attention
to three-dimensional Bravais lattices: simple cubic

(sc), body-centered cubic (bcc) and face-centered cubic
(fcc). The series themselves have been analysed, by
Pade approximant (PA) and other methods, with a
vlcw to determining thell bchavloI' as the CuI'lc point
is approached (from above); this aspect of the work is

described in some detail in order that the weight to be
attached to our inferences may be critically assessed.
Preliminary reports of most (all but one) of the coeffi-

cients and some of the inferences have recently been
published elsewhere''; but no details have yet been

given either of the calculations themselves or, more

importantly, of the evidence on which our preliminary
conclusions were based.

Ke start with the Hamiltonian

~=—& J Q d(~) ~ do) IiH+ua&~)—

where 6&" is the Pauli spin vector at site i of a given
crystal lattice, 0-3 is the component of d in the direction
of the external magnetic 6eld H, p. is the associated

magnetic moment, and J is the exchange coupling con-
stant (positive for ferromagnetic coupling and negative
for antiferromagnetic coupling) . The first summation in

(1) includes, once only, each pair of neighboring sites
in the lattice.

Our aim is to find the free energy F(H, T), given by

F(H, T) = —aTlnZ (2)

where x= 2/aT, y=pH/aT, 'and S is the number of
lattice sites. The zero-6eld specific heat C(0) and the
zero-field susceptibility x(0) derive from Fe(x) and

Fi(x), respectively: Explicitly,

C(0) =Max'(c)'/c)x'} Fe(x)

x(0)aT/Ep'=Fi(x).

For high-temperature series, we require the expansions
of Fe(x), Fi(x), ~ ~ ~ in powers of x, and shall write

Fe(x) = g (e x"/2"I!) (7)

Z = Yr exp( —X/aT),

where a is Boltzmann's constant and T the temperature.
In particular, we wish to express P as a double power
series in H and 1/T. Since F is necessarily an even
function of II, it is convenient to write

~%ork supported in part by the U.S. Atomic Energy Com-
Qlls sion.

' G. A. Baker, Jr., H. E. Gilbert, J. Eve, and G. S. Rushbro
Phys. Letters 20, 146 (1966).' G. A. Baker, Jr., H. K. Gilbert, J. Eve, and G. S. Rushbro
Phys. Letters 22, 269 (1966).

oke, F,(x) = g (n„x"/2"e!), (8)

oke,
where eq and ei are ln2 and 0, respectively Lthough
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TmLE I. Number of connected, basic, graphs with / lines
and m vertices. The last turbo lines list totals for axed l and cumula-
tive totals, respectively.

2
3

5
6
7
8

10
11

1 1
2 2

3 5 5 4 2 1
6 13 19 22 20 14

ii 33 67 107 132
23 89 236 486

47 240 797
106 657

235

1 1 3 5 12 30 79 227 710 2322
2 5 10 22 52 131 358 1068 3390

these terms do not affect C(0)], and no ——1. Since when
x=0, Z= {2coshy) ~, it is convenient to write

F2(x) =—2F2*(x), Fa(x) =16FS"(x),

F4(x) = —2'l2F4*(x), ~ ~ ~, (9)

so that the leading coefficients in F~*(x), F3*(x),
F4*(x), ~ ~ ~ are all unity. In general, for s&2, we shall
write

F,*(x) =1+a„&x+a„gx'+ (10)

(dropping the first suffix when no confusion can arise) .
The form for the coefficients in P) and (g} is dicta«d
partly by tradition (see, for example, Domb and
Wood') and partly by computational convenience. The
numbers e„and o.„are, in fact, integers. But for the
higher-order series the forms (9) and (10) are more
convenient in that they avoid having to tabulate very
large numbers.

The method adopted for determining these high-
temperature expansions has been the so-called finite
cluster method originally suggested by Domb' (1960),
though at that time a formal proof of its validity was
lacking. A formal proof is, however, easily supplied
(see, for example, Rushbrooke, ' and references therein)
and it is sufhcient here to summarize the necessary
procedure. To hnd the coeKcient associated with x" in
the series (7), (8), and (10), we require the following:

(i) Consjderation, in detail, of all free connected
linear graphs with / lines, where l&m: These are the

Tax.E II. The number of graphs giving nonvanishing contri-
butions to successive coefficients in high-temperature expansions
of x(0) and C(0).

bcc
fcc

C(0)

1 2 3 4 5 6 7 8 9 10

1 2 3 6 9 17 30 62 119 271
1 2 4 8 15 32 75 180 473

1 1 3 3 7 7 21 22 66
1 2 4 6 13 24 53 120 316

where 1&i&m and the erst summation includes only
interactions corresponding to the / links in

C m, l, rj:
TAsl, E III. High-temperature expansion coeKcients, as deemed

by Eqs. (7) and (8), for cubic lattices.

bcc

2
3

5
6
7
8

10

0
18

108
180—5 040

162 000
14 565 600

563 253 408
17 544 639 744

750 651 187 968

0
12—24

168
1 440

24 480—297 024
28 017 216—533 681 664

41 156 316 672

12
240

6 624
234 720

10 208 832
526 810 176

31 434 585 600
2 127 785 025 024

161 064 469 168 128

8
96

1 664
36 800

1 008 768
32 626 560

1 221 399 040
51 734 584 320

2 459 086 364 672
129 082 499 311 616

so-called basic graphs of Ref. 5, in that there is not
more than one direct link (line) between any two
vertices. Regarded as a connected array of labelled
vertices, these are the 6nite clusters after which the
method is named. |Ate shall denote these basic graphs
by (m, l, r) and the corresponding clusters by $m, l, rj,
where m is the number of points (vertices), and r a
descriptive variable designating the topological type of
the graph.

(ii) For any such cluster, to ffnd the logarithm of the
corresponding partition function Q(,~„~ based on the
Hamiltonian

i J Q d(o. d(i) @++~3(~)

I
I

FIG. 1.Thoro diGerent pictorial representations of graph 1029.

' C. Bomb and D. W. Wood, Phys. Letters 8, 20 (1964).
4 C. Bomb, Phil. Mag. Suppl. 9, 149 (1960); see p. 330.' G. S. Rushbrooke, J. Math. Phys. 5, 1106 (1964).

0
9—18—162

2 520
33 192—1 019 088—7 804 944

723 961 728
2 596 523 904

48
528

7 920
149 856

3 169 248
77 046 528

2 231 209 728
71 938 507 776

2 446 325 534 208
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TAnrs IV. Coeiircients for the face-centered cubic lattice series. the A (s +)S& Sg [m, l,v]

A (s, is) = Ty(s, I),
2.4
3.27
3.345
2.865 3
2.174 797
1.512 289
9.841 725
6.080 849

5.1
1.29
2.240 55
3.052 05
3.500 313
3.529 118
3.218 580
2.708 643

6
229 762
413 884

925
588 75
587 976
241 716

where the elements of the column vector p are labeled
Pm, I, r].

(v) To find, for each lattice under consideration,
the occurrence numbers, S~,l,,~, specifying the number
of times the free basic graph (m, I, r) can be located
among the sites and nearest-neighbor link. ages of the
given lattice. E~,l„) is, of course, proportional to Ã.

(vi) To form the scalar product
p(s, n) i, i,,l, which is then equal to the coefficient of
y"x" in lnZ for the Hamiltonian (1) and the lattice
under consideration. Thus this leads directly to the
series P), (8), and (10).

8.752 941
3.506 117
9.129 529
1.788 855
2.855 148
3.898 188
4.704 418
5.136 002

176 471
647 059
411 765
132 353
846 471
506 515
456 448
987 609

1
3

6
7
8
9

10

TABLE V. CoefBcients for the body-centered cubic lattice series.

1.6
1.38
8.886 666 666 667
4.765 333 333 333
2.262 98
9.844 556 666 667
4.010 053 420 635
1.551 082 469 345

3.4
5.52
6 ' 099 666 666 667
5.250 333 333 333
3.790 254 5
2.399 790 291 667
1.372 685 800 397
7.240 251 275 149

5.835 294 117 647
1.509 176 470 588
2.516 219 607 843
3.136 760 686 275
3.170 734 858 824
2.732 592 781 667
2.076 756 738 407
1.425 491 650 982

Ingi„, i,,l has then to be expanded as a double power
series in EP and 1/2'; the coefficient of y'x" in this will
be denoted A(s, e) i„,i,,l.

(iii) To find the elements I& ., ~.„.&'~ "' of the
matrix T, where t(„,l „~~ '*'~ is the number of ways a
free (unlabeled) basic graph (m', I', r') can be located
on the basic cluster Lm, I, r j

(iv) To find the quantities p(s, is) i,i„l related to

TABLE VI. CoeKcients for the simple cubic lattice series.

1.2
7.35
3.245
1.176
3.761 35
1.100 224 583 333
3.005 826 904 762
7.785 024 174 107

2.55
2.985
2.317 25
1.378 5
6.809 421 25
2.931 814 958 333
1.135 642 090 476
4.044 279 238 170

4.376 470 588 235
8.212 941 176 471
9.729 058 823 529
8.493 258 088 235
5.950 474 970 588
3.527 771 238 480
1.834 035 935 256
8.575 010 300 318

This method of attack. was chosen because all the
steps except (i) are readily computerized. The crux of
the matter is (ii), where group theoretic arguments re-
duce the calculation of the partition function for a given
cluster to finding the matrix I'i for g,i«i„(2E,,—1)
in appropriate irreducible representations k of the sym-
metric group. Here P;, is the permutation operator.
The basic formula is

&n ~m(~~ m—k

Z(H, &) = g I g Tr(I' s") g expL(m 2P)y7I. —
n=o 2"+ k=o p=k

(12)

Equation (12) will not be discussed further here, since
to test the feasibility of this approach, which is con-
6ned to spin —„we first tried it out on the linear chain,
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&Aal,z VIII. Smallest positive real roots (X10'), and co«e-
sponding residues (X—10'), from denominators of PA's to
(d/dg) lnx for the hcc lattice.

(a) CbI

Flc. 2. (a) graph 1446; (b) the eight-line graph resulting
from the double contraction of 1446.

and we have already pubhshed elsewhere' details of
that calculation, including the derivation of this
equation.

We turn now to the details of the present application
of this method.

2. COMPUTATION OP THE COEFFICIENTS

On starting the calculation, it is first necessary to get
an idea of the magnitude of the problem; in particular,
with how many basic graphs shall we be concerned
under (i) above. To this end we use the Polya algorithm
given by Uhlenbeck and Ford, ~ to count free connected
graphs having m vertices and / lines, and produce the
data presented in Table I. All graphs 3&9 have been
drawn out explicitly. For 3= 10 we have drawn out only
the graphs we needed (except that all were constructed
for its&7). There is no great difficulty in constructing
the graphs systematically, by adding lines to existing
graphs (or joining two existing graphs by a line), but
any such systematic procedure generates a given graph
several times, and it is imperative to be able to recognize
distinct graphs unambiguously, Confusion can arise only

ThaLz VII. Smallest positive real roots (X104), and corre-
sponding residues (X—10'), from denominators of PA's to
(d/dh) lnx for the fcc lattice.

Roots

2500 2667 2521 2427 2445 2489 2509 2503
2679 2588 2291 2442 2411 2526 2505
2519 2376 2473 2482 2495 2491
2448 2455 2483 a 2492
2456 2444 2498 2493
2482 2541 2491
2501 2502
2502

Roots

3909 3922 4119 3995
3926 3960 3953 3971
4144 3953 3958
4003 3970
4074

1324
1349
2166
1505
1663

Residues

1343 1940
1398 1387
1387 1396
1423

TABLE IX. Smallest positive real roots (X104), and corre
sponding residues (X—10'), from denominators of PA's to
(d/dx) lnx for the sc lattice.

within a given (m, l) set, but it is perhaps not immedi-
ately obvious that, for example, (a) and (b) of Fig. 1
are identical graphs. Since the vast majority of graphs
have articulation points (most being simply star graphs
with "tails" attached to them), particular care has to be
taken. to recognize distinct stars (multiply connected
graphs): Other duplicates are then easily avoided. And
for lccognlzlng stars as illustrated above lt proves con-
venient always to present explicitly in outline the
largest closed polygon within the graph, i.e., to use (b)
rather than (a) in Fig. 1.We also checked for duplicates
(which would imply omissions) mechanically, but shall
discuss this in the next section (on checking proce-
dures) .

Because a single (11, 10) graph was found to require
over 20 min IBM Stretch machine time at Los Alamos
for the completion of step (ii) above (up to n=10),
we decided not to go beyond nts in the series (8). ln
this case we are involved only with the 10-link chain,
and not with other 10-link trees (which have more than
two free ends, and so do not contribute to the zero-6eld
susceptibility series if this is not taken beyond ats).

Residues

1500 1707 1442 1238 1287 1430 1512 1487
1732 1582 859 1277 1213 1609 1493
1441 1106 1369 1396 1442 1427
1298 1315 1398 1430
1317 1293 1458 1432
1401 1750 1422
1427 1472
1484

s 2443&149 z.

Roots

19 908 5180 6272
5 700 5944 5964
6 163 5965 5956
5 828 5948
6 052

5658
5950

6365

' G. A. Baker, Jr., G. S. Rushbrooke, and H. E. Gilbert, Phys.
Rev. 135, A1272 (1964).' G. E. Uhlenbeck and G. W, Ford, in Studies in Statistical
Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North—
Holland Publishing Company, Amsterdam, 1962), Vol. I, Part 8,
Chap. IV, Sec. 4.

5 243
1 202
1 725
1 242
1 608

Residues

838 1854
1407 1430
1431 1420
1407
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TABLE X. y's for fcc lattice by method (iv) . Upper entry for x,=0.246; lower entry for x,=0.249.

1.70 g

1.702

1.46
1.45

1.27
1.26

1.29
1 ~ 28

1.41 g

1 ~ 41 4

1.50
1.51

1.50 3
1.502

1.585
1.586

0.4
0.3
1.29
1.28

1.27
1.26

1.8 3i.81

1.50 8
1.50'

0.96
0.93

1.39'
1.39 2

1.435
1.435

1.424
1.422

1 313
1.31 4

1.39'
1.39 2

1 ~ 374
1,37p

1.426
1.424

1 ~ 29 1.70
1.28 1.73

1.445 1.423
1.445 1.421

1.427
1.426

1.48 gl.483

Having made this decision we are not concerned with
any /=10 graph with more than two "tails" (nodes of
order one) . Graphs with /) 10 make no contribution to
coefficients e&10. Even this restriction still leaves a
formidable program, particularly time consuming at
step (v); we therefore decided to take the series (7) and
(8) to e=10 for open lattices (sc and bcc), but to
terminate them at m=9 for the close-packed lattice
(fcc). This means that for /=9 we include all even
graphs (i.e., graphs in which closed circuits always
involve an even number of vertices) but only those odd
graphs (containing closed circuits involving an odd
number of vertices) which have no more than two
"tails." For /=10 we include only even graphs having

I,5-

y from x,
o x., from y
~y from(ivj

no more than two tails. This reduces the cumulative
totals of Table I for 3=9 and 10 from 1068 and 3390 to
877 and 1026, respectively, and the problem has
manageable proportions. We subsequently decided to
include e~o in (7) for the fcc lattice, but shall discuss
this separately below.

Not all, of course, of these 1026 graphs make a non-
zero contribution to eyp ol clap. ThcI'c alc foI' example,
l=9 graphs with more than four tails (which make no
contribution), but we kept them in in order to check
that we did indeed compute vanishing gas. The number
of graphs which actually gave nonvanishing contribu-
tions to successive coefficients is shown in TaMe II,
from which it is clear that while it wouM probably not
be prohibitively diKcult to add e~~ for open lattices, to
extend further the other x(0) and C(0) series is barely
feasible using the present methods and machines.

Regarding the coefficients a, ,„, Eqs. (9) and (10),
for s&2 the situation is a little different. To avoid an
excess of machine output in the early stages of the
calculation, we arranged that Stretch should print out
the 1"s for each basic graph but proceed to find A (s, m)

only for s =0 and s = 1. The same j."s, in conjunction
with Eq. (12), could subsequently be used to find
A(s, e) for s=2, 3, 4, ~ ~ ~ . It later became more con-
venient to do this remaining part of the calculation on

l.4— TABLE XI. fcc lattice; 10'x, by method (iii) taking y=4/3

1 2 3 4 5 6 7 8

l.30.240 0.245 0.255 ~c

2353 2446 2467 2463 2461 2464 2469 2472
2474 2464 2457 2462 2456 2486

2478 2458 2461 2463 2465 2470
2472 2461 2436 2503 2475
2458 2464 2505 2466
2461 2469 2475

2473
I'"IG. 3. Locus of points in the (x„y) plane consistent

with methods (ii) and (iii).
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TAsrz XII. Icc lattice; 10'x, by method (iii) taking &=1.43 TABLE XIV. bcc lattice; 10'x, by method (ii) taking y=4/3.

1 2 3 4 5 6 7 8

2440 2510 2514 2499 2490 2489 2491 2493
2515 2511 2477 2489 2489 2496

2517 2498 2492 2492 2492 2492
2519 2492 2492 2492 2492
2482 2492 2492 2492
2489 2492 2492
2488 2492

(omitted because of machine overQow)

3914 3915
3915 3914
3914 3923
3877 3920
3941 3939
3940

3914 3894 3942 3939
3911 3919 3938
2930 3881
3923

the KDF 9 machine at Newcastle, and, for technical
reasons, this entailed hand transcription (with conse-
quent careful checking) of the I' information as input.
For this reason we confined attention to the 6rst 358
graphs of Table I. This gave the series a„„(s=2,3, 4)
for m&8, which is more than enough to give us the
functions f„, 0(ti(10, in an expansion of lnZ(II, T)
of the form

(13)

It is convenient next to consider the occurrence
numbers f(,~ „)™~'I and Et, ~,,), the former counting
a graph (m', l', ~') on another graph or cluster [m, I, ~.]
and the second counting a graph (m, l, r) on a given
infinite lattice: See (iii) and (v) above. Et, i„& is, of
course, proportional to E, the number of lattice sites,
and in 6nding X&,i„& one point of (m, l, 7) is held
6xed. Since a computer program will normally count
the occurrences of a labelled graph on a labelled cluster,
or lattice, and we require the counts for unlabelled

graphs, we need to divide by the symmetry numbers of
the basic graphs. These numbers are easily obtained
mechanically by counting the occurrences of a graph on
itself. The elements of the T matrix, and symmetry
numbers, were found at Los Alamos, but the Los Alamos
program was slow for finding infinite lattice counts and
used to And these counts only for two-dimensional
Bravais lattices (plane square and plane triangular)
and the simple cubic lattice. A more eflicient lattice-
counting program was developed at Newcastle and used,
on the KDF 9 machine, to find all the three-dimensional
lattice counts (sc, bcc, and fcc). This was a master
program in the sense that the same program was used

for all graphs, it being necessary to feed in as data only
a description of the graph. The program then counted
this on all three lattices (except that, to save time, the
fcc work. was eliminated when that particular count
was not required). We believe that this was an efficient
counting program for all graphs except closed polygons,
for which the earlier program described by Rushbrooke
and Eve' would have saved machine time. Empirically,
the time required to find the count for a given graph is
roughly proportional to the final answer (before dividing

by the symmetry number). The time thus varied
from milliseconds to 2 or 3h (for long chains or
polygons), the average time needed to count a graph
on all three lattices being a few seconds per graph. It is
impracticable, and unnecessary, to present these
counts here, but because the results for chains cg and
polygons pi are of some interest in other connections,
we note (after division by symmetry numbers)

Cg

C1P

(fcc) =846886962,

(bcc) = 118145548,

TABLE XV. bcc lattice; 10'x, by method (ii) taking y = 1.43.

pip (fcc) =2241420,

since these are additional to values listed in Domb's
tables. ' For the simple cubic lattice ci and pi are known
to l = 16:See Ref. 8 and Sykes."

The operations (iv) and (vi), namely solving Eqs.
(11) and forming the final scalar products, are relatively
trivial. We observe only that there is no question of
erst finding the inverse matrix T ' in order to solve
(11):Since T is a triangular matrix we simply solve
the equations successively, using the g's for smaller
clusters to find those for larger ones. Apart from its

TABLE XIII. fcc lattice; 10'y by method (ii) taking x,=0.2492

1 2 3 4 5 6 7

1495 1374 1388 1512 1443 1441 1413
1382 1412 1424 1431 1429 1430
1394 1425 1435 1430 1430
1543 1432 1430 1430
1442 1429 1430
1437 1430
1478

3
4
5
6
7

3999 3951
3959 3974
3970 3984
3969 3973
3975 3973
3982

3970 3969
3982 3973
3975 3973
3973

39/6 3976
3973

8 G. S. Rushbrooke and J. Eve, J. Math. Phys. 3, 185 (1962).' Reference 4, Tables A and B of Appendix III.IM. F. Sykes, J. Chem. Phys. 39, 410 (1963).
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TABLE XVI. bcc lattice; 10'y by method (ii) taking x,=0.3923 TABLE XVIII. p's for bcc lattice by method (iv). Upper entry
for x,=0.39; lower entry for x,=0.40.

1345 1345 1344
1345 1346 1290
1381 1333 1363
1243 1295
1287

1332 1286
1360 1 ' 33

1.32

1.440
1.441

1.54
1,55

1.35
1.34

1.48
1.49

1.382
1.38 4

1.40
1.39

1.424
1.423

1 ~ 40 1.425
1.39 1.423

1.37
1.36

simplicity, this method has the merit of enabling us to
avoid roundoff error —a matter to which we shall return
when discussing checking procedures.

The final results are presented in Tables III to VI.
Table III gives, for all three lattices, the coefficients e„
and n„of Eqs. (7) and (8). Tables IV, V, and VI list,
for the fcc, bcc, and sc lattices, respectively, the co-
efficients a of Eq. (10), for s=2, 3, and 4. The latter
coefFicients are expressed in the form a 10", where
1&a&10.%e believe all entries are free from roundoff
and other error except in the case of a4,8, where there is
no certainty of the absence of roundoff error [in the
p(4, 8) 's for some of the larger clusters]. Even so, we
are confident of the a4,8 values to six significant figures
(all lattices), and suspect that several more digits are
in fact reliable.

3. CHECKING PROCEDURES

In a calculation of this magnitude, adequate checking
procedures are indispensable, and at least some of them
warrant mention. First, we developed a rapid machine
check for duplicate diagrams (basic graphs). This was
to list for each vertex of a graph the sum of all the
shortest distances (defined as the number of links
traversed) between it and every other vertex. When
the route of shortest distance was not unique, the
length of every such route was included in the sum.
YVe thus obtained, for each graph, a set of m numbers
which were ordered by their size. This does not provide
an unambiguous description of the graph, but the
number of false duplicates, i.e., pairs of different graphs
yielding the same such description, is very small, and
on inspection these are easily distinguished from true
duplicates. This check was worthwhile in that it did
reveal an error of transcription affecting three graphs.
(We later developed a more sophisticated machine

1.427
1.424

1.32
1.30

—0.1—1 0

check which did not produce false duplicates, but by
then the earlier one had served its purpose. )

Regarding the lattice counts, the fact that very
different machine programs at I.os Alamos and New-
castle, respectively, gave identical counts for all graphs
on the simple cubic lattice, and over 400 identical
counts on either the body-centered or face-centered
lattices (though we did not use the I.os Alamos program
to complete the counts for these lattices) gives us
confidence in both programs. Incidentally, we have
agreement with all the counts listed in Domb's tables, '
excluding cio (triangular) and cii to ci6 (plane square),
which we have not counted.

The main check on the accuracy of the calculation,
however, comes from inspection of the p's. Insofar as
we can check these we have an indirect check on the
elements of the T matrix, as well as on the partition-
t'unction side of the calculations. Now g(s, I), for the
cluster [m, 1, 7 j, must vanish identically whenever

e+2s(1+f, (14)

where f is the number of free ends (nodes of order 1)
in [m, l, rj (and provided l) 1).This is a consequence
of the cumulant character of the g's (see Ref. 5). We
deliberately did not discard from the computation many
graphs for which (14) holds, even when n =10, s=0 or
1, in order to retain the benefit of this check on the
calculations. Besides the g's which necessarily vanish on
account of (14), there are other g's which vanish as a
result of two theorems to which we shall refer in the next

TABLE XVII. bcc lattice; 10 y by method (ii) taking x,=0.3973. TABLz XIX. sc lattice 10'x, by method (ii) taking y =4/3.

1355
1436
1443
1415
1426

1416
1423
1429
1430

1423 1429 1430
14098 1430
1430

5686 5936 5854 5900 5886 5919
5502 5863 5879 5889 5896
5750 5885 5892 5864
5933 5891 5883
5865 5903
5987

8 Second real pole in P.A. at g =0.242.
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TAsx, E XX. sc lattice; 104x, by method (ii) taking y=1.43. TABI.K XXII. sc lattice; 10 p by method (iii) taking x,=0.5963.

5781 6118
5566 5972
5879 5968
5996 5960
5927 5962
6022

5944 5975 5945 5978
5968 5961 5961
5975 5961
5962

1358
1455
1409
1445
1427

1428 1428 1431
1428 1428
1428

section. We confirmed that all p's covered by these
theorems were in fact zero.

Even though the calculations are correct in essence,
it is still possible to be troubled by roundoff error, due to
computers using Boating-point arithmetic. Thus the
F's of Eq. (12) are in fact integers; but they are not
necessarily computed as exactly integers. Such roundoff
error could produce cumulative trouble, and must
certainly be detected before forming the final scalar
product under (vi). Provided we can recognize the
influence of roundoff cl iol oil cacll llew @ as this is
computed (and remove it), no trouble can arise as we
continue to use the elements of the T matrix to compute
further p's. Ke have noticed a remarkable property of
the @'s which persuades us that the Q's we have com-
puted are in fact free of such roundoff error. In one or
two cases roundoff error was revealed by this check
(and corrected for); its origin was usually easily
identifiable. The property relates not to the P(s, I)'s
as defined above, but to the quantities p*(s, n), where

p*(s, n) =2"I!(2s)!P(s,ts). (15)

It is these quantities p*(s, is) which are actually com-
puted and printed out [see Eqs. (4) and (12)j. We
observe (i) that Pe(s, e) is always divisible by 2"+" ',
and (ii) that, after the first Ave (simplest) clusters,
g (s, ts) is divisible by n We find. this last, unexplained,
observation most striking, and it gives us confidence in
the results. Indeed, we believe that only the quantities
Q*(4, 8), which are very large numbers, may still be
subject to small errors of roundoff origin. An incidental
advantage of having to transcribe the input data for
computing the f{s,e) 's, s) 1, was that it enabled us to
eliminate roundo6 errors in the I"s at that stage. We
did, of course, repeat the calculation of the x(0)
coefficients as a check on our transcription.

TanLE XXIII. y's for sc lattice by method (iv). Upper entry for
x,=0.59, lower entry for x,=0.60.

1.03
1.01

1.91
1.94

1.01
1.0 2

2.3
2.4

1.364
1.36 I

1.459
1.458

1.433
1.431

1.478
1.479

1.439
1.438

1.404
1.40 I

The most convincing check on the accuracy of the
calculations, however, comes from comparison with
completely independent work by other authors. The
coefficients o.~, ~ ~, e6 and e~, ~ --, e7 have, of course,
been known for a long time, not only for s=~ but for
general spin (see Rushbrooke and Wood, "and Domb').
During the course of the present calculations, Domb
and Wood" "have published the results of very similar
calculations which, while not going quite as far, serve in

part to confirm our own results. The most complete
account of their work is in Ref. 15, where they list
Nl ' ' A9 and 8j ' ' 89 for open lattices and Al

and e~, ~ ~, es for close-packed lattices. They give these
both as general expressions involving lattice parameters
and numerically (as we have done) . We find numerical
agreement with their results except for es (fcc). This
nonagreement led us to infer, from our own work, the
general expression for e8, and we agree with the expres-
sion given by Domb and Wood. Ke believe the numeri-
cal discrepancy is due to their having accidentally
omitted one (specific) term in this expression when
evaluating it.'6

TABLE XXL sc lattice' 10 + by method (iil) taking 8 =0.5883.

1310 1354 1341
1368 1343 1401
1306 1317 1251
1319 1310
1292

n G. S. Rnshbroohe and P. J. Wood, Mol. Phys. I, 257 (1958).
'~C. Domb and B. %. %ood, Phys. Letters 8, 20 (1964)."C. Domb, N. W. Dalton, G. S. Joyce, and D. W. Wood,

in I'roceeAngs of the International Conference on Magnetism,
Eottinghare, &64 (The Institute of Physics and The Physical
Society, London, 1965), pp. 85—87.

'4 D. %'. Wood, Phys. Letters 14, 191 (1965).
'5 C. Bomb and D. %. Wood, Proc. Phys. Soc. (London) 86,

1 ('1965).
"More detailed comments are given in a footnote in Ref. 1

The coeKcients which we have called o. are called j by Bomb and
%ood. Domb (private communication) has expressed agreement
with our comments here.
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TABLE XXIV. Neville table for F4* (fcc). In constructing the table more digits must be retained than are here displayed.

87.53
40.06
26.04
19.59
15.96
13.65
12.07
10.92

—7.417—1.996
0.260
1.427
2. 115
2.558
2.862

0.714
2.517
3.178
3.492
3,666
3.772

3.117
3.618 3.744
3.806 3.899 3.930
3.899 3.968 3.996 4.007
3.948 3.997 4.014 4.020 4.022

No comparable check is possible on our coeKcients
for the series F2, F3, and P4. However, we have calcu-
lated the leading two or three terms in each series by
an alternative, direct, method as a check that our com-
puter programs were yielding the information expected
from them.

4. CALCULATION OF eio (fcc)

Our decision to compute cia for the face-centered
cubic lattice was taken after the calculations described
above had been completed. We had, in fact, recorded
the contributions to eip (fcc) from all graphs /&9 and
from /=10 even graphs; so we had now to add in the
contributions from 3=10 odd graphs. Fortunately, for
m&7 these graphs had been processed, as far as the
p's, at an earlier stage; so we required only the corre-
sponding lattice counts (which were easily found).
But for /=10 and m=8, 9, ~ ~ ~ we had not found the
I"s necessary for computing the partition functions,
nor the relevant elements of the T matrix. We neverthe-
less found it possible to complete the calculation, by
deducing the necessary new p's from our previous
results.

We must first recognize that for a 10-line graph to
contribute to eio it must have no free ends (nodes of
order one); thus we are concerned only with closed
graphs. This rules out m= 11 and leaves only the closed

polygon (an even graph) for m=10. Now, if we were
concerned not with the cumulant associated with any
such graph but with the corresponding moment, or
mean trace, we could appeal to certain theorems formu-
lated by Rushbrooke and Wood, "' in particular the
following:

(i) The trace vanishes for any graph which falls into
two parts on the removal of a single line LTheorem IV,
Ref. 10j;

(ii) The trace vanishes for any graph having a
sequence of nodes of orders 2, 3, 2 LTheorem IV, Ref.
17$.
But it is not difficult to prove that these theorems hold
not only for the moments (mean traces) but also for
the corresponding cumulants, i.e., the p*(0, e) 's where
m = l. This means that all /= 10 graphs coming under the
descriptions in (i) and (ii) above make no contribution
to ez, which greatly reduces the number of graphs still

'7 G. S. Rushbrooke and P. J.%ood, Mol. Phys. 6, 409 (1963).

S. ANALYSIS OF THE SERIES

We are concerned with series of the general form

f(x) = 1+aix+a~x'+ ~ ~ +a„x"+~ ~ (17)

of which we know only the first e coefficients. We expect
the function f(x) to possess certain singularities, those
on the real x axis having physical significance. In
particular, if the singularity closest to the origin on the
positive x axis lies at x„ then, since x= J/~T, x, will

correspond to the Curie temperature T, of the ferro-
magnetic problem (J)0). Similarly, the singularity
x~ closest to the origin on the negative x axis will

correspond to the Neel temperature of the corresponding
antiferromagnetic problem (J(0).

to be considered. In fact we are left with only 17 new
(odd-circuit) graphs to consider: 15 for m=8 and 2 for
m=9.

We have still to find the p's for these graphs; but it is
not dificult to prove that if Dj is an /-line graph having
three consecutive lines (ij) (jk) (km), where the points
j and k are not otherwise involved, and f/ —1j denotes
the corresponding graph with (jk) removed, so making

j and k coincide, then, when i and m are distinct points,

g~q*(0, /) =/P~i it*(0, / —1). (16)

Equation (16) is simply the extension to cumulants of
the contraction theorem for traces given in Theorem I
of Ref. 11. It enables us to infer 16 of the 17 required
P's from results already obtained for 9-line graphs. We
are left with only one awkward case, namely the graph
of Fig. 2(a). But we can build up the p for this if we
know the corresponding mean trace, and this is related
to the mean trace of the multiline graph of Fig. 2(b)
by Theorem I of Ref. 11. Fortunately, the mean trace
for this 8-line graph had been found by one of us

(J.E., for general spin) in another connection. We were
thus able to complete the calculation. Even without
knowing this trace, it is possible, by a rather sophisti-
cated argument, based on the cumulant analogs of
Theorems I and IV of Ref. 11, to infer the necessary p
from earlier (susceptibility series) results.

This completes our account of how the coeScients of
Tables III—VI were obtained. We now turn to the
analysis of the resulting series, Eqs. (7), (8), and (10),
by Pade approximant and other methods.
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Tmx,z XXV. Neville tables for p2. More digits were retained in computing these than are here displayed.

fcc x,=O.2492 bcc x.=0.3973

5.981
5.791
5.647
5.538
5.457
5.397
5.352
5.318

5.133
5.097
5.082
5.076

5.025
5.046
5.058

6.357
5.675
5.434
5.328
5.853
5.522
5.370
5.294

S.335
5.071
5.066

5.190
5.067
5.066

5.062

5.064

7.154
6.303
5.897
5.643
5.535
5.464
5.402
5.353

5.453
5.083
4.881
5.102
5.109
5.031
5.013

To locate the singularities of f(x) we have principally
employed the method of Pade approximants (see Baker' s

for a recent review incorporating references to earlier
work). We write

1+nix+ "+n~x
(x) =

071+Pix+" +Pr xn (18)

and with S+D=e the coeflrcients ni, , n~,
Pi, ~ ~, Pri are uniquely fixed by the requirement that
the series expansion of (18) shall coincide with that of
(17) through the known coefficients ai, ~ ~, a„.We refer
to (18) as the fD, Xg Pade approximant (PA) to (17).
If we choose D+S=m((e) then we require that the
expansion of (18) shall match the coeflicients
ai, a2, ~ ~, a in (17), i.e., we consider the PA to a
shorter series expansion off(x) .

Ke are interested not only in the location of x, or
x~, but in the behavior of f(x) at this singularity. At
x„with which we are primarily concerned, we shall
normally assume that, as x tends to x, from below,

f(*)—P/(*.—*)"), (19)

where stands for "is asymptotically proportional
to"; and we seek to find the so-called critical index p
(which we do not expect to be integral) . We may then
observe the following:

(i) H (19) holds near x., then

(d/dx) lnf(x) —p/(x. —x), (20)

i.e., the logarithmic derivative off(x) will have a simple
pole at x, with residue —p. Such a function is particu-
larly suitable for representation by Pade approximants,
the fD, N) PA having D poles and E zeros. We shall
therefore form PA's to the derived series (d/dx) lrif(x),
6nding the smallest positive real roots of their denomi-
nators (as estimates of x,) and the values of the residues
at these roots (as estimates of —p).

(ii) If we knew x„ then since

(x—x,) (d/dx) lnf(x) ~ p, (21)
PA's to (x—x,)(d/dx) lrif(x) evaluated at x, would
give estimates of p. To use this method we take a trial

'8 G. A. Baker, Jr., in Advances farl, Theoretical I'hysics, edited
by K. A. Brueckner (Academic Press Inc., New York, 1965),
Pol. 1, p. 1,

value of x„ in a range suggested by (i), and evaluate at
g, PA's to the series expansion of the left-hand side of
(21).

(iii) If we knew p, then since

f(x)" 2'r&/(x, —x), (22)

i.e., has a simple pole at x„representations of the series
expansions of f(x)'r& by PA's would enable us to 6nd
both x, and A. To use this method we take a trial value
of p, again in a range suggested by (i) .

(iv) Tile function

df—ln — —lnf(x) (23)
dS tB dS

has the value (p+1)/p at x„and so PA's to the series
expansion of (23) evaluated at x, should provide
estimates of p, whlcll we Iilay llope to be relatively
insensitive to the precise choice of x,.

Except for (iv), these methods of determining x, and
p from (17) are not new: They were used, for example,
by Baker, '9 in an early paper on the application of
Pade approximants to the Ising model. But we have
used them perhaps rather Inore systematically than
hitherto: In particular, we have taken a range of
different choices for x, in using method (ii) and a range
of different choices of p in using method (iii) . Moreover,
for any series such as (17) we have always computed a
full Pade table, forming all fD, 1V) PA's where
D+X&e, D&1 and X&0, displaying the results in
tableau form, where g labels the columns and D the
rows. '0 In such a Pade table, all entries along a diagonal
D+X=m make use of the same number of coefficients,
m, in the original series, whereas entries in adjacent
diagonals bring in successively one extra term of the
origina1 series. Since we do not wish to attach too much
signi6cance to any particular PA, and since we hope
that the series are long enough for reliable values of x.
and p to be inferred from them (without leaning too
heavily on the last calculated coeKcient) we shall
inchne to be most satis6ed when several PA's, say
f4, 5), f5, 4), f4, 4), f5, 3), f3, 5), f4, 3), and f3, 4),
all lead to the same predictions. It is in such circum-

@ G. A. Baker, Jr., Phys. Rev. 124, 768 I'1961).
'0For arithmetic reasons, connected with machine overRow,

the X=O column was sometimes omitted, but &his is of little
importance,
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stances that we shall say that the Pade table has con-
verged. Naturally, too, we shall be satisfied only if we
have consistency between the four methods, (i) to
(iv), listed above.

Two quite valid arguments may be leveled against
this attitude. The first, that we should look for trends
rather than convergence in the sense in which we have
defined it; the second, that both by concentrating on
"central" Pade's (D approximately equal to cV) and by
use of the logarithmic derivative, we are always in-

fluenced by early coefficients in the original series (and
these may incorporate random elements, which are
meaningless as far as the asymptotic behavior of these
coefficients is concerned). As an excuse for the first
criticism, we can say only that there is no known reliable
method of extrapolating predictions from successive
Pade approximants and, in any case, we have failed to
observe systematic trends. On the second score, if x,
were the only singularity of f(x), then the well-known

ratio method, using only successive coefficients in the
series expansion of f(x), and incorporating a final

extrapolation, might well be preferable to use of Pade
approximants. Unfortunately, as we shall see, x, is
never the only singularity of f(x). Nevertheless, we

have in fact also explored ratio and related methods and,
in particular, we have used the equation of Bomb and

Sykes,"
n[x, (a„/a„ i) —1]—+p —1, as n~ ~ (24)

as a way of estimating p from the series (17) when x,
is supposed known. In practice, we find agreement with
our previous conclusions from Pade approximants.

Any numerical uncertainties that we may attach to
our estimates must always be understood against the
background of the above philosophy. They certainly
have no absolute significance, for from even ten terms
of an infinite series no firm conclusions can possibly be
drawn. Ultimately, we must regard the analysis of
these series as a kind of experimental mathematics con-

ducted in the spirit of previous explorations in this
field.

0. THE SUSCEPTIBILITY SERIES

For susceptibility series, the critical index p, above,
is customarily denoted by p. Previous work, ""based
on a~, ~ ~, a6 only, had suggested y=~ for all three
lattices (fcc, bcc, sc) though the evidence was, ad-

mittedly, not very strong. The values of x, were

estimated to be approximately 0.246, 0.392, and 0.588
for the fcc, bcc, and sc lattices, respectively.

Using our longer series, we have first, following

method (i), computed Pade tables for (d/dx) lnFi(x),
finding the smallest positive real roots of the Pade

2'C. Bomb and M. F. Sykes, J. Math. Phys. 2, 63 (1961).
"C.Bomb and M. F. Sykes, Phys. Rev. 12S, 168 (1962).
"J. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc.

(London) A275, 257 {1963)."G. A. Baker, Jr., Phys. Rev. 136, A1376 (1964) .

denominators and the residues at these roots. The
results are shown in Tables VII, VIII, and IX. For the
fcc lattice, Table VII, we present the results in full.
For the bcc and sc lattices, Tables VIII and IX, we
give only the central parts of the Pade tables (to save
space, and because for the sc lattice the entries in the
rows for D= 1 and 2 are much too erratic to be meaning-
ful). It is clear that convergence is best for the fcc
lattice, and we shall first discuss this case in some
detail.

For the fcc lattice, we next followed methods (ii)
and (iii) above, choosing x, =0.246, 0.249, 0.250, and
0.251 in method (ii) and y=@, 1.42, 1.43, 1.47, and 1.5
in method (iii). We find that there is a very strong
correlation between the conclusions of these two
methods, as illustrated in Fig. 3. Over a line in the
(x„,, y) plane from about (0.248, 1.38) to about (0.250,
1.47), reasonably good, mutually consistent, sense can
be made of the Pade tables —which becomes increasingly
impossible outside this range. We therefore turn next to
method (iv), evaluating PA's to the function (23)
[where f(x) now stands for Fi(x)] over the range
0&x&0.27. We present the results only for x=0.246
and x=0.249 in Table X, where we list the inferred
values of &. We observe that the [2, 4], [4, 2], [2, 5],
[3, 4], [4, 3], and [5, 2] PA's all give y= 1.43+0.01
and, moreover, that for these Pade's the results are
relatively insensitive to the precise choice of x,. Finally,
we look back at TaMe VII and observe that what are
probably the three best Pade's, namely [4, 4], [5, 3],
and [3, 5], were already suggesting this value of y.

That the evidence for y=1.43 is stronger than was
that for the former conclusion p = 1.33 is rather clearly
shown by comparison of Tables XI and XII, which
give the smallest positive real roots of PA's to Ii~'I' "
and J i'l'4, respectively. With y=1.43, we infer x, =
0.2492. Choosing x, =0.2492 in method (ii) leads to the
estimates of y shown in Table XIII, and if we are
looking for convergence and mutual consistency it is
hard to improve on this. Ke have not listed the residues
at, the roots in Tables XI and XII, but those appro-
priate to Iii"' " are very well converged to the value
0.262. Thus our conclusion for the fcc lattice is

x (0) ~ T 0.262 '4' 1.07

Aii' i0.2492 —x (1—T,/ T) '4'

We have followed a similar procedure for the other
lattices, bcc and sc. For brevity, we present simply the
central parts of the most relevant Pade tables. For the
bcc lattice, Tables XIV and XV show x, as estimated,
method (iii), from Fi3i~ and Fi'I'4', respectively. There
is not a grea, t deal to choose between the choices (y=s-,
x, =0.3923) and (y=1.43, x, =0.3973). On the other
hand, comparison of Tables XVI and XVII, showing
estimates of y obtained following method (ii) for
x, =0.3923 and x, =0.3973, respectively, certainly favors
the latter value, and thus the higher value of y. So, we
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TABLE XXVI. Neville taMes for y3. More digits were retained in computing these than are here displayed.

fcc x,=0,2492
y8{e)

bcc x,=0.3973
ygc'n}

sc x,=0.5962
V34,'~) 4

12.709
11.607
10.985
10.578
10.290
10.075
9.909
9.777

10.504
9.741
9.359
9.137
9.000 8.726
8.913 8.695
8.856 8.686

13.508
11.900
11.171
10.679
10.341
10.093
9.908
9.764

10.293
9.711
9.205
8.987
8.855 8.590
8.797 8.655
8.760 8.649

15.203
12,958
11.885
11.187
10.725
10.402
10.166
9.986

10.713
9.738
9.093
8 ' 879
8.784
8.750
8.725

8.593
8.664
8.653

feel, does Table XVIII, giving the estimates of y from
method {iv), and the higher value of x, is itself sug-
gested by Table VIII. Finding the residues associated
with the roots displayed in Table XV leads to (bcc
lattice)

for s= ~ by Wood and Rushbrooke" (1.36) and Joyce
and Bowers" {1.38) suggest a limiting value rather
higher than 1.33, but still lower than our s=~ value
of 1.43.

X(0) 14T 0.422 '~'4s 1.04

cVp' 0.3973—x ( I—T./T) '4'

Similarly, for the se la,ttice, Tables XIX and XX show
x, as estimated, method (iii), from Fis" and FP'44
respectively. ' Again perhaps there is little to choose
between the choices (y=s, x, =0.5883) and {y=&.43,
x, =0.5962) . But comparison of Tables XXI and XXII,
showing estimates of y obtained following method (ii)
for x,=0.5883 and x, =0.5962, respectively, certainly
favors the latter value, and thus the higher value of y.
So does Table XXIII, giving the estimates of y from
method (iv), and the higher value of x, is itself sug-
gested by Table IX. Finding the residues associated,
wi'th 'tllc 100'ts displayed 111 Table XX leads to (sc
lattice)

x(0),T 0.679

Ep,' 0.5962—x

Finally, with these choices of x„we look at the ratio
method of Domb and Sykes expressed in Eq. (24).
For the sc lattice the estimates of y so obtained vary
erratically between 1.2 and 1.8 and no inference can be
drawn from them; but for the fcc lattice, with
x, =0.2492, m=3, 4, ~ ~ ~, 9 lead to the estimates 1.439,
1.415, 1.419, 1.430, 1.435, 1.434, and 1.432 for y; and
for the bcc lattice, with x, =0.3973, m=3, 4, ~ ~, 10
lead to y values 1.443, 1.393, 1.445, 1.425, 1.437, 1.414,
1.442, and 1.428.

We believe that, subject to our ba, sic procedural

assumptions, the evidence that y=1.43%0.01 for all
three lattices is rather strong (and does not rest on the
unsupported values of our last computed coeKcients).
It is, perhaps, relevant that, on the evidence of six
terms only, Gammel, MarshaH, and Morgan" com-
mented that with increasing spin value y appeared to
decrease smoothly from about 1.4 for s=1 to 1.33 for
s= ~. At tha, t time the case s=-,' was exceptional. The
new value rem()vcs the anomaly. Recent estimates of y

Each susceptibility series Fi(x) exhibits, as we have
seen, a singularity for a positive real value of x, x„
corresponding to the ferromagnetic Curie point. We
next ask whether there are other values of x for which
Fi(x) is singular. To this end we have looked at all
the zeros of the denominators of all the PA's to
(d/dx) ln Fi (x) and also to (d/dx) ln Fi (x)—
1.43/(x, —x). When these are plotted in the complex
x plane it is evident that in no case is x, the only
singularity of the series Fi(x) .

For the fcc lattice, besides the singularity at x=0.2492
there is a pair of singularities at approximately x=
0.2+0.4i. We have not succeeded in locating this pair
of singularities very precisely, and suspect that the
singularities concerned are weak in comparison with the
ferromagnetic singularity. Attempts to remove this
complex pair have not produced a signi6cant change in
our estimate of x,. There is no evidence of a singularity
in Fi(x) on the negative real axis, supporting the belief
that nearest-neighbor interactions only cannot produce
antiferromagnetic ordering in a face-centered cubic
lattice.

For the open lattices, bce and sc, the situation is
otherwise: For both lattices there is evidence of a
singularity at x approximately equal to —x,. For the
bcc lattice, this is the only other singularity of which
we find unambiguous evidence (though there
map be a nuIQbeI' of weak singularities for which
0.25(

~
x

~
(0.35). But for the sc lattice there is quite

certainly a complex pair of singularities at approxi-
mately x= —0.075 40.504'. It is possible to locate this
complex pair more sharply than in the fce case, but
again there seems to be little interference between this
and the Curie point singularity at x,.

Although the complex singularities to which we refer

2'P. J. Vfood and G. S. Rushbrooke, Phys. Rev. Letters I7')
307 (1966).

"G. S. Joyce and R. G, Bowers, Proc. Phys. Soc. (London)
89, 776 (j9gg),



BAKER, GILB ER 7, EPE, AND RUSH 8 ROOKE

T~sl.E XXVD. Neville tables for y4. More digits were retained in computing these than are here displayed.

fcc x,=0.2492
n y4(e) i g„

1 21.812
2 18.964 16.116
3 17.467 14.472
4 16,531 13.726
5 15.887 13.310 12.685
6 15.414 13.050 12.531 12.377
7 15.052 12.877 12.445 12.330
8 14.765 12.757 12.397 12.317

bcc x,=0.3973
q„

23.184
2 19.551 15.918
3 17.872 14.516
4 16.811 13.628
5 16.080 13.156 12.447
6 15.544 12.863 12.278 12.109
7 15.136 12.690 12.255 12.225
8 14.817 12.580 12.250 12.240

sc x,=0.5962l„g„
1 26.093
2 21.377 16.661
3 19.188 14.810
4 17.819 13.712
5 16.885 13.151 12.310
6 16.208 12.819 12.156 12.001
7 15.697 12.632 12.165 12.177
8 15.300 12.524 12.199 12.255

would not seem to have any direct physical signidcance,
nevertheless the presence of these singularities in-
validates the conclusions from a Stieltjesising procedure
pI'cvlously Used by oQC of us to Rsslgn boUnds to p
and x,. We no longer support these bounds. "

FoI' thc open lRttlccs, the I'oot Rt x=x~ ——. —s, docs
have physical significance, for it represents the Keel
point of thc Rntifcrromagnctic problem J&.0. Gammel
Marshall, and Morgan~ attempted to 6nd x~ from the
6rst six coefficients in Fi(x), using a method close to
but not identical with the one we ourselves adopt, but
had too few terms to display any form of convergence.
Their work supported the existence of an antiferro-
magnetic singularity, but hardly located it. With longer
series we may hope to do better.

Of course, perhaps the most powerful method of
locating an antiferromagnetic singularity is through
use of the series expansion, not of the physical suscepti-
bility x(0) but of the so-called staggered susceptibility.
Work of Rushbrooke and Wood" along these lines had
suggested that (for equal

~
J ~):

(i) bcc lattice, Ts ——1.09T„ i.e., if x,=0.397, then
xg =—0.364;

(ii) sc lattice, Tiv=1.13T„ i.e., if x, =0.596, then
x~ =—0.527,

and very similar results are predicted by internal held
theories (see Ref. 17). We may hope to find con-
6rmation of this from the physical susceptibility
series, and to get some indication of the behavior of

y(0) near xs.

'VAn additional point made in passing in Ref. 24, but not
sufficiently emphasized therein, is that the lower bounds

(P, N tj) depend, for—their validity, on the hypothesis that
x= (x,—x} 'yA(x)+B(x) with B(x) zero. Otherwise, there will
be a right-hand cut starting at x, and only the PN, Eg Pade
approximants can be valid bounds, Consequently, on the basis of
the weaker hypothesis that 8 (x) is non-negative near x„we can
obtain only the bounds (taking into account the restricted re-
gion of analyticity mentioned above by the use of flattened
circular regions)

fcc 0&x,&0.2557,

bcc 0&x,&0.4123,

sc 0&x.&0.6548,

which encompass by a wide margin our best estimates. %ithout
this hypothesis on B(x) (or, more precisely, on the sign of the
imaginary part across the right-hand cut), in addition to the
gnalyticity assumptions, we can say nothing rigorously.

Since we expect y(0) to remain finite at the Neel
point, we are concerned with a singularity at x~ much
weaker than the ferromagnetic singularity and must
flI'st sUbtlact this out, l,c., form

(d/dx) lnFr(s) —1.43/(0. 3973—x) . (25)

To sharpen the singularity we now differentiate (25),
thus following the Ising-model procedure of Fisher and
Sykes" in that we look for a logarithmic singularity in
(25). We find

d/dx{ (d/dx) lnFi(x) —1.43/(0. 39/3 —x) I

=—1.0594+2.3948x—14.1825x'+38.8224x'

—67 4595x'+166 8834x' —798 8519x'

+2500.8160x'—3976.857x'+ ~ ~ . (26)

The Pade table to (26) settles down only for D&3,
E&3, but this part of the table exhibits quite good
convergence, and to our surprise we find that the L4, 4]
and L3, 5] Pade's both give xiv ———0.364. (The L4, 3]
and { 3, 4] estimates are —0.354 and —0.365, respec-
tively. ) This is much better than we have any right to
expect, and doubtless is largely coincidence. But it does
show that x(0) reflects the antiferromagnetic singu-
1RI'lty, Rnd that thcI'c ls 1oon1 foI' thc conclusion
T~ ——.'1.09T, within our present results.

If, further, we look at the residues for the above

{ 4, 4] and L3, 5] Pade's, in both cases we find —0.56.
Putting —x—=y= —J/sT, ={X~/KT in the antiferro-
magnetic probleIQ, we have

(d lnFi)/dy ~ 0.56 in(0.364—y),

which implies the same kind of singularity as Fisher
and Sees found for the Ising problem; i.e., y as a
function of T has inhnite positive gradient at T~.29

Attempts to follow the same procedure for the sc
lattice seem to be frustrated by the presence of the

"M. E. Fisher and M. F. Sykes, Physica 28, 939 (1962)."Ifone insists on 6tting a Fisher-Sykes form to the data, then
we conclude that the series expansions are not inconsistent with

Fg 0.29—0.06(1—x/xs) in(i —x/xiv), bcc

I'1 ~ 0.25—0,03(i—xjxg) ln(i —x/x~), sc

near the Neel points, x~ ———0.364 (bcc) and —0.527 (sc), re-
spectively. %e would emphasize that these results are not so
much derived as merely Qtted to the data available,



complex roots to which we have referred: There is
clearly an antiferromagnetic singularity, but we have
not located it at all sharply.

8. ANALYSIS OF E2, Ee, and E4 SERIES

We turn now to an analysis of the higher-order series
F2, F3, and F4 or, more accurately, F2*, F3*, and F4*
Lsee Eq. (9)]. We naturally start by looking, for all
three lattices, at Pade approximants to (d/dx) lnF, *(x),
s=2, 3, 4. On determining the smallest positive real
roots of the denominators of these PA's it is clear that
the critical values of x at which the functions them-
selves diverge are certainly close to the values of x.
found from analysis of the Fi(x) series. On the other
hand, good estimates of x, are not provided by these
Pack tables, which are by no means well converged.
This is doubtless partly because the present series are
comparatively short (only seven terms after differ-
entiating), but there would also seem some evidence
that the functions with which we are concerned are not
particularly well suited to this form of Pade analysis.
The reason is that, for all three lattices, F3 and F4 vanish
for small negative values of x, these zeros being rejected
in the logarithmic derivative as poles with residue minus
one close to the origin. Fi (the susceptibility) is thermo-
dynamically constrained to be positive, and so this
trouble does not arise with it. F2 seems also to vanish
for negative real x. Estimates of the positions of these
roots (both from poles in the logarithmic derivatives
and from the zeros of PA's to the functions themselves)
are that for the fcc, bcc, and sc lattices, respectively,
F2(x) vanishes at —0.43, —0.23, and —0.29, F3(x)
vanishes at —0.0800, —0.0926, and —0.1133, and
F4(x) vanishes at —0.0353, —0.0464, and —0.0578.
We would expect a direct use of the familiar ratio
method to be unaffected by the presence of these zeros.

Appeal to the ratio test does indeed provide more
convincing answers. The sequences of coefFicients in
these series are rather exceptionally smooth, especially
for the fcc lattice. By way of illustration we tabulate in
Table XXIV the ratios a„/u„ i for the F,* (fcc) series,
and follow these with their linear, quadratic, etc.,
extrapolants when plotted against 1/I, according to the
procedure of constructing a Neville table. '~ Here, if
a„/a„ i is called r„, the "linear" extrapolants l„rea
given by nr„(e—1)r„ i, the —"quadratic" extrapolants
q„are given by —',

I
el„—(e—2) l„ i], the "cubic"

extrapolants by -,'Lnq„—(e—3)q„ i], and so on. Fe*
(fcc) provides a rather extreme example in that all
sequences of successive extrapolants remain monatonic,
but the table shows signs of convergence, and the Anal
estimate (calling on all the coefficients) yields x, =
1/4.022 =0.2486, very close to our previous value, from
the susceptibility series, x,=0.2492. Kith the F2
(fcc) and Fs*(fcc) series we must stop the extrap-

'0 See D. R. Hartree, Ngnserica/ Analysis (Oxford University
Press, Oxford, England, j.952},pp. 84—86.

~residue)

0.25
I

0.35 root

Fn. 4. Plot of the position of the smallest positive real root
versus the absolute value of the residue at the corresponding pole
in the Pade approxlmant.

olation when successive estimates cease to progress
monotonically, but if we take the entry opposite
@=8 in the 6rst column that ceases to be monotonic, we
infer x, =1/4.024=0.2485 from F2* and x, = 1/4.029=
0.2482 from F3*.There can really be no doubt that all
the series diverge at the same value of x, which we
might estimate to be 0.249&0.001. For the open
lattices the sequences are less regular, and we can infer
only that x, (bcc) 0.4 and x, (sc) 0.6. Even so, it is
clear that these series for F2*, Fg*, and F4* diverge
when x=x„where x, corresponds to our previous
estimate from the Fi(x) expansions.

In analyzing F,*(x), F8*(x), and F4*(x) further, to
6nd their critical indices, we have used the values of x,
found from the susceptibility series (see Sec. 6 above) .
We shall denote the critical index for the series F, (x) by
y, {in which notation y of Sec. 6 becomes yi). As a
first approach we may use method (ii) of Sec. 5, taking
x.=0.2492, 0.3973, and 0.5962 for the fcc, bcc, and sc
lattices, respectively. The Pade tables so obtained are
again not particularly well converged, but the mean
values of the L3, 3], &4, 3], and P, 4] estimates of y2
are 5.06, 5.01', and 5.09 for the three lattices concerned
(always taken in the sequence fcc, bcc, and sc). Simi-
larly for y3 we Qnd 8.69, 8.73, and 8.75 and for y4 the
estimates are 12.4'7 (where we have used the $5, 2]
PA instead of the L4, 3], which is anomalous), 12.29,
and 12.25. It seems that the y's are independent of
lattice structure, but we can hardly draw conclusions
better than y2=5.07&0.05, F3=8.72+0.1, and y4=
12.3&0.2.

When, however, we turn to Eq. (24), and use the
Bomb-Sykes method to 6nd successive estimates of y„
we obtain sequences of approximations which behave
very smoothly. Denoting by y, (n) the approximation
to y, obtained from the ratio a„/a„ i in (24), Tables
XXV—XXVII give, for y2, y3, and y4, respectively,
the Neville table extrapolants for all three lattices.
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C(yJ „
R

0.75-

of ys and y4 are a little lower, but also because the fcc
tables have really only converged moderately well.
As we have emphasized, uncertainty limits are neces-
sarily subjective, but the conclusions

0;5
yg = 1.43&0.01,

ya
——8.69+0.04,

y2 ——5.06~0.02,

y4 ——12.32~0.08,

0:25

do not seem unreasonable. If so,

y,—y, ~ ——3.63-k0.03, s =2, 3, 4. (28)

0) 4 T/Tc

We shall follow the recent example of Fisher, " and
denote this "gap parameter" by 2A.

9. ANALYSIS OF THE SPECIFIC HEAT
FIG. 5. C(0) versus temperature for the bcc lattice.
The portion between the arrows is covered by (35).

kg= 1.43,

F3=8.69,

F2=5.06,

p4 —12 32

for which we observe, further, that

V4
—Va= V3-y2 =V2- yi =3.63. (2&)

But we must allow that there is some uncertainty in
these values, not only because the open lattice estimates

We have again taken the values of x, suggested by
analysis of the susceptibility series, and we present
only those parts of the Neville tables which seem to us
to have diagnostic value.

Looking first at Table XXV, for the fcc lattice the
linear and quadratic extrapolants combine to suggest
that y2 lies in the range 5.06 to 5.07. An identical con-
clusion follows from the bcc estimates when we consider
separately the sequences e= 1, 3, 5, 7 and e =2, 4, 6, 8
(such alternating behavior, easily revealed graphically,
is familiar from Ising-model sequences for open lattices) .
Unfortunately we can draw no conclusions for the sc
lattice since, as plotting reveals, the estimates show a
wavelike oscillation about a monotonically decreasing
smooth curve.

Turning next to Table XXVI, for the fcc lattice we
infer that y3 is close to 8.69. The data for open lattices
suggest a slightly lower value close to 8.65.

With p4, Table XXVII, the extrapolations are
lengthy, but the sequences are smooth and it has
seemed legitimate to go as far as the cubic extrapolants,
c„.For the fcc lattice we infer y4 close to 12.32; for the
open lattices values closer to 12.25 seem indicated.

Because we believe that, for a given number of terms,
series for the close-packed lattice (fcc) will best reQect
true thermodynamic behavior, and believing that it is
for this lattice that our estimate of x, is most reliable,
we are inclined to put the most weight on the fcc con-
clusions, namely

We turn, finally, to an analysis of the series FD(x).
More precisely, we write

C(0) =4cVxe2x'c(x) (29)

"M. E. Fisher, Rept. Progr. Phys. (to be published).

Lsee Eqs. (5) and (8)], and analyze the series c(x),
which will show the same critical behavior as does
C(0) .

Specific-heat series are notoriously difFicult to analyze,
and the present ones are no exception. Our first aim
must be to transform a presumably weak singularity
into a simple pole. To this end we have considered
PA's to both (d/dx) c(x) and (d/dx) inc(x) . The
former transformation would be appropriate for a
logarithmic singularity in C(0); the latter for one of
type (19), in which case the critical index is customs, rily
denoted by n.

In both cases we have drawn up Pade tables of the
smallest positive real roots of the denominators of these
approximants. The tables appropriate to a logarithmic
singularity in C(0) show exceptionally poor conver-
gence; thus for the fcc lattice the central entries,
V+X&5, range from 0.12 to 0.34 with no particular
pattern and no indication that x, is close to 0.25. The
situation for the open lattices is equally unsatisfactory.
The tables based on (d/dx) inc(x) show better con-
vergence, particularly for the fcc lattice. Here the
L3, 2], L3, 3], L3, 4], L4, 2], L4, 3], and L5, 2] roots
are all in the range 0.255 to 0.298. Instead of repro-
ducing this table, we present in Fig. 4 a plot of the
position of the smallest positive real root (when this
exists) against the absolute value of the residue of the
corresponding pole in the Pade approximant (estimate
of n), and we observe that they are smoothly corre-
lated. We conclude, from this plot, that if C(0) has an
infinity at the susceptibility Curie point, x,~0.25,
then +~0.4, but it is noticeable that what we would
expect to be the better PA's prefer to place this infinity
at a rather higher value of x, i.e., at a somewhat lower
temperature, Although for the sc lattice the tables are
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too erratic for this plot to be made, exactly the same
position obtains if we make the corresponding plot for
the bcc lattice. Again there is a smooth correlation as in
Fig. 4, and the Curie point, x, 0.4, correlates with
0. 0.4; but again the higher-order PA's prefer to
place this infinity at a, value of x somewha, t. gt.cate~.

than x„and to make it rather stronger.
Following the procedures of Sec. 5, we next use

method (ii), evaluating at x, Pade approximants to
(x—x,) (d/dx) inc(x). We choose for x, the values we
have found from an analysis of the susceptibility series.
For the fcc lattice all PA's with D& 2 and E&2 give n
values in the range 0.3 to 0.4 except for [2, 5], [3, 4],
and [4, 3], which give estimates in the range 0.2 to 0.3.
In particular, the [2, 2] and [3, 3] entries are 0.38
and 0.39, respectively. For the bcc lattice also, the story
is similar. We appear to need D&3 before the table
shows any convergence, but the [3, 2], [3, 3], [4, 2],
and [4, 3] values are all within the range 0.36 to 0.37.
For the sc lattice, however, the Pade table shows no
convergence, and only the [4, 3] and [3, 4] estimates
lie in the range 0.4-k0. 1. Finally we turn to method
(iii) of Sec. 5, and examine the Pade approximants to
c(x)'I . We have taken n=0.2, 0.3, ~ ~ ~, 0.6, and con-
structed Pade tables of estimates of x, from the denomi-
nators of the approximants. For the fcc lattice the
tables show moderately good convergence, and we
might infer that a value of 0.~0.34 would lead to
x,~0.25. Again, for the bcc lattice we might conclude
n 0.32 would correspond to x,~0.4. For the sc lattice
we seem to need D&6 before the tables show any con-
vergence, and no conclusions can be drawn.

Despite the unsatisfactory features of this analysis, if
we insist on looking for a specific-heat infinity of the
type defined in Eq. (19), with critical index n, then we
must conclude that n is probably greater than 0.3 and
may well lie in the range 0.4+0.1. But the analysis is
indeed unsatisfactory, and we cannot have the same
confidence in this conclusion as in our earlier estimates
of y„s=1, 2, ~ ~ ~ 4

An explanation of the difFiculty in determining n is
afforded by the possibility that the specific-heat
anomaly is not of the type defined in Eq. (19) and is
thus not converted into a simple pole by taking the
logarithmic derivative of the series concerned. Indeed,
Eq. (27), together with our value of yi, tempts us to
write

yg —yo
——3.63, i.e., y0 ——1.43—3.63 = —2.20, (30)

as if the singular part of F0(x) were proportional to
(x,—x)"' near x,. If this is so, then the singular part
of c(x) will be proportional to (x,—x)"', i.e., c(x) may
be expected to have the form

c(x) A —B(x.—x)"' (31)

for x near x„and the logarithmic derivative of (31) is
certainly not a simple pole.

To test this hypothesis, we have first evaluated
c(x) numerically and have then examined the extent to
which the values are reproduced by an expression of the
form (31).To find c(x) numerically we form all PA's
to the series e(x) and evaluate these at x, drawing up
the full Pade table. For small. x this table shows ex-
tremely good convergence, and c(x} can be estimated
accurately. For x near x, the entries show more scatter,
but we must emphasize that even at x=x, there is no
sign of any infinity. Thus, for the fcc lattice, for x=0.15
we estimate c(x}=1.499 with certainly no more ambi-
guity than +0.001; for x=0.23 the [3, 4], [3, 5],
[4, 3], [4, 4], and [5, 3] estimates are 2.247, 2.213,
2.313, 2.199, and 2.230, and we take their mean, 2.240,
as the best estimate of c(x} available. At x=x, =0.2492,
these same PA's are 2.883, 2.755, 3.171, 2.698, and
2.822, and again we have taken their mean, 2.866, as
the best PA estimate of c(x.') . We then plot c(x) against
(1—x/x, )' "and look for linearity. For the fcc lattice
we find this linearity over the range x=0.17 to x=0.244,
to within 1% in,c(x) .

Numerically, and in terms of T rather than x, we
find that the expression

C(0)/8= (T,/T)'[1.206—0.966(1—T,/T)"'] (32)

covers the Pade-approximant estimates of C(0) to
within 1% over the temperature range 0.70& T,/T&
0.96. At lower temperatures the expression (32) under-
estimates C(0), while in the range 0.96& T,/T&1.00
the Pade estimates fall below those given by (32). This
is because whereas (32) gives C(0} a vertical cusp of
height 1.206 R at T„with infinite gradient, jthe Pade
estimates do not give C(0} an infinite gradient at T,
and so make the height only 0.801R.

The success of (32} in reproducing the specific-heat
curve, as well as it is known, over a significant range of
temperature should not, however, be viewed as strong
independent support for the index 0.20. The expression

C(0)/2= ( T./T) '[1.060—0.827 (1—T,/T) "'] (33)

fits the same data equally well. Indeed (32) and (33)
coincide numerically, to within 1%, over the range
0.20& T,/T&0. 95 (and differ by only 2% even for
T./T=0. 98) . Nevertheless, we doubt if the impressive
linearity of these plots is entirely accidental.

For the bcc lattice, if we take the mean of the [3, 4],
[3, 5], [4, 3], [4, 4], and [5, 3] Pade values as pro-
viding the best estimates of c(x), then, to within 1%,
C(0)/8 is covered by the expression

C(0)/E= (T~/T)'j 0 971 0 668(1 T~/T)""] (34)

over the range 0.75& T,/T&0. 95. On the other hand,
inspection of the Pade tables suggests rather better
convergence below the main diagonal. If we estimate
c(x) from the most frequently occurring Pade values



aAKER, GILsERr, EVE, AND RUsHsROOKE

"C(0)65= dx
0

(36)

and by evaluating, at x„PA's to the series expansion of
the right-hand side of (36). The latter Pade tables are
well converged, and, from both methods, we conclude:

for the fcc lattice, 6S/R =0.238&0.004,

for the bcc lattice, AS/R=0. 242&0.004,

for the sc lattice, 6S/R =0.264&0.008. (37)

io. DISCUSSIOH

Having presented our analysis in suQicient detail for
it to tell its own story, we do not intend to add much

by way of further discussion. Our conclusions rest on
two main assumptions; that the basic coeKcients have
been calculated correctly, and that the series may be
analysed along the lines of Eq. (19). On the former
point, we have already noted the support we get from
concurrent calculations by Bomb and Wood, which
certainly serve to con6rm our ninth-order coeKcients
for open lattices. We believe our later coeKcients are
correct, but would observe that, while it is gratifying
that all three lattices afford evidence of having the
same critical indices, our conclusions are most 6rmly
based on an analysis of the series (particularly the
susceptibility series) for the close-packed lattice, and
our checking procedures through ninth-order coeKcients
(when all basic graphs were drawn out) have been such
that we believe an error here is unlikely, With regard to
the assumptions underlying Eq. (19), we would claim

we are led to

C(0)/R= (T,/T)'[1.018—0.724(1—T,/T)"'] (35)

as reproducing C(0) over the same temperature range.
This, again, gives some indication of the measure of
uncertainty in these coefficients.

We have not felt it worthwhile to analyze the sc
lattice specific heat in this way, since the convergence of
the Pade values is far from satisfactory. That the
assumption (31), suggested by the hypothesis (30),
is not to be ruled out by the speci6c-heat series them-
selves has, we believe, been adequately demonstrated,
and this form of singularity in C(0) would certainly
account for the unsatisfactory features of the normal
Pade analysis.

We show in Fig. 5 a plot of C(0) for the bcc lattice,
as estimated from the Pade tables, and indicate the
temperature range over which the curve is covered by
the expression (35). Although the peak is sharp, there
is a long high-temperature tail, contributing to the
entropy change between T, and limitingly high tem-
peratures. For all three lattices, we have determined
this entropy change AS= S(~)—S(T,) both graphi-
cally, from

n, =2—2h+y, (38)

where at, is the index of the singular part of the specihc
heat [equal to —0.20 in Eq. (32) j.Further, if P denotes
the degree of the magnetic phase boundary, 8 the degree
of the critical isotherm, and v and q are indices related to
the long-range form of the correlation function, which
is written as e "'/r'+~, where X

~

T—T, ~" (we confine
this discussion to three-dimensional lattices), then, on
these theories,

~ =~/(~ —v), (39)

v = (2A —y) /3, tf = (4h —5y) /(2A —y) . (40)

With y=1.43&0.01 and. 26=3.63&0.03, Eqs. (38),
32 L. P. Kadenoft, W. Gotze, D. Hamblen, R. Hecht, E. A. S.

Lewis, V. V. Paiciauskas, M. Rayl, J. Swift, D. Aspnes, and J.
Kane, Rev. Mod. Phys. 39, 395 (1967}.

only to follow precedent, in default of having anything
more convincing to suggest. Only when the simplest
assumptions fail to make sense of the data is a more
elaborate assumption warranted, and we feel that this
situation has not arisen. We have, in fact, looked briefly
at the possibility that

A in[T/T, —1j
LTIT.—1j'

and then find smaller y values, in the region of 1.25
rather than 1.43. But the convergence is not as good as
without the logarithmic term. Indeed, if we try expres-
sions of the form

A[—ln(T/T, 1)]&—xo-
(T/T, 1)&—

we find best convergence when p is very small, certainly
less than 0.1. Thus our basic philosophy, expressed in
Sec. 5, sends us back to our original postulate. Likewise,
although one might wonder whether our values of x„
0.2492, 0.3963, and 0.5972, were approximations to the
values 0.25, 0.4, and 0.6, the fact that use of these latter
values leads to less well converged estimates of y, and
less agreement between the three lattices, dissuades us
from pursuing this possible hypothesis.

Our conclusions, then, are y = 1.43&0.01 and
2d, =3.63+0.03, for all three lattices.

Recently Widom, Kadanoff, and others have ad-
vanced a number of so-called "homogeneity" or
"scaling" arguments, whereby all critical indices can
be expressed in terms of just two of them, for example 7
and 6; and Fisher's "microdomain" model of ferro-
magnetism leads to similar conclusions. We shall not
give detailed references to the rather extensive litera-
ture, but refer only to the recent review article by
KadanoG et al.~ The existence, and constancy, of a gap
parameter 8, is intrinsic to these theories, which entail
t he equation
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n, =——,
' = —0.25, P =i'-s =0.417,

v=4=0.75, and g=9 =O.i1;
while on hypothesis (b) we find
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0,,=—~= —0.j.4, P =r54. ——0.357, 8=5,
v= 7 =0.71, and g =0.

We must, however, emphasize that the predictions of
the "homogeneity" and "scaling" arguments may well
be wrong. These theories involve a symmetry, in the
critical indices, above and below T„which is not
supported by the most recent work on the three-dimen-
sional Ising problem. " Fisher" has very tentatively

"G. A. Baker, Jr., and D. S. Gaunt, Phys. Rev. 155, 545
(1967).

(39), and (40) lead to

—0.24&0.,& —0.16,

0.36&P &0.41,

4.46&& &5.00,

0.72&v &0.75,

0&& &0.1.0.

We could leave the matter here, But experience with
the Ising problem, and particularly the exact results
pertaining to the two-dimensional Ising problems,
prompts the search for simple fractions which do justice
to the conclusions which we have, so far, expressed in
decimal form. There are two possible sets of fractions
which are not unattractive (even though they lie
marginally outside the confidence limits we have
chosen). These are (a) y=H ——1.417, 26=~i ——3.67;
and (b) p= —", =1.429, 2k=~ ——3.57. On hypothesis
(a), we 6nd

suggested that the second of the Eqs. (39), for 8, may
remain valid under less restrictive hypotheses, and that
the first, for P, should perhaps be multiplied on the
right-hand side by y'/y (where y' is the analog of y
for T&T,). If this is so, then, since for the three-
dimensional Ising problem p' seems to be slightly
larger than y, we should conclude that our lower
estimates for P are certainly not excessive and rule out
the possibility, sometimes suggested, " that P= is.

We have compiled" most of the graph data used in
this work. The collection falls into five parts: (1)
figures; (2) a dictionary giving numerical descriptions,
serial numbers, etc. ; (3) the 7' matrix; (4) the irre-
ducible parts of the partition functions; (5) the lattice
constants.
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