
Eq. (8) yields the following values for the crystal-field
parameters:

b4 (-—0.268+0.014) X10 cm-',

bs (———0.019+0.009) X10 'cm '.
Table I compares values of b4 and b~ for the Eu++ ion
in hosts of two diAerent cubic structures. The oxides
have the NaCl structure, as does EuS, and the Quorides
have the Quorite structure. The host lattices are listed
in order in increasing lattice parameter. The strong
dependence of the crystal-6eld parameters on inter-
atomic separation, illustrated in Table I, is consistent
with the small values inferred for EuS on the basis
of our results. In particular, the change in sign of b4

in the oxides, occurring at SrO, suggests a possible ex™

planation for the small values of b4 and b6 exhibited by
EuS. Table II lists the available data concerning Et/M
and Es/M in the europium chalcogenides, which in-
dicate that b4 may be going through a minimum as a
function of lattice parameter, rather than changing
sign. The variation in b4 in the fluoride series reinforces
this opinion. One cannot easily extend this comparison
to EuTe, the last number of the chalcogenide series,
because it is an antiferromagnetic with a complicated
spin arrangement.
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We study the asymptotic behavior, for large separations, of the spin-spin correlation function (ao,a~sr, N )
in the two-dimensional Ising model, where the two spins are not necessarily on the same rom. Besides the
limiting value for infinite separation, which is the square of the spontaneous magnetization, we evaluate
the two leading terms in the asymptotic expression in each of the two cases T& T, and T)T,. It is found
that the nearest singularity of the generating function for the correlation is quite simple in the case T)T„
but much more complicated for T& T,. In an Appendix, we also give exactly in a very simple form the
corre ation (uo, grsj;ir) for symmetrical Ising lattice at the critical temperature T,.

1. INTRODUCTION

""N a previous paper on the two-dimensional Ising
. . model, ' the asymptotic form for large separation
of the spin-spin correlation function (o'o, oo'o, iv) was given
for two spins in the same row. In this paper, we shall
give the asymptotic form of the correlation function
(rro, oosi, ar) for arbitrar'y M and E, when M'+Ã' is
large. Since the case M=O or E=o is already treated
in I, we shall, without loss of generality, assume both
M and S to be positive. As in I, we have to treat the
three cases T&T„T&T„T=T„separately. %e shall,
however, give the asymptotic form of the correlation
function only for the cases T&T, and T& T„where
the results in I can he regarded as a special case of our

results here. These results are summarized in Sec. 5.
For the case T=T„we shall give in Appendix A the
correlation function (oe,eosj,N) for a symmetrical Ising
model. The asymptotic form of (oe,eosr, sj) for arbitrary
M and Ã at T=T, has not been obtained. In other
words, we carry out the program outlined in Sec. 8(Aa)
of I.

2. CORRELATION (oe,sosr, ~)
I et us consider a two-dimensional Ising lattice with

25K&2K lattice sites. The lattice sites at the boundary
are assumed to join in such a way that (0, —X+1)
and (M, K) are nearest neighbors. More precisely, we
assume 5K to be multiple of M, and the Hamiltonian is
taken to be

*%'ork supported in part by the National Science Foundation.
t'National Science Foundation Senior Postdoctoral Fellow.

Permanent address: Harvard University, Cambridge, Massachu-
setts.' T. T. Wu, Phys. Rev. 149, 380 (1966). The paper is hereafter
referred to as I. For a related article, see B.M. McCoy and T. T.

$&sk155, 438 ~1967), which ls II ln the series ~

BR K—1

Et g P&m, st+x&m+sr, st+—g &m, +&m,~+Q—
tn~5K+1 n~R+1

SK X
—z,

m 9K+I n %+1
(2.1)
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The value of detA can be evaluated in the following

way. Define the 4M)&4M matrices A(m, e; m', e'),
wherem, m'= —M 'OR+1 —M 'OR+2, M 'OR —1

M 'OR and m, n'= —%+1, ~ ~ ~, K—1, Oi, , by the matrix
elements, with j, j'=0, 1, ~ ~, M —1,

[A (m, e; m', e')];,; =A (Mm+j, e; Mm'+ j', n') .(2.6)

Note that both sides of (2.6) are 4&&4 matrices. We
shall order these 4MX4M matrices A by the index

(2.7)l=n —2Am,

which runs from —2M 'OR% —K+1 to 2M 'OR% —K.
Because of these limits, it is convenient to extend l

periodically. With this convention, by (2.1) A(m, e;
m', n') really depends only on i—i'; i.e.,

A (m, n; m', n', ) =,A i ), (2.8)
with

(2.9)Az+z=Az,

where I'=4M 'SR'. By rearranging the rows and

coluinns, the original matrix A can be written as

~ ~ 0 Ap

Ag

where the positive constants E~ and E2 are the two
interaction energies between pairs of neighboring spins.
In (2.1), 0,„ is to be interpreted as 0„2s)r „when
m&OR.

'

Note that our Harniltonian as given by (2.1) is

dependent on M. That is, we are here proposing to
calculate the spin-spin correlation function (00 Oa~))).)
with a Hamiltonian which varies with 3f. Strictly
speaking this is not the Ising model. However, the
dependence on M comes from the boundary terms only.
It is our hope that, as 5K, X—+~, the "boundary
effects" would vanish, and the correlation function we

obtain agrees with that of the Ising model. It is incon-
ceivable to us that such arti6cial alteration of the
Hamiltonian is inherently necessary for the analysis of
the Ising model. In other words, the present difhculty
with the boundary effects is believed to be entirely due
to imperfections in our calculational procedure. Un-

fortunately, despite all of our efforts, a simpler method
cannot be found.

In order to understand this particular way of joining
the boundaries, we evaluate the free energy for the
Ising model on the basis of (2.1). Let E) (kT) 'E|-—
and E2 (kT) 'F2——, then the partition function Z is

given by'

Z'= (2 coshE) coshE2)'~~ detA, (2 2) A. Ap ~" A~, . (2.10)

where A is the same matrix as the one given by
Montroll, Potts, and Ward, ' except that here

0 2g 0 0~ A p+j A g+2 A g+3 ~ ~ ~ Ap

A(m+M, Ot; m, —++1)=
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 '

detA = Q detX'", (2.11)

where ) (z) is the 4M)&4M matrix

By (2.9), this is a cyclic matrix. Thus its determinant

(2.3) is easily found to be

A (m, —%+1;m+M, %) =-

—sg 0 0 0

0 0 0 0

0 0 0 0

(2.4)

X~' = PA) exp(i2mll'/E).
«=0

(2.12)

p, ())),, , =
M 'OK

A(Mm'+j, ~', j', 0)
ni~X+1 trodi- —~—15K+I,

It remains to evaluate detX'". Equation (2.12) is

more explicitly

z;= tanhE;, 1=1 2.

A(m, —Ol, +1&m, O1,) =A(m, K;m, —%+1)=0, (2.5)

where the notation of Montroll, Potts, and Ward3 is

used, in particular,

X exp[2n. il(e' —2Am') /P]. (2.13)

Since A (a, P; a', P') depends only on n n' and P —P', —
X(z) is a Toeplitz matrix. Therefore, we may de6ne

' Strictly speaking, because of boundary effects, Z and
Z(cro, oo~,N) are each to be expressed in terms of four PfaEians,
P. W. Kasteleyn, J.Math. Phys. 4, 287 (1963);see p. 293(. How-
ever, in view of the difhculty discussed in the predecing paragraph,
we here ignore all problems associated with boundary effects.

3 E. 'W. Montroll, R. B.Potts, and J. C. %'ard, J. Math. Phys.
4, 308 (1963).

(go)), —g, ())

Furthermore, from (2.13), we have

X '"=X~ '" exp( —ig),
where

0=vrMl/OR.

(2.14)

(2.15)

(2.16)
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The matrix P (" can therefore be written as

$0{i)

e
—i' (l) y,«) ~ ~ ~~ 2«)

4r ~(" g0«) ~ ~ ~ gg~ 3(l) (2.17)

&
—Ny (l)

The determinant of X(') is found to be

~
—i8), (l) g

—&~g (l) . .. g (l)

detX'" = g detX "&(j), (2.18)

where

X'"(j) = PA, '" exp[i(2~j —tt)j'/M]. (2.19)

Substituting (2.13) and (2.14) into (2.19), and taking care of the fact that A(n P; n', lt') is nonzero only when

(n, 48) and (a', P') are either the same or nearest neighbors, we get

3f—1 M 5K

X'"(j ) = g P P A (Mm'+j ', n'; 0, 0) exp[2nil(n' —2Am')/P+i(2s j—8)j'/M]
P~ ~~=—X+i m~=—~—NK+i

=A (0, 0; 0, 0) +A (1, 0; 0, 0) exp[i (2~j tt) /M—]+A (—1, 0; 0, 0) exp[ —i(2m j—tt) /M]

+A (0, 1; 0, 0) exp(2~ii/P) +A (0, —1; 0, 0) exp( —2~ii/P) .

From (2.20), we may make the explicit evaluation

detX(') ( j) = (1+s|) (1+s2 ) —2s2(1 —sp) cos(2'/M —
m 1/OR) —2s&(1—sp) cos(27rl/P) .

From (2.2), (2.11), (2.18), and (2.21), the free energy per spin is given by

F= —k T(45RK) ' lnZ

kT ln(2 coshEi co—shE~)

P—1M—1

(2.20)

(2.21)

—kT(85EX) 'g g in[(1+sP) (1+s2') —2s2(1 —s~') cos(2mj/M —nl/5K) —2z|(1—s2') cos(2~1/P)]. (2.22)
l=0 jM

In the limit OR, K—&~, (2.22) becomes

F= kT In(2 coshE~ coshE—~) —kT(8s') ' dg~ dP~ 1n[(1+s|')(1+s2') —2z~(1 —s~') cosp~ —2s~(1—s,') cos4~].

(2.23)
Note that M does not appear in (Z23).

Having verified that the particular way of joining the boundaries does not effect the thermodynamic properties
of the system, we turn our attention to the correlation (oo,0044,+). From the lattice site (0, 0), we may arrive at
the lattice site (M, N) by the following sequence: (0, 0), (0, —1), (0, —2), ~ ~ ~, (0, —&+1), (M, K),
(M, X—1), ~ ~ ~, (M, N+1), (M, N). Again using the notation of Montroll, Potts, and Ward 3 it is convenient
to designate

(0, 0)L, (0, —1)L, ~ ~, (0, —%+2)L, (0, —K+1)L as Q&,

(0, —1)R, (0, —2)R, ~ ~, (0, —X+1)R, (0, —X)R as ,
(M N)R (M N+1)R ~ ~ ~ (M, K—2)R, (M, K—1)R as ,
(M, N+1)L, (M, N+2)L, ~ ~, (M, X—1)L, (M, X)L as Q4, (2,24)
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where (0, —X)R is defined to be (0, K) l)! for the sake
of symmetry. With the choice of such a sequence of
lattice sites, we can follow the known procedure to
e~press (op,poir, ))[) in terms of PfaKans2

(irooir2, 2&),=+ lim si2& ~P(y '+Q)P(y), (2.25)
'Jg,~m

where P(y) denotes the PfaKan of y, and the sign on
the right-hand side should be chosen so that the
correlation is positive. In (2.25),

From (2.26) we have

P(y) (s —i s )2%—)P.

thus (2.25) becomes

(oppg24, N)=& ljm (1—s22)2si—2[P(y—i+Q)

1/2

Oi 02 02 04

Qi ~0 I 0—0 lim
5K,BE~co 0 —S

. (2.35)

Q2

y=(si ' —si)
02

04

I 0 0 0

0 0 0 I
0 —I 0

(2.26)

We are therefore left with the evaluation of the deter-
minant on the right-hand side of (2.35).

Oi

Qi 0
02 02 04

8 T U
3. SPIN CORRELATIONS BELOW' THE CRlTICAL

TEMPERATURE

y '+Q=(1—si') '
02

Q4
—V —V

0 —8

0

(2.27)

To obtain the asymptotic form of the correlation
function (o p po)pr, ))[) for T&T„we first consider

f~i)[(5R, K), which is the ratio of the expectation value
of 0'p, pa'~, z+& for finite 5R and K to that of 0'p, pg.~,z for
the same 5K and K. More precisely

where Sr is the transpose of S. In (2.27), the elements
of the 6nite matrices 8, T, U, and V have the follow-

ing limiting values, called 5 „etc., as 5K—+00 and
X~~ for fixed m, v=0, 1, 2 ~ ~ ~ '.

S„„=(1—si2) [0, m —22 —1jr,22+sib „, (2.28)
s)[2[2 OR K =

T „=(1—s22) [M, N+m+227r i2, (2.29)

U„„=(1—si2) [M, N+m+22+1]gI. , (2.30)

and

V „=—(1—si2) [M, N m —n —2jr,22—, —(2.31)

with

—~I) —~f' (~S~)r

0 8 T
0

U

Di ~2]LR (22[) dpqdp2

X exp (—ilia» —ilpit)2) [6(it)i, it 2)?'
X[1 s2 2—2(1+—22'+222 cosii)2) exp( —iq4) ),

(2.32)

(3.1)

where the left (right) signifies the deletion of the
first row (column) of the matrix. As in I, consider the
linear equations

[),)j e= —[2 ) fdpepp, eep'[ —i)e) —i ))p

X[~(4» 4'2)) '(»s2 sin&2) (2.33)

and

~(~, ~.) =(1+")(1+ ")
—2s2(1 —sp) cosit)i —2si(1 —s2 ) cosset)2. (2.34)

Note that 5 „is the same as the g „of I.

0

g2 g2'

0 X4 24

0 0

0 0

0
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when 8 is the in6nite column matrix

0
0

(3 g)

the number of elements being X—X. Application of
Jacobi's theorem' to (3.1) and (3.2) gives

fiIN'(~, &) =*3+4o' *ao'*—4o (3 4)

where x30, for example, denotes the first element of the
column matrix x3.

At this stage, we take the limit BR~~ and X—+.
Let

It then follows from (3.4) and (3.5) that

(3.9)fux = &30&~0 —&30 &40.

j~~ lim ——f~~(5R, &)
Once f~~ is known, the correlation function, in the

(3 5) limit OR-+~ and K-+~ can be expressed as

or
f~nr = (&0,0&~,ape)/(&o, o&~,N) . (3 6)

By (2.28)—(2.31) consider the inhnite system of linear
equations

0

&~o.o~as,x)=S [Df~.j ',

S~=L1—(smh2Eq sinh2E~) 'ju'

(3.10)

(3.11)

V

X3 g3'

X4 X4

0 0

0

(3 &)

is the square of the spontaneous magnetization.
%e now need to evaluate x3, x3', x4, and x4' when

M'+E' is large. We observe that, for large M'+1P
the elements of 5 are of the order of unity while those
of T, U, and V are exponentially small. Series expansion
in T, U, and V gives

0 0 0 0 —(Sr) ' 0 0

0 0 0 0 0

0 (Sr)—'

0

T U 0 —(Sr)-' 0 0

0

U 0 0 0

0

0 0 (SF)—1
+ ~ . (3.12)

0

See, for instance, A. C. Aitken, DeIermAients end 3futrices (Interscience Publishers, Inc. , New Vork, 1951),p. 99.
& C. X. Yang, Ph~s. Re~. 85, 808 (j952).
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In particular

))'

+30 ~30 0 0

540 $40 0 0 0 F 0

0

0 0

—PS-9 0

P(ST)—1[VS—1U U(ST) —1V]5—lg )T(ST) 1[VS——IT+U(ST) —IU](ST)—1$

+ (3 13)
bTS '[US 'U+T(ST) 'VjS '8

The substitution of (3.13) into (3.9) gives

hTS '[—US 'T T(ST)—'U j(ST) 'f')

f '=: (PS '6)'f1 2(ITS—'f')) 'bTS '[US 'U+T(ST) 'V]5 '(')I (3.14)

vrhere, as in I, =: means that the right- and left-hand sides have the same asymptotic expansion in the
limit M2+N2 +~ and f—ixed T (&T, in this case). The terms neglected in (3.14) are smaller than those retained

by an exponential factor. We proceed to calculate the right-hand side of (3.14) asymptoticaHy.
From (2.28) and (2.32), we may get

vrith

—{2~)—1 P(0) e-i(n-wa)()dg

0

A$ —S]$2 n2 Z2 /zl)

0(0) =[(1—nle") (1—n2e ")/(1—nle ")(1—nle") j'"

(3.15)

(3.16)

(3 17)

The method of Wiener-Hopf, as discussed in I, can be applied to obtain the matrix elements of 5
{3.18)

where the contours of integration are the unit circles, except that the one for $' is to be indented outward near
$'= $. In particular

ITS '8= (5-') =1 (3.20)

(5 ')-2=(2«) ' «P '(1 nlrb')"'—(1 n2$ ') "—', (3.21)

(5 ')o.=(2«) ' df V" '(1—n2$)'"(1 —nl&) ". (3.22)

Substituting (2.29)—(2.33) and (3.19)—(3.22) into (3.14), we get, after performing the matrix multiplication,

&arN'=.
' )+(& ') '(1—~')' f 4 A4& A«~pL' —~W4+6) —)())'+))(4+tt )j

X [(1 z2') e '~2 zl (—1+z2'+2z—2 cos@1)][(1—z2') e '« —zl(1+z2'+2z2 cos()))2) j

(1 n2e '&') (1——nle '~')
X +4z2 sin&1 sin(t)2 [1—exp( —2@2—24)4) j [6((t)1, (t)2) A((t'2, (f)4) ] '. (3.23)

(1—n2e-'~') (1 nle *~')—
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Equation (3.23) can be simplified considerably if we substitute

cosltli= 2z2 (1—zi ) [(1+zi ) (1+so ) —2zi(1 —z2 ) cosql2]

Cosltlo = 2Z2 (1—Zi ) [(1+Zi ) (1+Z2 ) —2zi(1 —Z2 ) COS$4]

(3.24)

(3.25)

into the brackets. These substitutions are justified since the region where A(pi, &2) and A(&3, p4) are zero is exactly
the region which contributes to the integral. We then obtain

fMili2
'

1 ir 4(1 Z12) 2Z22 dpid4112~3d4tl4 exp[ iM—(&1+4tlo) iN (—$2+$4) ]

where
X[e"»+&"—1] ' sin'-,' (lt» —lt 3) [43—yi cos4» —yi cos&2] '[a—pi cos&3 +2 coslt 4] ', (3.26)

and
43= (1+z12) (1+Z22)

y2 ——2zi(1 —Z22) .

yi =2s2(1 —zi'),

(3.27)

Substituting (3.26) into (3.10), we get

(&o,o&M,n)=:& 1—2(22r) 'yi d4tlid4tlod$3d$4 exp[ iM—(&1+&3) iN (&2+—f4)]

X[sin2(lt2+p4)] '[sin-', (pi —&3)]'[43—yicosqti —yocos&2] '[a—picos&3 —yocoslt4] ' . (3.28)

Equation (3.28) is the desired result. However, the form as it stands is not symmetrical under the exchange of
M and S together with that of p& and p2. It is trivial to recover this symmetry by observing that if we carry out
the integrations over &2 and p4 the multiple integral in (3.28) is equal to the residue at

From (3.29), we obtain

43 'ri cosgi —'y2 cosltl2 ——0, and a —yi cosqel3 +2 cosltl4 =0.

'rl sl112 ($1—$3) sil12 ($1+4tlo) +'r2 sli12 ($2—g4) sin —', (ltl2+p4) =0.

(3.29)

(3.30)

Making use of (3.30), we may write (3.28) in the symmetrical form

(lrooo M pr )=:
, 5„1+-2, (24r)

—
'yiy2 d4t»d4tiod4todg4

X exp[ —™(4tli+4t3) iN(4t12+4t14) ] s—in2'(qh —q4) sino (lt2 q 4)

X[sin2 (pi+ltlo) sino (&2+ltl4) ] '[43—yi coslt» —y2 cosltl2] '[a—yi coslt 3 +2 coslt 4] ' . (3.31)

The asymptotic evaluation of the right-hand side of (3.31) is rather tedious and carried out in Appendix B.
The first few terms of the result is given explicitly in (5.2) .

4. SPIN CORRELATIONS ABOVE THE CRITICAL TEMPERATURE

We next turn our attention to the case T& T,. Even in the special case treated in I, it is necessary to modify
the Toeplitz determinant. We accordingly define

Qi

0
03'

D(M N OR K)=
~~gT

(4.1)

0

where the right (left) signifies the addition of a column (row) to the matrix, making use of the points (0, 0) R
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and (M, S)I. in addition to those of (2.24); i.e., we designate

(0, 0)E;- (0, :—,.1)'R, (0, —2) R, ~ ~, (0, -K+1)g, (0, —K}R as ',

(M$ r)Ly (Mp X+1)I-y (Mp $+2)I.p
~ ~ ~

p (My K—1)i/ (M, K)1. as (P.
%e consider the ratio

(4.2)

Qi

0
00

7
—8'

2(M, E;Ki:,K) =LD(M, N;m, K))-I
00

(4.3)

Analogous to (3.3), we consider the linear equations

0 8 F U~& xg Sg'+ 0 0

0

0

0 0
(4 4)

0 g4 X4

r(M, S)= lim r(M, X; 9R, K).
9R,X~m

(4.11)

0
gled

0 In order to compute r(M, X), consider the infinite

(4 5) system of linear equations

0 8 2' U ' xi xi' 0 0

0

the number of elements being K+1 for 8', and K—F11
fol 5 Lcompale (3.4)). AgRII1 Rppl1caf1on of JRcobi s
theorem' to (4.3) and (4.4} gives

/
X2 Xo 0

r(M, X;5R, K) =xoor40 —2:20 &40.

Consider the limit 5K, K~~. First, the ratio

D(M, X+1;m, K)/D(M, E;mr, K)

(4 6)

vrhere

0 [ x4 x4'

U'= hm U
5K,X~m

0

(4.12)

can be obtained by solving a system of linear equations.
Since the index of the kernel that generates the matrix llm ~~V~.

SK,K~m
(4.13)

8= lim 8
9K,K~m

(4.7)

is exponentially small as M2+Ã2 is large. Thus

D(M) = lim lim D(M, S;5R, K)
+~m gg, +-+m

is zero, the procedure of Sec. 3 can be applied, to shower

that the quantity

1—lim [D(M, X+1;BR, K)/D(M, &;~, K)j (4.g)

(4.14)r ( Mp lV) —xoox40 Ã20 +40

As before, me mav obtain the asymptotic expansions

of x20, x20 $4p, and xao' by expanding the inverse matrix

in a perturbation series (3.12):

x2=x4 =0,f

Both (4.7) and (4.13) hold for each fixed matrix

element. With (4.12), it follows from (4.6) and. (4.11)
that

exists and by (4.3) and (235)

(Iro,oo'24 pr) =: PD(M) r(M, X)1112,

*'=—x = —8-I2"(Sr)-IS (4 15)

(4.10) to first order in 2', U, and V. The terms neglected in
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(4.15) are exponentially smaller than those retained By setting
Rs Ms+Ps~~. Tile substltutlon of (4.15) iilto {4.14)
gives

co+i ~'yt ((s—')«s cosgs),

r(M, E) =: (1—zss) 'Fsr )vs)

r(M, +) = pr„(s—12"(gr)—18js (4.16) (4.20) takes the form

To obtain the matrix 8 ', we solve the equations (4.21)

Qb 1(8 ')1 =8

for e&0 (see Sec. 2 of I). The solution is

where
(4.17)

&«« N=(2 ) «f. f A dA«

X exp( iM—yt iS—ys) (u yt—cos({, ps—cosy, ) 1—

(4.18)

where the contours of integration are the unit circles,
except that the one for f is to be indented outward
near $'=$. In particular,

(4.19)
From (2.29), (4.16), and (4.19), we obtain

«(u, ))«) =: ((2««) '(1—««') @gdA

X exp( —iMpi —i%ps) (a—yi cos(f 1—ys costs) '

X{ 1—zs' —zi(1+zs +2zs cos4)i) e ' 'j

x ( l —,«-"'«') '( 1—u 'e '«') 'I .

It follows from (4.10) and (4.21) that

((ro,s(rsr, N )=. Der pr,

(4.22)

(4.23}

D= LD(M) J»{1—zss)

is independent of M, as ((r(),p(rsr, )v) should be sym
metrical with respect to the exchange of j/I, s~ and
E, s2. The values of D can be obtained by comparing
(4.23) with the known asymptotic form of ((r(),()(r(),rr)
given in I. The asymptotic form of F~,& is derived in
Appendix C. The asymptotic form of ((ro,o(rsr, N) will be
explicitly given in the next section. The value of D is
obtained as

(yips)-'»L(sinh2Ei sinh2E, )-'—1j'«.

5. SUMMARY AND DISCUSSIONS

our results may be summarized as follows. e %henM'+¹is large,

((r() ()(rsr,)v)~(2s.). ' 'L(sinh2Et sinh2Es) '—1l' (M sinh81 coshHQ+E cosl181 sinh8s) ' ' exp( MHt —i)It'Hs)-

X {1—(24) '(M tanh81+1V tanh8s) sL3M'tanh'Hi(1+ tanh'8, )

+3¹tanh'Hs(1+ tanh'Hi) —tanh'Hi tanhH (3—5 tanh'Hs) M'/X —tanh'Hs tmh81(3-5 tanh'Hi) ¹/M
+2 tanhH, tanhH~E(3+3 tanh'8, +3 tanh'8, —5 tanhsH, tanhsHs) jy" }

for T& T„and

(os,()(rsr,N) t 1—{sinh2Ei sinh2Es) 'J«(1+ (Ss) '(M sinh81 coshHs+il)' cosh81 sinh8s) s exp( —2MH, —2&Hs)

X{1—,', (M tanh81+X tanhHs) sL21M' tanh'81(1+2 tanh'Hs)

+21¹tanh'8s(1+2 tanh'8l) —tanh'Hi tanhHs(3 —17 tanh'Hs) M'/Ã —tanh'Hs tanh81(3 —17 tanh'8l) ¹/M
+2M' tanha, -tarihH, (21+12 tanh'Hi+12 tanh'8, —17 tanh'8, tanh'8, )j+" })

fol' T(T . Ill (5.1) aild (5.2} Hi alld Hs Rle defined by

cosh81= {aMs+(LM'1Pa'+ (M' —¹)(Msyss —¹yis)g'ls} 'LM'yi '(a' —ass) +i(7'yi j,

(5.1)

(5.2)

(5.3)cosh8s ——{(J¹+PM'X'a'+(M' E') (M'y s—¹ys) 1—'»}—'L¹y (us —y,') +M'y, j
where u, yi, and ys are given by (3.27) . Note that Hi and Hs are both positive when M and Narc positive.

'

The leading term of the correiation function (s0,0 e~,s)) has been discussed reviously by G. V. Ryasanov { Zh Eirsperhu
i Teor. Fis. 49, 1134 (1965) LEnglish transi. : Soviet Phys. —JETP 22, 789 (1966)g and L. P. Kadanoff {Nuovo Cimento 44, 276
(1966)j in the special case where E&=Es and T does not differ too much from 1',. T«heir results are not in agreement with ours.
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o—vi co»(g Immi) —y«cosh(-,' Im|t«) &0. (5.10)

The function defined by (5.9) is studied in some more
detail in Appendix D.

rfrtiidrt«exp( i3—frtii iN—Q«)
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APPENDIX A

At the critical temperature T„ the matrix e1ements of
T, U, and V do not vanish su@ciently fast for the
perturbation method to hoM, and we have not been
able to obtain the asymptotic form of (rro, orr«r, rr) ln
general. However, we shall give here in closed forxn the
correlation function (|ro,oviv, ir) for a symmetrical lattice
(si-—s«) at the critical temperature T,.

To arrive at the lattice site (N, N) from the lattice
site (0, 0), let us take the path (0, 0), (0, 1),
(1, 1), (1, 2) ~ ~ ~ (, ), (, +1), ", (N-1, N),
(N, N). The correlation function is then given by the
standard formula'

g(yi @«) —(pic«)
—'r'C(sinh2Ei sinh2E'«) '—1]'r4

XCo vi cosyi —y«cosp«] ' (5.6)

is analytic in the tube

a—yi cosh(-', Immi) —7«cosh(-,' Imp«) )0. (5.7)

The formula corresponding to (5.4) for T&T, is

much more complicated, namely (3.31). In this case,
the generating function

~(~„~.)= Z (("," . )-~ ) -p('~~+ N~. )
3f,N

—', (2«r) «ply«S (sin-,'yi sin-,'y«) —'

(rro, orrrr, rr) =As«+I'(y '+Q) P(y), (A1)
(5 g)

with the proper sign chosen to, make -this correlation
has much more complicated analytic properties, which positive. In the above, y is the 4E&4E matrix
are the same as

0 I 0

db~df4 sinby sinb2 y= (si '-») (A2)

XCG—'ri cos(81+«Qi) —'y«cos(8«+«Q«)]

XCa —pi cos(bi —-', yi) —y«cos(8« ——',y«) ]-' (5.9) and

Cj—«,j—«]zz Lj »i «+13» ~~' —C~
——«, g

—«+1]sv Lj «+ 1,j «+—1]~v—
Cj i,j «]l.v— —

Lj—«,j—«]vv

Cj i+ 1,j i]sz— —

Lj—«+ 1,j «]vn r'&,"——Lj «,j « 1]vs———

Lj-«-1 j-«-1]»
Lj «j «]vs- —

Lj —« —1,j—«]» Lj «4j GDv+rbij Cj «,j «]nn

!'

Cj «,j « 13~s+~—4 C—j —«j «]«——

wllcl'c cRcll of tlM cle111cllts 111 (A3) ls a NXN matrix' wltll 1 and j 1'llllmng from 1 to

c=(si '—si) '.

For a symmetrical lattice, at T„vie have

Slilce C«y y]cs= —
C«y g]rip we may make use of (A5) arid (2.33) to obtain the recursive relstion

C««+1, ««+1]»= C~s(2««+1) ]-'—(tl„,—b„+„)y(4, )

(A5)

(A6)
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It follows from (A6) that for n&0,

For @&0,we have
L-N, n-$aa = $N-, iijaa.

When (A5) holds, all other matrix elements in (A3) can be expressed in terms of Ln, mj. We shall not go into
the algebra and shall quote only the final results. We found that (A3) can be written as

—Xi—X2+Xi Xi+Xi—Xl/s

—Xi+V2X2

—Xi+Xi—XP —Xi+ Xi+ Xi'

—Xi—X2—Xis —Xi—X2+Xs

Xi—X +X/'/s —xi+XI—Xp' —Xi+AX

where Xj, X2, and X3 are EXP matrices given by

(Xi)v=sL j—i,j—ijaa,

(X2) ' =be/4,

(Xg);;=(2s) '(2j—2i+1)—'.
The Pfaflian of y '+Q can be expressed very simply in terms of Xi, X2, and Xs. Let us denote

(A9)

(A10)

(A11)

0 I
8"=—

0 II —I
(A12)

where II is the SgX matrix
0 —I

and I the unit matrix. Ke 6rst observe here that if A is any ToepHtz matrix, IL4II=Q . @he skew symmetrical
matrix W(y '+Q) W can then be evaluated to be as shown in Eqs. (A13)—(A14) on p. /31.
The right side of Eq. (A14) is obtained from the left side by erst adding the first column to the second column
and then substracting the resulting second column from the first column. From (A1), {A2), (A4), and (A14)
we get

(00,0(rx,~)=2'" det(A),
where

X,(I—11)+X,(I—11/v2) —s-ix,/N

—X,II/v2+X, /v2

Let us split the matrix X~ into two parts,

—X211/v2+X, /v2

Xi(I—II) +Xi(1+11/v2) —sxs/v2

Xi=Xi'+Xi", (A17)
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where, for j—i&0, the skew-symmetrical matrices X&', X&" are given by

(Xg") "=-'(—1)&'-' ——'8". (A19)

e observe that Xi' and X3 are proportional to m' ', while-Xi" and X2, have no m
' factor. Let us therefore split A

into two parts:

where

Xa/K2

A =A'+A",

X3/K2

(A20)

(A21)

At/
Xg"(I—II) +X2(I—II/V2) —X211/v2

Xi"(I—II) +X2(I+II/v2)

—I —I
= (Xr"—Xi"II+X2)

0 I
+(2) "'X,II (A22)

To diagonalize A", we note that the first matrix in the right-hand side of (A22) is diagonal and will remain so
under any similarity transformation. Thus we only need to diagonalize the matrix

This can be done by the operation

T(A") =(1+s') '
I —2'

Xg"(I—II) +X2 (I—II)

0

0

Xi"(I—II) +Xm(I+II)
(A23)

X3

Xg'(I —II) —XsX3

Under the T operation A' becomes

Xg'(I —II) —Xs
T(A') =

formation T':

I II 0 II I —II

—II I II 0 II

In the followiog .discussion we shall assume that E is
even, as the case X is odd can be done in the same way
with but slight modification. For E even we may write 0 —I

0

(A26)

0 II

II 0
(A25)

From (A26) we have

0 0

where II in the right side of (A25) is actually of the
order of —,'EX-',E,-and is hence not quite the same as
the II matrix on the left. However, we shall use the
same notation for them as there is little chance for
confusion. Now we may diagonalize II by the trans-

T'(I—II) =

T'(I+II) =

0 2I

2I 0

0 0

(A27)

(A28)
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It follows from (A19) that we may write

Xg" B

where Xq" in the right side of (A29) again is of order
-'SX-'S

0

Xg =—/1'

0 —j» e

H =Xg"+-',I.

Under the transformation T', X~" becomes

(A30)

T'(Xg") =
0

—H~ —IIX "
H+ IIX'"

(A31)

From (A27), (A28), and (A31) we get

0 2 (H+ IIX'")

0 —I2

-', I 2(H+IIXg")
T'(Xg"—Xg"II+X2+X211)=

0

(A32)

And from (A23) and (A32), we obtain

0 2 (H+ IIX'") 0 0

T'T(A") =
0

0

0

-', I 2 (H+IIXg")

0

(A33)
Similarly, if ~e express Xg' in the form

Xg 8

T'(Xy' —Xy'II) =

Let us denote

0 2 (8+IIX)')

0
(A35)

T'(X3) =
F D

From (A23), (A24), (A31), (A33), (A35), and (A36),
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we obtain

—C —L;+2(8+IIXx')

T'T(A) =
~p I 2 (H+ IIX'") —C —Z+ 2(a+ IIX,')

0 0

(A37)

We observe now that both matrices in the right side
of (A37) are of the order 2$&&2E and the rank E.
The determinant of T'TA is therefore equal to

Q det(M') det(M"),

From (A40) and (A41), we finally have

(«,«&,&)=2"~'"-'~~- LG(&)XG(2&)j-'. (A43)

A few special cases wiH be given bdow

where M' is a rs-rowed minor of T'T(A') and M" the
cofactor of the corresponding minor of T'T(A"). For
the IQlnor

(op, pop, p) =1,

(«,po'g, g) =2/x',

(op pop, p) 16/3%

(A45)

(A46)

20 —'I
of T'T(A"), the cofactor of the corresponding minor

in T'T(A') is

And as E—+~, we have

(«po~ p ) e'I'2""2 PcV '~'(1 p', iV —'+—), (A47)

(A39) where A is Glaisher's constant"

The determinant of T'T(A) is equal to det(M~)
det (Mp), as all products of other corresponding pairs
of minor determinants are zero. Thus we have from

(A15), (A38), (A39), and (A36) that

(op,pa~, ~)=2'~ det(Xp), (A40)

with Xp given by (A11). The closed form for det(Xp)
has been found in I to be

det(Xp) =2'~&~ "x "(G(1V)7'LG(2E) $ ', (A41)

G(Ar) 1w—12&—23Ã—s. . . (AT 1)

1.282427130.

It is interesting to compare (A47) with

(op pop w~)~e"'2'"A 'lV "'[1+(1/1 2)8A' '+ ~ ~ j
(A48)

from I. On the basis of (A47) and (A48), it is con-
jectured that, for Eq ——E2 and 7"=g„ the spin spjn
correlation is asymptotically isotropic for large separa-
tions.

Most of the results of this Appendix, including the
above conjecture, are known to onsager. '

APPENDIX 8

We present here the calculation of the asymptotic series of the spin correlation function helot the critical

temperature. After carrying out the integration over $p and 44, (3.31) becomes

(«,popr, ~)=: $„1—(8~') 'yzyp ' dqbgd4p expL —iM(qbg++p) pAT (+p++p)—j

X slllp(py Qp) s1Ilp(pp p4) LslQpp slI1$4 slllp (py+fp) sin&(gp+Qp)] ~ (Ill)

where Qp and Q4 are related to 4& and Qp by (3.29). To make the i~teg~al in (&1) more symmetrical, let us intro-

duce the variables u and v

'rg coshfp= pc+I,

7 J.%.L. Glaisher, Massenger Math. 24, 1 (1894).
8 See also J. Stephenson, J. Math. Phys. 5, 1009 (1964).



where

Then (3.29) gives
'r~ cosh« =—,'u —n.

With the variables ec and v, (B1) is reduced to

p[—M(& +O ) &(S—+«)j

X sinh-', («—f3) sinh~(if~ —«) [sinh-', Q q+iP3) sinh-', («+«) 7 ' (g sinhg;) ' . (B4)

The saddle point is easily found to be
A =A =Hx, (B5)

where 8~ and 8~ are given by (5.3) . We shall expand the integrand of (B4) in the neighborhood of the saddle point.
From (B2) we have

g /dN = (r smhg )

&Vr/dN' = —vi '(sinh«) ' cosh/&,

O'4/dN' = 'r~ '(sin hP, )
—'(3+2 sinhg&),

Apl/lk4 = —3'rl {slllhpl) coshlpg{5+2 slnh2«),

(B6)

(B/)

(BS)

(B9)
and similarly for the derivations of P& with respect to v. The derivatives of $2, for example, can be obtained from
(B6)—(B9) by the replacement

+1~2
Writing

(B10)

where No and vo are the values of I and v at the saddle point, we have, in the neighborhood of the point

sinh-', («—P,) (2'rg sinhHg) '($—rl)

X[1—(2'r~ smh'8~) ' coshH~($+g) +(Sy&' srnh'8~) '(4+3 srnh'8~) ($+g) '—(2y~' smh 8~) ' cosh'8~(g j, (811)
sinh-', (P,—«) —(2'rg sinh82) '($—g)

X[1+(2'r2 sinh'82) ' coshH~(t+H) +(8'rg srnh'82) —'(4+3 srnh'82) (t+q)' —(2y22 sinh'82) ' cosh'8~&gj, (B12)
[smh-'.(«+«) j ' (sinhH~)

&([1—(2y& srnh'8~)-' cosh(4($+q) + (SyP srnh'Hr) '(3 smh'8~+4) {$+rl)'—(2yr' srnh'8~)-' cosh'8 grl 1 (B13)
[sinh2 (Pq+«) $ ' (sinh82)

+[1+ (2'r~ sinh'82) ' cosh82($+g) + (Sy22 sinh'82) '(3 sinh'82+4) (&+rl) ' —(2y22 sinh482)-' cosh'8, (~j, (B14)

(g sing„) ' (sinh'8l sinh'Hu) '{1+[(y2 sinh'8~) ' cosh82 —(y, sinh'8, ) ' coshH~j(&+q)

+[(2'rP sinh48&) '(3+2 sinh'8&) + (2'r22 sinh482) '(3+2 sinh'82) —(yry2 sinh'8~ sinh'82) ' coshH~ coshH, j
X ($+H)' —[(yp smh48&) '(2+ sinh'Hq) +(r22 sinh482) (2+ sinh'82) 7/rlI, (B15}

exp[ —M («+fg) E($2+$4)j ex—p (—2MHy —2%82)

X exp I [(2'rP smh'8~), 'M coshH~+ (2'r2 srnh'82) 'E coshH j(P+q') I

&& j 1——',[(r&' sinh'Hq) '(3+ sinh'8~) M,—(r2' sinh'82) '(3+2 sinh'82)Ãj{t3+g')

+8[(r~4 sinh~8~) ' coshH~(5+2 sinh'8~)M+(r~' sinhr82) ' cosh82(5+2 sinh~82)Ãj(P+q')

+ (1/72) [(pp slnh Hy) (3+2 slnh Hy) M {rm slnh Hg) (3+2 sing 82)Q)2(@+~3) I
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Substituting (B.11)-(B16)lllto (B4) p
and pllttlng

we may obtain (5.1) by making use of (B17).

= (2r/a2) (1 a-1 —-'a—1 -'a ' 3a-' —"a-') (B17)

We shall derive the asymptotic form of F2/, z defined ln (4.22), when M2+Q2 is large. This asymptotic form
was hrst evaluated by Montroll, Potts, and %ard, ' however, their calculation is not correct. 9

%e start with the alternative form for Ii~ ~,3

F2/, 2/= dx e 'I24(xyi) I~(xy2) .

Being content with obtaining the first two terms in the asymptotic series, we shall replace I„(Z) in (Ci) by

I„(Z) exp[(n'+Z')" Nsi—ilh '(22/Z)](2 ) '/'(I'+Z') ''[1—(248) '(1+Z'/22') '/'(2 —3Z'/22') j. (C2)

Substl'tlltlilg (C2) ln'to (C1) wc gct

Mlt E
F2/ 2/ (22r) ' dx exp ax+(M2+—yi2x2) '/' Msinh ' ——

~ + (X2+y22x2) '/2 Esinh '—
0 yyS) AS

y (M2+~ 2x2) —1/4(II/'2+~ 2x2) —1/4

&([1—(24M) '(1+yi2x2/M2) 2/2(2 3yi'x2/M—') —(24Ã) '(1+y22x2/X') 2/2(2 —3y22x2/1P)j (C3)

We shall evaluate (C3) by the saddle-point method. Let us define

fM
g(x) =ax —(M2+~12x2) 1/2 —(g2+~22x2) 1/2+M sinh 1 ~—

Ih,ygS y2S)

The derivative of g(x) is given by

g&'& (x) =a—x '(M2+y12x2) '"—x '(1P+y22x2) '/'.

The saddle point x, at which g& &(x) vanishes will now be determined. It is convenient to adopt thc following
notation

It follows from (C6) that

Fl'olll (C5) alld (C6) we llavC

81——sinh '(M/Yix2), 82= sinh '(&/y2xo)

A)X sinh8y ——pe sinh82.

'ri coshgi+r2 cos1182=a.

Solving (C7) and (Cg), we may obtain 81 and 82 which are explicitly given in (5.3) .Thc saddle point x2 is g;vcn by

(a2(M2+ip) (M2 +2) (~ 2 ~ 2)+2a[M2+2a2+(M2 ilT2) (M2+ 2 +2~ 2) J/2Ii/2

X["-4+v.)'1-"'["-h -~,) j-/. (C9)

The higher derivatives of g(x) at the saddle point are given by

g@l (xo) = (M tanhgi+X tanh82) xo-2,

ga/(x2) =x2 '[M tanh282+X tanh'82 —3(M tanhgi+E tanh82) j,
g&'&(x,) =3x [M tanh'8&+E tanh'8, —3(M tanh28, +S tanh28, )+4(M tanhg, + gt, „hg,)j,

' One of us (T.Y.N.) wishes to thank Professor E. %'. Montroll for a most helpful discussion on this point.
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Expanding the integrand of (C3) about xq, and denoting $=x—xo, we get

A» N~(2s) 1(M'+y12x(P)-114(&'+y22xo') '" exp( —MHI —&82)

d exp —-', g&2) xo ' 1——,'g~3) xo '—24 'g(+ xo ' j. 72 g(3& xo

X[1—-', xo '(2 —tanh'81 —tanh'82) $+ sxo '(8—10 tanh'81 —10 tanh'82+2 tanh'81 tanh'82+5 tanh'81+5 tanh'82) p]
X[1—(24M) '(1+yimxo'/M') 3I'(2 —3yI2x02/M') —(24K) 1(1+y22xo'/Ã') 3I'(2 —3y22xo'/Ã') ]. (C11)

Now we have

e
—at2(1 (2 (4 (6) —

i /g)1/2(1 Lg—I, 3II 2& 5—
II
—3)

From (C11) and {C12) we obtain

FI»,I» (2xyiy, ) 'I'(M sinh—81 cosh82+E cosh81 sinhH~) 'I' exp( —M81—%82) I 1—(24) '(M tanhHI+E tanh82) '

X[3M' tanh'HI(1+ taIlh'82) +3lP tanh'82(1+ tallll'Hl) —tailh'81 tallh82{3 —5 tailh'82) M'/E
—tanh'82 tanh81(3 —5 tanh'81) Ã'/M+2 tanh81 tanh82MS(3+3 tanh'81+3 tanh'82 —5 tanh'81 tanh'82) ]+"~ }.

(C13)
We may obtain (5.2) from (C13).

APPENDIX D

To determine the singularities of the function (5.9), let us carry out the integration over 81 and 82. We obtain

(Iraqi)
' d82 [ u'+2—ay2 cos-,'P2 cos82 —y2' cos'—2/2 cos'82 —ay2 sin2$2 sinb2

+r2 sln+g2 cosglpg sln82 cos82+'ri cos gt/'I](sln2lpi sln82)

X [y22(cosI/2 —COSI/ I) cos'82 —4ay2 cos+2 sin'-', I/I cos82+2 sin'Qia'+2 cos'g i(y22 sin'+~2 —y12 sin'g I)]—'

X I [a—
V2 cos(lA+~2) ]'—~I'} '". (D1)

The integrand in the integral above, considered as a function of exp(i82), has four simple poles. Let us denote

cos82+ (Ii cos222'2 sill 2/1& cos2I/'1[8 sin 2I//I sill gl//2+(s111 2lp2 sill 2lpl) (y2 SII1 g'2 'yl sII1 glori)] I

X[y2(cos'+2 —cos'gi)] ', (D2)
then the four poles are located at

exp(iHI+), exp( i82+), —exp(92 ), exp( —ibo ).
When two poles pinch the contour, the integral is singular. The pinching occurs only at

ol
exp(i8,~) = exp( —F2~),

exp{is, ) = exp( —iH, ). (D5)

From these, we conclude that there are four singularity curves given by

8+'ri cos2I/'I+'y2 cosgm ——0.


