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Eq. (8) yields the following values for the crystal-field
parameters:

by= (0.268--0.014) X 10~4cm™,
bs= (—0.019-0.009) X 10~4cm.

Table I compares values of & and b for the Eutt ion
in hosts of two different cubic structures. The oxides
have the NaCl structure, as does EuS, and the fluorides
have the fluorite structure. The host lattices are listed
in order in increasing lattice parameter. The strong
dependence of the crystal-field parameters on inter-
atomic separation, illustrated in Table I, is consistent
with the small values inferred for EuS on the basis
of our results. In particular, the change in sign of &,
in the oxides, occurring at SrO, suggests a possible ex-
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planation for the small values of b, and bs exhibited by
EuS. Table II lists the available data concerning K;/M
and K,/M in the europium chalcogenides, which in-
dicate that b, may be going through a minimum as a
function of lattice parameter, rather than changing
sign. The variation in b, in the fluoride series reinforces
this opinion. One cannot easily extend this comparison
to EuTe, the last number of the chalcogenide series,
because it is an antiferromagnetic with a complicated
spin arrangement.
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We study the asymptotic behavior, for large separations, of the spin-spin correlation function {oo,o,5 )
in the two-dimensional Ising model, where the two spins are not necessarily on the same row. Besides the
limiting value for infinite separation, which is the square of the spontaneous magnetization, we evaluate
the two leading terms in the asymptotic expression in each of the two cases < T, and 7> T.. It is found
that the nearest singularity of the generating function for the correlation is quite simple in the case 7> T,
but much more complicated for T<T.. In an Appendix, we also give exactly in a very simple form the
correlation (go,0on,n ) for symmetrical Ising lattice at the critical temperature T.

1. INTRODUCTION

N a previous paper on the two-dimensional Ising
model,! the asymptotic form for large separation

of the spin-spin correlation function (oo 00,x) Was given
for two spins in the same row. In this paper, we shall
give the asymptotic form of the correlation function
(o000m,n) for arbitrary M and N, when M2*+N? is
large. Since the case M =0 or N =0 is already treated
in I, we shall, without loss of generality, assume both
M and N to be positive. As in I, we have to treat the
three cases T<T., T>T,, T=T,, separately. We shall,
however, give the asymptotic form of the correlation
function only for the cases <7, and T>T,, where
the results in I can be regarded as a special case of our

* Work supported in part by the National Science Foundation.

1 National Science Foundation Senior Postdoctoral Fellow.
Permanent address: Harvard University, Cambridge, Massachu-
setts.

LT, T. Wu, Phys. Rev. 149, 380 (1966). The paper is hereafter
referred to as I. For a related article, see B. M. McCoy and T. T.
W, 4bid. 155, 438 (1967), which is IT in the series.

results here. These results are summarized in Sec. 5.
For the case T'=T,, we shall give in Appendix A the
correlation function {ooon,n) for a symmetrical Ising
model. The asymptotic form of {oo,00,x) for arbitrary
M and N at T'=T, has not been obtained. In other
words, we carry out the program outlined in Sec. 8(Aa)
of I.

2. CORRELATION (o¢,00n,v)

Let us consider a two-dimensional Ising lattice with
29X 2 lattice sites. The lattice sites at the boundary
are assumed to join in such a way that (0, —91+1)
and (M, 91) are nearest neighbors. More precisely, we
assume M to be multiple of M, and the Hamiltonian is
taken to be

M N1
- El Z [U'm —NH1Tmy M N Z Om .no'm.n+1]
m=IM+1 n=01+1
m N

_E2 E Om,nOm+1,ny (2'1)

m=—NM+1 n=90+1
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where the positive constants F; and E, are the two
interaction energies between pairs of neighboring spins.
In (2.1), omn is to be interpreted as om—son,» When
m> .

Note that our Hamiltonian as given by (2.1) is
dependent on M. That is, we are here proposing to
calculate the spin-spin correlation function {vo0oarn)
with a Hamiltonian which varies with M. Strictly
speaking this is not the Ising model. However, the
dependence on M comes from the boundary terms only.
It is our hope that, as 9, I—co, the “boundary
effects” would vanish, and the correlation function we
obtain agrees with that of the Ising model. It is incon-
ceivable to us that such artificial alteration of the
Hamiltonian is inherently necessary for the analysis of
the Ising model. In other words, the present difficulty
with the boundary effects is believed to be entirely due
to imperfections in our calculational procedure. Un-
fortunately, despite all of our efforts, a simpler method
cannot be found.

In order to understand this particular way of joining
the boundaries, we evaluate the free energy for the
Ising model on the basis of (2.1). Let K= (kT)'E;
and Ko= (kT)'E,, then the partition function Z is
given by?

Z%= (2 coshK; coshKs,)¥0 detd, (2.2)

where A is the same matrix as the one given by
Montroll, Potts, and Ward,? except that here

[0 2z 0 0|
00 00
A(m~+M,9; m, —N+1) = , (2.3)
0 0 0O
[0 0 0 0|
[ 0 0 0 0
—2 0 0O
A(m, =N+1; m+M,N) = , (24)
0 0 00
L 0 0 0 0
and
A(m, —A1; m, N) = A (m, N; m, —N+1) =0, (2.5)

where the notation of Montroll, Potts, and Ward?® is
used, in particular,

z;= tanhK;, i=1,2.

2 Strictly speaking, because of boundary effects, Z and
Z {o0,0001,5) are each to be expressed in terms of four Pfaffians,
P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963) ; see p. 293]. How-
ever, in view of the difficulty discussed in the predecing paragraph,
we here ignore all problems associated with boundary effects.

3 E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963).
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The value of det4 can be evaluated in the following
way. Define the 4M X4M matrices A (7, n; @/, n'),
where M, m’ = — M9N+-1, —M9NH-2, -+, M7 —1,
M-9% and n, n' = —9+1, + -+, 91—1, N, by the matrix
elements, with 7, 7/=0, 1, «++, M —1,

[[i(?’?),, ’}'L;’ffb,, 'ﬂ/)]j,j' =A(M’I7L+], "5 Mm,'l"j,: ”,)' (26}

Note that both sides of (2.6) are 4X4 matrices. We
shall order these 4M X4M matrices A by the index

(2.7)

which runs from —2MMN—I+1 to 2MIINIT—9I.
Because of these limits, it is convenient to extend /
periodically. With this convention, by (2.1) A (7, n;
7/, n’) really depends only on I—/'; i.e.,

l=n—23Um,

/I ('ffL, ", ?’)_’L,, ’ﬂ’,) =1£1.l—l’? (28)
with ) )

Ayp=A4,, (2.9)
where P=4M'9M91. By rearranging the rows and
columns, the original matrix 4 can be written as

r 0 4, Ay AP—IT

A, A 0 Ay /Ip—z

A, A (2.10)

-

I{P—S

A»—-P+3 oo A_o _

| Apis Apae

By (2.9), this is a cyclic matrix. Thus its determinant
is easily found to be

P—1
detd =] det\®, (2.11)
1=0
where A\ is the 4M X4M matrix
P—1
A =>" Ay exp(i2nil'/P). (2.12)
/=0

It remains to evaluate detA®, Equation (2.12) is
more explicitly
N M

(X(l))j]"= Z Z A(M’fﬁl—l-j, n,;jla 0)
e AR R M | Y
5 exp[2mil(n’ —29tm") /P]. (2.13)

Since 4 (e, 8; o/, ') depends only on a—a’ and 3—48’,
A® is a Toeplitz matrix. Therefore, we may define

(A®) jir =N ®, (2.14)
Furthermore, from (2.13), we have
AP =\ exp(—ib), (2.15)
where
0=xMI/oM. (2.16)
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The matrix A® can therefore be written as

r Ao MO D eee Apa®@7]

P WL Ao® MO e Ay ®

N TR U ) VY Ao® cee AMs? . (2.17)
i NI WO R WU RS WO

The determinant of A® is found to be

M-1
detA® = J] detA® (), (2.18)
=0
where
M-1
AO(5) = 2 Ny ® expl[i(2mj—0)5'/M]. (2.19)
/=0

Substituting (2.13) and (2.14) into (2.19), and taking care of the fact that 4 (a 8; o/, 8) is nonzero only when
(o, B) and (o, B') are either the same or nearest neighbors, we get

AO( 5) =M§ % Mf)m A(Miw' 47, 50, 0) exp[2mil(n'—29U7") | P+i(2mj—0)7'/ M ]
=0 =L it Y19+
=4(0,0;0,0)+A4(1,0;0,0) exp[i(2rj—8)/M]+A(—1,0;0,0) exp[—i(2nj—6)/M]
+A4(0, 1;0,0) exp(2wil/P)+4(0, =1;0,0) exp(—2mil/P). (2.20)
From (2.20), we may make the explicit evaluation
detA®( 7) = (142:2) (14222) —225(1—22) cos(2mj/M —wl/IM) —221(1—252) cos(2xl/P). (2.21)
From (2.2), (2.11), (2.18), and (2.21), the free energy per spin is given by
= —kT(4MN) InZ

= —kT In(2 coshK; coshK>)

P—1 M—1

—ET(8MIN) 1Y, > In[(14-2:2) (142:2) — 225 (1—212) cos(2mj/M — /M) — 221 (1—252) cos(2xl/P)]. (2.22)
=0 j=0

In the limit 97, 91—, (2.22) becomes

F=—FkT In(2 coshK; coshKs) —kT(87r2)—1‘/7r dér Td(bz In[[(142:2) (14252) —22,(1—2:2) cospr—221(1—252) coses].

(2.23)
Note that M does not appear in (2.23).

Having verified that the particular way of joining the boundaries does not effect the thermodynamic properties
of the system, we turn our attention to the correlation {(go00a,x). From the lattice site (0, 0), we may arrive at
the lattice site (M, N) by the following sequence: (0, 0), (0, —1), (0, —2), «-+, (0, =9t+1), (M, N),
(M, n—1), <+, (M, N+1), (M, N). Again using the notation of Montroll, Potts, and Ward,? it is convenient
to designate :

(0> O)L, (0: —'1)[‘) ty (O’ —91+2)L, (0; —"m-{—l)[’ as @7
(07 —I)R: (07 -Z)Ry ) (0: —fﬂ,'f-l)R, (0: —fﬂ,)R as @:

(M;N)R; (M:N+1)R;°"7 (M:m—z)R7 (Mam_l)R as @;
and
(M,N+1)L, (M,N+2)L, ---, (M, =1L, (M, )L as (@, (2.24)
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where (0, —91) R is defined to be (0, 91) R for the sake
of symmetry. With the choice of such a sequence of
lattice sites, we can follow the known procedure to
express {oo,00 ) in terms of Pfaffians?
(oo0om w)== lim zVP(y*4+Q)P(y),
M, I—»0
where P(y) denotes the Pfaffian of y, and the sign on
the right-hand side should be chosen so that the
correlation is positive. In (2.25),

(2.25)

O @ 66
oo -1 o0 oj
®@| 1 o o0 0
y=(z"'—2) ., (2.26)
®l o o o I
@Lo o —-I o]
© © ® @
o[ o S T U]
@| -8 o -U 7V
y Q= (1—2%)" ) 3 1
®| -T v o =8
®L-0 -v 8 o
(2.27)

where S7 is the transpose of S. In (2.27), the elements
of the finite matrices S, T, U, and V have the follow-
ing limiting values, called S,. etc., as M—co and
N—oo for fixed m, n=0, 1, 2+ -:

Son=(1—22)[0, m—n—1]1r+210m, (2.28)
Tmn: (1'—212) [M, N-I—m-}—n:]w, (229)
Umn= (1 '—212) I:M, N+m+n+1]LL, (230)
and
Vin=—(1—22)[M, —N—m—n—2T]1z, (2.31)

with

[h, blir=—(2m)~2 _/ / drdee

-V -7

X exp(—ihg1—ilp) (A, ¢o) J™
X[ —222—21 (14224225 cosgy) exp(—igs) ],

(2.32)
[l1, l2]LL= -_ (271‘)—2/1 /T d¢1d¢2 exp( -—illqh—'ilzd)g)
X[A(¢1, ¢2) I (242 singy), (2.33)

and
A(¢y, ¢2) = (1+2%) (1+2)

—282(1—22) cosr—221(1—22%) cose. (2.34)
Note that S,., is the same as the @u—y, of 1.
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From (2.26) we have
P(y) = (a1t —2) 2N,
thus (2.25) becomes
(oo n)==% lim (1—22)®NP(y14Q)
M e
0 S T Uw
& o -0 ¥
= m . (2.35)

mIA>=| [ 0 =8

We are therefore left with the evaluation of the deter-
minant on the right-hand side of (2.35).

3. SPIN CORRELATIONS BELOW THE CRITICAL
TEMPERATURE

To obtain the asymptotic form of the correlation
function (ooeomn) for T<T., we first consider
Sfun (9, 91), which is the ratio of the expectation value
of ao,00m w41 for finite N and N to that of oo eom v for
the same 9 and 91. More precisely

0 S T~ U~
—&r 0 —U~ V~
—-NT NU 0 — -/\J
fmﬂl2(m;m) = 0 S ( T ) [7 )
-8 0o -=U V
—T U 0 -8
- -V Sr 0
(3.1)

where the left (right) ~ signifies the deletion of the
first row (column) of the matrix. As in I, consider the
linear equations

0 S T U[ fq [0 07
-8 o0 U V||& @& 0 0

-7 U 0 -S||& & B 5ol
-0 -7 & ofla @] Lo &
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where

[17]
0

on
I

(3.3)

——O—I

the number of elements being U —AN. Application of
Jacobi’s theorem* to (3.1) and (3.2) gives

Jan*(IM, N) =Taoao’ —Fao Tuo. (3.4)
where T3, for example, denotes the first element of the
column matrix &s.

At this stage, we take the limit 9l—c and N—eo.
Let
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when ¢ is the infinite column matrix

[17]
0

6= 0

.

(3.8)

.
It then follows from (3.4) and (3.5) that
(3.9

14 7
fMN2 = X30%40 — ¥30 X40.

Once fuwn is known, the correlation function, in the

Jun =smlgn Jorw (30, 9) (3.5)  limit M—o and N— can be expressed as
or — a 1 31
Jauw= {00,000 N+1)/ {00,093 ¥ )- (3.6) {7000.) Sm[nI—yM"] ’ (3-10)
By (2.28)-(2.31) consider the infinite system of linear
equations whered:5
-1 o o7
0 S T Ulf= & 00 S, =[1—(sinh2K; sinh2K5)~2]"*  (3.11)
— ST — /
S 0 v Vil = @ _ 00 is the square of the spontaneous magnetization.
_ _ o ’ We now need to evaluate x3, #3', &4, and x,’ when
T v S| # @ 5.0 M?4-N? is large. We observe that,’for large M*+N?,
_ _ T / the elements of S are of the order of unity while those
L—U 14 § OfLlaw wf 1O 4] of T, U, and V are exponentially small. Series expansion
(3.7) in T, U, and V gives
[~ 0 S T Ulr [0 =St 0 071 o =Mt o0 0 ]
-7 0 -U 14 S 0 0 0 S 0 0 0
-T v o =S 0 0 0 (SM) 0 0 (U e
| -U —-v ST o] Lo 0 -5t 0o | Lo 0 -5t 0 |
f_ 0 0 T U0 —(sM)* 0 0 ]
0 o -U VvV N 0 0 0
X Heee. (3.12)
-T U 0 0 0 0 0 (SO
| - -v o0 o_Lo 0 -5t 0 ]

4 See, for instance, A. C. Aitken, Determinants and Matrices (Interscience Publishers, Inc., New York, 1951), p. 99.
§ C. N. Yang, Phys. Rev. 85, 808 (1952).



724 H. CHENG AND T. T. WU 164

In particular
[~ 0 S T Utlifo o

l:xgo X30’ 0 0 6 O —ST 0 —-U |4 00
X40 x40’ 0 0 O 57‘ -T U 0 -S 6 0
v -v st o] Lo &

0 67515
—o67S— 1% 0

&7 (ST VS —U(ST) WIS —87(ST)[VST+U(ST)U](ST)
+ +---. (313)

STSILUSWUA+T(ST) V]S —8TSLUST—T(ST)"\U](ST)~s
The substitution of (3.13) into (3.9) gives
Fun?= (675716)2{1—2(87S18) WIS LUSIUH-T(ST)"1V 1S5}, (3.14)
where, as in I, = means that the right- and left-hand sides have the same asymptotic expansion in the

limit M2+N?—c and fixed T' (< T. in this case). The terms neglected in (3.14) are smaller than those retained
by an exponential factor. We proceed to calculate the right-hand side of (3.14) asymptotically.
From (2.28) and (2.32), we may get

27
Spn= (2m)1 / (6) =g, (3.15)
0
with
P(0) =[(1—0ne®) (1—0ne™) /(1 —cue™®) (1—aze®) ]2, (3.16)
a1 =22%%, as=2"/2, (3.17)
and
2% = (1—2)/(1+2). (3.18)

The method of Wiener-Hopf, as discussed in I, can be applied to obtain the matrix elements of S~:
(S )mn=— (ZW)‘Zde E“"“(l—a2£)"2(1—alé)‘”zfds' g =) (1= )P (1—at™) 72, (3.19)

where the contours of integration are the unit circles, except that the one for ¢ is to be indented outward near
¢ =¢. In particular

S 15= (S ) p=1, (3.20)
(1) 0= (2mi) 7 fide £ (1) 2(1—auf™) %, (3.21)

and
(S on= (2m')—1?{ d £ (1= agt) V(1 — ) 12, (3.22)

Substituting (2.29)-(2.33) and (3.19)—(3.22) into (3.14), we get, after performing the matrix multiplication,

fMN?¢1+<8w4>—1<1—z12>2[ " f ’ / ’ f " deidbodbadss expl—iM (k) —i(N+1) (o-+0) ]

I e e

X {[( 1—22) e~i#2— gy (1422222, coser) J[ (1 —22%) ™4 — 21 (14254225 cosehs) ]

(1 —-age”"'”) ( 1 —ozle'““)
(1—ape4) (1 —one™"2)

+42,* singy Sind’a} [1— exp(—ige—ids) ][ A(d1, do) Alds, ¢a) I (3.23)
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Equation (3.23) can be simplified considerably if we substitute
cosgr =521 (1—22) [ (1+4-21%) (1+425?) —221(1—25) cosepz] (3.24)

cosgz= 321 (1—2:2) [ (14-2:2) (1+22%) —221(1—2?) coses] (3.25)

into the brackets. These substitutions are justified since the region where A(¢1, ¢2) and A(¢s, ¢4) are zero is exactly
the region which contributes to the integral. We then obtain

and

funt=1—a—4(1—22) %2 f " / . / i / drdeaddrsdrs expl —iM (drt+gs) —iN (dats) ]

X [ei@rté0) — 171 sin2L (¢ —¢ps) [@—y1 cOS1—1 cOSPo | [ @ —71 cOSPs—72 cosps ™Y,  (3.26)
where

d=(1+212)(1+222), 71=232(1—Zl2),
and
vo=22z1(1—27). (3.27)

Substituting (3.26) into (3.10), we get

(0,008, 5) % Seo {1“%(277)""‘)’12‘/,r /r /1 /rd¢1d¢zd¢ad¢4 exp[ —iM (¢p1+¢s) —ilN (¢at+¢a) ]

- —r¥—7Tv¥—rw

X [sing (¢o+ea) J2[sing (¢1—¢s) JLa—71 cosgr—72 cosge ] [a—71 cosps—"2 cos¢4]‘1} . (3.28)

Equation (3.28) is the desired result. However, the form as it stands is not symmetrical under the exchange of
M and N together with that of v; and v,. It is trivial to recover this symmetry by observing that if we carry out
the integrations over ¢, and ¢, the multiple integral in (3.28) is equal to the residue at

a—y1 COSP1—7y2 COspo=0, and a—~1 cosp3—~y2 cosgs=0. (3.29)
From (3.29), we obtain
Y1 5ing (¢1—¢s) sing (¢1+¢s) +v2 sing (da—s) sing (¢a+¢s) =0. (3.30)

Making use of (3.30), we may write (3.28) in the symmetrical form

(Goorae. )= Sm{ t+3en-mf [ :d¢1d¢zd¢3d¢4

—r Y=y —r—

X exp[ —iM (¢1+¢s) —iN (¢a+s) ] sing (p1—s) sing (po—s)
X [sind (¢1+¢s) sing (da+s) T [a—~r1 cospr—72 cosps ] [a—1 cosgs—2 COS¢4]’1} . (3.31)

The asymptotic evaluation of the right-hand side of (3.31) is rather tedious and carried out in Appendix B-
The first few terms of the result is given explicitly in (5.2).

4. SPIN CORRELATIONS ABOVE THE CRITICAL TEMPERATURE

We next turn our attention to the case 7> T.. Even in the special case treated in I, it is necessary to modify
the Toeplitz determinant. We accordingly define

@ @/ @/ @/
T

® 0 S~ U~
Q@ | —~8" 0 —~U ~Vx
D(M, N; 9, o) = ) _ b (4.1)
® -T U~ 0 - S~
@ |-~U0 -V~ =~8° 0

where the right (left) = signifies the addition of a column (row) to the matrix, making use of the points (0, 0) R
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and (M, N)L in addition to those of (2.24); i.e., we designate

(0, O)R,(O:"'I)R) (0) -Z)R; *

and

(M,N)L, (M, N+1)L, (M, N+2)L, ++-, (M, R=1)L, (M, )L as

We consider the ratio

7(M, N; 9, 3) =[D(M, N; o1, 50) ]~

Analogous to (3.3), we consider the linear equations

0 S~ T
—~87 0 —=U
~T I 0
| —~U —=Vx ~8T
where
17 17
- 0 -
y=|-1, &=]- (45)
0. o]

the number of elements being 9t+1 for §, and T —N+1
for 8" [compare (3.4)]. Again application of Jacobi’s
theorem? to (4.3) and (4.4) gives

r(M, N; 9N, 9N) =ZoTao' — o0 Tao. (4.6)

Consider the limit 91, 91— . First, the ratio
D(M, N+1;9m,9)/D(M, N; 9, N)

can be obtained by solving a system of linear equations.
Since the index of the kernel that generates the matrix

S= lim S~ (4.7)
M, N>

is zero, the procedure of Sec. 3 can be applied, to show
that the quantity

1— lim [D(M, N+1;91,90)/D(M, N;9, )] (4.8)
M, N>

is exponentially small as M?4N? is large. Thus

D(M)=lim lim D(M,N;o,3)  (4.9)
N> N, I~>o0
exists and by (4.3) and (2.35)
{oo0ou ny=[D(M)r(M, N) Tz, (4.10)

164
* % (0; —31+1)R, (0; —m)R as @/;
@' (4.2)
© © ® @
® 0 S T U
@|-8& o -U V
_ _ _ (4.3)
®|-T U 0o =S
@|-0 -V 8§ o
U~—| % & |[0 0 _|
VR || & & || 0
} (44)
— S~ T3 Zi3/ 0 0
0 _|l& #&_[lL0 & _]
where
r(M,N)= lim (M, N;9M,N). (4.11)

M, N>

In order to compute r(M, N), consider the infinite
system of linear equations

-0 8§ T U|[wm «7| [0 0]
=80 U V||x 5 0
- 0 o -8||m 0ol
| -0 v & ol «l Lo &
(4.12)
where 5 .
U= lim Ur,

M, N->0

and B _
V= lim xV~.
M, N>
Both (4.7) and (4.13) hold for each fixed matrix
element. With (4.12), it follows from (4.6) and (4.11)
that

(4.13)

(4.14)

As before, we may obtain the asymptotic expansions
of %, %', %, and xx’ by expanding the inverse matrix
in a perturbation series (3.12):

r (M s N ) = x20x4o'—x20’x4o.

Xo= x4’ = 0,
and n
2y = —ay= — ST (ST) 3, (4.15)

to first order in 7, U, and V. The terms neglected in
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(4.15) are exponentially smaller than those retained
as M2+N?—o, The substitution of (4.15) into (4.14)
gives ‘
r(M, N)=[s78-T(87)-1 . (4.16)
To obtain the matrix S, we solve the equations
an—-l ( S_l) 1m=0nm
=0

for n>0 (see Sec. 2 of I). The solution is

(50 == (2) 2 f [(1—eut) (1—as718) Tt

(4.17)

xf[(l—-als'*l)]"%E’—é)*‘é"d_é', (4.18)

where the contours of integration are the unit circles,
except that the one for ¢ is to be indented outward
near §=¢. In particular,

(8Yom= (2i)f [ (1—cud) (1= T2,
(4.19)
From (2.29), (4.16), and (4.19), we obtain

(M, N)= { (2m)~2(1—22) f ’ / " dendts

X exp(—iMe1—iN¢s) (a—~1 cos1—a cosgpz) !
X[1—=32—2 (1422422 cosgr) e~2]

2
X (1-ale‘“’?)“(l—ag_le_"‘“)_‘} . (4.20)
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By setting
cospr=71""(¢—72 cos¢s),
(4.20) takes the form
r(M, N)’%‘(l—Zzz)ZFM,NZ, (421)
where
Fun= (27r)“2_/ / deprdeps
X exp(—iM1—iNs) (a—1 cos1—72 cosps) L.
(4.22)
It follows from (4.10) and (4.21) that
{oo00u,5)=DFyr , (4.23)

where
D=[D(M)]"*(1—2?)

is independent of M, as (voe0a,n) should be sym-
metrical with respect to the exchange of M, 2 and
N, 2. The values of D can be obtained by comparing
(4.23) with the known asymptotic form of (g0 00.x)
given in I. The asymptotic form of Fyr y is derived in
Appendix C. The asymptotic form of {(zo,00ar,x) Will be
explicitly given in the next section. The value of D is
obtained as

(yry2) ~V*[ (sinh2K; sinh2K,)—1— 114,
5. SUMMARY AND DISCUSSIONS

Our results may be summarized as follows.® When
M?*+N? s large,

(00.003,5)~ (2m) 712[ (sinh2K; sinh2K,)~2—1]14(M sinhfy coshfe+N coshd, sinhéy)=1/2 exp(— M6y —N6s)
X {1—(24)"Y(M tanhé+N tanh6,)—3[3M2tanh?;(14 tanh?,)
+3N? tanh?,(1+ tanh’;) — tanh’; tanh,(3—5 tanh®,) M3/N — tanh®, tanhf;(3—5 tanh?,) N3/M

+2 tanh6; tanh6,M N (34-3 tanh?;+-3 tanh?,—5 tanh?); tanh?,) J4-+-}

for T>T,, and

(5.1)

{00,000, 5 )~[1— (sinh2K; sinh2K5)~2]"4(1+4 (87) ~1(M sinhé; coshf:+N coshé; sinhf,)~2 exp(—2M6,—2N6;)
X {1—5 (M tanh6s+N tanh6,)~[21}1? tanh®y(1+2 tank®0)
+21V? tanh*,(1+2 tanh%,) — tanh®), tanh6,(3—17 tanh?,) M*/N — tanh®, tanh6,(3—17 tanh?,) N3/ M

~+2MN tanh; tanihf, (2112 tanh%;+-12 tanh?,—17 tanh®; tanh%) ]+---})

for T<T.. In (5.1) and (5.2), 6, and 6, are defined by

(5.2)

coshty = (B[ MV (M2— ) (Mot~ Vo) T2} LMoot (=) 4N,

and

cosht = (V2 [MENtaE- (M2 — N?) (M= Nowst) o)y (=) + M),

(5.3)

where @, v1, and v, are given by (3.27). Note that 6; and 6, are both positive when M and & are positive.

¢ The leading term of the correlation function {(oo,0 oa,n) has been discussed

reviously by G. V. Ryazanov { Zh. Eksperim.

iTeor. Fiz. 49, 1134 (1965) [English transl.: Soviet Phys.—JETP. 22, 789 (1966)_]5J and L. P. Kadanoff [Nuovo Cimento 44, 276
(1966) ] in the special case where Ei=FE; and T does not differ too much from T¢. Their results are not in agreement with ours,
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Even though these results are rather complicated,
(5.1) actually comes from the very simple formula

(0'0,00'M,N>$ (7172)“‘/2[(sinh2K1 sinh2K2)‘2—— 1]”4

x 2y [ [ ity exp(—idtgn—iNg)

X[a—~1 cosg1—7: cosgz ], (54)
If = is the generating function

Sy d)= o (oosrw) exp(iMéi+iNes), (5.5)

M N=—c0

then
(¢, ¢2) — (vry2) V2[ (sinh2K; sinh2Ky) 2 —17]1/

X [a—~1 cospr—2 cosps | (5.6)
is analytic in the tube
a—+1 cosh(} Im¢n) —v2 cosh (3 Imge) >0. (5.7)

The formula corresponding to (5.4) for T < T, is
much more complicated, namely (3.31). In this case,
the generating function

Z(¢, ¢2) = i ({0,000 ¥)—Ss) exp(iMp1+iN¢s)

M ,N=—c

(5.8)

has much more complicated analytic properties, which
are the same as

1(27) " 2yry2So (sinkés singgs)

X / / d61d8, sind sinds

-

X [a—~1 cos(81+35¢1) —v2 cos(8+3¢2) 1
X[a—~1 cos(d1—%¢1) —v2 cos(8a—3¢2) I (5.9)

[[j—1,j—ilre

[j—i,j—i—1weted [5—i,i—iler
y 1 +Q=

[j—i,j—i—1]ur Li—t,—ius

| [j—i—1,j—i=1Ior  [j—i—1,j—ilos

H. CHENG AND T. T. WU

Lj—t,j—i+1re—cdi; [j—4,j—i+1]rv

164

in the tube

a—~1 cosh (% Im¢;) —v2 cosh(2 Im¢y) >0. (5.10)

The function defined by (5.9) is studied in some more
detail in Appendix D.
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APPENDIX A

At the critical temperature T, the matrix elements of
T, U, and V do not vanish sufficiently fast for the
perturbation method to hold, and we have not been
able to obtain the asymptotic form of {(ooom ) in
general. However, we shall give here in closed form the
correlation function (go,00x ) for a symmetrical lattice
(z1=2,) at the critical temperature 7.

To arrive at the lattice site (N, N) from the lattice
site (0, 0), let us take the path (0, 0), (0, 1),
(1’ 1); (ly 2)"'(”7 %), (nl M’+1)7 ) (N_ly N)7
(N, N). The correlation function is then given by the
standard formula?

(000w w)=E£2NP(y4Q) P(y), (A1)

with the proper sign chosen to make this correlation
positive. In the above, y is the 4NV X4N matrix

—

0 I 0 OT
—-I 0 0.0
y= (2" —21) ) (A2)
00 0 I
| 00 -1 o]

and

where each of the elements in (A3) is a N XN matrix, with ¢ and j running from 1 to N, and where

c= (Zl_1 —Z1)—1.

For a symmetrical lattice, at T, we have

n=z=z=V2—1,

[j—i+1,j—i+10ep 7]
Ci—4,7—iww [7—i+1,7—]w
[j—i, j—iJow [j—i+1, j—iJop—cy |
Lj—i—1,j—i]ov+cdi; [j—i,7—i]op -
(A3)
(A4)
c=1. (A5)

Since [, jler= —[4,j ]z, we may make use of (AS) and (2.33) to obtain the recursive relation

[n+1, nt+11rr=[rz2(2n~+1) T — (6n0—08n+1,0) / (42) — [, n]rg,

(A6)
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It follows from (A6) that for >0,
—1)
[n, n]mz=(1rz)_ (42) _(42)*15710- (A7)

For n<0, we have

[—n, —nler=—[n, n]rr.
When (AS) holds, all other matrix elements in (A3) can be expressed in terms of [#,7]. We shall not go into
the algebra and shall quote only the final results. We found that (A3) can be written as

r X1 '—Xl—\/_Xz —Xl—X2+X3 X1+X2'—X3/Z~
—X1+\/7X2 —-Xi - X1—Xo—Xsz —Xi—Xo+X;
y Q=2 ) (A8)
=X+ Xo—XsT =X+ X+ X"z —-Xi —X1—V2X,
Xi—Xot- X"z —Xi+Xo—Xs'  —Xi+V2X, Xa __
where X1, X5, and X; are N XN matrices given by
(Xl) 1}"2[]'—% 1]133: (Ag)
(X2)i5=06i/4, (A10)
(Xs)s5= (2m) (25— 2i+1)~ (A11)
The Pfaffian of y~1+Q can be expressed very simply in terms of X3, X,, and Xj. Let us denote
10 0 I
110 I II 0
W= 5 ) (A12)
0 II -I 0
| IT 0 0 —-I_]

where II is the N XN matrix
[0 17

II

| 1 0_|

and T the unit matrix. We first observe here that if 4 is any Toeplitz matrix, IIAII=A7. The skew-symmetrical
matrix W(y'4+Q)W can then be evaluated to be as shown in Eqs. (A13)-(A14) on p. 731.

The right side of Eq. (A14) is obtained from the left side by first adding the first column to the second column
and then substracting the resulting second column from the first column. From (A1), (A2), (A4), and (A14)
we get

(oo,00w,5)=2%N det(4), (A15)
where
[Xl(I—II) X, (I—=11/V2) —51X3/V2 — X II/N2+X3/V2
A= (A16)
— X IIN24+-X3/V2 X (I—1I) + X (I4+11/V2) -—ng/\/fZ]

Let us split the matrix X; into two parts,
Xi=Xi/+Xy, (A17)
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where, for j—i20, the skew-symmetrical matrices Xy, Xy’ are given by
(XY=t S (=)= (2141, (A18)
1=0

(X1") i=1(=1)7 =1 (A19)

We observe that X;’ and X3 are proportional to 7%, while X;” and X, have no = factor. Let us therefore split 4
into two parts:

A=4'4+4", (A20)
where
X/ (I-11) — —1X,/V2 X3/V2 ]
4'= , (A21)
Xa/\/z— X{(I-II) '—'ZX;:,/\/E
and
X, (I-1I) +X,(I-11/V2) —XLII/V2
AI/_
- —XoII/NV2 X,"(I-1I) +X2(I+II/\/?TJ
I 0 e
=(X\"—-X,"TI+X,) I: :| +(2)—”2X2H|: :I . (A22)
0 I -1 I

To diagonalize A", we note that the first matrix in the right-hand side of (A22) is diagonal and will remain so
under any similarity transformation. Thus we only need to diagonalize the matrix

-1 —-I
-1 1]
This can be done by the operation

I 2 I —z
T(A”)=(1+z2)—1l: }A”l: :|
—z I 1 I

[Xl”(I—H) +X,(I-1I) 0
= . (A23)
0 X"(I-1I) +X2(I+II):|
Under the T operation A’ becomes formation 77:
Xy (I-11) = X, X ] 1|: I II [ 0 [ 1 -m
T(4") = . (A24) T'(ID ==
X; Xy (I—-1I) — X, 2|~ 1 {lor oo :”:11 I :l
In the following discussion we shall assume that N is I:I O:I
even, as the case I is odd can be done in the same way = (A26)
with but slight modification. For NV even we may write 0 —I
0 1II From (A26) we have
II= , (A25)
o) e
T'(I-1I) = , (A27)
where II in the right side of (A25) is actually of the | 0 2T |
order of $N X3/, and is hence not quite the same as _
the II matrix on the left. However, we shall use the 21 07
same notation for them as there is little chance for T/ (I+1I1) = . (A28)
confusion. Now we may diagonalize II by the trans- | 0 0
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Now

— (Xo/V2)TI+4(1/V2) X5

X1(I-1D) +Xo (I— (II/V2) ) — (1/2V2) X;

X1(I-1II) + X, I+ (I1/V2) ) — (2X3/V2) |

— (Xo/N2) T+ (1/V2) X

X (I-10) + X, (I—V2IT) — X5 —X;(I—1I) — X+ (1/2) X

X1 (I—1II) + X, (I+V2II) — X,

X](I_'II) +X2+X3,Z

(A14)

It follows from (A19) that we may write

X H
Xy = , (A29)
—HT XIH

where X;” in the right side of (A29) again is of order
XN,

0 —1 1 .
i 1 0 -1
Xi'= ,  H=X/"+1.
—1 .
- . . . . ._J
(A30)

Under the transformation 77, X"’ becomes

0 HAIIX,”
T'(Xy") = . (A31)
—HT—1IX," 0

From (A27), (A28), and (A31) we get
0 2(H-I—IIX1"):'

T/ (X1 = Xy T+ Xp— XIT) =
0 i1

31 2(H4IIX,")
(X' - XTI+ X+ X,I1) = .
0 0 R
(A32)
And from (A23) and (A32), we obtain
[0 2(H+IIXy") 0 0 .
0 iI 0 0
T'T(4")=
0 0 31 2(H4+IIX,")
| 0 0 0 0 N
(A33)
Similarly, if we express Xy’ in the form
[~ Xy B°
X{/= , (A34)
| —BT X/
then
[0 2(B+IIXY)
' (X —X/II) = . (A35)
o0 0
Let us denote
[C E
T'(X;3)= . (A36)
| F D

From (A23), (A24), (A31), (A33), (A35), and (A36),
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we obtain
[0 2(H+I1IXY") O 0 n
0 31 0 0
T'T(A)= +
0 0 31 2(H+I11XY")
| 0 0 0 0 _

We observe now that both matrices in the right side
of (A37) are of the order 2N X2N and the rank M.
The determinant of 7'T4 is therefore equal to

> det(M’) det(M"),

where M’ is a n-rowed minor of 7VT(A’) and M"' the
cofactor of the corresponding minor of 7'T(A"). For

the minor
I 0
0 i1

of T'T(A4"), the cofactor of the corresponding minor

in T'T(4") is
E
F -D|

The determinant of 7'7(4) is equal to det(M,)
det (M), as all products of other corresponding pairs
of minor determinants are zero. Thus we have from
(A15), (A38), (A39), and (A36) that

(0’0,00‘N,N>=22N det(Xg), (A40)

with X; given by (A11). The closed form for det(X5s)
has been found in I to be

M, (A38)

—-C

M, (A39)
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[ —C —E+2(B+I1XY) C E 7
—F ~D F D
C E —C —E+42(B+IIXY)
| F D —F -D N
(A37)
From (A40) and (A41), we finally have
(0,005 ) =2NNDr=N[G(N) F[G(2N) ™. (A43)
A few special cases will be given below
(00,000,0)=1, (A44)
(o0001,1)=2/m, (A435)
(00,002,2) =16/372. (A46)
And as N—o, we have
(0,008 3 )~ eV QURATN V(L — e N2+« 2 ) (A47)
where 4 is Glaisher’s constant’
A~1.282427130.
It is interesting to compare (A47) with
(0,000, vaw Y~ el 4212 A BN =141 4 (1/128) N2+ - - ]
(A48)

from I. On the basis of (A47) and (A48), it is con-
jectured that, for Ey=F, and T'=7,, the spin-spin
correlation is asymptotically isotropic for large separa-

det(Xs) =22NW-Da=N[G(N) [G(2N) ], (A41) ¥
ions.
where Most of the results of this Appendix, including the
G(N) = 1V-128N—238=3. . . (N —1). (A42) above conjecture, are known to Onsager.®
APPENDIX B

We present here the calculation of the asymptotic

series of the spin correlation function below the critical

temperature. After carrying out the integration over ¢; and ¢4, (3.31) becomes

1= (8 eyt [ [ dpudgn expl—iM (Gr-+0) —iN (du-6)]

—_—r Y -

(o000, N)= S {

X sind (¢1—¢s) sing(de—es) [sings sings sing (¢1+s) sing (do+¢s) ]—1} , (B1)

where ¢» and ¢4 are related to ¢; and ¢s by (3.29). To make the integral in (B1) more symmetrical, let us intro-

duce the variables # and v

1 coshyy = ta+u, v1 coshys=%a-v, (B2)

7J. W. L. Glaisher, Massenger Math. 24, 1 (1894).
8 See also J. Stephenson, J. Math. Phys. 5, 1009 (1964).
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where
Yn=1¢n, n=1,2,3,4.
Then (3.29) gives
s coshyp=2%a—u, 2 coshyy=3%a—2. (B3)

With the variables % and », (B1) is reduced to

(G000 ¥)= S, {1— (8?) "171—172_1//du dv exp[ —M (Y1+¢s) —N (Yotu) ]

7=l

4
X sinhj (Y1—ys) sinhg(Y2—y4) [sinhj (Y14¥s) sinhd (Yoty) I (H Sinh‘/’a‘)‘l} . (B4)
The saddle point is easily found to be
Yi=ys=0;,  Ya=yu=0, (B5)

where 6; and 6, are given by (5.3). We shall expand the integrand of (B4) in the neighborhood of the saddle point.
From (B2) we have

dy/du= (1 sinhy,) 1, (B6)
A/ du? = —2(sinhyy) 3 coshyy, (B7)
A3/ dud =~ (sinhy,) ~3(34-2 sinh%fy), (B8)
dr/dut= — 3y~ (sinhy1) 7 coshy; (542 sinh?yy), (B9)

and similarly for the derivations of Y5 with respect to v. The derivatives of y,, for example, can be obtained from
(B6)—(B9) by the replacement

U——u, Yo, Y1—e.
Writing
E=u—uy, N=v—1, (B10)

where u and  are the values of # and v at the saddle point, we have, in the neighborhood of the point
sinh (Y1—ys)~ (2y1 sinh;) = (§—n)

X[1—(2y1 sinh?;) " cosh (+n) +(8s? sinh?0y) 7 (4+3 sinh?;) (§4-1)2— (2y:2 sinh®;) ! cosh?in], (B11)
sinh} (Ya—va)~ — (272 sinh6y) 7 (§—7)

X [1+4(2y, sinh%,) ~* coshfy(£+n) + (8v2? sinh*9,) 1 (4+3 sinh?) (£+n)2— (27,2 sinh?fs) ! cosh®.tn], (B12)
[sinhd (Ya1+s) ]~ (sinhéy)

X [1—(2v1 sinh?1) " coshéy (£+7) + (8.2 sinh?fy) (3 sinh?;4-4) (§+9)2— (2v4? sinh‘g;) ! cosh?i£n], (B13)
[sinh3 (Yo+ys) J7'~ (sinh6,) '

+[1+4 (27, sinh®,) ™ coshfy(§+n) +(8v2* sinh*6,) (3 'sinh®,+4) (§49)— (272 sinh*6:) * cosh®etn], (B14)

4
(IT sinyn)—*~(sinh20; sinh?0,) {1+ (v sinh%,)~ coshfo— (v, sinh%;)~ coshé; J(¢+7)

n=l1

+[(2 sinkty)~1(3-+2 sink8;) + (24 sinh#) 1 (342 sinh%s) — (117, sink9; sinh*,)~ coshs coshfs]
X (§4n)2—[ (:? sinh®6,) =1 (2+ sinh®1) + (v4* sinh6s) (24 sinh%,) Jn}, (B15)
and
exp[ —M (Y1+¢s) — N (Yat+yu) I~ exp(—2M6;—2N6,)
X exp{[(2y:? sinh®;) 1M cosh6i+ (2vs? sinh®) 'V coshby](£2-+12) }
X {1 =3[ (v1* sinh®6:) =1 (3+ sinhiy) M — (2 sinh®6s) = (342 sinhy) N'] (&)
+3[ (72* sinh™:) ™ coshdi (542 sinh?6:) M+ (vs* sinh0,) =" coshd, (542 sinh?y) N ](£4-+n5)
+(1/72) [(7s® sinh®)y) = (342 sinh?;) M — (v5* sinh’6,) =1 (3+2 sinh%y) N 2(£3449)2} . (B16)
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We also have

/ de| dy (x—y)* exp(—ax®—ay’)[1, (x49)% xy, #*+3, (a+y) (2457, (2¥+5%)2]
= (7'-/0’2) (1) a'—'l: —'%a_l) %0_2, 30'_2) §Zl— _3) . (B17)
Substituting (B.11)—(B16) into (B4), and putting
E=1y, =iz,
we may obtain (5.1) by making use of (B17).

APPENDIX C

We shall derive the asymptotic form of Fi y defined in (4.22), when M>+N? is large. This asymptotic form
was first evaluated by Montroll, Potts, and Ward,? however, their calculation is not correct.?
We start with the alternative form for Fy x,°

FM,N=[ dx eIy (ayr) In(2y2) . (C1)
0

Being content with obtaining the first two terms in the asymptotic series, we shall replace 7,(Z) in (C1) by
I.(Z)~ exp[ (n*+2%)"?—n sinh™(1/Z) ] (2m) 72 (n2+4-Z2) V41— (24n) 7 (14-22/n2)~32(2—322/u?) ].  (C2)
Substituting (C2) into (C1), we get
Fy n~(2m)1 / OC,doc exp [—ax—l—(M 24-~y2x2) V2 — M sinh™! <£> + (NV2+9242) Y2— N sinh™! (iv—)}
0 V1%, Y2X
X (M) (V- get)
X[1—(24M) 7 (1o M?) 72 (2 = 3yr’a%/ M?) — (24N) 71 (1+v:22/ N?)~32(2—3y222%/N?) . (C3)
We shall evaluate (C3) by the saddle-point method. Let us define
g(x) = ax— (M>+v2a2) 12— (N2 4y242) /24 M sinh~? C—%) +N sinh™! (£> . (C4)

Yok
The derivative of g(x) is given by
£ (8) =0 (M yfa?) Ve (W) 2, (cs)

The saddle point %o at which g®(x) vanishes will now be determined. It is convenient to adopt the following
notation

6;= sinh™! (M/'Yﬂ(?o) , 0= sinh‘l(N/'nxo) . ) (C6)
It follows from (C6) that
Y1V sinh6;=+,M sinh6s. (CT)
From (C5) and (C6) we have
v1 coshby 4+, coshfe=a. (C8)

Solving (C7) and (C8), we may obtain 6, and 6, which are explicitly given in (5.3). The saddle point x, is given by
xo= {a2(M+N?) — (M= N?) (= 7s) + 2L MN" (M2— ) (Mo = Noyit) T2}
X[&* = (y1t+v2) TV @~ (vi—y2) 2] 2. (C9)
The higher derivatives of g(«) at the saddle point are given by
29 (%0) = (M tanh6;+N tanhf) 2572,

g® (x0) =2~3[ M tanh®,+4-N tanh%,—3(M tanh6é,+N tanhé,)],
and
¢® (x0) =3ag~[ M tanh’6,-+N tanh’,—3(M tanh’,+N tanh’d,) +4(M tanh6i+ Ntanhgs)].  (C10)

9 One of us (T.T.W.) wishes to thank Professor E. W. Montroll for a most helpful discussion on this point.
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Expanding the integrand of (C3) about x, and denoting £=x—ux,, we get
Fag v~ (2m) ™ (M2yi0%) 4 (N2 +-v25e®) ' exp (— M6, — Nb2)

ij dt exp[ —3g® (20) #]{1—58® (w0) £ — (24) 7'g® (w0) £+ (1/72) [g® (o) T£°}

X[1—3x71(2— tanh?;— tanh?,) £+Fx72(8 — 10 tanh?); — 10 tanh%,+2 tanh?, tanh?,+5 tanh%;+5 tanh,) £
X[1— (24M) 7 (14-yitwe?/ M?) =322 = 3v:Pxe/ M?) — (24N) 71 (14y22ae2/ N?) 312 (2= 352002/ N?) . (C11)

Now we have

[ e, 8, 8, = (n/aynt, 1o, G, ). (c12)

—00

From (C11) and (C12) we obtain
Far v~ (2wyrys) Y2(M sinh6; coshfe+ N coshé sinhf,) /2 exp(— MO, — N6,) {1— (24)~1(M tanhf+N tanhf,)—*
X[3M? tanh?;(1+ tanh?,) +3N? tanh?,(14 tanh?,;) — tanh®); tanhf,(3—5 tanh?,) M3/N
— tanh®, tanh6; (3—>5 tanh?;) N/ M 42 tanh6; tanhf,M N (343 tanh?0; 43 tanh®0,—5 tanh?; tanh?,) J+--+}.
(C13)
We may obtain (5.2) from (C13).

APPENDIX D

To determine the singularities of the function (5.9), let us carry out the integration over 8; and 8. We obtain

2
(my1) ™| dbs [—a+2arys cosiye cosda—ys? cos®Eys coS28,— arys sindy, sinds
0

—+ 2% sinjys CosiYs sinde cosde+y1® cos?5yy | (singy sindy)

X[v22(cospa— cosa) cos?Ba—4ays cosiys sin?jyy cosde+2 sin?jyna®+2 cos?iyn (va? sin®he—v42 sin?iyy) !

X {[a—72 cos(3¢at02) P—v2} 2 ‘ (D1)
The integrand in the integral above, considered as a function of exp(#s:), has four simple poles. Let us denote
cosdy, = {a cosiys sin’synt coszya[ a? sin®3y sin®5yet+ (sin®5e— sin®5y) (2 sinjya—71® sinyn) 142}

X[ra(cos’ze— cos?iyn) I, (D2)
then the four poles are located at

exp(idyy),  exp(—idy),  exp(id-),  exp(—id-). (D3)
When two poles pinch the contour, the integral is singular. The pinching occurs only at
exp(iday) = exp(—ide), (D4)
or
exp (i) = exp(—1ids). (D5)

From these, we conclude that there are four singularity curves given by

a=£v1 cosiyi=ys cosife=0. (D6)



