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Ultrasonic Attenuation in the Heisenberg Paramagnet. II.
Antiferromagnets
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The propagation of sound waves in antiferromagnetic insulators is studied within the framework of
two models which describe the interaction between the spin system and the lattice, In particular, expressions
for the ultrasonic attenuation coef6cient near the Noel point are obtained in terms of time-dependent
correlation functions. The attenuation coeKcient is found to be proportional to the square of the phonon
frequency, to increase rapidly in the vicinity of the Weel point, and to be less singular than the attenuation
coeKcient for ferromagnetic insulators.

r. DtrRODUCnom

N this paper we extend the theory described in a
. - previous publication on ultrasonic attenuation in
ferromagnetic isulators to antiferromagnetic insulators.
In Ref. 1, we introduced two diGerent interactions
between the lattice and the Heisenberg spin system
(a volume magnetostrictive interaction and a general
single-ion magnetostrictive interaction) and then com-
puted the ultrasonic attenuation coefficient at high
temperatures and near the Curie point. The forInal
apsects for the paramagnetic state of the Heisenberg
ferromagnet and of the Heisenberg antiferromagnet
have much in common, and we briefly report here the
procedure, assumptions, and results predicted by the
theory of Ref. 1 for the antiferromagnet. We find that
our antiferromagnetic results di6er from our ferromag-
netic results and from previous work on the antiferro-
magnet" and agree qualitatively with the recent
experimental work on the antifcrromagnetic insulator
MnF2. In addition, the results of our theory agree
with the observed fact that the attenuation coefficient
for the ferromagnet near the critical temperature at
constant sound frequency, co= cq, is more singular than
that for the antiferromagnet. 4 5

In the present discussion, we And that the antiferro-
magnetic attenuation coeflxient is proportional to the
phonon frequency squared and increases rapidly in
the vicinity of the Weel point for both types of inter-
actions. Papoular' obtains the result that the atten-
uRtlon ls llncRI' ln thc phonon frequency. HO%'cvcr hc
considers only the absorption of phonons by the spin
system and neglects the fact that the spin system may
also emit phonons. Tani and Mori2 usc R volume mag-
netostrictive interaction and predict that the atten-
uation coeKcient varies as the phonon frequency
squared. This result agrees with the present calculation

'H. S. Bennett and E. Pytte, Phys. Rev. 155, SS3 (1967).' K. Tani and H. Mori, Phys. Letters 19, 627 (1966}.' M. Papoular, Compt. Rend. 258, 5598 (1964).
4 R. W. Moss (private communication).
8.Luthi, presented at the 1967 International Conference on

Magnetism, Boston (unpublished) .

However, they 6nd the temperature dependence of the
attenuation coeScient to be the same for both the
ferromagnet and the antiferromagnet and this disagrees
with the above experiments4 ' and the conclusions
of this paper.

n. zoRMxLrSM

We shall compute that portion of the ultrasonic
Rt tcDuRtlon which RI'lscs from thc coupling between
the spin system and the lattice. We assuIne that as a
result of the critical Quctuations of the spin system
the spin phonon interaction provides the dominant
attenuating mechanism near the transition region.
Other mechanisms will be present and will compete
with the above for temperatures sufficiently far from
the transition region.

We may use most of the formalism of Sec. II of Ref.
1 to calculate the ultrasonic attenuation coefficient
for the antiferromagnetic insulator in the paramagnetic
stRtc. Thc ma)or chaDgc ls thRt thc cxchangc lntcr-
action j(a—a') between nearest-neighbor spins at
sites 8, and a' dominates over all other more distant
pairings and is negative. Thus, combining Kqs. (31),
(32), and (41) of Ref. 1, we obtain the attenuation
coeKcient for R phonon having wave vector q, polar-
ization e(X, q), and frequency &e(X, q) =c(X) ( q ~;

namely,

a{X,q) = —t'2M c(X)cej 'E 'Q'yg'(k q)

+
X —x"(lr, ee') x"(lr—q, ce' —ce)

X I N(ra') —e((o'—(u) I. (1)

Here, yq'(k, q) is an effective magnetoelastic coupling
function, ce=a&(X, q), M is the ion mass, I(o&)=
P exp(Pfug) —1j ', and x"{q,u) is the spectral weight
function for the spin pair correlation functons, i.c.,

2'"(lr, m) = Q Ch exp( icoi+ilr. a)—

164 712



ULTRASONIC ATTENUATION 7i3

We shaD evaluate the integral in Eq. (1) for the
region Pfue«1 and P&PN where Psr is the inverse Neel
temperature expressed in energy units, PN= (I/kTN).
The condition Prrfuo«1 is valid for the frequencies
employed in most experiments, i.e.,

Tax.z I. The small wave-vector limit (k~0) of the eGective
coupling yl'(lt —Ko, q). The direction of propagation is q=qX
(sin8 cosyx+ sin8 sinsy+ cos8s), the longitudinal mode polariza-
tion vector is eL, =q/g, and a transverse mode polarization vector
is ep= —sing g+ cosy', vrhere q, 8, and q are the spherical coordi-
nates, arith one of the crystal axes as the s axis.

x(q, 0) = (4)

~«(1.38/1.05) Trr X10"(deg sec)-'. (2)

Because the density-of-states factor in Eq. (1) has
the limit

rl(te') e(—o)' (0)— Pfu—o/e(ol') j' exp(Pftol')

for Pko« I, the low-frequency behavior of the spectral
weight function contributes most significantly to the
frequency integral. Ke therefore use the low-frequency
representation of the spectral weight function, ~s

x"(q, )=x(q, 0)1'(q, 0) /I: '+I"'(q, 0)l, (3)

where x(q, 0) is the wave-vector-dependent suscep-
tibility,

Interaction
and mode

Equation (10)'
Longitudinal

Equation (lo) '
Transverse

Equation (12)a

Longitudinal

Equation (12)a

Transverse

lim y),~(k —K0, q)

-,'Q'd'8' sin'8 sin'y cos'q (k ' —k ') '

PGus cos'8 (cos'8 —sin%)

+ sin48 (cos4y —sin'y cos'y+ sin4y)

+4G44~ sin+ (cosV

+slns8 cosscp slushy) fags

(9Gns sinr8 sin'q cos's

+G~' cos'8+ sin'8 (cos's —sin's ) ']8'

The function I'(q, te) is a real function and is identical
to the function q'D{q, ce) =—I'(q, Ie) discussed in Ref.
6. We may interpret D(q, &u) to be a generalized spec-
tral diffusion function. The spectral form (3) implies
that a region in q space exists such that for sufBciently
low' frequencies the system exhibits a hydrodynamic
hmit (attains local thermodynamic equilibrium). The
connection between microscopic theory and the hydro-
dynarnic domain is contained in the functions I'(q, &o)

and, x(q, 0). We show in Appendix A that a necessary
condition for the validity of Eq. (3) for a given wave
vector q is

+" du)' I'(q, te')
1» limP —„', . (5)

co~0 —co X

If one fails to demonstrate that inequality (5) is sat-
isfied, then one properly should consider form {3) as
a phenomenological construct.

As we do in Ref. 1, we use the effective 6eld random-
phase approximation results for the q dependent suscep-
tibility. The random-phase approximation (RPA)
susceptibility x(q, 0) for the antiferromagnet is

x(Ko, 0)
x(Ko, o) II(o)+I(q) }

'

wllcI'c I(q) ls tile lattice tl'allsfol'111 of thc cxcllallgc
interaction

I(q) =+exp(zq a) J(a).

The wave vector Ks is that value of q for which I(q)

6 H, S. Bennett and P. C. Martin, Phys. Rev. 138, A608 (1959).
7 T. Moriya, Progr. Theoret. Phys. (Kyoto) 28, 371 (1962),
P. G. De Gennes and J. Villain, J. Phys. Chem. Solids 13,

10 (1960).

a The equations to which we refer in this table are those of Ref. 1.

has its maximum value. For a simple cubic lattice
with nearest-neighbor interactions only, we have
KQ (lr/d) (1, 1, 1), and I(Ks) =sI, where d is the
lattice constant, 8 is the number of nearest neighbors,
and I is the magnitude of the exchange integral. We
also have the relation I(q+Ks) = —I(q). The func-
tion x(Ks, 0) =—x'(P) for the antiferromagnet behaves
in the same manner as the static susceptibility x (0, 0) —=

x(P) does for the ferromagnet. They both become
in6nite at the critical temperature; e.g.,

X'I-~ (Prr/Prr P)'— (g)

where y is the same for both antiferromagnets and
ferromagnets according to present theories.

Inserting the low-frequency spectral function (3)
into Eq. (1) produces the result

n(), q) =—
I 2PM8() ) cV&-'g'pl'(Ir, q)X(lr, 0)

0
(I"s+I'I) I~'+(I's —I"I)'}

Ion+ I' '—I' '}'+4l' soP
'

where I'I=—I'(lr, 0) and I's =—I'(Ir —q, 0).

Because only small wave-vector acoustic phonons
propagate easily in a lattice, we shall evaluate the sum-
mation in Eq. (9) in the limit of small q. Acoustic
waves typically have wave vectors q 10 'qo, where

q0 is the Debye wave vector qo d '. When we evaluate
the k summation in Eq. (9) for the fcrromagnet, the
dominant contribution arises from small k values and
we may use the small wave-vector limit of the spectral
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TAsx, E II. Temperature dependence of the attenuation pre-
dicted by Eq. (9).The temperature factors are A 0

——P(x'I) '/PA],
Air=/(x'I)'i'/PA/, and A&' ——(1/PA). The respective attenua-
tion coeKcients are directly proportional to these temperature
factors.

Interaction
and mode

Temperature factor
p~0 p~pN

Equation (10)'
Longitudinal

Equation (10)&

Transverse

Ap

Ap

Ag

Equation (12)~

Longitudinal

Equation (12)'
Transverse

Ap

Ap

A

s The equations to which we refer in this table are those of Ref. 1.

function (3). The small q limit of the function F(q, &0)

has the form'''
F(q, 0) '-Dq', (10)

where B(S) is a function of the spin quantum number
S and is of the order of unity. However, we emphasize
that all determinations of the D(P) and A(P) near the
critical point are as yet very unreliable and that even
nonzero values for D and h. have not been definitely
ruled out.

We evaluate Eq. (9) for a simple cubic lattice and
for a longitudinal mode propagating along one of the
crystal axes. When p is near p&, the volume mag-

' I.Vg,n Hove, Phys. Rev. 95, 1374 (1954).

and this corresponds to a diffusion equation description
for the magnetization. The quantity D is the spin
diffusion coefficient. But, because y(q, 0) for the anti-
ferromagnet has the form (6), which differs from that
for the ferromagnet, the dominant contribution to the
lr summation in Eq. (9) arises from those values of
k near the point k=KO. We therefore displace the
origin for the summation over the first Brillouin zone

by Ko and expand the integrand in powers of k'= k—Ko,
about k= Ko.

Current theories ' predict that as k approaches Ko
the function F(k, 0) approaches a temperature-depen-
ent coeKcient which is wave-number-independent, i.e.,

F(& o) -~(P)+(&—Ks)'0(P) (11)
exp

and that both the spin diffusion coefiicient D(p) 'r
for the ferromagnet and the function A. (P) r for the
antiferromagnet are zero at the critical point. The
behavior of h. (P) for P near PN depends on the method
of calculation. Moriya's theory gives us the form

A(P) —:B(S)(I/f't) [x'Ij, (12)

netostriction [Eq. (10) of Ref. 1]yields

az(q) [3Q'd'(x'I) 'is/327rPIsMc/t]q' (13)
and the single-ion magnetostriction [Eq. (12) of Ref.
1j yields the same relation as Eq. (13). We refer the
reader to Ref. j. for the definitions of these coupling
constants.

Continuing our discussion, we compare expression
(13) with the corresponding expression for the ferro-
magnet [Eqs. (63), (64), and (65) of Ref. 1j,

cri (q) [6Q'd'(y I)"/327rp I'McD]q'. (14)

The above theories~' predict that A and D have the
same temperature dependence near the critical point.
We conclude from this that ultrasomic attenuation in
an antiferromagnet is less singular than that for a
ferromagnet.

However, for temperatures sufficiently close to the
critical point, the approximation involved in factor-
izing the four-spin correlation function becomes invalid
and one may argue that the behavior of the atten-
uation coefhcient predicted by Eq. (13) for the anti-
ferromagnet and by Eq. (14) for the ferromagnet are
in both cases too singular. Using the above approxi-
mations to treat the four-spin correlation function and
the two-spin correlation function, we 6nd that the
specific heat varies respectively as (x'I) "' and (xJ)'"
for the antiferromagnet and ferromagnet near the
critical point. If one believes that the specific heat
should have a logarithmic singularity, then our approxi-
mations overestimate the critical fIuctuations. Even
though Eqs. (13) and (14) predict attenuation coef-
ficients which may be too singular, we still expect rr(q)
to be more singular than the specific heat and to be
of the form

~=c[p./(p. —p) ]'
for p(p, and where y for the antiferromagnet is smaller
than it is for the ferromagnet.

Because the propagating phonons have very small

q values and since we consider here only the attenuation
due to the critical Auctuations, we expect that the
attenuation should be larger in the ferromagnet for
which the critical fiuctuations occur for q~0 than in
the antiferromagnet for which they occur for q Ko. Ke
also note that the expression for the ultrasonic atten-
uation in the antiferromagnet, Eq. (13), is more
singular than the specific heat calculated in the same
approximation, only to the extent that (1/A) may be
singular.

Finally, in Tables I and II we present the results
of different configurations for both longitudinal and
transverse sound waves.

APPENDIX A: SPECTRAL REPRESENTATIONS
AND THE HYDRODYNAMIC LIMIT

We present in this appendix a few remarks on the
spectral representation and the hydrodynamic limit
(the limit in which all properties and excitation modes
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of the system vary suf6ciently slowly in time and space
to insure local thermodynamic equilibrium) .

Because coX"(q, co) is an even function of co and

positive, we may construct the spectral representation

l Eq. (2) of Ref. 7j for the longitudinal spin correlations.
When P(P, and when no external 6elds are present,

x"(q ~)=x(q 0)~r(q ~) aP 1—P
+" dco' 1'(q, co) '

+I"(q, co),
'r co GP (A1)

where we have suppressed the zz subscripts on y" and
where P indicates a principal value integral. Repre-
sentation (A1) serves merely to transfer our ignorance
about the singular function X"(q, co) to a hopefully
better behaved function I'(q, co). We emphasize that
representation (A1) is by no means a unique repre-
sentation and that even for the paramagnetic state
it may not be the appropriate representation in which
to treat paramagnetic collective modes, if the latter
should occur.

One condition for the existance of a hydrodynamic
domain is that a sufhcient number of interactions
must occur in order to have local thermodynamic
equilibrium. This means we want to examine the low-

frequency behavior (i.e., the behavior for periods long
compared to fc/I or fc/ J). The low-frequency represen-
tation, Eq. (3), obtains whenever

+"Cco' I'(q, co')
1)) limP —„', . (A2)

g CO GP

The fact that X(q, 0; RpA) for the ferromagnet attains
its greatest value at q=0,

xF(q, o; R») =xL1+xI ~(0) —~(q) I j ', (A3)

suggests naturally to us the identity I'(q, co) =D(q, co) q'

for dominant diffusion mode. Condition (A2) then
requires that for sufficiently small q (large distances)
the principal value integral,

lim P
+" dco' D(q, co')

cjo X' M GO

must be Quite. For the antiferromagnet, Eq. (6)
attains its greatest value at q=KO and the low-fre-

quency form (3) obtains whenever inequality (5) is
satisfied. In order to explain this difference, we recall
that the ferromagnetic Hamiltonian strives to have
the direction of nearest-neighbor spins parallel (i.e.,
strives to maintain a smooth variation from one lattice
site to the next), while the antiferromagnetic Hamil-
tonian strives to have a given spin point in the opposite

direction to its nearest neighbors. This means that such
quantities as the antiferrornagnet's magnetization
must be multiplied by an appropriate phase factor
exp(iKo r) before they will appear to vary smoothly
as a function of r.

We have been examining the paramagnetic low-

frequency (long-time) behavior of X"(q, co). We now
do not make explicitly any statements about the fre-
quency co and consider the wave-vector dependence of
X"(q, co). For simplicity, we shall discuss the ferro-
magnet. The application to the antiferromagnet follows
the same procedure as contained in the discussion
following Eq. (10) and in the first part of this appendix
$i.e., replace q with the (q—Ko) j.

We describe the spatial extent of the pair correlation
functions, (S,(a, t) S,(a', t') ), for temperatures above
the critical point by the correlation length c. A modihed
RPA method predicts that when t=t', the correlation
length behaves as (1+XJ')'"d for the ferromagnet.
The spatial extent of any local magnetization is also
of the order of c.

Brout'0 suggests that collective modes (e.g., spin
waves) may exist above the critical point. If any
collective modes do exist, then we expect them to be
associated with the local magnetization and to have
a spatial extent which is of the order of c. Those wave
vectors k for which collective modes may exist should
satisfy the inequality

kc))1.

Because the form (3) does not admit the possibility of
high-frequency paramagnetic collective modes, it is
not compatible with the existance of such modes. %'e

therefore expect at best that if a microscopic theory
were to yield X"(k, co) for all ir and co, then the form
(A1) would obtain in some asymptotic sense only for
the region kc((1 and cov((1 for the ferromagnet and for
the region

~
k—Ko

~
c&&1 and cor&&1 for the antiferro-

magnet.

IR. Brout, Phys. Letters 24A, 117 (1967}.


