
P II Y S I C A L R E V/I E N VoLUME f64, NURSER io DECK hi8ER 1967

Interpolation Theory of Ferromagnetic Heisenberg Model*
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This is the sequel to an earlier paper which gave a complete formulation of an interpolation theory of
ferromagnetism based on the Green's-function method and the simple Tyablikov decoupling scheme.
Numerical calculations of the energy and speci6c heat have been carried out for a few simple spin-wave
models, and the results are compared with those deduced from other theories. It is found in general that
the performance of the interpolation theory is poor for S=-,' but becomes better for 8= 1 or higher. Also,
the theory makes a large error around the critical temperature for all spins. The spin-disorder contribution
to the transport coeflicients of a ferromagnetic metal are studied for a parabolic model of the spin-wave
spectrum, and the results are comparable qualitatively with the experiments.

I. rma. oDUCTIOm

~

~

~

RELIABI.K interpolation theory of ferromagnet-
.k ism is useful in understanding many experimental

observations at temperatures where rigorous analysis
is impossible at present; for instance, in the temperature
region below —but not small compared with —the
Curie point. The most widely used interpolation scheme
is the Weiss molecular-6eld theory, but the shortcoming
of this theory is that it ignores completely the trans-
verse spin correlations and the short-range correlations
above the Curie temperature. Tyablikov derived a dif-
ferent interpolation method for S=~ based on the
study of two-spin Green's functions. ' He showed that
by making a suitable decoupling approximation to the
three-spin Green's functions, one can solve the two-spin
Green's functions in closed form at all temperatures.
The result is an interpolation theory which agrees
with the rigorous asymptotic analysis at both very
high- and very low-temperature regions. This method
has been generalized to higher spins, and diGerent types
of decoupling schemes have been proposed to improve
the accuracy. '~ In all of these discussions, attention
was focused on comparing the interpolation theory
with the rigorous theories in the extremely high- and
low-temperature regions, and comparing the Curie
temperature with other approximate theories. No de-
tailed study of the energy and specific heat was at-
tempted because the longitudinal correlation functions
of the spins, which are necessary for this study, are
not given directly by this theory. ' One of the authors

*Work was performed in the Ames Laboratory of the U.S.
Atomic Energy Commission. Contribution No. 2114.

' N. N. Bogol bov and S. V. Tyablikov, Dokl. Akad. Nauk
SSSR 126, 55 1959) /English transl. : Soviet Phys. —Doklady
4, 604 (1959)g.' Yu. A. lzyumov and E. ¹ Yakovlev, Piz. Met. i Metalloved.
9, 667 (1960);K. Kawasaki and H. Mori, Progr. Theoret. Phys.
(Kyoto) 25, 1045 (1961); R. A. Tahir-Kheli and D. ter Haar,
Phys. Rev. 127', 88 (1962).' H. B. Callen, Phys. Rev. 130, 890 (1963).

4 J. A. Copeland and H. A. Gersch, Phys. Rev. 143, 236 (1966).
The longitudinal correlation functions derived by R. A. Tahir-

Kheli and H. B. Callen Q'. AppL Phys. 35, 956 i1964l; Phys.
Rev. 135, A679 (1964)g are not consistent with rotational in-
variance above the Curie temperature. See discussion in Ref. 6.
The ss correlation function used by Copeland and Gersch, Ref. 4,
is subject to the same criticism.

(SHL) derived these longitudinal correlation functions
in a manner consistent with the Tyablikov approxi-
mation. ' He also outlined the complete interpolation
scheme for all the thermodynamical quantities for a
Heisenberg ferromagnet and. the spin-disorder contri-
bution to the electrical resistivity of a ferromagnetic
metal. The structure of the theory is extremely compli-
cated, and the numerical analysis has just been com-
pleted. This paper gives a 6nal report of this work.

II. SUMMARY OF PREVIOUS RESULTS

We study a simple isotropic Heisenberg model with-
out external field. The Hamiltonian may be written as

e=- g J,,s,'s, (1)

where the interaction energy J;;may be long- or short-
ranged. . If we de6ne the Fourier transform of J;; by

J(tl) = g J;;exP( —iq R;;), (2)

then the spin-wave spectrum at an arbitrary tempera-
ture is, in the Tyablikov approximation,

~a=2~L~(o) —~(Q) 3=2~~(0 il) (3)

where 0. is the saturation magnetization per spin and
the units used are such that A =1. We point out here
that the proportionality of the spin-wave energy with
the magnetization has recently been observed by
My)lier and, Houmann in Tb at moderately high tem-
peratures. ~

For the general spin problem, the magnetization 0- is
solved from the following set of equations:

S@28+1+(S+1) (f+@)28+1

(]+@)28+1 C88+1

C =N-' Q $((ua),

E(co,) =Lexp (Pcs,)—1j-',

S H Liu, Phys. Rev 139, A1522 (196$)
7 H. B.Mp1ler and J. C. Houmann, in a paper presented in the

Conference on Rare Earths at the University of Durham, England,
1966.
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where» is the total number of spins and p=(k8T) '. ponents of the spins. If we define
The Curie temperature is found from setting 0~0.
The result is 8; exp( —I'q. R,.),

L ( I q) j ( f) then the col iejation functions may be wrjtten
of their spectral representations

where 1(0, q) was defined 111 Eq. (3). Above the Clii'ie
point we must solve for 0- in the presence of an external
field EI, and de6ne the paramagnetic susceptibility per
spin by

Ao
(~- (~)~+(0))= —~-(q, ) p( —'

t),
2Ã

kd
(~-a+(~) ~q (O) &= —&+(q, ~) exp( ia—&Z),

whcle g 1s the gyloDlagnetic 1'Rtio Rnd p@ ls the Bohr
magneton. Then the equation for X is

x '=L3/S(8+1) j(»tp) ' Q L1+2xj(0, q) j-'. (g)

(~-,'(&) ~,*(o))= —J.(q, ) exp(-I' ~), (1O)

J-(q ) =-L4-/»(1--p(-~ ) Hb( +,),
As shown in Ref. 6, the important quantities in the

theory are the two spin correlation functions. These are +(q'

more easily expressed in terms of spatial Fourier corn- Rnd

~*« ~) =L8."'(—~+@—8a"'(—I~—~) j/»(1 —exp( —P~) ).

In the expression for J,(q, 10), the quantity 8~&'& as a function of the imaginary frequency js given by

5 ~ »(~~) —»(~~) 2n ~ (~,—~I-,)L»(~~) —»(~~,)j -'
I~~+ioi —a

—Mi » I ~~+0II-~—~i,
(12)

281 +2g + 1 C, n1
(1+@)M-IL"(1+@)98+I @28+Ij-I

1 (I+1)(25—I) 1+4

(2g+ 1)@28—n(1+@)@+I

+ + + (1+ )18+1 ~8+1

(2~+1)L~+ (1+4')"+']
C —8 0-—

(1+@)28+1 g)28+1

'8 2S+1
(1+&y) 28—n

„=g Ii+1

@8(1+@)8+1 1f 5=1ntegeI',

18+1 ( &+1
=XI

I,2s I+1)- if@5=half-odd integer.

The resuit for 8~&» given in Ref. 6, Eq. (52) is in error. The explicit expression for the spectraj densjty function
y, (q, ~) is

~.(q, -) =L2«»«--p(-P-) n(~~-»)/(C+D),
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where

, ~ 1V(») —1V(»~,)
~+»—~+»

J3= (~/S) Q L1V(»,) —E(») j8(a&+» ~
—»),

(&~—»-a) L+(») —+(»-a) jC=1+-
E Gl+» q

—»
D= (2~&/JV ) Z (ore» —a) EE(») E(»~)3&(~+»—a»)

where for q =0 we have in particular

(S zs z) &2 (»)
Hence, if the spin-wave spectrum is given, it is possible
to calculate the energy of the system. From this result
we can evaluate the specific heat, entropy, and other
thermodynamic functions.

The difhculty with this calculation is in the com-
plexity of the zz correlation function below the Curie
temperature. In order that the numerical analysis may
be carried out by the high-speed computer in a 6nite
amount of time, we adopted a very simple model for
the spin-wave spectrum, i.e.,

In the actual calculation we evaluate the functions
A, 8, C, and D for an assumed spin-wave spectrum.
Then from Eqs. (11') and (10) we obtain the value
of the longitudinal correlation function.

In the paramagnetic-temperature region, the cor-
relation functions are greatly simplified; they are

(s,+(t) s;(o) )=(s -(t) s,+(o) )

=2x/I&Pr1+2XJ(0, q) 7},
&S-.'(t) S.*(O) )=x/IzpD+2xJ(0, q) 3I (13)

In terms of these correlation functions we can write
the energy of the system as

E= JV g J(q—)(S 8 ) (14)

S=i
0 = (1+24)/(1+34+34')
g = (2+34 ) /2 (1+34+34')
5=2(1+4) (1+34)/(1+34'+34')'

and for S=:
0/S=m, T/T, =t,

m =coth(3m/t) t/3m—,

2S2
kT. =lim Q LJ(0) —J(q) g-',

3/cV

g =lim 3m/2S,

)=1—(3m/t)' csch'(3m/t)' (19)
We shall also discuss some of the results derived

from the Callen decoupling method. The main dif-
ference between the predictions of the two theories
is that the spin-wave energy in Callen theory is given by

co, =20fJ(0, q)+ (o/Es)' Q J(lr, lr —q)1V(») $. (20)

Consequently, the Curie temperature is solved from
the equations

(k~T ) '=$3/2S(s+1) $1V
—' Q E~-',

q

E,=J(0, q)+(2ES') ' Q J(k, lr —q)(k&T,/E~). (21)

J(0)—J(g) =ay',

for q&qe. The size of qo is chosen such that the states
contained in the phase space are the same as the num-
ber of spin-wave degrees of freedom, namely X. This
will be called the parabolic model, and its advantage
is that the angular integration appearing in Eq. (11")
can be easily carried out. We also limit our attention
to the cases S=~~, S=1, and S=~. In the last case
we take the limit S—+~, P(0)—+0, but J(0)S'—+

constantj. Some of the equations listed above are
simplified. For S=—,':

where

E,(T) =J(0, q)

+(x/plVS') Z J(lr lr —q)/k1+2xE~(T) j. (22)

The zz correlation function below the Curie point is
diTicult to write down, but above the Curie point the
rotational invariance of the correlation functions im-
plies that

The susceptibility above the Curie point satis6es16
x '= 9/S(S+1)j(&P) ' g $1+2xEg(T) j-',

(S +S )=(S S+)
=2(S,*S, )
=2x/&PL1+2xE 7. (23)
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PIG. 1. The magnetization curves for some simple spin-wave models: (a) The fcc nearest-neighbor-interaction model calculated
on the basis of the three decoupling approximations. (b) The simple-cubic nearest-neighbor model and the parabolic model calculated

by using the Tyablikov approximation.

The discussion will be limited to the predictions in the bility has the temperature dependence
paramagnetic region.

Copeland and Gersch4 proposed a third decoupling (T T) ', —
scheme. In their theory the spin-wave energy is given

which disagrees with the prediction
by the expression

(o, =2o[J(0, q)+(o'/2$') Q J(k, k —q)cV((vp)].

(25)

The consequences of this assumption are discussed in

some detail in Ref. 4.

III. RESULTS OF NUMERICAL ANALYSIS

o~(T, T)", —(24)

in agreement with the gneiss molecular-field theory
and the Landau theory of second-order phase transi-
tion. a Just above the Curie temperature the suscepti-

'See L. D. Landau and E. M, Lifshitz, StatisticaL Physics
(Addison-Wesley Publishing Company, Reading, Massachusetts,
1958), Chap. 16.

Figure 1 shows some magnetization curves obtained
from the various decoupling theories. In Fig. 1(a) we

compare the magnetization curves for an fcc nearest-
neighbor-interaction model calculated on the basis of
the three types of decoupling approximations. Generally

speaking, the curves agree with each other quite well

except near the Curie temperature. In Fig. 1(b) the
magnetization curve for the parabolic model is com-

pared with that of a simple cubic model with nearest-

neighbor interactions both calculated by using the
Tyablikov approximation. It is apparent that the error
introduced by making the parabolic spectrum approxi-
mation is of the same order of magnitude as the un-

certainty in the decoupling approximation itself. Just
below the Curie point the temperature dependence of
the magnetization is found to be, for an arbitrary spin-

wave model,

of the classical theory. This peculiar temperature de-
pendence of x has important inhuence on the accuracy
of the interpolation theory in the region above T,.

The Curie temperatures predicted by the Tyablikov
and Callen theories for some cubic near-neighbor-inter-
action models are tabulated in Ref. 3.

It was shown in Ref. 6 that the static-spin correla-
tion functions should satisfy the sum rule:

Q (s, s,)=s(s+1). (26)

0.05—

O

4l Ha g 0
QJ X

I-
-J 0
LU ~
CL LL.

-0.05-

1,0

I/2

REDUCED TEMPERATURE

FIG. 2. The deviation from the spin sum rule for the parabolic
model with different S values. The deviation is a measure of the
accuracy of the Tyablikov decoupling approximation.

It is easy to show that the sum rule is satisfied by the
correlation functions in Eq. (13) above the Curie tem-
perature. Below the Curie temperature, the left-hand
side of Kq. (26) is evaluated numerically for the para-
bolic model. The results are depicted in Fig. 2. The
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ordinate represents the relative deviation from the sum
rule defined by

LZ (S-' S.)—S(S+1)j/S(S+ 1)
Model sc bcc

TABLE I. E —E'0 for cubic models.

fcc

(E,—Zp) /Xs J —0.005 0.04 0.05
and the abscissa is the reduced temperature. It can
be seen that the sum rule is satisfied to within 3%
for S=Ls and 1, and to within 2% for S= pe. In all
cases the largest deviation occurs just below the Curie
temperature. This is not surprising, because it has been
shown by Wallace that the Tyablikov approximation
should break down near the critical temperature.

The results of the energy calculation are shown in
Fig. 3. The ordinate is in reduced unit defined by
E/EJ(0)Ss. One can see that for S=-'„ the theory
gives a critical-point energy lower than the ground-
state energy, and the specific heat is negative for a
wide range of temperatures below T,. One might
wonder if this difhculty arises from the parabolic spin-

Ol
CO

O

X

LLl

REDUCED TEMPERATURE T/ Tg

FIG. 3. The energy of the parabolic model according to the
interpolation theory.

wave spectrum. In Table I we tabulate the energy
difference between the critical point and absolute zero
for three cubic nearest-neighbor-interaction models with
5=—,'. The interaction constant is denoted by J and
the number of nearest neighbors by s. It shows that
the simple cubic model has the same difhculty. The
energy diGerence is calculated in the following way.
At the Curie point

(S a S, )= (S,"Sa")

= (S,*S ')
=kT,/2J(0, q),

which are easily obtained from Eq. (.13) by taking
the limit P=1/kT„ape. Hence, from Eq. (14) we
find

For cubic lattices with nearest-neighbor interaction

~(q) =»v(q),
where

7(q) =-s,Lcosaq, +cosag„+ cosaq, j,
sECOSsCgz CossGgs+CossGIts Cossagz

+Cossogz Cossogzj&

=cos-,'aq. cos-,'aq„cos-,'ag„

for sc

for fcc

for bcc.

TABLE II. |,E —Ep) /EkgT, versus S for fcc.

Tyablikov

0.055

0.492

Callen

0.124

0.429

Domb and Sykes

0.297

0.551

The domain of integration over q is the first Brillouin
zone. The Curie temperature which appears in the
energy expression may be related to the quantity Js
by Eq. (7) . The ground-state energy is

Ep =—EJsS'.

From these results the quantity (E,—Ep) /1VSJ is
readily computed. If we use the relations in Eqs. (20),
(21), and (23), we can calculate the above energy dif-
ference in the Callen decoupling scheme. In fact, both
the Tyablikov and the Callen decoupling approxima-
tion yield the same answer. One must conclude from
these evidences that the negative specific-heat diffi-
culty comes from the decoupling approximation.

For large S, the energy curves look more or less
like what we would expect. The variation of the energy
above the Curie point comes from the short-range
ordering of the spins. In Table II we compare the
energy difference in Table I for the face-centered cubic
(fcc) model as obtained by the Tyablikov approxima-
tion, the Callen approximation, and the Bomb and
Sykes extrapolation. ' The energies are normalized dif-
ferently from Table I. For S=-,', both decoupling ap-
proximations give too small a difference, but for 5= i
and higher, the approximate results are reasonably
accurate. Therefore, as far as the energy calculation
is concerned, the interpolation theory works well only
for 5=1 or higher.

E,= ,'XkT, P J(q)/J(—0,—q). 1.502 1.398 1.406

' D. C. Wallace, Phys. Rev. 152, 261 (1966) » C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962).
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where

~(q ~) =V+(q, ~)+V-(q, ~)+~*(q, ~)

t-
LLI

t

I.O
REDUCED TEMPERATURE T/Tc

2.0

Fxo. 4. The specific heat above the Curie temperature for a fcc
nearest-neighbor model. Note that the Tyablikov and Callen
decoupling schemes overestimate the short-range-order eGect im-
mediately above the Curie point.

Because of the simple spin-wave model we adopted,
the spectral density functions have no dependence on
the angle of q. For simplicity we have only analyzed
the case 2k&&qo to avoid the difficulty of umklapp
scattering in electron —spin-wave interactions. In Figs.
5 and 6 we plot the resistivity curves for 8=-', and
8= ~, respectively, for 8=0.35 and 0.45, R=ks/qe.
Roughly qp corresponds to the size of the first Brillouin
zone so both these E values correspond to almost-half-
6lled conduction bands. It is dificult to make any
quantitative comparison with the experiments because
of the highly idealized model used in the calculation.
One can only say that the general shapes of the curves
resemble the measured ones except near the Curie
point. Again, the wrong temperature dependence of x
just above the Curie point gives rise to a much too
slow variation of the resistivity. "

Figure 4 shows the specific-heat curves above the
Curie temperature as calculated by using the two ap-
proximate theories and the Bomb and Sykes formula
for an fcc model with S=-', . The approximate curves
d.o not d.iverge at T, but decrease rather slowly with
increasing temperature, and the extrapolated curve of
Bomb and Sykes is singular at T, but drops very
rapidly. As a result, there is a region above T. where
the interpolation theory gives too high a value for
the specific heat. This particular feature is connected
with the peculiar temperature dependence of x just
above T„Eq. (25), and is independent of the spin
value. "

To summarize, we have demonstrated by numerical
calculation on a simple, parabolic model that the inter-
polation theory based on the Tyablikov approximation
gives poor answer for the energy when S=-,'. The
Callen decoupling scheme does not give a substantial
improvement. For large spins the interpolation theory
works better although the specific heat is too high in a
temperature range above the Curie point.

B. Thermal Conductivity and Thermoelectric Power

In addition to the electrical resistivity, the spin dis-
order also contributes to the electronic thermal re-
sistance and the thermoelectric power of a ferromag-
netic metal. These effects were first discussed by
Kasuya" on the basis of s-d exchange interaction in
the molecular-field approximation and the spin-wave
approximation. %e study this problem here using the
interpolation scheme with special emphasis on the region
near the Curie point. In the following calculation the
splitting of the conduction band is ignored so the
results do not apply at very low temperatures. %e also
assume that the spin system is in thermal equilibrium.

p=const )&
—co 0

p(oJ (q, ro)

exp(pcs) —1
'

"The authors are indebted to Dr, Dnk-Joo Kim for this re-
~ark.

IV. TRANSPORT COEFFICIENTS

A. Electrical Resistivity

Using the free-electron model, the parabolic spin-
wave model, and the s-d exchange model between the
conduction electrons and the localized spins, we showed
in Ref. 6 that the spin-disorder contribution to the
resistivity of a ferromagnetic metal is given by

0
0 I.O

REDUCED TEMPERATURE T/Tc

'~ For comparison with other approximate calculations, see
P.-G. deGennes and J. Friedel, J. Phys. Chem. Solids 4, 71
(1958}; D. J. Kim, Progr. Theoret. Phys. (Kyoto) 31, 92&
(&964) ."T.Kasnya, Progr. Theoret. Phys. (Kyoto) 22, 227 (1959)

Fxo. 5. The calculated spin-disorder resistivity for the parabolic
model with 8=~2 and two diGerent sizes of the Fermi sphere.
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where
(~fi/@) f' 1d+(~fi/@) ll (2g)

As a result, the interesting effects of magnon thermal
conduction'4 and magnon drag" are excluded from
consideration.

In the presence of a temperature gradient VT and
a gradient of the electrochemical potential Vp, the
Boltzmann transport equation becomes'

It one multiplies both sides of Eq. (32) by k u and
integrates over k, one obtains

kBR1V'T—RP IJ =P1aP—P2a1, (33)

where kB is the Boltzmann constant and the integrals
R„are de6ned by

R~= —g (v u) (k u) 21"fifo(oo)/~oa j (34)

((jfj,/@) f' fd —v f(oo —p/T) p'T —~I»g(gf&, /go„), (29) The integrals P2 and P2 are given by

and6

(Bf3&/R)»on= 4I kd g h(QI& Qo~ o—&)
—J(q& o&)

—Co

&&ff~(1—f~) —em( —P~)f (1—f )j (30)

P2 ,'P Q (——q-u)'W(k k')

P2 ——-,'P gq u(kg —k'q) uW(k, k'),

(35)

(36)

In the above equations Qo
——k2/221, v=k/223& 2N is the

electron mass, q=k —k', and @=chemical potential.
Since we deal with an isotropic system, the gradients
VT and Vp are in the same direction. A unit vector
in this direction is denoted by u. Following the standard
variational method, we assume the form of the dis-
tribution function to be

fj,——fo(oo) —(ao—aug) k u[ifp(33)/832j& (31)

where ao and aq are constants and g=P(oo —p). We
substitute this into the Soltzmann equation and keep
only those terms that are linear in the temperature
gradient. This gives the following equation for ~ and u1..

v u/Y/keVT Tpjf8fo(oo)—/BQ&&1 = —,'PI

X da& g fooq u —t3&(kg —k'g') uffo(33) f1—
fo(QQ

—
QQ)$

kI

0&J(q, Q&)8(Q3—Qo
—co). (32)

~BR23/T R1~P P2~0 PS~1p

where
P, ——,P g f(kv —k&g). u]2W(k k')

kk~

(37)

(38)

From Eqs. (33) and (37), the constants ao and a2

may be solved in terms of the gradients.
The electric current density is

j=V ' g ev ufo', =V '(eRoao eR&a2) — (39)

and the thermal current density is

U=V ' Q (oo—p) v uf2=pV '(R2&3Q—Roag). (40)
k

In terms of the gradients, we can write

W(k, k') =-,'12 doo J'(q, o&)8(oo Q3. Q—&)fo(Q—Q)

XI 1—fo(Q3—~)3.

Similarly, if one multiplies both sides of Eq. (32) by
k uq and integrates over k, one obtains

where

j = LzzV'p+LgrVT, —

U = Lr~V @+LE &T&—

(41)

(42)

00 I.O
REDUCED TEMPERATURE T/Tc

Fzc. 6. The calculated spin-disorder resistivity for the parabolic
model with S= co and two different sizes of the Fermi sphere.

'4 H. Stern, J. Phys. Chem. Solids 26, 153 (1965).
M Bailynp Phys Rev 120) 2040 (1962) j R S Crispy % G

Henry, and P. A. Schroeder, Phil. Mag. 10, 553 (1964).
"See J. M. Ziman, E/ectrons and Phonons (Clarendon Press,

Oxford, England, 1962), Chap. VII, pp. 264-267.

Lsg =efR2'P2 2RQR2P2+Ro'Po —j//DVQ,

LJ3T ekBfR1RQP2 (R&. +RQR2) P2++lglP3 j/DVQ

Lrs =keTfRgRQPQ (R&', +RQR2) P2+RQR3P3 j/DVQ&

Lrr '13122TfR22P2 2RgRQP2——+R22P3 j//DV—Q,

D =P1PI—P2'. (43)

S=Vp/eV T=Ls2/eL~e&.

Putting this into Eq. (42), we hand the thermal con-
ductivity

E= U/V T=Lr2 —L~2 Lp~/L~~. (45)

It 0 is the volume of the unit cell, If we set j=0, we
Gnd the thermoelectric power
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lo-
I-

8
CO

K
LLL

Ol 6
CL'

X
CL I-

4
hC

S* I/2
Hence, the thermal conductivity

K = 4mkl 'k. s/27m'I2V ox

which is linear in temperature. The thermoelectric
power reduces to the well-known formula for elastic
s-wave scattering,

5=x'kg'T/3'
CI
4J
D
o
LLI

CL

0
0

I I

0.5 I.O

REDUCED TEMPERATURE T/ Tc

I

I.5

Frc. 7. The calculated spin-disorder thermal resistivity for the
parabolic model with S=-,' and two sizes of the Fermi sphere.

Rr = Vomkp/6p,

R2 ——Vpkp'/18. (46)

The integrals I'j, P&, and I'3 may be reduced by the
technique described in detail by Ziman"; the results are

Pg (m'I' V '/9——6s') I8r,

P2 (m'I2 V02/967r4p)——fIgs+ 16kg'( 'vr'Jg+—,2J~) 5—,

P3= (m'I2V02/96n4) 53s'Is&+4'I&3 6I»5 (47)

where
co (p~) nd~

exp(Par) —1
'q"dq J(q, ~)

(po)) "des
J„= J(q, (o)

exp(Par) —1

A simple calculation shows that R~ is smaller than Ep

and R2 by a factor of the order k&T/p, and P2 is smaller

than I'j and I'3 by the same order. If we keep only
the lowest-order quantities in k&T/II, , the expressions

for X and 5 may be greatly simplified. The results are

K=ks'TR22/PSVO

and

kB R1R8P1 RIR2P2+ROR1P3S=-
e Rp'E'3

It is very diQicult to evaluate these integrals at a
general temperature. In the very-high-temperature
limit (T))T,)

Pg~m'I' Vo'kp'x/4s'P,

P2= (2m'/3P p, )Pg,

I'3= 6x'I'j.

"Reference 16, pp. 403&07.

It is straightforward to obtain the explicit expres-
sions for R„.The useful ones are

Ro——Vpkp'/3z',

K
LLI

C)
CL.

I.O
cs

LLL
O

CO

~ co

0.5
Cl
Li!
O
D
CI
LLj

K

'o 0,5 l.o
REDUCED TEMPERATURE Tl Tc

l.5

Fzo. 8. The calculated spin-disorder thermoelectric power for
the parabolic model with S=-,' and R=0.35. The curve labeled
"probable behavior" illustrates the probable result of a more
accurate theory.

' S. Arajs and R. V. Colvin, J. Appl. Phys. 35, 1043S (1964).
See also R. V. Colvin and S, Arajs, Phys. Rev. 133, A1076 (1964};
S. Arajs and R. V. Colvin, ib~d. 136, A439 (1964).

At lower temperatures the thermal resistivity and
thermoelectric power are calculated numerically for
the simple model we used for the resistivity ca'.cula-

tion. Figure 7 shows the reduced thermal resistivity

K(T,)/K(T) for two different sizes of the Fermi
sphere. For both curves a peak occurs around the Curie

temperature. The calculation is not accurate enough

at low temperatures because the conduction-band. split-

ting is ignored. In a more careful calculation the thermal

resistivity should vanish exponentially as 1—+O'K. For
the entire specimen this part of the thermal resistivity
is connected in series with the electron-phonon and

electron-impurity scattering contributions and in paral-
lel with the phonon and magnon conduction contribu-
tions. Ke then expect to see a dip in the total thermal

conductivity around the Curie temperature. Experi-
mental observations seem to indicate the existence of
this behavior. "The rise in thermal conductivity above
the ordering temperature can be understood as caused

by the scattering of the electrons from the randomly
oriented spins. At the Curie temperature, the expres-

sion for the thermal conductivity can be written as

K(T,) =(8~'MVO/Sky) (I/y)',

where M=(2a) ' is the spin-wave mass. For gado-

linium we may take I/IJ, =0.02, Vo—3&&10 "cm', and
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a spin-wave mass equal to 10 times the electron mass.
Then the spin-disorder part of the thermal conductivity
at the Curie temperature is estimated to be about 0.5
W/'K cm. This agrees in order of magnitude with the
observed value of 0.12 W/'K cm. '

In Fig. 8 we plot the thermoelectric power for the
simple spin-wave model for E.=0.35, The reduced
thermoelectric power S(T)/S(T, ) is quite insensitive
to the size of R The dotted line represents the elastic
s-wave scattering limit. The computed curve does not
reach this limit until a very high temperature is reached.
This again demonstrates the fact that the interpola-
tion theory overestimates the short-range-order eGect.
In a more accurate theory the behavior of S(T) above
the Curie point should approach the dotted line more
rapidly as shown by the curve labeled "probable be-
havior. " In reality, a peak in S(T) around the Curie

point has been seen in several materials. " Generally
one sees another peak at a lower temperature. It seems
that the explanation of this peak in terms of the
magnon drag eGect is quite successful. "For an order-
of-magnitude estimate we take p =3.3 eV for Gd."
We find the spin-disorder contribution to the thermo-
electric power at the Curie point to be —4.5 pV/'K
compared with the observed value of —2 pV/'K.
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It is found that the zero-6eld heat capacity C„and parallel susceptibility x~~ of the antiferromagnet
CoCl& 6H20 obey Fisher's relation C=AB(xT)/8T through the Noel point T~(0). The coefKicient A is
shown by a thermodynamic argument to yield the curvature of the antiferro-paramagnetic phase boundary
in the H-T plane for II=0.A parabola having the curvature deduced in this way is found to fit the observed
phase boundary over a wide range of H and T.

I. INTRODUCTION

%HE antiferro-paramagnetic phase transition occur-
ring in CoCl2 6H20 at 2.29'K has been the subject

of several investigations by magnetic, ' ' thermal, ' 4 and
resonance' ' techniques. Recently, we have reported'
a series of measurements of the heat capacity C„of
CoC12 6H20 performed near its zero-field Neel point
TN(0) with high-temperature resolution. This work
was the outgrowth of earlier less detailed observations
which indicated' that C„varied roughly as ln

~
T T&~—
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as one approached T~. The same measurements had
also shown that the spin entropy gained as T is raised
above Tz is 0.36E., slightly more than half that associa-
ted with complete disordering of the Co++ spins (S=-,'),
namely, R 1n(2S+1) =0.69K This fact as well as the
structure' of the material are consistent with the possi-
bility that antiferromagnetism in CoC12 6H20 may
have a noticeably two-dimensional character. Since
the effective spin of the Co++ ion is S=—,'and the
moment quite anisotropic, ' it is possible in addition
that the behavior of CoCI2 6H20 might resemble that
of a two-dimensional Ising model. " These character-
istics, combined with its convenient Neel point, make
CoC12 6H20 an interesting substance in which to
study details of a X-type magnetic ordering transition.
We wish to describe some conclusions of an essentially
thermodynamic character which can be drawn from
the heat-capacity data in combination with careful
measurements of x~~ which we have also carried out
at TN(0).

' J. Mizuno, K. Ukei, and T. Sugawara, J. Phys. Soc. Japan 12,
1051 (1957).' L. Onsager, Phys. Rev. 65, 117 (1944).


