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The induced emf on the pickup coil due to the DHUA magnetization of frequency Ii; is given by

emf, =d/dtLM;(B) pj —p n;(Bo) P t sin(2';/Bo+P, +~(m))]J„(X)2nco sinned,
n=l

(A3)

where p is a unit vector along the pickup coil axis and I is defined by

X= 2m.F,H„/Bp'.
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Speci6c-heat anomalies of copper formate tetrahydrate, Cu(HCOO) 24820, and its deuterium substitute
Cu(HCOO)24D20 were found at respective antiferroelectric transition points. It has a typical ) shape,
sharply peaked at the transition. The transition point was shifted from —37.7 to —27.5'C by deuterium
substitution. The transition entropies were measured as 0.78 and 0.90 cal/mole deg in hydrated and deutrated
crystals, respectively. The transition was considered to be due to an order-disorder phenomenon arising from
the hydrogens in the water of crystallization. The number of configurations of hydrogens in the water layer
of the structure, the positions of which have been determined by a previous neutron-diRraction study at
room temperature, was calculated taking account of the full correlation through oxygens by the use of a
simple equivalent model. A different value was obtained from that obtained by Pauling's method; the
latter does not agree with experiment in this layer-structured crystal. The configurational entropy change
between the disordered and the antiferroelectric states was calculated as R ln —,

' (2+%2) 1.06 cal/mole deg.
The theoretical value agrees well with the experimental values obtained from thermal measurements on
both crystals.

I. INTRODUCTION

~

MOPPER formate tetrahydrate, Cu(HCOO) &4H20,
~ has been investigated extensively because of its

magnetic properties at low temperatures. On the other
hand, in 1962 Kiriyama' reported a dielectric anomaly
in this crystal at —36'C, and a mechanism of the
anomaly was proposed. The crystal structure, including
copper, carbon, and oxygen positions, was determined
by Kiriyama et a/. ,

' who found the crystal to be mono-
clinic, space group I'2q/a with a=8.18, b=8.15, c=
6.35 A, and P= 101'5', and with two formula units per
unit cell. A neutron-diffraction study' was performed
in order to obtain the positions of the hydrogens in the
wa, ter of crystallization at room temperature. During
this study some hydrogens were found to be disordered.
This stimulated us to measure dielectric properties in
detail, and the dielectric anomaly mentioned above was

*Work supported in part by a grant-in-aid for scientific re-
search from the Ministry of Education, Japan.' H. Kiriyama, Bull. Chem. Soc. Japan 35, 1199 (1962) .

2 R. Kiriyama, H. Ibamoto, and K. Matsuo, Acta Cryst. 7', 482
(1954).' K. Okada, M. I. Kay, D. T. Cromer, and I. Almodovar, J.
Chem. Phys. 44, 1648 (1966) .

actually found to be due to an antiferroelectric phase
transition. 4

As determined by Kiriyama et ul. ,
' this crystal has a

structure consisting of alternating layers of waters and
copper formate groups in the (001) plane. Mookherji
and Mathur' predicted a two-dimensional antiferro-
magnetism at low temperature, because of its layer
structure. In a similar fashion, a two-dimensional
ordering of hydrogens in the water layer which may
correspond to the antiferroelectric phase can be ex-
pected. As a matter of fact, the neutron-diffraction
study' showed that the disordered hydrogens are only
in the water layer, while the hydrogens bonding water
oxygens to formate oxygens are ordered at room tem-
perature. It is plausible that the disordered hydrogens
are ordered below the transition point. This order-
disorder transition may give an excess entropy de-
tectable by thermal measurements.

The configurational entropy of the order-disorder
transition due to hydrogen may be calculated by

' K. Okada, Phys. Rev. Letters 15, 252 {1965).' A. Mookherji and S. C. Mathur, J. Phys. Chem. Solids 24, 1386
(1963).
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experimental va, lue. The order-disorder phenomenon
associated with hydrogens is confirmed.

II. EXPERIMENTAI.
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Fio. 1. Structure of the
water layer at room tempera-
ture. %eights of disordered
hydrogens are indicated.

Pauling's method. This has been carried out for ice'
and a typical hydrogen-bonded ferroelectric crystal,
potassium dihydrogen phosphate, ' both of which gave
good agreement with the experimental values. Figure 1
illustrates the structure of the water layer projected on
the (001) plane. Oxygens O(1) and O(2) are non-
equivalent. The probabilities of finding hydrogens at
the respective positions in the disordered state are
given in the figure by symbols. As in the case of ice, an
oxygen should have two and only two hydrogens
attached, and a hydrogen bond should contain one
hydrogen between two oxygens. Since O(2) ha. s a

hydrogen H(4) with a probability of unity which bonds
it to an oxygen in a formate group in the other kind of
layer, we should add only one hydrogen close to it. We
have six hydrogen bonds per molecule. There are 2'~
configurations of hydrogen, many of which should be
excluded by the above-mentioned restrictions, where S
is the number of molecules. The reduction factor turns
out, at once, to be —,

'- per oxygen for both kinds. There-
fore, the number of con6gurations becomes 2"v(3s) ~=
( &) '~, which gives the configurational entropy
2RlnP) 0.47 cal/mole deg. This value is too small
when compared with experimental values presented
here for both hydrated and deutrated crystals, even
though we have neglected the Boltzmann factor.

This discrepancy may be attributed to an insufFicient
consideration of the correlations through oxygens as
pointed out by Meijering' in the case of ice. This eAect
is probably enhanced in the two-dimensional structure
of this crystal. Slater's postulates in his theoretical
treatment of potassium dihydrogen phosphate' are also
inconclusive because of an insufFicient consideration of
the correlations. It is the purpose of this paper to report
the experimental results of the specific-heat anomaly
and to work out the calculation of the configurational
entropy taking the full correlation through oxygen
atoms into consideration and to compare it with the

6 L. Pauling, The Eatlre of the Chemica/ Bond (Cornell Univer-
sity Press, Ithaca, New York, 1960).

' C. C. Stephenson and J. G. Booley, J.Am. Chem. Soc. 66, 1397
(1944).' J. L. Meijering, Disc. Faraday Soc. 23, 83 (1957).' J. C. Slater, J. Chem. Phys. 9, 16 (1941).
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Fio. 2. Specific-heat anomalies at the transitions.

I In previous publications (Refs. 3 and 4), the transition point
of hydrated crystal was reported as —38.9'C. The present exami-
nations revealed that the earlier data contained a large error in
the temperature measurement.

"S.Seki and H. Suga (private communication).

Specific heats of both hydrated and deutrated
crystals, Cu(HCOO) 24H~O and Cu(HCOO) 24D~O,
were measured by an adiabatic calorimeter over tem-
perature ranges including their respective transition
points. The adiabatic condition was obtained with a
temperature-controlled alcohol bath that followed the
temperature change of the specimen to an accuracy of
+5/1000'C, using a differential thermocouple. Heat
fIows into powder specimens of 61.1 and 99.6 g from a
small heater were 51 and 75 mW for the hydrated and
deutrated crystals, respectively.

The experimental values versus temperature were on
a good straight line from —70 to +40'C except in the
vicinity of the transition point. At +44.5'C, the de-
hydration temperature of the hydra, ted crystal, a sharp
increase of the specific heat appeared. Specific-heat
anomalies near the transitions for both crystals are
plotted in Fig. 2. They showed )-shaped anomalies at
their respective transition temperatures. The transition
point was shifted to higher temperature by about 10'C
by deuterium substitution in the water of crystalliza-
tion. It may show that the transition is closely related
to hydrogens in the water. Integrating the heat Bow-in
above the base line, the transition enthalpy was ob-
tained. The transition entropy was also integrated.
These thermal parameters' a,re tabulated in Table I.
Seki et ul." measured the specific heat of a hydrated
crystal from 2'K up to room temperature, Their value
is also cited in the table.

The values of transition entropy are quite reasonable
for an order-disorder tra, nsition. These values will be



compared with a theoretical value calculated below
using a simple model.

DI. EQUIVALENT MODEL FOR CALCULATION OF
THE ENTROPY

The two-dimensional hydrogen bond network in the
water layer is shown schematically in I'ig. 3. Remem-
bering the two restrictions on configuration of hydrogen
atoms and the fact that oxygen O(2) had only one dis-
ordered hydrogen, we see easily that an O(2) —O(2)
pair has four possible hydrogen configurations as shown
in Fig. 4(a), in which the ordered hydrogen H(4) is
omitted. Now we consider an O(1)—O(1) pair, all of
whose hydrogens are disordered. This pair connects
four O(2) —O(2) pairs as shown in Figure 4(b). When
one of the O(2) —O(2) pairs —the bottom pair in the
figure, for example has a hydrogen toward the
central O(1)-O(1) pair, the hydrogen configuration in
the O(1)—O(1) pair will be as shown. Other O(2) —O(2)

TABLE I. Thermal parameters of the transition.

Transition Enthalpy
point hH
('C) (cal/mole)

Entropy
aS

(cal/mole
deg)

Cu (HCOO) 24820

Cu (HCOO), 4H, Oa

Cu (HCOO) 24D20

Cu (DCOO), 4D20b

—37.7

—37.2

—27.5

—27. i

200

22|

0.78

0.90

a Reference 11.
b Reference 13.

pairs can not have any hydrogens toward the O(1)—
O(1) pair at all. In other words, one O(2) —O(2) pair
out of four presents one hydrogen atoin to the O(1)—
O(1) pair, and the configuration for the O(1)—O(1)
pair is uniquely determined. This configuration occurs
with a probability of ~. Considering this and four con-
figurations in the O(2) —O(2) pair, the hydrogen
weights as shown in Fig. 1, the result of the neutron
diGraction, ' are obtained.

Taking account of this, O(2) —O(2) pairs can, for
simplicity, be symbolized by arrows which correspond
to the actual hydrogen con6gurations as illustrated in
Fig. 4(a) .An arrow can point in four possible directions.
Hydrogens in the O(1)—O(1) pair need not be con-
sidered, since their positions are determined uniquely
by hydrogens in four O(2) —O(2) pairs, for example, as
shown in Fig. 4(b) . More than one arrow can not point
toward the O(1)—O(1) pair, because it will violate the
restriction on the hydrogen bond. Using this symbol,
an equivalent model, considering only hydrogen con-
figuration, will be a square net, each unit cell of which
has an arrow pointing to one of four corners. This net

FlG. 3. Hydrogen-bond network in the water layer. Dotted lines
show the square net of the model used for the calculation.

is shown in Fig. 5 and by dotted lines in Fig. 3. The
cell in the net corresponds to one-half of the unit cell of
the crystal lattice, and it contains one O(1)—O(1) and
one O(2) —O(2) pair.

In this two-dimensional square array of arrows, an
arrow can point to one of four corner points surrounding
it, but more than one adjacent arrow can not point to a
given corner point at the same time. Now our problem
is to count the riumber of ways to place arrows which
are not mutually independent of each other under the
above-mentioned restriction in the square net, The
number of cells is the number of molecules of the
crystal. Every point must have one of four surrounding
arrows pointing to it. This means that no vacancy is
allowed except at edges, as shown in Fig. 5, if we put a
small solid circle at the corner point to which an arrow
points.

FIG. 4. (a) Four possible hydro-
gen configurations in an O(2)—
O(2} pair. (b) Hydrogen configu-
ration in an 0 (1)—0 (1) pair
uniquely determined by four
O(2) —O(2) pairs. Ordered hydro-
gens are omitted. Arrows symbol-
ize different configurations.
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IV. ONE-DIMENSIONAL CHECKERBOARD

First, we consider a one-dimensional array of
arrows —a one-dimensional checkerboard —as shown in
Fig. 6. This checkerboard has n arrows in e cells with
2(++1) corner points. Let the number of configurations
of this one-dimensional model be P(e). The P(m)
ls dlvlded into two terlTls as

P(w) =A(n)+B(e). (1)

Here, A(e) is the number of configurations when the
last arrow in the right-end cell points to one of the two
last corner points, i.e., toward the right, as shown in
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FIG. 5. Two-dimensional check-
erboard showing the equivalent
model used in the calculation. A
small solid circle at a corner-point
shows that it is pointed to by an
arrow.

conditions, from Eq. (4), the solution of Eq. (3) turns
out to be

P(s) =2""[e&&" '&( ', -&2—e &)+-e &'" '&(v2e& ,'—)]—
Neglecting the second term in the square brackets for
large e, and using exp &=v2+1, we have

P (n) = (2+v2) "(1+@2)/2.

Fig. 6(a), and B(m) is that number when the last
arrow points to one of the two next-to-last corner
points. That is, the last two points are vacant as in
Fig. 6(b) . These two cases are mutually exclusive; thus,
Eq. (1) holds.

For the case of m+1,

P(ran+1) = A (++1)+B(m+1) . (2)

A (m+1) =2A (n)+2B(e)

B(m+1) = A (n)+2B(e).

From these, we easily obtain

2A (m —1)—4A (e)+A (m+1) =0,

and exactly the same equation for B. Adding two
equa, tions for A a,nd B, from Eq. (1), we have a linear
difference equation to be solved as follows:

The first term A(n+1) in Eq. (2) is evidently two
times P(e), since the addition of a new cell having an
arrow toward the right implies no restriction on the
previous configuration with e arrows, i.e., the last cell
may be added to either (a) or (b), and the last arrow
has two possibilities in this case [see Fig. 6(c)j.When
the arrow in the new cell points left, the next-to-last
a,rrow has three possibilities. In the case of Fig. 6(d),
we have B(n)+A(e)/2 configurations, in which the
erst term stands for cases when the next-to-last arrow
points to its two left corner points and the second term
represents the case when it points right toward the
corner point unoccupied by the last arrow. Since the
last arrow has two possibilities, it is multiplied by 2.
Now we have the relations

Taking the logarithms of both sides of this equation,
we can neglect the term ln(1+%2)/2 for large m. The
logarithm of the number of configurations of the one-
dimensional checkerboard is, for large e,

1nP(n. ) =min(2+%2).

V. TWO-DIMENSIONAL CHECKERBOARD

The second step is to build up a two-dimensional
checkerboard stacking one-dimensional check.erboards
obtained in the preceding section. In a one-dimensional
checkerboard, if it is long enough and the effect of ends
is neglected, the probability of finding a point at the
head of an arrow, i.e., of having a solid circle at a point
as seen in the figures, can be considered as ~, since we
have I arrows and 2(v+1) points. We may select two
one-dimensional checkerboards out of P(N) which fit
together at all points, making a two-lined checkerboard
as shown in Fig. 7. In the two-lined checkerboard, the
probability of finding a point at the head of an arrow
is seen to be unity for an inside point and 2 for a
point on the edge. The same is true for an m-lined
checkerboard built up by successive stackings. There-
fore, the fitting probability for one pair of points is
(-', )'+(-', )' that is, the sum of the probability of
occupancy of the upper point of the pair times that of
the vacancy of the lower point and vice versa. Then,
the fitting probability of two checkerboards as a whole
is (-', )", independent of the number of lines.

(o) A(n) Gonfigs.

2P(m —1)—4P(m) + P(I+1)= 0. (3)
{b) B(n) Conf l(Is.

The general solution of this difference equation is

P(e) =2~i2(Cie~&+C2e ~&)

where cosh &=2. We have boundary conditions

P(1) =4 and P(2) =14,

(4)
(c) A(n+ I}~ 2EA(n) + B(n)1 Configs.

IF

(d) 8(n+I) 2EI/2A(n)+ B(n)3 Confi(ls.

which correspond to numbers of configurations for one
cell and two cells, respectively. With these boundary

FiG, 6. Building up of the one-dimensional checkerboard cell by
cel.l.
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from which, taking logarithms,

lnQ(N, m) =ming(ss, 1)+ss(m —1)ln-', .

In this equation, from Eq. (5),

lng(n, 1) =in'(N) =min(2+%2).

1ng(ss, m) = tsmln(2+F2) /2.

This is the number of con6gurations of a two-dimen-
sional checkerboard for which we are looking. In the
calculation, no vacancy is allowed except at edges of
the board, Since the number of cells is equal to the
number of molecules in the crystal E, we can put Nm=
Ã. Multiplying by the Boltzmann constant k, the
con6gurational entropy of the disordered state is given
by

Mng(N, m) =kÃln(2+%2)/2

= Eln(2+@2)/2, (6)

where E is the gas constant. Actually, two-dimensional
checkerboards themselves are stacked to form a three-
dimensional crystal. YVhen the crystal is large enough
and the edge c6'ect is neglected, however, no modi6ca-
tion is necessary.

VI. COMPARISON WITH THE EXPERIMENTS
AND DISCUSSIONS

The structure analysis by neutron diGraction below
the transition is not complete at this time. By in-
spection of the results of the dielectric" and thermal
studies of thc clystRl, howcvcl ordering ol Rt lcRst two-

ZN, ys %e'er re~

FIG. 7. Stacking of two one-dimensional checkerboards. The
number on a line indicates the probabiTity of finding a point on
that line at the head of an arrow.

Calling the number of configurations of a checker-
board with rs rows and m lines Q(rs, m), we obtain in
general

g(N, s) = g(~, s—1)g(N, 1) (-', ) ",

dimensional ordering" of the hydrogens can be ex-
pected below the transition point. The con6gurational
contribution to the entropy below the transition point
may be neglected. Therefore, we obtain the con-
6gurational transition entropy change from Eq. (6) as

hS= Rln(2+42)/2 1.06 cal/mole deg.

The theoretical value and the experimental values,
summarized in Table I, of the transition entropy agree
fairly well. The small discrepancies may be attributed
to two facts. We neglected statistical Boltzmann factors
in the partition function; that is, we assumed that all
of the four configurations of the O(2) —O(2) pair were
energetically equivalent. Without neglecting this factor,
we might obtain a smaller theoretical value. Second,
disorder and order near the transition are by no means
perfect. Therefore, we might have dropped some part
of enthalpy spread over a rather wide temperature
1RngC.

The new calculation of the number of hydrogen eon-
6gurations in the disordered state was successful in the
layer-structured copper formate tetrahydrate. This
method may be applied to other disordered structures
if a simple equivalent model can be constructed.

Using this model, the ordered structure of thc
hydrogens below the transition might be predicted and
the value of the polarization might be estimated. One
of the possible structures which gives an antiparallel
polarization along the b axis, the antiferroelectric axis,
agrees well with the result of the NMR study by Soda
eI, ut."Further discussion will be left until the neutron-
diGraction study at low temperatures is complete.
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'~A brief check by neutron diffraction below the transition
showed that the space group I'2~/o is unchanged and the center
of symmetry is kept. No superstructure line was found. From the
result, we can imagine that ordering is only in the water layer and
it is disordered along the c-axis direction. The center of symmetry
is considered to be found by averaging over random stackings of
two-dimensionally ordered sheets."G. Soda (private communication).


