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The magnetic properties of a simple nondegenerate band with short-range intra-atomic electron-electron
interactions are discussed. A generalized Hartree-Fock formalism is developed which give closed expressions
for all ordered magnetic states with constant local moments lying on a conical helix. The stability of the
paramagnetic and ferromagnetic states with respect to these helixes is analyzed in detail. In particular, the
importance of band structure and Fermi-surface geometry is investigated. It is shown that helical and
antiferromagnetic magnetic states can indeed be more favorable than a ferromagnetic state for itinerant-band
electrons with short-range interactions. It is shown that umklapp processes at the zone boundaries can
favor antiferromagnetic instabilities of the paramagnetic state, and necks in the Fermi surface tend to
favor spin-density waves with a period determined by the diameter of the neck. Related eRects also appear
in investigating the transverse stability of ferromagnetic states. Detailed numerical calculations on several
simple model tight-binding band structures are presented to illustrate these arguments. The eGects of the
shape of the density-of-states curve and band ferromagnetism are also discussed, and conditions for dis-
continuities in the self-constent solutions are investigated.

Consider, for example, the simplest situation, i.e.,
that of a nondegenerate band4 on a Bravais lattice.
There is then only one Wannier function per lattice
site. The only localized interaction term is the local
Coulomb interaction

I. INTRODUCTION

i 1HERE are many reasons to believe that interatomic
exchange is relatively unimportant in determining

the magnetic behavior of metals. The arguments for
this belief are partly physical and partly numerical,
and have been discussed in great detail by Mott' and
by Herring. '

The predominant electron-electron interactions re-
sponsible for magnetism are then intra-atomic Coulomb
repulsions and exchange interactions, i.e., conhned to
the Wannier functions at each lattice site separately.
As in insulators, these interactions give rise to a tend-
ency to form local (ionic) magnetic moments. In a
metal this tendency has to compete with the single-
electron effects of the periodic potential. The over-all
magnetic behavior of a metal is determined by a com-
promise between these two effects.

In insulators, ' it was found possible to treat the effect
of the single-electron periodic potential as a perturba-
tion and calculate the effective magnetic interactions
(e.g. , superexchange) between local moments. In metals
the situation is much more complicated. A large part
of the conceptual difhculty in understanding the mag-
netic behavior of itinerant electrons results from the
fact that the dominant electron-electron interactions
are localized and are therefore best described in terms
of the Wannier functions of the band, while the single-
electron effects are only clear in a Bloch representation.

H;„,=Q Utt. hatt. t,

where the summation is over all lattice sites (rr), and

U =e' dX'qdI'2 w fI ' m 1'2 ' 1q—1'2, 2

with
+atr =Catf Catrex

the number operators for the occupation of the Wannier
states ro, (r) having spin o.

If one transforms to a Bloch representation (an-
nihilation operator cI„),

c.,=(1/+tV) g exp(ik r )c~ ., (4)
k

one gets

H;„,=(U/1V) g 3(k k'+1 —1' K)c—gtfc—g'tcl /el't)

(5)

where the summation is over the Brillouin zone and
K is a reciprocal lattice vector. Equation (5) is, of
course, quite complicated, and in addition to the
diagonal Coulomb (k=k', l=l') and exchange (k=1',
k' =1) terms it contains more complex scattering
terms. To retain the specifically local character of the
interaction, Eq. (1) requires a detailed treatment
of the scattering terms which can not be done by

*Supported by the U, S. Air Force Ofhce of Scientific Research
under Grant No. 508-66.' N. F. Mott, Advan. Phys. 13, 325 (1964) .' C. Herring, in Exchange Interactions Among Itinerant Electrons
en Magnetism, edited by G. T. Rado and H. Suhl (Academic Press
Inc., New York, 1963), Vol. 4.

'P. W. Anderson, in Exchange Interactions Among Itinerant
Electrons, edited by G. T. Rado and H. Suhl (Academic Press Inc.
New York, 1963), Vol. I, p. 25. 'J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).
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any reasonably simple approximation in the Bloch
representation.

On the other hand, the single-particle Hamiltonian

(H„) is best written

H.,= Q es(tra&+tr~&), (6)

while the Wannier representation

H.,=P U.s(c.,)c„tc.„tc,„)
a,P

obscures the physically important properties of the
periodic potential.

The reason for this is, of course, well known. The
most important general property of the single-particle
Hamiltonian is its periodicity, i.e., its invariance under
lattice translations. The Bloch representation is con-
structed to make full use of this symmetry property.

Quite analogously, the local character of the electron-
electron interactions is rejected in the invariance of
II;„t, under local spin rotations, e.g., under rotations
of the axis of quantization at each site n separately in
Eq. (1).This symmetry property of a local-interaction
Hamiltonian is quite general and is not restricted to the
special nondegenerate case described by H;„t, LEq. (1)].
In a magnetic state, this implies that the true electron-
electron interactions depend only on the magnitude and
form of the local spin polarization (in particular, the
size of the local moment) . They do not depend on the
relative orientation of the moments at different sites. '
The interaction between the relative orientations of
the moments is determined by the single-electron
Hamiltonian. The purpose of this work was to try to
get a better physical understanding as to the way this
comes about.

There are, in fact, numerous reasons to believe that
complicated nonferromagnetic magnetic states should
be important. On the one hand, the extensive work on
Overhauser spin-density waves' has shown that periodic
magnetic deformations of the paramagnetic ground
state can be important. Most recently, Penn' has shown

by explicit numerical calculations on a simple cubic
tight-banding model that various complicated magnetic
states can have lower energies than the ferromagnetic
state.

It can also be shown' that the effective magnetic
interaction between localized impurity moments can
have a very complicated angular dependence.

Our approach in this paper is most closely related
to the work of Ref. 7. We discuss the simplest model
which can be expected to show the important physical
effects, i.e., a nondegenerate band with a localized Cou-

' Note, however, that spin-orbit coupling can reduce the local
spin symmetry. This might be important in actual metals but will
not be discussed here.' See, e.g., Chap. V of Ref. 2, where this work is reviewed in
great detail.' D. R. Penn, Phys. Rev. 142, 350 (1965).

8 S. Alexander, Phys. Letters 13, 6 (1964).

lomb interaction. We therefore assume a Hamiltonian

H =H.n+H~„g,

where H„ is given by Eqs. (6) or (7) and H; sby Eqs.
(1) or (5). In Sec. II the formalism is developed for
investigating the ground-state energy of Eq. (8) in
a generalized Hartree-Fock (HF) scheme where the
magnitude of the local moments is constant but their
orientations vary from site to site. We restrict the
discussion to ordered states which retain the transla-
tional symmetry. In Sec. III the stability of the para-
magnetic state is discussed and the importance of the
band structure and Fermi-surface geometry are investi-
gated. Our formalism leads to the well-known formula-
tion of this problem discussed, for example, in Refs.
9—13. Some preliminary results of our calculations were
discussed in Ref. 4. The results of numerical calculations
which illustrate the importance of the various physical
effects are also discussed. In Sec. IV the magnetic
behavior for 6nite moments is discussed and results
on the stability of the ferromagnetic state are given.

The extension of the present work to degenerate
bands will be discussed in a subsequent paper.

II. GREEN'S-FUNCTION FORMALISM

In the following, we restrict our discussion to a non-
degenerate band with localized electron-electron inter-
actions at zero temperature. The Hamiltonian is there-
fore given in the Wannier representation by' "

H= Q U sc.,tcp, +Upper im t (.9)
a,P, rJ

The direction of spin quantization in Eq. (9) is quite
arbitrary, but the Hamiltonian has this form only if
one chooses the same direction for all lattice sites n. To
describe a state in which the moments at different
sites point are in different directions, it is now con-
venient to transform to a representation in which the
spin at each site n is quantized along the direction of
the moment at the site. If the original spin operators
c, are quantized along z in a coordinate system x, y, z
(common to all sites), and the polar angles in this sys-
tem of the local direction of quantization z at site n
are 0, p, then'

c i =exp(iP /2)Lcoss8 8 i+sin's8 d j,
c i=exp( —+ /2) Lsinsr8 d t

—cos-', 8d ij. (1())

In Eq. (10), the d, are annihilation operators of elec-
trons in the Wannier state at n(w ) and in the spin
state O.-quantized along z . We now assume an ordered

' K. Sawada and W. Fukuda, Progr. Theoret. Phys. (Kyoto) 25,
220 (1961).

'o N. Fukuda, Phys. Letters 3, 214 (1963)."F. Iwamoto and K. Sawada, Phys. Rev. 126, 887 (1962)."M. Tachiki and T. Nagarniya, Phys. Letters 3, 214 (1963)."P. Lederer and A. Blandin, Phil. Mag. 14, 363 (1966)."S.Alexander and G. Horwitz, Solid State Commun. 4, 513
(1966).
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state in which all moments lie on a cone and the trans-
verse components form a spiral:

8 =8,

p.=q R,
where R is the radius vector of site n and g can be any
vector" in the first Brillouin zone.

This is very general and includes most of the ordered
magnetic states with constant moments one could
think of. If one wanted to go beyond Bravais lattices,
one could extend this by using the irreducible represen-
tations of the respective space groups. ""

Substituting Eqs. (11) and (12) in Eq. (10) gives

c = (expz-', aq R ) [8 cos-', 8 d .+sin-', 8 d,], (13)

where —o.= $ when 0= $ and vice versa, and 0 =+1
for spin up (0= 1') and —1 for spin down (a= f ).
II;„& is invariant under local rotations:

+int= U P zzai izaak
= U g ca i teat ca$tca$

zz. .d..=d..(zz. .&.

Equation (21) is the complete HF decoupling

[(d..td. ,) =0],

(21)

because we have assumed that we have chosen the axis
of quantization along the direction of the local moment. "

Now we make a Sloch transformation:

Green's functions which appear on the right side. For
this we need the commutation

(d, , B) =UN, .d,t
+p [V s { exp[ —i8q (R —Rs) /2] cos'-,'8

+exp[+ztrq (R —Rs)] sin'-,'8
~
ds.

+-',V, // sin8 {exp[ —iq (R —R//) sr]

—exp[iq (R.—Rp)-,']}d/i .]. (20)

Now the Hartree-Pock approximation means that
we decouple the first term on the right side,

= U Z d-ltd-id-ttd-t (14)
dk. =(1+1V) +exp( —zk R )d ., (22)

zzar daitdae (15)

For convenience, we will therefore redefine the n,
as the occupation-number operator of the spin state o-

along s:

where dk is an annihilation operator for an electron
of momentum k with spin on the cone." Using (17)
in (21) and substituting in (20), leads to

(dk. , &) = (Uzz .+Ak, q+8Dk, q cos8) dk.

Substituting (13) in (7) gives for H, n

H,n=g V sc .tcs
a,P

= Q V,p{exp[—', zq8(R —-R/i)]}

where
+sin8Dk, dk „,(23)

(24)

Ak q
= z (ek+q/s+ek q/2) y

1/Dk, q=z (ek+q/2 —ek q 2) /.

)&[cos'(—,'8) d,tds, +sin'(s8) d tds,
Finally one gets for

Gkk- = «dk. , dk. t)).
+-,'a. sin8 (d„tds,+d .td//, )] (16) the result

We now want to investigate the properties of the (gk') 'G»"' =8(irir )8(irq )/ zr+s'n8DkqG»' " (2 )
Hamiltonian (8) in a generalized HF scheme, assum-

ing a constant magnitude for the local moments, i.e.,

(17)

where (I,) is the expectation value of the operator
n, for given q and 0. It is easiest to do this using the
two-time single-particle retarded Green's function"
(Ime) 0):

which obey the equations of motion

e(&d- dp"t&)e = ((d-ds"t)+&/2~+ &((d- &); dp"t&&e

(19)

with Hartree-Fock decoupling of the two-particle

"In general, q is not parallel to z.
"S.Alexander, Phys. Rev. 127, 420 (1962}.
' O. N. Zubarev, Usp. Fiz. Nauk 7'1, (1960) t English transl. :

Soviet Phys. —Usp. 3, 320 (1960)j.

gk ——(e+is Uzz .—A« oD«—cos8) ——'. (27)

In practice, we are only interested in the diagonal
elements of G. Solving (26) for these gives

Gkk ~=(1/2zr)[(gk~) ' —Dk z sinz8 g. '] i (2g)

Now the Hartree-Fock internal energy per electron is
given by

E=Z ' ede 2 Im Q g (Gkk")+Ud' (29)
k zr

"See Appendix A for a proof that there is such a direction for
any magnetic state. For a nonmagnetic state, results are rotational
invariant and do not depend on quantization direction.

'9 In fact,
8$ =0cosg8 Cky p/p+slnye Ck "@12

which follows from the connection between linear and cone-spin
quantization (see, e.g., Ref. 2).
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where the Fermi level p is determined by which should be minimized with the subsidiary condi-
tion that

n=(ZE) ' deZ Imp P (Ggg'). (30)
n= Im 6+ G d~. (38)

We have introduced in (29) and (30) the notation

With this notation

n= ', (n,-+n, ),
d=-', (nt —n)). (31)

U(nt ) (n)) = U(n' d'—), (32)

and we have omitted the irrelevant constant —Un'
on the right side of (29) .

In addition to (29) and (30), self-consistency clearly
requires that

where

d=(ZE) ' de 2 Im P P (Gzz",). (33)

The G&z"(e) $Eq. (26)] depend explicitly on the
d, q, and 8 as parameters. As a result, (29) defines the
energy as a function of these arguments. The self-
consistency requirement (33) is, in fact, identical with
the requirement that the energy should be extremal
with respect to d.

It should be stressed that our discussion is limited to
zero temperature. One could add the proper Fermi
functions in the integrals to obtain the internal energy
from (29), n, and d LEqs. (30), (33)j at finite tem-
peratures. To investigate the behavior of the system
at 6nite temperatures, one would, however, have to
replace the internal energy (29) by an expression for
the free energy. This becomes considerably more com-
plicated and will not be attempted here."

The physical states described by diferent values of
the arguments g and 8 are not necessarily distinct. The
resulting properties of E(d, 8, q) as a function of its
arguments are discussed in Appendix B.

We now want to study the behavior of the HF energy
in some more detail. It is then convenient to rewrite the
integrals (29) and (30). Now

Q G~~"=6++G~, (34)

In (37) and (38) the omission of the subscript Ir

implies summation over k. We will use this notation
throughout this paper.

The separation (34) demonstrates that, in a sense,
one can always describe the HF ground state for arbi-
trary q and 0 in terms of a splitting into an "upper"
band described by the G+ and a lower band described
by the G . It is, however, important to remember that
the "band splitting" for given q and 0 depends explicitly
on k and has a complicated Ud dependence. 6+ and
G describe the true HF poles of the single-electron
states in a partially polarized state and not the spin-up
and -down states.

Notice the nonvanishing of the Gi,i, ' is what pro-
duces the partial polarization of the bands. On the other
hand,

(1/S) Q ImGgg. ' ——(c,tc,)

can be shown to vanish, as is necessary for consistency
Equations (3'/) and (38) define the HF energy as a

function of the free parameters d, q, and 8. For given
band structure e~, electron number 2e, and U, we want
the extrema of this function. The calculation of the
extremum conditions from (37) and (38) is quite
straightforward. The results are, however, rather
cumbersome and are given in Appendix C.

In principle, it would, of course, be possible to use
Eqs. (37) and (38) and the results derived in Appendix
C to find the actual extrema of the HF energy. We will
not attempt such a survey and shall restrict our dis-
cussion to certain limiting cases.

In Sec. III we discuss the stability of the para-
magnetic state (d=0) and its relationship to the band
structure. In Sec. IV we investigate the stability of the
ferromagnetic state (dWO, 8=0) as compared to
conical spirals.

III. STABILITY OF THE PARAMAGNETIC STATES

and

Gg+ ——(1/Zm) (c—u —Un —Ag Wl.g ) ' (35) The paramagnetic state d=0 is always an extremum
of the energy, i.e.,

J.& ——L(Ud —D&, cos8)'+Dq ' sin'8$"' (36) (BE/Bd) ~0=0. (39)

Substituting (34) in (29) gives

E(d, q, 8) = e2 Im(G++G )de+Ud', (37)

0 It can be shown quite generally that the finite-temperature
expression resulting from Eq. (33) is equivalent to the condition
that the Hartree-Fock free energy be extremal with respect to d.
We do not know of any analogous results for the extremum condi-
tions of the free energy with respect to q and 8.

In fact, the physical state is independent of q and 0,
and these parameters only serve to relabel the GL+(e).
As pointed out in Appendix 8, the energy of this state
is independent of q and 8, so that the stability of the
paramagnetic state is completely determined by
(B'EIBd') l. ,~;~~.

For d=O, Eq. (C3) becomes

(B~E/Bd2) ~0——ZU2$1/U —sin28AO(q) —cos Bpo(p) j& (40)
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where Ap(q) is the well-known integral

ea(p

Ap(q) = — dk(pj, —pg+, )
—', (41)

A. Free-Electron Behavior

For free electrons,

and

pp(p) =-:X2 Im[G+(~) +G (u) j (42)

is the density of states at the Fermi surface p, for one
spin direction in the paramagnetic state. The derivation
of (40) from (C3) is quite straightforward when one
remembers that

(43)

The result is identical with that of Refs. 9—13.
The investigation of the stability of the paramagnetic

state is obviously interesting only in situations where
the final polarization d is reasonably small, that is, for
small U. It is therefore simplest to consider U as a
parameter and look for the maximum of the right side
of (40) as a function of q and 0. Because

Ao(o) =u(~}, (44)

it is sufficient to consider the case of 0=-,'x and look
for the maximum of Ap(q) [Eq. (41}]."

The paramagnetic state becomes unstable with
respect to a spiral of wave vector q when

UAp(q) &1

[(see Eq. 40)j.At the maximum of Ap(q), this will occur
for the smallest U. For continuity reasons, one therefore
expects the small-moment (small U) magnetic states
to be those for which Ap(q) is large. When the magnet-
ization is large, this is of course no longer a valid argu-
ment. It is shown in Sec. IV that the large-moment
behavior is radically different from that described by
Ap(q). In this section we restrict ourselves to a dis-
cussion of Ap(q) and the resulting small-moment
behavior.

The integral Ap(q) describes the wave-vector-de-
pendent static susceptibility of the electron gas and
it also appears in other problems concerning magnetism
in metals. In particular, the conduction electron polar-
ization by (nuclear or electronic) local moments and
the resulting effective coupling between such moments
is determined by the same expression.

Even though this integral has been discussed by
numerous authors (e.g., in Ref. 12) it seems that the
importance of specific band-structure efIects has not
been considered sufhciently. Recently, the authors have
discussed the extreme importance of umklapp processes
and saddle points. '4 It is nevertheless of interest to
discuss the properties of this quantity which dominates
the magnetic properties of the paramagnetic state in
more detail.

"If the maximum is ferromagnetic it is independent of tII. Any
nonferromagnetic maximum must come from g /0 and hence for
an Ao(g) &A0(0) =p (p) . This is maximized by 8=-,'7t-.

It is possible to evaluate Ap(q) explicitly;

Ap'"'(q) = (k~' ~pq') ln, qk p—, (46)

which only depends on the magnitude q=
t q ~. This is a

smooth monotonic decreasing function of q with a
maximum at q =0.

Within our model, this means that the ferromagnetic
state is favored for free electrons (45) at least for small
magnetization.

For our purposes it is important to stress that Ap(q)
in (46) varies relatively slowly for q&2kz and has a
logarithmically divergent (negative} derivative for

q =2k+. As a result, Ap(q} is large and fairly constant
below 2k& and very small for q appreciably larger. Thus,
Ap(0)/Ap(2k') =2.

Physically, this rejects the fact that spiral wave
packets of wave vectors q&2k~ can be formed from
states in the vicinity of the Fermi surface. " This is
not possible for larger q. The free electron Ap"~(q)
becomes small for large q because the denominators in
the integrand in (41) become large. The energy pq+p is
a monotonic increasing function of

~ k+q) and there-
fore becomes large for large q.

B. Umklapp Processes

For Bloch electrons in a crystal, this is no longer
true because the energies e1, are periodic functions of
k. Whenever k+q falls outside the Brillouin zone, the
energy pz+p is replaced by the (in general) smaller

energy uk+~ I where K is a reciprocal lattice vector. As
a result, Ap(q) is increased for large q.

From the qualitative features of (46), one would

expect this effect to become important only for q&2k&
for which Ap"-(q) is already appreciable. As q in a
crystal is (in this context) necessarily inside the zone
(q&-',K), this implies that umklapp processes should
become important only for

kp& ~K, (47)

where K is a suitable reciprocal lattice vector.
This is very nicely illustrated by the following simple

model. We assume free-electron dispersion relations
for the energy (45) and replace the crystalline potential
by umklapp processes at a simple cubic zone boundary. "
For simplicity, we moreover restrict ourselves to wave
vectors q along the principal tetragonal axis of the
cube. '4 It is then possible to calculate Ap(q) analytically
for kp&-,'X.

'~ See Ref. 19."A very similar model was discussed by Tachiki and Nagamiya
in Ref. 12, who used more complicated zone boundaries.

24 This is purely a matter of mathematical convenience and does
not imply that these are actually the most favorable directions.
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One has

Ao(q) =Ao" (q)

Ao(q) =F(q)+F (K—q)

I q f&I -,'-K —1, I, (48a)

I ii I& I
-', K—1, I, (48b)

4o~g~ i 4 t a

5.5

where

F(x) = (s-/x) [(kp' —x'/4) ln
I (ki —-,'x)/(-', E——',x)

I

—-', kp(kp+x) +-', (-,'E—x) (-',E—2x) 7. (49)

Some typical curves of Ae(q) for different values of
kF/K are given in Fig. 1. It can be seen that for small
values of kr/K one gets essentially the free-electron
behavior Ao"~. For k~/K) ts, a second maximum
appears at the zone boundary q= ~E.

It is clear from (49) that F(x) has a logarithmically
infinite negative derivative (PIS) for x=2k'. In fact,
all derivatives of F(x) diverge at this point. Thus
F(q) has an infinite negative slope for q=2ki similar
to that of Ao" (q), and F(E—q) has an infinite positive
slope when

FIG. 1. Computed curves of A0(q) for
free electrons with umklapp processes at a
cubic zone boundary and q perpendicular
to the boundary. The curves are plots of
Eq. (48). The numerial labels on each
curve indicate the value of ky/E. Note in
particular the change from a negative in-
finite slope at q=2k~ for the curve with
kr/E=0. 24625 to a positive infinite slope
at (E q) =2k—r for kr/K=O 26125.

2.5

I.5

0.5

1 I I I

0 .I .2 .3 .4 .5
q~iK

IK—q I
=2k, . (50)

Physically, we are only interested in q within the
zone, i.e., q(2E. There is, therefore, only one point of
infinite slope in As(q) LEqs. (48)7. When

Another intriguing feature of this model is that when

kp=~E, (56)

so that the Fermi surface touches the zone boundary,
one 6nds

kg& —'E
Ao(q) =~K (57)

-',Egk, &-,'E (52)

there is still a point of infinite negative slope (negative
PIS) due to F(q) in (48b). However, for

(53)

one only gets the point of infinite positive slope (positive
PIS) due to F(K q), so that A—o(q) is bound to have
a maximum for

q& E—2k'.

On the other hand, Ao(q) in (48b) necessarily has an
extremum on the zone boundary where

q=E—q= gE)

and this is usually the only possible position of the
maximum we have described. "

It is of interest to note that the transition from the
monotonic regime (ki &xrK) to that with an anti-
ferromagnetic maximum is somewhat peculiar. All odd
derivatives of As(q) given by (48b) vanish on the
boundary because of (55). However, for kr ~K the
even derivatives diverge there so that the minimum
disappears as a very-narrow "well."The maximum also
appears as a narrow step near q =~E. This can be seen,
for example, in the curves k~/K=0. 24625 and 0.26125
in Fig. 1.
"See, however, the subsequent discussion.

this point is in the free-electron region (48a). For independent of q. In a way, this is a fortuitous feature
of the model which is certainly very artificial when
k~ —,'E. It does, however, - reQect a real effect. As the
Fermi surface approaches the zone boundary, the point
of infinite positive slope (q =K 2kF) appro—aches
q=o, and it disappears altogether when the surface
touches the boundary. As a result, Ae(q) becomes very
Rat and moreover the maximum at the boundary
disappears.

In the region we are actually interested in, i.e., near
k~/K=0. 25, one really expects this sort of free-electron
model to be quite meaningful because the Fermi surface
is still very far from the zone boundaries. It seems clear
from the physics of this sort of problem that the only
really significant feature is the effect of umklapp proc-
esses on the mixing of states near the Fermi surface.
The detailed structure in relatively high-energy states
near the zone boundary can not possibly have a large
eSect. It will be shown later (Sec.III D) that numerical
calculations with quite different band structures give
exactly the same results.

A much more serious limitation is, certainly, the
fact that we have limited ourselves to q perpendicular
to the zone boundary so that the effect of tangential
components of q is not considered at all.

C. Saddle Points

It is well known that the existence of saddle points
in the energy has important effects on the properties
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2 and the case of q in the x-s plane, e.g.,

gq)

I.8

l.7

FtG. 2. Computed curves of the
transverse contribution of a saddle
point to Ao(q). Details are given in
Appendix D. In curve a the Fermi
level is below the sp, curve b is com-
puted for p=e,~, and curve c when
there is a neck (p&e„-~). Note the
discontinuity of the derivative of
A0(q) when q is equal to the diameter
of the neck. All curves are computed
with q perpendicular to the axis of the
sp.

—a&qg&a,

q 2+q 2(ys

where r is large enough so that

~+gs(y2
Then for

(63)

(64)

The axial case is very similar to the situation we
considered in Sec. III B. The Fermi surface has two
opposing convex parts, and we are interested in the
effect of mixing electronic states in the two opposing
parts. It is convenient to choose a cylindrical region
R such that

e=Ek e p=s $ +s,
where x, y, and s are the components of

(5g)

of band electrons. For our purposes, the most important
feature is the appearance of "necks" in the Fermi sur-
face when the Fermi energy is above the sp.

For simplicity, we assume that the expansion of the
energies e~ around the saddle point has the form"

p 6sp = cx &0)

As'~(q) = (1/2q) (os—(q/2) s) ln
8—2g'

8+a q

0.—&g—ln ', —(a—n)q;u+-', q

(65)

q=q (66)

k —k, p (59) -l.2

55
along suitable directions in k space, and e,~ and k, p

are the energy and crystal momentum of the sp, re-
spectively.

In the vicinity of the sp the constant-energy surfaces
are thus hyperboloids with the axis y. %hen

-5

these are two-sheeted hyperboloids, while for

e&0,

a neck is formed around the sp and the surfaces are
single-sheeted hyperboloids.

We want the contribution to As(q) from the vicinity
of the saddle point, i.e., .7

As'P(ti) =— gksR tl(e ~)
dk) 0(e„—~) =1,

.75

.8

(60)

where the region R is sufficiently small so that (58) is
valid for all ea and ea+o in (60). This also implies that
q has to be small. Obviously, As' &(q) has no meaning
for large q.

There are two distinct cases of interest, namely, the
axial case

(61)
"The extension to the general case is quite straightforward but

would complicate the mathematical argument.

K/2 q K/2

Fxo. 3. Curves of A (q) for the orthorhombic band structure of
Table I and q= q,. The vertical scale is abritrary but is the same for
all curves given. The numerical labels on the curves indicate the
position of the Fermi level in the band for which each curve was
computed. Note the appearance of discontinuities in the slope due
to the saddle points at y= —1.8 $1007 and p= —1 $010]. A PIS
appears above p= —1,6 due to umklapp processes. Note also the
effect of the relative positions of the two SPD's and of the diver-
gence of the slope.
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and for

p Esp A +Op (67) A (q)

-J.6

-L8

Ao'~(q) = (1/2q) (n'+ (q/2) ') In, —aq, (68)
8+gq
8—

gq

where

Equation (66) is very similar to Eqs. (48) and
displays an infinite positive derivative when

@=0'.)6».2 (69)

0!=2q,

which we discussed in Sec. III B. The present calcula-
tion is clearly meaningful only for q/a«1, so that the
large q behavior is not included.

As e is an arbitrary constant, the result above the
saddle point (68) is not very meaningful. It shows,
however, that there is no point of infinite slope in

Ao(q) along the axis of the sp in this region. As a result,
the antiferromagnetic maximum on the zone boundary
disappears above the saddle point. This is indeed shown
in all numerical calculations (see Sec. III D) .

The case of a transverse q $Eq. (62)] is much more
interesting. As pointed out in Ref. 14, one expects an
important eQ'ect above the sp when q is equal to the
diameter of the neck. Unfortunately, the mathematics
is somewhat involved; it is discussed in Appendix D. It
is shown there that the region near the saddle point
causes a discontinuous negative change in in the deriva-
tive dAO(q)/dq when q is equal to the diameter of the
neck.

In Fig. 2 we show' the results of a numerical evalua-
tion of Ao'&(q) for a cubic region near the saddle point.

Curve a is for p, &6 p c40 p is a monotonic decreasing
function of q with a maximum at q=o. Curve b is
calculated for p, =e,p, and curve c for

K/2 q

-l.2

f

K/2

FIG. 5. Same as Figs. 3 and 4 for q =
q .Note the extreme fatness

of the curves at —2.4, —1.8, and —1.6 when there are no logarith-
mic singularities in the derivative and no transverse saddle points.

It can be seen that Ao'p is a slowly increasing function
for

q + 2A'~ (70)
and that it decreases rapidly above 2n. As shown in
Appendix D, there is a discontinuity in the derivative
at q=2n when q is equal to the diameter of the neck.
The general nature of the discontinuity is similar to
that found in the density of states near a saddle point
except for the fact that the derivatives of Ao'&(q) are
finite on both sides of the discontinuity. It should also
be noted that for a=0, Ao'&(q) seems to approach
q=0 with a 6nite slope LFig. 2(b)]. In Figs. 3—5 we
show the computed curves of Ao(q) for an orthorhombic
tight-binding band structure. It can be seen that the
behavior near saddle points is very similar to that of
Fig. 2.

Fio. 4. Same as Fig. 3 except
that q=q&. Vertical A (q) scale is the
same in both figures.

A(q) D. Calculations with Mode1 Band Structures

To illustrate the above arguments and get a better
feeling for the behavior of the wave-vector-dependent
susceptibility, we have calculated Ao(q) for a number
of simple tight-binding band structures. The structures
considered were all of the types'~

eg= —A cosk~ —8 cosky —C cosk~. (71)
They therefore refer to simple-cubic crystal struc-

tures when

(72)
to a simple-tetragonal structure when

A =B~C, (73)
~7Note that k„k„, and k, are here taken as dimensionless

quantities defined in terms of the respective reciprocal lattice
vectors.
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Type A J3 C
Saddle points

100 010 001

TABLE I. Values of A, B, and C in the tight-binding structures
eq= —A cosk, —cosk„—Ccosk, used in numerical calculations
and positions of electron saddle points. Energy units are —,

' of
band width.

I ~ I I ~ I I I I I I ~ I

K /2

q

p """"";"'
~ I I I I I I I I I I I I

I c I
I

I I I I I I I I

Cubic
Tetragonal I
Tetragonal II
Orthorhombic

1
0.8 0.8 1.4
1.2 1.2 0.6
0 6 1 0 1 4

—1.0
—1.4
—0.6
—1.8

-1.0
—1.4
—0.6
—1.0

—1.0
—0.2
—1.8
—0.2

and to a simple-orthorhombic structure when

A~BWC. (74)

The values of A, 8, and C actually used are given in
Table I.

Because of the symmetry of Ao(q) LEq. (41)] be-
tween electrons and holes, and because for these band
structures

(0, 0, q),

(0, q, 0),

(q, 0, 0). (76)

These directions were chosen because of mathematical
convenience and because they display the eQects of
umklapp processes and saddle points most clearly. A
much more detailed sampling of the Brillouin zone
would, of course, be required if one wanted to find the
true maximum of Ao(q) in the zone. It should, however,
be stressed that our calculation is sufficient to determine
if the homogeneous ferromagnetic susceptibility t Ao(0) ]
is a maximum. In all cases where Ao(q) has larger values
for some q&0, it follows that the initial magnetic
instability does not occur at q=0. In such cases, Over-
hauser spin-density waves of finite q or antiferromag-
netic spin-density waves on the zone boundary are the
dominant magnetic instabilities of the electron gas.

In Figs. 6—9, we have plotted the values of q for which

Ao(q) is largest as a function ref the position of the
Fermi level in the bands for all four band structures
given in Table I and along the distinct directions of
the type (76) . In cases where Ao(q) has more than one

local maximum or locally largest value, the lower values
are indicated by dashed curves. On all curves the
shaded areas indicate regions where

Ao(q) &Ao(0),

and the white areas regions where

Ao(q) )Ao(0).

(75)

it is sufficient to consider only the lower half of the band.
We have calculated Ao(II) for a II along the principal

axis of the structure, i.e., of the type

"2
i I I I I

0

FIG. 6. Positions of maxima of Ao(q') and regions for which
Ap(g) &Ap(0) as a function of the position of the paramagnetic
Fermi level p in a simple-cubic tight-binding band for g along
L100]. Solid curves indicate the q for which Ao(q) is largest for a
given y. When there are additional local maxima, these are indi-
cated by dashed curves. The shaded areas S are regions for which
Ao(g) (Ao(0) and the white areas U regions where Ao(q) &Ao(0)
always for the same p, . Only the lower half of the band is shown.
The upper half is completely symmetrical. Note the cusp at the
saddle point (fM

= —1) where the longitudinal PIS disappears and
the SPD due to trasverse neck appears.
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FIG. 8. Same as Fig. 7 for tetragonal structure II. Note the dis-
appearance of the z-axis umklapp processes at the z saddle point
(p, = —1.8) in the upper curve.

Fzc. 7. Same as Fig. 6 for the tetragonal case I (Table I). The
upper drawing is for q along the tetragonal axis [001]and shows
umklapp PIS above p= —1.6 and the eBect of the degenerate
saddle point at —1.4. The lower drawing is for ct along $100] and
shows umklapp above —2,2 and the two saddle points at —1.4
and —0.2.
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As discussed in Secs. III 8 and III C above, the
behavior of As(q) is dominated by the points of infinite
slope (PIS) due to free-electron and umklapp processes,
and by the necks around saddle points,

Thus for q along the x direction, there wiH be a point
of infinite negative slope (NPIS) at

q=2k!*——2 cos I/( —!I—8—C)/Aj

I I I F I I I I I I 0 ~ ~ ~ I ~ i ~ I ~ I ~ I

K

:-.:..",.:::':.":'-'.::::-::,"::::.':'„';:;:::::-:;:s ';:,;:,". :.".',i;.".'.;.'.",'-'. .',:.",..'g:::::-",.',:,"'::::::;:::;j

;.„':::;.,', ',.:.:,::.,",.!.;.;„:.:,:,' ';:')

U
p~."' s

0 '"""""""""""""""""""""""""""""""'""'""""""'
I I

and therefore

kg &-,'x, (78) q

(78')

K

;,;.';;.'..'),';,', ',", ;, ')„';;,:";;,;;;::„@„;,', ,;;, ;;h,''' ,'~', ,','q
I

;;;;;":' ';; ' ').

0

Above this, there is a point of positive in6nite slope
(PPIS) for

(79)

q =2+—2k'*.

Above the saddle point at
0"

s I t ~ ~ ~ s ~ g ~ ~

"2

K/2 we, e. ..,„~
'::i:i:i:i:::.:::,:!I:Ii:, ::,::,::,:::::'.i:,'';.'i.:;g

''''g j
,::::"::::.::::,.:,':-::,::S::::,:...:.'.::.::..::::.::..:::.) U

,":;:",:i',"::$i',:.:,''.:.'.;.'„,'

;:.:.",:.;:,':.:,,'.::.:....::...:.:.„:;:.:.:.:.;l.l.'. :.:....:.:!
,:;g.:'".:.:,:.:::::::.:.:.:.:.:;:.:+.::;:.:;:.:,)

I.'":::::,:"::::::::::::::::;:::::,:::::::.:':: -.:.':::.:::.":-:::

) \ I l

0

(0, Ir, 0); e,o&= A+8 C, — —(82a)

(0 0 rr) e.p*= —A 8+C. (82b—)

Because of the saddle points, there vrill be a negative
jump in the derivative of Ao(q) )saddle-point discon-
tinuities (SPD)] at

(81)

the Fermi surface touches the zone boundary in the x
direction at (Ir, 0, 0), and there is no point of infinite
slope in this direction.

Ke also have to consider the CBect of saddle points
along y and s. These appear at '8

Flo. 9. Same as Fig. 6 for orthorombic band of Table I. From
top to bottom the graphs are for g along L100j, It along L0107, and
g along L100j.

puter curves of Ao(q) of the orthorhombic structure in
Table I are given in Figs. 3-5. Because of the limited
accuracy of our numerical calculations the points of
infinite slope (PIS) only show large slopes and the
SPD's are not quite sharp, but this is almost certainly
due to numerical inaccuracy. Figure 3 shoves the results
fol g=gg.

For p= —2, the function Ao(q) is monotonic decreas-
ing, edith a large maximum of negative slope near

q =0.82m.

q=2 cos IL( —!I+8—C)/Aj (83) Equation (77) gives, for the negative PIS,

for

q=2s.—2 COS
—IP( —!I+8—C)/A j (85)

q =0.816m.

The first saddle point (Ir, 0, 0) appears for!I= —1.8.
There is still a very large negative slope for q~0.91m,
and As(q) has a large negative slope near q=0 t as in
Fig. 2(b) 7 due to the saddle point.

At p= —1.6, A, (q) increases from q=0 to the point
of discontlnulty (SPD)

A similar behavior results from the saddle point (82b) .
These considerations are borne out in detail by the

shape of the computed Ao(q) curves. The detailed
shape lsd of course) qultc complicated and dcpcnds on
the relative positions of the various special points. To
illustrate the detailed shape of the curves, some com-

'8 In all cases treated A &8+@.Otherwise hole sp would appear
in the lovver half band.

q =0.34m,

while (83) gives, for the diameter of the neck,

0.354m.

For this value of p, , the large negative slope disappears
(!I=—A 8). Above this value of—!I, a maximum
appears at the zone boundary because k,~& ~m,
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It can be seen that the point of infinite positive slope
and the SPD coalesce for p= —1. At this point, the
second saddle point at (0, ~, 0) also appears.

Above this point, the shape of Ao(q) is complicated.
The umklapp maximum on the zone boundary dis-
appears because the SPD appears between the point
of infinite positive slope and the zone boundary. The
refIection of this behavior on the position of the maxi-
mum of Ao(q) can also be seen in Fig. 9.

For p,(—1.8, the maximum is at q=0. One then gets
the spin-density waves due to the neck around the
saddle point at (~, 0, 0). At p= —1.6, a maximum
begins to appear on the zone boundary because k.~) ~x.
These maxima disappear near p, = —1-because the point
of infinite positive slope crosses the SPD. The eGect
of the second sp at —1 is also clear from Fig. 3. It can
be seen there how the maxima due to the sp disappear.

Ke will not discuss the other cases in any detail.
The results shown come about in a very similar fashion
but the details are, of course, diferent because of the
different relative positions of the SPD and the PIS.

It is interesting to note the peculiar behavior near
the saddle points. Approaching such a point from
below, a positive PIS disappears for q along the axis
of the sp, and above it A, (q) is dominated by transverse
SPD's. As a result, the maximum of Ao(q) is at q/0
both above and below the sp, but at the sp it is at

0 29

This is seen very clearly in all four structures in-

vestigated. For the cubic structure, this phenomenon
occurs at the triply-degenerate sp at p= —1 (Fig. 6).

For the tetragonal structure I (Fig. 7) it occurs at
the doubly degenerate sp at p= —1.4. At the second

sp (p= —0.2) there is again a local maximum at q=0
for transverse q, but the dominant maximum is that
due to the doubly degenerate sp at —1.4.

For the tetragonal structure II (Fig. 8) the dominant

sp is the lower one at p= —1.8, which gives a cusp. The
doubly degenerate sp at q= —0.6 only gives rise to a
local maximum. Similarly, in the orthorhombic struc-
ture, the dominant sp is the lowest one at p, = —1.8.

IV. STABILITY OF THE FERROMAGNETIC STATE

It seems reasonable to assume that the wave-vector-
dependent susceptibility Ap(q) describes the magnetic
behavior of the itinerant electrons for small polariza-
tions (i.e., small d), at least in so far as the HF ap-
proximation is valid. If U becomes large, so that the
self-consistent solutions require a large d, this is cer-

tainly no longer true. In particular, it is to be expected
that the band-structure-sensitive eGects we discussed
in Sec. III will be drastically modihed when there is a
considerable polarization of the electrons. We have
therefore investigated the stability of the ferromagnetic
state at finite moments.

As discussed in Sec. II (and Appendix 8), a ferro-
magnetic state can be described by an arbitrary q and
0=0. Because the physical state is independent of

q, all derivatives with respect to q vanish. In investigat-
ing the stability it is thus sufhcient to check stability
with respect to d and 0 at 0 =0, treating q as a parameter.

In practice, there are two stages to the calculations.
For a given band structure, e and U, one first deter-
mines the self-consistent ferromagnetic solutions. One
then checks the stability of the solutions with respect
to 8, i.e., the sign of

where d was determined in the first stage and q is a
parameter.

The first stage is, of course, just the standard treat-
ment of itinerant-electron magnetism. There are never-
theless a few points of interest related to the shape of
the density of states. This will be discussed in Sec.
IV A. The properties of the derivatives (87) will be
discussed in Sec. IV B. Some numerical results are
presented in Sec. IV C.

p (&)d~ p(~) d~~ (88)

with the subsidiary condition

p(e) de — p (e) de, (89)

where p(e) is the density of states of the band, p+ and

p are the Fermi levels for up and down spin, respec-
tively, measured from the bottom of the respective
bands, and

I=-', (n t+m();

as in Eq. (31).
Up to a certain critical value of the band splitting

(2Ud), both bands are occupied and

p+=p+Ud;

Above this value one has

for e(~, where

p, (2n)

p(e) de,

(90)

(91)

and for n&-',

A. Self-Consistent Ferromagnetic States

The self-consistency condition (33) $Eq. (C1)j for
a ferromagnetic state (e.g., 8=0) is most conveniently
written

"Unless A0(q) is dominated by some other regions. P =~~max j p =p(2n —1),
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where E, is the top of the band, and

p(2n —1)

p(e) de. (94)

Formally eliminating p between Eqs. (88) and (89),
one can write

x/uc
/

/

X/Ug

F (X)

d=F(Ud), (95)

and

d=F(x),

d=x/U.

(96a)

(96b)

The nature of these solutions is determined by the shape
of F(x).

When F (x) is convex for all x,

O'F (x) /dx'& 0, (97)

it is dominated by the initial slope. This is illustrated
in Fig. 10.

The paramagnetic solution (d=0) is stable for

and a magnetic solution appears when

U& U.,

where

(99)

1/U = (OF/dx)*~= p(po), (1oo)

and p(po) is the density of states at the paramagnetic
Fermi level.

A very di6erent behavior appears when there are
concave regions where

d'F/dx') 0. (101)

/X/u.
I

1

I
l
I

t
I
I

I

l

I

uoc

F (X)

FIG. 10. Schematic description of graphic solution of self-
consistency equations for band magnetism (96), when d'J /dx'&0
everywhere. Self-consistent magnetic solutions are possibly only
for V) U'„where 1/U', is the initial slope of Ii (x) .

where F(x) is a monotonic nondecreasing function of
its argument which is constant above the critical value
of x discussed above (see, e.g. , Figs. 10 and 11). Self-
consistent solutions of (95) for given U are given by
the simultaneous solutions of

This was 6rst noted by Shimizu, " and by Wohlfarth
and Rhodes. "

If there is one such region, Eq. (95) can have three
solutions (Fig. 11), or even four. Moreover, there can
be self-consistent solutions for

U&p(po) ', (102)

as in Fig. 11.This leads to a discontinuous dependence
of the moment d on U. There are no stable magnetic
solutions with

d(d„ (103)

so that a finite magnetic moment (d)d, ) appears
above a certain U()U„) while below it the para-
magnetic state is stable. A necessary and sufhcient
condition for this type of anomaly is that the inequality
[Eq. (101)j should hold for some x. Now, from Eqs.
(88) and (89),
d'F t'dp(p+1

where

p(p )'
I (104)

)

C=4Ip(p ) p(p )/[p(p )+p(p )jI' (105)

It is easy to see that the situation in Eq. (101) can
never occur for free-electron dispersions (es ks).

Shimizu" discussed the situations near a minimum
in the density-of-states curve where dp(p )/de&0
while dp(p+) /de) 0. For example, the cubic band
structure of Table I has a (very shallow) minimum for
@=0. As a result, this type of instability is observed
when

0(p+(1.0; 1(p (0.
A second possibility is that p(p+) might become small

e.g., near maxima in the band structure.

'0 M. Shimizu and A, Katsuki, Phys. Letters 8, 7 (1964); M.
Shimizu, Proc. Phys. Soc. (London) 84, 397 (1964); 86) 147
(1965).

8' E. P. Wohlfarth and P. Rhodes, Phil. Mag. 7', 1817 (1962).

uoc

Fio. 11. Same as Fig. 10 when O' F/dg'&0 for a&U'„d, . No
stable solutions are possible with d(do.
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A third situation is and

dp(p+)/«»dp(p )/« (106) F-(q) =— dk(2Ud+~g —eg+, ) '. (111b)

B. Stability with Resyect to 0

The relevant derivatives are given in Appendix C.
Obviously,

(dE/de) e=o (d'E/d(d) —d—e)g=o= 0, —
because sin0=0. One is therefore left with

d'E "&~ Ud(~„—~,+,)E(d, q) =
do' e~ 2 Ud —(&~—&l~)

Ud(; —., )
(107)

2Ud+ (eg —ek+, )
'

which can be obtained from Eqs. (C7) and (C8) .
It is obvious from the form of the integrals (107) that

E(0, q) =E(d, 0) —=0.
'

(108)

It is well known that this can occur below a saddle
point where dp/de diverges while p remains finite. This
should be a fairly common phenomenon and occurs
below all saddle points in our calculations.

It is of interest to note3r that the inequality (97)
also leads to peculiarities in the behavior of the mag-
netization at finite magnetic fields which might be
observable in suitable cases.

In our numerical calculations it was found in all
cases that the metastable solutions of Eq. (96) were
also unstable with respect to spirals. In fact, we never
found a case where there was a stable ferromagnetic
solution which did not have Up(po) )1. We believe
this is probably true, in general, at least for cases where
Eq. (101) occurs because of saddle points. Even in the
simple bands that we investigated, it would, however,
require a very careful analysis to be sure. Such a calcula-
tion was not carried out.

It is easy to see that outside the regions of cancella-
tion [Eq. (109)] the integrals in (111a) and (111b)
are positive (because tl+ —p )2Ud). As a result, the
quantity in brackets in Eq. (110) (F++F ) is positive,
and the stability condition

IC(d, q) )0 (112)

is very similar to Eq. (40).
The integrals of Eq. (111) are very similar to those

discussed previously LEq. (41)], and show the same

types of singularities. It is of some interest to discuss
this in more detail.

1. The Limit of Small q

For q along any direction

n=q/q,
one can expand

(113)

n (V' V'el) ~ n+ (n Vej,)', (115a)g

4Ud 2Ud

F-(q) = (2Ud)-'
&k(P

qdk 1+ n'Veg
2Ud

g2 q l'
+ n (7 V'eg) n+

~
(n V'eg)', (115b)

4Ud 2Ud)

and therefore

&z~—&z=qn Vzej, +~q'n (V'z ~ V'z&z) n. (114)

It follows that
eh(p

qF+(q) =(2Ud) ' dk 1— n V'~a~
2Ud

Further, it can be seen that there is a considerable
amount of cancellation between the two integrals. The
contribution to the first integral from the region

E(d, q) =-,'q' dkLn (V V'Ek) n —(n V k)'e/Ud]

6g( P j Eg+tI( P (109a)
dkLn (V' Vej,) n+(n Veg)'/Ud] . (116)

exactly cancels that from the region

~w(-P
&

(109b)

in the second integral in (107) .
To discuss the analytic structure of E(d, q), it is'

convenient to rewrite the integrals in the form

E(d, q) =2Ud'
~

1 —'U(F+(q)+F-(q)] ~, (110)

In deriving (116), we have used the fact that the
constants in the integrand (115) cancel the constant
(1) in (111),and the integrals linear in q vanish because
of time-reversal symmetry (i.e., Vez= —Ve z).

It is thus seen that IC(d, q) vanishes and has an
extremum at q=0.

Z. Free Electrons

where
As in Sec. III A, it is instructive to investigate the

+
behavior of Il (d, q) for free electrons when the integrals

'"+~ ' (111) can be evaluated explicitly.
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Using

one finds a result similar to (42), namely,

ICt„,.(d, q) /2Ud'= 1+(U/2q)

XLy(k+, Q+)+4(kr Q )i (117)

where

it (k, Q) = (k' —Q') ln
i (k+Q)/(k —Q) i+2kQ, (11g)

and
(119)

Obviously, p has a logarithmic singularity when

(120)

-09

As a function of q there are, in fact, two such singu-
larities for

q=kg++ky . (121)

It can, however, be seen that the lower one (q =kr+-
kr ) cancels between the two p in square brackets in

(117).
An additional feature which should be mentioned is

the behavior for large U. When Ud is large enough,

y(k-, Q-) =0,
because

k =0.

-l.9

In this range, there are also no logarithmic singulari-
ties in $(k+, Q+) because

Q+) (2Ud) '" (122)

from (119), and is therefore never small enough to
fulfill Eq. (120).

3. General Features of E(d,q)

l

K/2 K/2

It is possible to carry out a detailed analysis of the
properties of X(d, q) analogous to our analysis of
Ao(q) in Sec. III. In particular, the elfect of umklapp
processes and saddle points can be analyzed as in Secs.
III B and III C. The algebra does, however, become
very cumbersome and uninteresting. Apparently there
are no really new analytic properties. This also seems
plausible in view of the great formal similarity between
the integrals (111) and Ao(g) LEq. (42) j.The constant
2Ud appears in the denominators simply because the
up- and down-spin bands are split by this amount.

The only really important effects are those due to
the different positions of the Fermi surface in the
spin-up band p+ and in the spin-down band p, .

Consider first the small splitting situation

appears at
q =kt++kr-

instead of 2k~. When

(123a)

Fio. 12. Some typical curves of the transverse stability integralE{4,q) for q along the t 0011 direction in the orthorombic band
structure of Table II. For each family of constant e curves the
position of the corresponding paramagnetic Fermi level is given in
a frame. The band-splitting parameter Ud is indicated near each
curve, Further details on the ferromagnetic states are given in
Table II. As in Figs. 3—5, the horizontal scale gives q up to 2E. The
vertical scale is different and shifted for each curve. As A. {d,0) =—0,
the zero for each curve can be seen from its value at q=0. In the
curve for p= —1.7 and Ud=0. 05 the lower {dashed) portion of the
curve is drawn on a larger scale than the rest of the curve to show
the e8ect of the sp. Note the discontinuities in the derivatives
when there are two necks and the role of the negative slopes due to
umklapp processes. Obviously, the ferromagnetic state is stable
when E is positive and unstable when it is negative.

p, 40.
It was shown in Sec. IV B2 that the (positive)

logarithmic divergence in the derivative of E(d, q)

kt++kr )-,'K,
this is replaced by a negative divergence at

K—q=kr++kr . (123b)
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K/P- There are two types of situations. For intermediate
Ud one has

-7
2Ud& p(2n)

and therefore from (91),

p+ —p, )2Ud.

(124)

(125)

0-

"I.I

-I I

LLI(~

Cl

~V(7)

-I.S +w g
c.

Lj
-I y~j -1.3&~ q-l. l Qc

I I

2.5

K/2— jl

«I
„-I
jf I

I

-9(
1

-. I
p.

I

I
.9

I

UO

FIG. 1.3. Curves indicating the regions for which A'. (d, g) is
negative and the values of q for which the negative value has a
minimum for q along $001$ and the orthorombic band structure of
Table II. The vertical scale gives q and the horizontal scale gives
the band-splitting parameter Vd. The boundaries of the negative-
A. region are shaded on the outside and the position of the min-
imum is indicated by solid curves (dashed for secondary minima) .
When the position of the minimum is not indicated it is either at
q =0 (E.&0) or on the boundary, depending on the stability region.
For each curve, the value of the paramagnetic Fermi level is in-
dicated. Additional details on the ferromagnetic state are given in
Table III.

The effect of saddle points is also similar to that
discussed in Sec. III C. There is a, (positive) discon-
tinuity in the derivative of E(d, q) when q is equal to
the sum of the radii of the up- and down-spin necks.
The discontinuity disappears when p, drops below the
saddle point. Some illustrations are given in Fig. 12
and will be discussed in Sec. IV C.

Q

g

I

I
I

P)l
I

'WPu'it'll ' &'' I

I
1

II
I

I I

I I

I I

I I

4. Limit of Large Band SptittAzg

The large band splitting limit is much less sensitive
to detailed band-structure effects. It should therefore
be discussed separately. It is possible to expand our
expression for the HF energy (29} directly in this limit.
We will, however, restrict ourselves to the large Ud
limit of K(d, q).

.~a~'
t

"1.9
~o'I

~($1''

."sf/Iflls
"

~
jpf&to~I

I

.5 I.O
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e

'I
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«qppgTi'&i' '

~q~hglPIIIV@l
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FIG. 14. Same as Fig. 13 for Z along L100).
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I
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I

I
I

UD

UD

FIG. 15. Same as Fig. 13 for cubic band structure and q along
t 100j.

As a result, the denominators in Fq. (112) remain
finite for all k, and there are no logarithmic divergences
in the derivative of E(d, q). If Ud is not too large, one

does, however, observe the remains of the singularity,
and the derivative is large for

(126)

This eRect was noted for example in the free-electron
case (Sec. IV B2).
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TABLE II. Values of the paramagnetic I'ermi level p, number of electrons I a =,'-(rit+nl) j,the band splitting parameter Vd, the
interaction U, the population difference Ld = As(at n—l) g, and the positions of the spin-up Fermi level or+ and spin-down Fermi level

for the orthorhombic band structure of Table I.Only the values at the points for which E(d, q) is shown in Fig. 12 are given. Energy
units are 6 of band width.

—1.9

—1.7

—1.S

0.076

0.106

0.140

0.079
0.393
0.865

0.050
0.150

0.180
0.400

0.010
0.048
0.076

0.008
0.024

0.031
0.068

7.744
8.226

11.308

6.132
6.223

5.737
5.856

—i.825—1.593—1.428

—1.650—i.556

—1.326—1.136

—1.983—2.379—3.000

—i.750—i.856

—i.686—1.936

1.3

—0.9

0.176

0.262

0.360

0.200
0.400
0.550

0.200
0.900
i.500
1.600

0.450
i.100
i.200
2.400

0.038
0.076
0.103

0.047
0.192
0.261
0.262

0.117
0.264
0.282
0.360

5.296
5.254
5.331

4.259
4.683
5.756
6.114

3.848
4. 172
4.250
6.661

—i.109—0.938—0.826

—0.706—0.156
+0.075
+0.079

—0.077
+0.439
+0.511
+0.826

—1.509—1,738—i.926

—i.106—1.956—2.925—3.000

—0.977—1.761—1.889—3.000

Finally, one can consider the case of very large band
splitting. This always leads to a stable ferromagnetic
state, i.e., to

The only exception is the insulating case

2m=1 (129)

E(d, q) )0.
Expanding (110) gives

eis(p, (»)
K(d, q) =- (eL+s —eL) dlt —(4Urs) '

2

&Ir(P (»)

(127) when all states k are occupied and the first integral on
the right side vanishes. As a result, it becomes increas-
ingly difficult to reach this large-splitting ferromagnet-
ism as 2e approaches one. This can be seen in Figs.
13-15.

C. Illustrative Calculations of K(d, q)

(el, —e|,+,) 'dk+ ~ ~ . (128)

The first term on the right side of (128) is positive
and the second term is negative. For su%ciently large
U the first (linear) term dominates, so that E(d, q)
becomes positive.

We have calculated K(d, q) numerically for the
tight-binding band structures of Table I, and in each
case a considerable number of suitably chosen values
of the band splitting Ud. Most of the conclusions from
these calculations were discussed in Secs. lV A and
B. Some of the results are presented in Figs. 12—15.

TABiz III. Important values of Ufg for the orthorhombic band structure of Table I for different positions of the paramagnetic Fermi
surface p, . The values relevant to the curves in Figs. 12 and 14 are given. For clarity, we also give n for each y and the values of U and
d at each point. Energy units are 6 of band width.

—1.9
—1.7
—1.5
—1.3

—0.9
—0.7
—0.5
—0.3
—0.1

0.076
0.106
0.140
0.176
0.216
0.262
0.310
0.360
0.413
0.470

= —3
UfgU.=I (~) '

0.785
0.938
1.089
1.235
1.385
1.540
1.713
1.913
2. 156
2.523

7.745
6.132
5.739
5.304
4. 771
4. 181
4.064
3.910
3.680
3.381

10.20
8.80
7.77
7.02
6.41
5.90
5.52
5.32
5.20
5, 35

cf ———1.8
Ud V

0.09 6.131 0.015
0.29 5.737 0.0505
0, 45 5.251 0.0857
0.61 4.88 0.1250
0.79 4.595 0. 172
0.95 4, 327 0.219
1.13 4. 192 0.270
1.35 4. 172 0.324
1.63 4.277 0.381

ef = —1.0
Ud U'

0.09 4. 180 0.0215
0.29 4.052 0.0716
0.47 3.848 0.122
0.65 3.722 0.175
0.89 3.777 0.236
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TABLE IV. Same as Table III for cubic band.

6y = —3
Ud

6f = 1
U

—1.9
1 0 7—1.5
1 ~ 3
1.1—1.0—0.9—0.7—0.5—0.3—0.1

0.0669
0.0899
0.117
0.149
0.189
0.213
0.242
0.300
0.357
0.414
0.471

9.485
8.024
6.777
5.645
4.487

3.465
3.481
3.493
3.500
3.504

0.804
0.929
1.035
1.148
1.286
1.372
1.473
1.674
1.875
2.092
2.499

12.01
10.6
8.85
7.66
6.82
6.45
6.08
5.58
5.25
5.05
5.28

0.10
0.30
0.50
0.70
0.90

3.47
3.48
3.49
3.49
3.49

0.029
0.086
0.143
0.201
0.258

Figure 12 shows some typical curves of E(d, q) as
a function of q. For convenience, the curves are indi-
cated by the position of the paramagnetic Fermi level
p, and by the band-splitting parameter Ud. The number
of electrons e(g), and, for each Ud, the values of U
and d, and the positions of the Fermi level for up spins
e~+ and for down spin ey are given in Table II.

The curves given are all for q along the s axis of the
orthorhombic structure in Table I. The band structure
was discussed in Sec. III D.

For p, = —1.9, we are still below the first saddle point.
E(d, q) is positive and monotonic increasing for all q
and Ud. For small Ud (Ud=0.079 and 0.393) one
observes the free-electron positive logarithmic singu-
larity in the derivative (point of PIS) when

kg++kg —(—',K. (133)

One, therefore, observes the positive PIS in E(d, q)
for the q of 130.

When p= —1.5, the effect of the sp is more pro-
nounced. There is also a minimum in E at the zone
boundary due to the negative PIS for

region where E is negative disappears abruptly when

Ud 0.1.
In fact,

ey = —1..8
for Ud=0. 09 (see Table III).

For this value of p and direction of g, one always has

q =ky++kI (130) K—q =ky++kr —.

along this direction (see Sec. IV 82). For large Ud
(0.865) the lower band is empty, i.e.,

~y = —3.0,

and there is no point of PIS. Except for this, the curves
remain similar.

For p, = —1.7, there is a small neck due to the saddle
point at —1.8 (see Sec. III D) . As a result, E becomes
negative,

(O'E(d, q) /dq'), =p(0, (131)

and has a positive discontinuity in the derivative
(SPD) when

q=s++s—. (132)

eg & —1.8,

the spin-down neck disappears. This can be seen, for
example, for Ud=0. 15 (see also Table II). There is
no SPD and the effect of the sp disappears. In Fig. 13,
on the curves for p, = —1.7, it can be seen that both the
negative maximum in E (at the point 130) and the

In (132), s+ is the radius of the spin-up neck along s,
and s is the radius of the spin-down neck. This can
be seen in the curve for Ud=0.05. When

Both effects become stronger for p, = —1.3. In each of
the two lower curves UD=0.2 and 0.4 there are two
separate negative regions in E.One for low q due to the
sp and a second region near the zone boundary due to
the PIS. It is interesting to compare these curves with
Table III and the relevant curves in Fig. 13. It can be
seen that the lower negative region in E disappears
abruptly when the neck in the spin-down Fermi surface
disappears (Ud 0.45). On the other hand, the dis-
appearance of the negative region at the zone boundary
is rather accidental. There is still a negative PIS for
larger Ud but the resulting minimum in E is positive
(see curve for Ud=0. 55 in Fig. 12) .

The cases of p, =0.9 and p= —0.5 can be analyzed in
a similar fashion. Note that the sp at p= —1 still has
some effect when ey & —1.0. Even clearer is the effect
of the sp at —1.8, which is evident for quite large Ud
when ~y is quite low. Note also, that the negative PIS
disappears when e~+) —0.2, so that the spin-up Fermi
surface touches the zone boundary along this direction.
For p= —0.9 this point can be seen for Ud=0. 2 but
it disappears for Ud=0. 9 (compare Table II) .

In Figs. 13—15, the regions for which E is negative
and for each region, the value of q for which it is most
negative, are shown as a function of the band-splitting
parameter Ud for a number of different positions of the
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Fermi surface. As mentioned above, Fig. 13 is for the
orthorhombic structure of Table I and q=q, . Figure
14 gives some data for this structure and q=q, . Figure
j.s gives results for a eubie band. The results for a cubic
band are closely related to the results of Penn. v Some
relevant data on the band structure are given in Tables
II—IV.

Results for the two tetragonal band structures of
Table I and for the y direction in the orthorhombic
structure were also obtained. They are, however, similar
to those presented and do not seem to add any new
insight.
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APPENDIX A: RIGOROUS DEFINITION OF LOCAL

DIRECTION OF QUANTIZATION

Ke want to prove that for a general many-body wave
function, it, is always possible to find a direction s
for the local moment, i.e., such that the magnitude of
the moment p is given by its expectation value along
that direction. If the state has a local moment, then in
an arbitrary representation not all of (5*), (5+), and
(5 ) can be zero. We can then find a transformation
such that

P=(5 ) =-', (~., —e.l),
(5+)= (d, td, ) =0, (A2)

(5 )=(d-ltd-l) =o, (A3)

where the d, are dehned for spin quantization along s .
This is sufficient to prove that (21) is indeed the

complete HF decoupling when the direction s is chosen
properly because the expectation values in all other
folms of decoupling vanish.

%e believe the proof is also of interest because it
shows that the introduction of a local direction of
quantization can be given an exact formal meaning.

A general E-particle wave function in the Hilbert
space spanned by the Wannier state w, (with a crea-
tion operator c,t) can always be written in second
quantization

+=4'0+4'«-it+4'l ~-it+@i«-lt~-lt (A4)

tan8= A/p„ (A9)

which is, of course, identical with the single-electron
result.

When the many- article wave function is an eigen-
function of 5&,&' —— 5 ' with well-defined M&,&' it is
of course trivial to show that (5 +)= (5 )=0 LEqs.
(A6) and (A7) j because Cl and Cl have different
spin. This is, however, not a valid assumption in the
present context, and our proof is much more general.

APPENDIX 8: SOME PROPERTIES OF E(d, q, d)

The simplest properties are those resulting from the
time-reversal symmetry of the Hamiltonian and are
rather trivial, namely,

E(d) =E(—d),

E(q) =E(—q),

(»)
(82)

where (82) follows f1olll ~g ——~g.

Less obvious are the following: For d=0, the Gqi,
always describe the same paramagnetic state, so that
the choice of g and 8 only relabels the poles. It follows
that

E(d, q, t))q 0
——const, (83)

independent of q and 8. This is automatically true and
ls not, a subsidiary condition.

Further, g =0 is always a ferromagnetic state what-
ever 0. Similarly, 0=0 is ferromagnetic and is inde-
pendent of q. Thus,

E(d, q, e) I,=,=E(d, q, e) I, ,=E(d) I,.„.... (84)
Obviously, (81)—(84) follow algebraically from the

deflnltlon of E(d, q, 8) LEq. (24) j.
APPENDIX C: EXTREMUM CONDITIONS OF THE

INTERNAL ENERGY

The derivatives of the energy (37) with the sub-
sidiary condition (38) are

where A and p are real numbers; CD and 4~~ do not
contribute.

Using the transformation (10) it is easy to see that
(A2) and (A3) are obeyed if one chooses

(AS)

(5-)=!(I~l I' —I~l I') =',
(5 +)= (C l I

C l )=A e'~,

(S. )=(C'l
I
4't)=~~ ",

(A5)

(A6)

(A7)

where Co is an E-particle wave function in which zv

is unoccupied, Cl and 4l are (E—1)-particle wave
functions in which w is unoccupied, and C t~ is an
(E—2)-particle wave function of the same type.

From (A1)—(A3) for a general direction of quantiza-
tion

which is identical with Eq. (33) .

= —sin8
BJ

2 ImI G-(e) —6+(e) (de,8 cos8

(O'E/Bd') q, y =2U'L1/U —A 8+Cj, —

(
8~ " BJ

=2Ud —U 21mIC ()—g+()jd,
OUd

(C2)

(C3)
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(cPE/Baad), = sin—8 (D+Ii H)—, (C7)

A =— 2 Im
~

G (») —G+(»)
~

d», (C4)
B Lr where

2 B(Ud)'

h = ,'(BL/B-Ud)' 2 ImLG+(}i) +G (p) $, (C5}

C=—1 {[aL/a(Ud) j 2 Im[G (}i)—G+(V) 3I'
(C6)

2 2 ImLG
—

(p)+G+(Itc) $

B2I.
2 Imf G-(») —G+(») jd», (Cg)

}c Ud B cos8

BL
F= U' -- — 2 ImLG-(y)+G+(}i) ], (C9)

B costI BU4

a=U {(BL/B.-8) 2I {.G-(.) —G (.)3 {(BL/BUd) 2™{.G (~)- '(~) jI
2 ImLG (y)+G+(v) 3

(C10)

Finally,

(a'E/B8') ~,, cos——8I+—sin'8(J+It, L), —
where p is measured from ~,~, b depends on p, , and the
chosen region 8, and S(}i—z') is the cross-sectional area
of the Fermi surface at s, and in I|!

Bl
2 Im{ G-(») —G+(c) jd»,

cose
(C12) S(iK) = dx dy8(x'+y' Li) . —

B2I.J— 2 ImLG-(») —G+(c) jd», (C13)
B cos02

I = (aL/a cos8)' 2 Im{ G (}i)+G+(}i)j, (C14)

{(BI/B cos8) 21mLG (ti) —G+(}i)jI'
(C15)

2 ImLG (}i)+G (p)] one then has

—8+8+8)

—a&-',K2(+xWy) &a, (D3)

It is convenient to choose a cubic region of integration
E such that

The derivative of I. in the above equations are

BL/B Ud = (Ud Dcosa) /L, —

B'L/B Uq' ——(D' sin'8) /I. ',

(C16)

(C17)

S(L) =2a'L1+(E/a') (1—ln
~

L~'/a' ~)], (D4)

g —(a9+~) lt2.

(D5)
BI/B cos8 = DUd/L, —

a L/a2cos8'= —D'(Ud) 2/L' (C1g)

In deriving these equations, it is useful to notice that

BG+ BI. BG~ BJ BG+

B(Ud) BUd BL BUd B»
'

BG+ . BI BG+= —sino
Bo B cosa BI.

BJ BG+= ~sine
B cosa Be

(C19)

The other partial derivatives of E&' involving q can
also be evaluated in a similar way.

APPENMX D. TRANSVERSE CONTRIBUTION
NEAR SADDLE POINTS

when
s/a=an,

~/a2 —~2) 0

The behavior of the integral (D1) depends on the
position of the singularity at s = ——,q in relation to
these points.

It: can be shown that Hop(q) LEq. (D1)] is finite
for all q.

The integral (D1) can be decomposed into several
parts. The only part which can show a singular behavior
when

lS

This should be substituted in (D1) . As a function of
s the cross-sectional area S(p,—s') is a symmetrical
function with maximum at s=o. Its most important
feature is the logarithmical divergence of the derivative
which appears for

+' S(li—s')
30'"(q}=(2q}', ds,

b s+ ~q
(D1) where

The integral to be evaluated (60) can be written as
the principal part of

"in~1—x~
dx, (D9)

x =s/cca; y =q/2cca. (D10)

4 (, y) =—(1-~'}
4v 0
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This integral vanishes for Ke are thus left with

{D11)

and is obviously finite with well-defined derivatives
anywhere else. Separating regions of integration: Now,

nC
Am(n, y) = ——(1—y')

7

ln
f
1-x

f
In

f
1-x

fX + dx (D12)

where

d52(a, y)

dg

1 F2(n, y}
0!8

(1—p') inc —ln
f

1—y f +-.'I(v),
2v v ~'- {1—v)

(D20)dx, D13 where
s—7

and e is small but assumed large compared to
f

1—y f.
The discontinuity is obviously in A2. Now

2nc
~2(~, v) = (1—v')

1 —7+&g ln
f

1—y f
ln +

duln
f

u f/(u' —1). (D21)

In the limit y~1, the two erst terms on the right
side of (D20) vanish. For the last term we have the
discontinuity

lnfufI =hm I(y)
—= du =+-',m') (D22)I

where
u= (1—x)/(x —y). (D15)

lnfufI+= lim I(y) = du = —-', m' (D23)I'—1

Ke are interested in the derivatives with resPe t to and therefore th discontin it th d t is
y (i.e. , q) in the limits

add/dq f, 1= lim (dA/dq) —lim (dA/dq) =-',vr'. (D24)

because

for small 1—p, and

lim (d/dy)L(1 —y)'ln
f

1—y f]=0.

We have thus shown that the derivative of A'1'(q)
has a discontinuity when (DS) holds.

It is interesting to note that the discontinuity is a
local effect of the sp and its size does not depend on the
size of the region of integration. As a result, a discon-
tinuity in the derivative of this magnitude will appear
even when the effect of the sp is only felt in a very
slllall pal t of tile Fer'1111 sul'face.

Figure 2 shows the results of a numerical evaluation
of the integral (D1) for three values of u. It can be
seen that for p &0 the derivative is positive and increas-
ing for small q and decreases discontinuously at the
point (D8).


