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Thermodynamic Fluctuations of the Order Parameter in
Type-II Superconductors near the Upper Critical Field H„f
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In this paper we investigate the mean-square deviation of the order parameter from its equilibrium for
type-II superconductors, assuming that the Gibbs free energy is given by a Ginzburg-Landau-type func-
tional. It turns out that the equilibrium function, which is already varying with position because of the
penetrating magnetic Aux, resists distortion much less than the constant order parameter in type-I super-
conductors. Therefore, the mean-square deviation becomes equal in magnitude to the square of the equi-
librium order parameter in the magnetic field range (H„—Bl /II, 2 & 10 ' to 10 i. This means that the range
of magnetic fields in which Ginzburg-Landau-type descriptions should fail and a singular behavior might
show up seems not entirely out of reach of present experimental techniques, in contrast to the situation in
type-I superconductors. As a necessary byproduct of our investigation, we prove that in the limit as 8 goes
to II... the equilibrium function corresponding to a triangular fluxoid lattice gives a local minimum of the
free energy in function space; and we obtain an orthogonal set of fluctuations of the equilibrium function
which are normal modes in the sense that the second-order increment of the free energy does not mix their
amplitudes. The special properties of the most important Ructuations suggest that the vortex crystal melts
slightly below H,2, but that the identity of the vortices is maintained.

I. BASIC FORMULATlOH

t 1HE thermodynamic potential of a type-II super-..conductor in the external magnetic field B, is
given by

rPr{bs I II~(r)
I

as
I h(r) I'

as=N(0) ln(T, /T),

"=&(0)lf (3) (~/ )',

be=&(0) sf (3) sx(P/~&») '

It = (V/i) —(2e/hc) A(r) .

(1.2)

(1.3)

(14)

(1 5)

Here, 1V(0) =kg'/2x'A» and x is the Gorkov function'

depending on the electronic mean free path.
Besides being based on the concept of a mean field

A(r), the expression (1.1) contains technical approxi-
mations. It is obtained by expanding the true functional

p({d,(r), A(r) }) simultaneously into powers of h(r)
and II, neglecting all powers higher than fourth order.
The neglect of higher powers of I A(r) I

is perfectly
sound, as we are only interested in the limit H,~II,2

where
I A(r) I goes to zero. The neglect of higher

powers of II, however, is not justified at temperatures
well below T„but it can be seen from the complete
gs snd g4 contribution to p that the features of (1.1)
which are essential for our subsequent conclusions
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' See, for instance, ¹ R. Werthamer, in Superconductivity,
edited by R. D. Parks (to be published).

+-', a4
I A(r) I'+(8&)—

'I B(r) —H.]'}, (1.1)

where the constants derived from the microscopic
theory of superconductivity are'

remain unchanged. ' We shall, therefore, not burden
our derivations with the unessential and complicated
details of the true P, but rather take (1.1) as a con-
venient model.

It is then practical to introduce new units, namely
the coherence length (Ac/2e) (a4/girbsas) " and the

upper critical field Aca'/2eb, =H, s for lengths and fields,

respectively, and also to use a normalized order param-
eter P(r) =(a4/as)'"A(r). Thus (1.1) becomes

p=C d'r{I (V/i «'A(r) )lt (r) I'—

+«'(l
I 4(r) I' —lib(r) I')+«4(B(r) —H.)'}, (16)

where ~ is the well-known Ginzburg-I andau parameter'

«= (Ac/2e) (a,/Ssbe') ",
and the other constant C is given by

b2(asb2) 1/2

Aking 'kiiT(lnT, /T)'"

The equilibrium function lt, (r) is determined by mini-

mizing p({p(r) I ) with respect to lb(r) while calcu-
lating A(r) from the supercurrents:

V x B(r) = (1/2«')
I
lt*(r) (V /i s'A(r) )p (r) + c.—c.).

(1.9)

According to our policy of keeping only terms up to
order lb4 in p, we can replace' A(r) in (1.9) by the
vector potential A, (r) = —zBy produced by the aver-

aged magnetic Qux density P';=8 i inside the super-

~ Gert Eilenberger, Phys. Rev. 153, 584 (1957).
'V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.

Fiz. 20, 1064 (1950) )German transl. : Phys. Abhandlungen
Sovjetunion 1, 1 (1958)g.

4 Gert Eilenberger, Z. Physik 180, 33 (1964).
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TYPE-II SUPERCONDUCTORS 629

conductor. The deviation Bp(r) =B(r)-B, from the
mean-Qux density contributes a fourth-order term to
I (&/i —s'A)P I' which equals —2&Bp'(r), so that we
have

y=C d'rI
I (V/i —x'A, (r) )P I'

+s'(s
I f I'—

I P I') —s B '+x4(B H)—'} (1.10)

To our knowledge, no recipe has yet been derived from
first principles for calculating properly the contribution
of Quctuations in a mean-field theory like the one we
have to deal with. Ke shall, therefore, make two
assumptions the validity of which remains to be
proved from the microscopic theory.

The first assumption is that we shall maintain the
relation (1.9) even if P(r) is not the equilibrium
function Pp(r). The reason is that a fluctuation of

P(r) causes a fluctuation of the supercurrent and this
in turn leads to a fluctuating Bp(r) . We shall maintain
a constant B, however, assuming that the surface
currents which produce the difference B—II, react to
Quctuations inside the specimen so as to maintain the
total enclosed magnetic Qux.

The second assumption is that the probability of
finding f(r) in any volume element $$(r) of the space
spanned by a complete orthonormal set of functions
f(r) is given by expI —PP(}g(r) })$$$(r) with

Vs4(B H—,)'. This —assumption has previously been
employed by Rice' for type-I superconductors, neglect-
ing the Bp' term.

A peculiar difhculty is connected with our first
assumption, which cannot be resolved within our
present phenomenological approach. It will turn out in
the following that for nonequilibrium functions P(r)
the divergence of the current in (1.9) will not be zero
in general, and therefore (1.9) cannot be solved
rigorously. This fact is rot to be interpreted as indi-
cating temporary accumulation of charge by the
Quctuations of the supercurrent; instead, as shown
below, it is inherent in the particle-nonconserving
mean field formulation of the effective Hamiltonian
which leads to the Gorkov equations. '

These equations follow as exact consequences, if one
uses the Hamiltonian (including summation over re-
peated spin variables pt):

K= dprIQ +(v/i (%)A)Q, pf—+p j—
—LA(r) &+A++ c c 3}. (1.11)

From this we get

0=Z—' Tr(exp( —p3('.) [K, lt +(r)f.(r) ])

= —(it'+( ) (&/ —(%)A( ) ) it' ( ) — )

-2(~( )C ( )O ( ) —' .)
~ T. M. Rice, Phys. Rev. 140) A1889 (1965).

(X being the interaction parameter), which condition
is exactly equivalent to requiring that b (1') minimizes

the (true) functional P({b,(r) }), and which through
(1.12) automatically ensures divj(r) —=0 for the equi-

librium function hp(r). In general, however, (1.12)
leads to divj(r) WO for functions A(r) deviating from

L4(r) . In our case we shall see that divj is of an order of
magnitude which is systematically neglected anyway
and thus we can rid ourselves of the de.culty by
ignoring it.

II. "NORMAL" FLUCTUATIONS OF THE
SYSTEM

To construct an orthonormal set of functions f(r)
suitable for treating the fluctuations of Pp, we consider
the eigenfunctions of the operator

(V/s —x'A, (r) )'—x'= (r)/ip)s)'+x'(8 —1)+F+F,
(2.1)

with

F~= ((8/ir)x)+xsByv(r)/r)y) ). (2.2)

A complete orthogonal set of eigenfunctions of (2.1)
is given by'

f„,p, „p(r) = exp(iks) I
(2s'8) "I!j'~'F" y(r I rp) (2.3)

with corresponding eigenvalues

E„,p =2rsx'8+ks+ x'(8—1), (2.4)

where the pp(r I rp) are any orthogonal set of functions
(labeled by rp) which spans the complete function
subspace Sp that is annihilated by P . We shall nor-
malize the functions q so that

v '
I &p(r I "p) I'd'r=1. (2.5)

It is well known~ that for magnetic fields close to
H,2, i.e., for 1—B«1, a very good approximation for
the function Pp(r) that minimizes 5 is obtained if one
restricts fp(r) to belong Sp. The reason is that the
above inequality is identical with Ep,y~&&&i,a=p

that any contribution from the f„yp greatly increases

' We shall denote three-dimensional veCtors (x, y, s} by r and
two-dimensional vectors (x, y) by r or by z=x+iy depending
upon convenience. We write r ='. s to denote equivalence of r and s,

~ A. A. Abrikosov, Zh. Elrsperim. i Teor. Piz. 32, 1442 (1957)
[English transl. : Soviet Phys. —JETP 5, 1174 (1957)g.

or

(4prc/e) divj

=~«. ()«/'-(. /.)A()V.()+ . .)
=41-«()(~ ()~, ())) (1.12)

The Hamiltonian (1.11) has to be supplemented by
the prescription
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rz = (xz, yi) = (l, 0), rzz = (xzz, yzz) = (st, sf~3),

with an. f such that the area Q of the fundamental cell
is given by the Aux quantization condition

Q = ,'P&3=-2rr/ir'8 (2.6)

If we shift this function by rs ——(xs, y[[) in the x-y
plane and multiply it by exp(i[z'By[[x) to take care of
the vector potential, we get another function of So
which we call p(r [ rs); it has essentially the same
properties as y(r [ 0). Permitting rs to take on any
value within one lattice cell, we get a set of functions
p(r [ ro) which are mutually orthogonal and span S[[
completely. We introduced this set recently in Ref. 2,
and we describe it more extensively in Appendix A.

the If
s contribution to F. For the same reason, fluctua-

tions with e/0 are not important and we shall only
consider those with»i=0 W. e now denote by q (r [ 0)
the function which describes the triangular Ruxoid
lattice and which is supposed'' to minimize (with a
proper amplitude n) the functional &(IP(r) I) within
Sp. [ p(r [ 0) [

is then periodic with periods

To count modes, we consider from now on a finite
volume V =I.A with an extension I. in the s direction
and a cross section A containing A/Q lattice cells. By
means of the periodicity properties (A7) and (AS) it
can be shown that r[[ then can take on A/Q different
values and

d&= (V/Q) (d&/2x) (d"o/Q) (2 7)

is therefore the number of functions, whose indices
k, ro lie within any given volume dkd'ro.

To calculate the coefficients which determine the
increment of F to second order in the amplitudes of
the fluctuations we shall now evaluate 5 for

It (r) =n~(» I 0)+V "'(az~(»
I ri)+as~ (» I »s) )

0/riWrs/0. (2.S)

Using F P(r) =0, (1.9) is solved by'

B[[(r)=(—1/2a')([P(r) I'—([If(r) [') ) (2.9)

and we get from (1.10) and (2.4) to second order in
the n„..

v(fp[r)[)=c «'(8 —1) [v '+[ a ['+I a I')+-' '(r '+2
[
a I'y2 I a['[+-', [2 ' —1) Ip[r) ['d'rj. [210)

The second term on the right-hand side of (2.10) stems from the term (I p(r) I'), = I
n I'+ V '([ ai [s+[ as I') in

(2.9) .
Evaluating the integral over

[ f(r) [' we shall drop the terms linear in a„ immediately; by the same method of
integration we use in the following they can be shown to vanish identically, as they must.

We are then left with

I if (r) [4d'r= Vn4 Io'(»
[ 0) p*'(r

I 0)d'r/A

+n'[ g a.a„y(r I r,)Io(r [r„)to*'(r [0)d'r/A+ c.c.
I

t fr~I, 2;@=1,2 j

+4n' g a,a„* ts(r [ r„)p(r [ 0) ts*(r [ r„)to*(r
I 0) d'r/A.

@=1,2;p,=1,2
(2.11)

The integrations are easily done if we employ the
addition theorem (A19):

One then gets from (2.11)

~(»I»z)~(r Irs)

=%2 zjp(r [ —,(rz+rs) )y(s(ri rs) [
0)—

+y(r [ s(rz+rs)+srz)v(s(rz —»s) I srz)I (2.12)

together with the orthogonality of the functions

p(r ro), which are the same type of functions as
to(r»[[) with the difference of having a fundamental
cell with rll ——-', r11.

8 W. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev.
133, A1226 (1964) .

+4n'(gq(rz) [ az ['+Pq(rs) [ as ['), (2.13)

where 8(rz, —rs) is Kronecker's delta and the other
new quantities are'

b=s(I t (0 I 0) I'+I v(01s«) I') =11596

0-(«) =s(v (« I o) 2(0 I 0)+~(». I srz)F(0[srz)),

4(».) = l (I ~(s« I o) I'+I v (pro I srz) I'). (2 14)
' We use ( ), for the spatial and ( )g for the thermodynamic

average.
"go is usually called P in the literature (Refs. 7 and 8); we

reserve this letter for (kBT) '.



&&(io (r I »o) ~io (» I
—«) ). (2.15)

These are now modes of Quctuations, whose amplitudes

We see that the only mixtures occur between the
amplitudes of oo(r I ro) and q (r I

—ro), and the ~ormal
modes of Quctuatiorls can be constructed by proper
combinations of both, namely

I+(» I «) = (4(ro)/214(»p) I)'Io(o (» I «) +v (» I
—».) ),

"( I")=(~.( o)/21~. (") I)'"

(which have to be real) do not mix in the second order
increment of P; the set (2.15) is complete in So if rp

takes on all permitted values in half of the original
fundamental cell Lsince we have combined y(» I rp)
with ( (r I

—ro) J.
So far we have not permitted variation in the s

direction. To include this we use the fact that u+ and
I are energetically degenerate with v+ and v, respec-
tively, and the result of Appendix 3 that (2.9) is still
the proper solution for 80 even if we include modes
with k/0 in/. Then, with

s(If(r) I)=»'CV

I+(» I «, k) = (4(»p)/214(»p) I)"'(exp(iks) o (» I rp) + exp( —i») o (» I
—«) ),

~~(» I »o, k) = (P.(»o)/21&-(ro) I))"(i exp(iks) o (r I «) +i exp( —iks) o (»
I

—«) ), (2.16)

the general function P we consider is

P(r) =(2»'(1 —8)/(1+f2»' —1]pp))"'(o(r
I
rp)+V '" g (u„(ro, k)N„(r I rp, k)+b„&ro, k)o„(r I r, , k)), (2.17)

f'0, kg v=. +

where we inserted the equilibrium amplitude u' =2»'(1 —8) /(1+ (2»' —1)$p). The calculation of the corresponding
5 is straightforward using (2.10), (2.13), and (2.14) and yields

»'(1 —8)', t'ko (2»' —1)(, (, +)' ' Z l
—,+, ((—8)(.(i)) (a.'(r, ))+),'(~„))),

with

t, (r,) =24(r,) -4+14(r,) I

=
I ~(o»p I

o) I'+I o (-'»p I k»r) I' —&p+-' I o (»p I o)~*(01o)+o (»p
I
-'»i) o *(01 orr) I. (2.19)

Two interesting conclusions can be drawn from these
results. First of all, numerical computation shows that
the coeflicients 4.(ro) are positive for all roWO, thus
proving that for j.—8&&1 the triangular Quxoid lattice
is indeed stable against infinitesimal distortions. More
precisely, for all ro/0 the inequalities

0&~ (r,) &0.6g11&t+(rp) &2.3192=2~p (2.20)

((I y(r) I'&,)„and compare it witl (I Pp(r) I &..
Using the relative probability expL —PF(I((t (r) I)j for
any f(r) we get immediately

« lk(r) I'». .-&14o(r) I'),

(2»' —1)=V 'Q 2PC k'+, »'(1 —B)(„(rp)
k, r0, r 1+(2»' —1) tp

hold with $ (rp)-+0, &~(ro) —2)o as ro~0 and. g (rir) = »& ((2»' —1) (1—&)) "o

4() 01 ( (~3) l) bl fh pci+( )bI (Z Z)
functions fy(rp) and $ (rp) are given in Appendix C.

The second conclusion is that the increase in the wh~~~ we used (2.6) and (2.7) for the last step and
number of modes of Quctuations with small energy as
B-+I is much faster here then it is in a type-I super-
conductor when T/T.~l. This is due to the fact that ~+= (5+(»p) ) "d'ro/Q=1,
all Quctuations in the x-y directions contribute only a
free-energy proportional to 1—B.We expect, therefore,
that the eGect of Quctuations is much closer to being
observable in type-II than in type-I superconductors,
and shall demonstrate this in the followin section.

(3 1)

(3.2)

g
The simple Ginzburg-Landau approach is supposed to

IIL MAGNITUDE OF FLUCTUATIONS IN TYPE-& break down when. (3.1) becomes equal in magnitude to
AND TYPE-G SUPERCONDUCTORS

&I A(r) lo&. =~'=I:2»'(1—&)/(1+(2»' —1)po) ~ (33)To estimate the range of magnetic fields 8 where
the fluctuations could be of influence, we calculate The interesting range of magnetic fields, where this
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and consequently

5({y(r)I)
=K'CV{—-'+V ' Q (k'/(a'+1+v))

k, v=+

(3.6)

where we have now neglected the 80' term. Instead
of (3.1) we get

((I 4(r) I'»i~ —1

happens, is given by

(1—8)sl' & (10/8z) (z/PC)

30+2 t' kg T
y'i'(in(T, /T) )'" t,fikrtir

i.e., for temperatures T well between 0 and T, when

(1—8) &10 4—10 '
or

(H, s H, )/—H, s &10 ~10 ', (3.4)

which is at least close to being observable with present
experimental techniques.

To compare this with the situation in type-I super-
condutors one gets a rough estimate by replacing the
formulas following (2.16) by

ti~(r I k) %=2 '[exp(ik r) & exp( i—k r)]
e~(r I k) =@2 '[i exp(ik r)+iexp( —ik r)], (3.5)

p(r) =&+V-its p [o.(l )u, (r I
I )+b, (l )e.(r I k)],

degeneracy of the kinetic energy operator in magnetic
fields.

One would like to ask., what happens in the critical
region (3.4) of Geld magnitudes. Because the fluctua-
tions which contribute are of the very special type such
that the Quctuating function remains a ground-state
function of the linearized Ginzburg-Landau equation,
we suspect that the latter remains meaningful in this
range, but that the vortex lattice melts at a certain
external field strength below IJ.,2. This would be rather
interesting if it were observable experimentally.

APPENDIX A. : THE FUNCTIONS p(r
I

rs)

We shall describe here the most important and useful
properties of the quasiperiodic" eigenfunctions of the
operator

[B/i Bx+27r (y/ti) ]'+ (B/i By) '
=2z/ri+[B/iBx+27r(y/rl) B/B—y]

X[B/iBx+2ir (y/ti) +B/By] =2x/tl+F+F . (A1)

It is easily shown4 that any such eigenfunction, if it
exists at all, must obey the "Aux quantization condi-
tion"

(2z/tl) Q =2z.m, (A2)

where Q is the area of the fundamental cell and I is an
integer. Given such a cell for m=1 it is convenient to
scale its base to unit length, so that the cell is spanned
by the periodicity vectors':

2sr =rt = (1, 0) =: 1,

We then de6ne the function

v (r I
o

I 1) =(2~)'I' g exp2~/g

2m'PC
[1—(q'+2) ']dq. (3.8) X {——(y—21+Ptl) s+P+iPti(x+ tzPt') I, (A3)

The results of this integration clearly depends on the
cutoff we choose. Following Ginzburg, " we take the
second, convergent term in the integrand (3.8) as an
estimate of the relevant contribution, which amounts
to an effective cutoff k, of order ~. This 6nally yields
for the interesting temperature range in type-I super-
conductors the well-known result"

37r2 kgT '
x"'(h(2' /2') )"' (M n )

or

(T,—T) /T, &97r4/xs(knT /Akiier) 4~10 " 10 " (3.9)— .

The confrontation of the two situations clearly exhibits
as the source of their profound difference the high

n V. L. Ginzbnrg, Fiz. Tverd. Tela 2, 2031 (1960) [English
transl. : Soviet Phys. —Solid State 2, 1824 (1961)g.

where t is a generating parameter, the use of which will
be convenient later. For t=0 this equals

~ (r I
0) = (2~) '" exp( ~y'/n) Bs(~s—I r), (A4)

where Bs is Jacobi s 8 function. " Provided its magni-
tude is bounded, this function is a ground-state eigen-
function of (A1) since any q (r) =f(s) exp{—y'/ziIr
with an analytic f(s) Pand ottly such a q (r) ] satisfies

F q = [B/iBx+27r(y/ti) +B/Byfq (r) =0. (A5)

If we shift y(r I 0) by rs ——(xs, ys) we get a very similar
function which can also be made a ground-state func-
tion of (A1) if we multiply it by exp{27ri(ys/rl)xI to
provide a shift in the vector potential when Ii acts on

'~We use the term quasiperiodic for the behavior exhibited
by the formulas (A7)."E.T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, New York, 1952).
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I o (» I »0) I'(d'r/~) =1.
cell

(c) Symmetry and zeros:

(A9)

y(r+nsi+«nsrr I 0) = ( —1)" p( —r+nsi+«nsii I 0)

n, np integers. (A10)

These symmetry relations follow for n =m=0 directly
from the definition (A3), the other ones can then
easily be derived by means of (A7) . From (A10) also
follows

op(sr+sir I 0) =0 (A11)

and this is the only zero p has in the fundamental cell,
since 83 has no other zeros. "

(d) Except for a constant phase factor, op(r I 0) is
uniquely determined by the conditions (AS), (A7)
with rp

——0, and (A9). If there is another function X(r)
satisfying (AS) and (A7) with rp ——0, the ratio

x(»)/o (» I o)

is a doubly periodic analytic function which has at
most one single pole in the fundamental cell. Hence, "
this ratio is constant and of magnitude 1 because of
(A9) . We shall now proceed to say something about the
completeness of the functions we have acquired.

For this purpose, we consider an operator X(rp) that
operates in the Hilbert space of functions which are
dined and square-integrable over one fundamental
cell. For functions that are at least two times differen-
tiable and obey the boundary conditions (A7) (with
an rp kept fixed), let K(rp) be represented by (A1) . It
is obvious, that Ii p as well as F+p and, consequently,
F+F p obey the relation (A7) if p itself does so. Since
op(r

I
rp) is the only function which satisfies (A7) and

F+y(r) =0, it seems reasonable to assume, " that the
set of eigenfunctions of K(rp) for the given rp,

op„(r I ro) = j (4x/rl) "n!I "F "y(r
I rp)

the shifted function. We denote these functions

p(r I rp) = expl 2~i(yp/g) x7p(r+rp I 0) . (A6)

It is now easy to check the following properties of
o(r l»o):

(a) Periodicity:

v (»+»i I »o) = expL2~i(yo/n) 7o (» I »o),

op(r+rrr I ro) = exp(2') I (y /pg) f x—p5

X expL —2pri(x+yt ) 7op(r I rp), (A7)

o (» I »0+»I) =~ (» I «),
y(r I rp+rii) = expL —2ni(xo+pf')7y(r

I ro) (A8)

(b) Normalization:

is a complete set of functions over one fundamental cell
and determines X(rp) uniquely.

We observe now from (A7) that functions op„(r I rp)
with diferent ro acquire diferent phase factors if we
go from one fundamental cell in r space to another.
In this respect, they resemble closely the mell-known
Bloch functions for electrons in periodic potentials; in
fact, we can convert the index ro into a wave number k
by setting

k,=2pr (yp/q), k„=—2s (xo/r!) . (A13)

If ro runs through all positions within one fundamental
cell, k runs through all positions in the Srillouin zone
of the two-dimensional lattice with lattice vectors rz
and rzz. Invoking the well-known orthogonality rela-
tions of the Bloch functions, it follows from the com-
pleteness of the set (A12) for each rp in one fundamental
cell the completeness in the entire x-y plane of the set

q„(r I rp), n=0, 1, 2, ~ ~ ~,

ro in the fundamental cell. There follows also the
orthogonality relation

d rop (» I »1) q (» I rp) =i!'8'(r&—rp) 8, . (A14)

We shall now consider the simplest of the addition
theorems, which relates products of q's to functions q,
which are dehned like the p but with fundamental cells
of smaller size. These theorems are essentially the
addition theorems of the 8 functions, but they arise in
a quite natural way viewed from the results gained
above. To see this, we consider the product

o (r I 0), o (r I s,), (A17)

which are defined with » = »/2. Using the completeness
theorem we see, then, that P(r, r') must be a linear
combination of the functions (A17) as far as its r
dependence is concerned. Moreover, because P(r, r') =
P(r', r) an equality

')= Z~"o( I s)~('l~ )
p, v=o, l

must hold with constants A„„. Directly inserting the
series (A3) one finds then

P(», «') =P(»', «) =y(r+r'
I 0) q (r —r'

I 0). (A15)

From (AS) we get immediately

FP (r, r') = (8/iBx+4vr/g+8/By) P(r, r') =0. (A16)

The property (A16), as well as the periodicity of p as
function of r, which follows from (A7), is shared only
by the functions

= I(4~/n) "n!I '"(~"/~~")o (« I « I
~=0) (A12) ~(r+r'

I 0)„(»—»'
I 0)

' This assumption-is usually made tacitly, whenever one deals
with unbounded operators in quantum mechanics. =(v2) 'L&(» I 0)o (»'

I 0)+q (» I ») o (r'
I ») 5 (Alg)
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This can be cast into the form

o (» I
»~

I &~) «» I
»o

I &o) =~ '}~(r I o (r~+«) I o «~+fo) )o ('(»~ —«) I
o

I o (&~
—

&o) )
+oo(r [-', (»i+»o)+~z [ o(4+to))oo(—', (rz —rz) I

sz I o(6—4))I (A19)

by observing the identity

~(» I « I ~) = expL(2x/~) ~3

X exp)27ri (yo/»I) xjp (x+xo, y+yo 2t
I 0) .—

(A20)

The form (A19) is particularly useful in connection
with the right-hand side of (A12); we used it in the
main part of the paper only with t~ = t2

——0.
Finally, we shall comment on the numerical compu-

tation of the oo. The series (A3) generally converges
quite fast, but it is obvious, that it converges the
faster, the bigger g is. Therefore, if one has a long Rat
fundamental cell, as we had for the p in the main part
of the paper, one is led to the idea of turning the cell
around by turning the coordinate system and regaug-
ing to get the vector potential back into the x direction.

The goal of this procedure is most easily achieved by
employing Jacobi's transformation"

B,(ors
I r) = (i/r) '~' exp Lm.i( s' /—r) ]Bo(—ors/r I

r')—
(A21)

together with (A4) it leads to

o (r I ro) =mr(»x[0)

X exporiL:', argrz o+ Re(sz'/rz) j—, (A22)

where yT ——'. gz
——g7. and —7' '=7.z =.

'
rzz, z describes the

transformed fundamental cell, i.e., the fundamental
cell of the transformed function y~.

APPENDIX B: CALCULATION OF B

We consider here a function

P(r) =ago(r)+pa(k) exp(iks) yo(r), (81)

and

(B/Bx) 8'. (B/Bs) 8—', =0,

(B/By) 8', (B/Bs) 8'„=0, — (85)

(B/Bx) 8'.+ (B/By) 8'„+(B/Bs) 8',
= —i+*(r)ga, k exp(ikz) &p„(r) + c.c.j. (86)

The components 8', and 8'„contribute to Bo' the term
2~'(8" +8"„);being interested in the a' contributions

where all the p(r) are supposed to satisfy P q=0.
Then we try to solve

2&'(V &Bo(r) )=p*(r) (V/i K'A—,)p(r) + c.c., (82)

keeping in mind that we are interested in contributions
to Bo' of at most second order in a. Writing

2~'Bo(r) = —(I P(r) I' —(I P(r) I'),)s+B'(r), (83)
we take care of the main contribution to Bo and we
are then left with the equations for B':

(B/Bx) 8'„(B/By) 8—'.
=P*(r) gawk exp(iks) go(r) + c.c., (84)

TAsLE I. The function P+(r) .

12

1.4035 1,4688 1.6443 1.8772 2. 1021 2.2618 2.3192 2.2618 2.1021 1.87"/2 1.6443 1.4688 1.4035

1.3926 1.4908 1.6888 1.9269 2. 1400 2.2759 2.3046 2.2201 2.0403 1.8071 1.5807 1.4263 1.3926

1.3619 1.4965 1.7171 1.9565 2. 1527 2.2618 2.2618 2. 1527 1.9565 1.7171 1.4965 1.3619 1.3619

1.3173 1.4923 1.7323 1.9662 2. 1400 2.2201 2, 1930 2.0632 1.8539 1.6089 1.3919 1.2772 1.3173

1.2690 1.4857 1.7370 1.9565 2. 1021 2. 1527 2. 1021 1.9565 1.7370 1.4857 1.2690 1.1775 1.2690

1.2306 1.4827 1.7323 1.9269 2.0403 2.0632 1.9946 1.8386 1.6118 1.3524 1.1313 1.0/31 1.2306

1,2158 1.4857 1.7171 1.8772 1.9565 1.9565 1.8772 1.7171 1.4857 1.2158 0.9837 0.9837 1.2158

1.2306 1.4923 1.6888 1.8071 1.8539 1.8386 1.7576 1.6001 1.3678 1,0866 0.8317 0.9452 1.2306

1.2690 1.4965 1.6443 1.7171 1.7370 1.7171 1.6443 1.4965 1.2690 0.9837 0.6811 0.9837 1.2690

1.3173 1.4908 1.5807 1.6089 1.6118 1,6001 1.5455 1.4146 1.2017 0.9411 0.8317 1.0/31 1.3173

1.3619 1.4688 1.4965 1.4857 1.4857 1.4965 1.4688 1.3619 1.1775 0.9837 0.9837 1.1775 1.3619

1.3926 1.4263 1.3919 1.3524 1.36/8 1.4146 1.4202 1.3437 1.2017 1.0866 1.1313 1.2772 1.3926

1.4035 f.3619 1.2690 1.2158 1.2690 1.3619 1.4035 1.3619 1.2690 1.2158 1.2690 1.3619 1,4035
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TAnLz II. The function $ (r).

0.0645 0.0562 0.0363 0.0161 0.0040 0.0003 0 0.0003 0.0040 0.0161 0.0363 0.0562 0.0645

10

12

0.0754 0.0607 0.0358 0.0142 0.0030 0.0002 0.0000 0.0009 0.0073 0.0239 0.0486 0.0702 0.0754

0.1062 0.0779 0.0414 0.0147 0.0029 0.0003 0.0003 0.0029 0.0147 0.0414 0.0779 0.1062 0.1062

0.1509 0.0995 0.0475 0.0152 0.0030 0.0009 0.0014 0.0072 0.0285 0.0717 0.12'75 0.1645 0.1509

0.1993 0.1172 0.0500 0.0147 0.0040 0.0029 0.0040 0.0147 0.0500 0.1172 0.1993 0.2424 0.1993

0.2377 0.1239 0.0475 0.0142 0.0073 0.0072 0.0088 0.0262 0.0799 0.1781 0.2931 0.3285 0.2377

0.2525 0.1172 0.0414 0.0161 0.0147 0.0147 0.0161 0.0414 0.1172 0.2525 0.4070 0.4070 0.2525

0.2377 0.0995 0.0358 0.0239 0.0285 0.0262 0.0255 0.0592 0.1589 0.3340 0.5378 0.4417 0.2377

0.1993 0.0779 0.0363 0.0414 0.0500 0.0414 0.0363 0.0779 0.1993 0.4070 0.6811 0.4070 0.1993

0.1509 0.0607 0.0486 0.0717 0.0799 0.0592 0.0470 0.0945 0.2299 0, 4394 0.5378 0.3285 0.1509

0.1062 0.0562 0.0779 0.1172 0.1172 0.0779 0.0562 0.1062 0.2414 0.4070 0.4070 0.2414 0.1062

0.0754 0.0702 0.1275 0.1781 0.1589 0.0945 0.0623 0.1105 0.2299 0.3340 0.2931 0.1645 0.0754

0.0645 0.1062 0.1993 0.2525 0.1993 0.1062 0.0645 0.1062 0.1993 0.2525 0.1993 0.1062 0.0645

to Bo' only we can then replace P*(r) by go*(r) in (84),
and solve (84) and (86) simultaneously with B',=0.
The resulting contributions to Bo' would then have
factors n'k'~(1 —B)k' which have to be neglected
besides the term k' in the P of (2.18), according to our
policy of keeping only terms of lowest order in (1—B) .

The proposed solution for 3' does not solve the
equations (85), however; (84) and (85) cannot be
solved simultaneously since the divergence of the
current, i.e., 8/8s of the right-hand side of (84), does
not vanish. The "misfit" of the equations (85), i.e.,
the quantities (8/8s)B', and (8/8s)B'„, are of magni-
tude ngqk'aqui, (r). Since the important contribution
to the Quctuations comes from values k~ 1—8, this
misfit is again smaller by a factor (1—B) than the
quantities we have already included into (83). It
seems therefore consequent within our framework of

approximations to use

Bo(r) = (2~) (I 4(r) I' —(I tt (r) I'&.) (By)

as the "solution" of (82).

APPENDIX C: NUMERICAL VALUES OF THE
FUNCTIONS (~(r) AND ( (r)

We calculated the functions $+(r) and P (r) numeri-
cally, using (2.19), (A3), and (A22) . In Tables I and II
the values of the functions are listed for the arguments

r(M, E) =:s(M, Ã) = (M+'-, (exp-', iri) E)—,', I,

—6&M&+6, 0&X&12,

i.e., for I69 points in the upper half of one original
fundamental cell of basic length l, centered at r =0.


