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We study microscopically the resistive state in Type-II superconductors in high field in two extreme
limits (i.e., the dirty limit and the pure limit). We establish that in high magnetic field, a constant electric
field induces (1) a uniform motion of the order parameter in the direction perpendicular to both the electric
and the magnetic fields with velocity —u= —8/H, 2, and (2) a polarization along the electric field pro-
portional to this velocity. This gives rise to additional contributions to the electric and thermoelectric
transport coefficients. We calculate in both limits the changes of longitudinal resistivity and Ettinghausen
coeKcient due to the above effect. In the pure limit, we also obtain the variations of the Hall angle and
the Peltier coeScient.

1. INTRODUCTION

1HERE have been recently a number of experiments'..associated with the motion of vortex lines in type-II
superconductors. They involve measurements of the
voltages and temperature differences (or heat currents)
in the presence of a 6nite transport current. Many
theories, ' based on the analogy between this situation
and the similar one in superQuid helium, have been
proposed to account for these dissipative phenomena.
Most of them treat the mixed state semiphenomeno-
logically (essentially using a two-Quid model and hydro-
dynamic assumptions). This is probably the source of
the discrepancies which have sometimes appeared be-
tween difI'erent theories. The above assumptions, which
are good for He II are more or less arbitrary here,
since they are both incompatible with the expression
of the electromagnetic conductivity in a pure super-
conductor. The hydrodynamic approach is ruled out
in this case by the presence of a logarithmic frequency-
dependent term in the conductivity' (this corresponds
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to a non-Ohmic behavior of the "normal" current, i.e.,
to a logarithmic increase of this current at very long
times4') .

On the other hand the two-Quid model cannot de-
scribe consistently the responses to perturbations hav-
ing different time-reversal symmetries (i.e., associated
with different coherence factors), e.g., the electro-
magnetic and thermal conductivities.

Finally, all these theories deal with the low-field
region (H&H, r) where the distance between vortex
lines is much larger than the coherence distance.

Recently, Schmid' and Kulik have discussed this
problem with the help of time-dependent Ginzburg-
Landau equations (Schmid derives a diffusionlike equa-
tion, while Kulik uses an inadequate phenomenological
wavelike one). In particular, the former proves that,
close to II,2 and in the presence of an electric field, the
order parameter moves with a uniform velocity, and
is able to account for the Qux-Qow resistivity close to
the transition temperature T,o.

In the present paper, we generalize this type of
approach to both dirty and pure superconductors at
arbitrary temperatures and in the vicinity of the upper
critical field II,2. Using the fact that close to H.2 the
order parameter 6 is small, we can describe its motion
microscopically.

In previous works' we have obtained equations which
describe the time-dependent Quctuations of the order
parameter in the high-field region. In the same sense
as an electromagnetic wave is a coherent superposition
of photons, the motion of the order parameter in the
mixed state can be understood as a coherent emission
of quanta of this fluctuation field (although in low

4This difficulty has been independently noticed recently by
W. A. B. Evans (private communication) .

'Precisely speaking, this objection does not apply to dirty
gapless superconductors (e.g., dirty type-II materials in high
field). In this case, due to the short collision lifetime, the low-
frequency complex conductivity can be expanded in powers of
the frequency )see K. Maki, Phys. Rev. 141, 331 (1966)j.

6 A. Schmid, Physik. Kondensienten Materie 5, 302 (1966).
~I. O. Kulik, Zh. Eksperim. i Teor. Fiz. 50, 1617 (1966)

LEnglish transl. : Soviet Phys. —JETP 23, 1077 (1966)].
8 C. Caroli and K. Maki, Phys. Rev, 159, 306 (1967); 159,
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fields these fluctuations are coupled with other (e.g.,
electromagnetic) fluctuations of the superconductor) .
The spectrum of Quctuations of the order parameter is
of a diGusion type at all temperatures, with a diffusion
coeKcient

(where « is the electronic mean free path, ]0 is the BCS
coherence distance, and i the Fermi velocity). There-
fore, the motion of the Abrikosov structure in an
electric field can be visualized as the motion of a set
of charged Brownian particles in a magnetic and an
electric field at right angle; that is the Abrikosov
structure drifts at right angle from both the magnetic
field and the electric field with a velocity E/H, 2. This
analogy with Brownian particles cannot be pursued too
far. For example we have to calculate the currents by
using precise expressions in terms of the moving order
parameter A(r, t) .

In Sec. 2 we develop a formalism, which allows us to
describe the time evolution of the order parameter,
and to calculate various currents in terms of the time-
dependent order parameter h(r, t) in the presence of
both a magnetic field and an electric field. Furthermore
we establish that the order parameter (i.e., the
Abrikosov structure) moves uniformly with a velocity
u=E/H, 2 in the electric field independently of the
impurity scattering and at all temperatures.

Restricting ourselves to the dirty limit, we calculate
in Sec. 3 the longitudinal resistivity and the Ettings-
hausen effect for all temperatures (in the vicinity of
H,&). As has already been pointed out by Kulik, i the
expression of the local current contains oscillating parts
with frequencies nku, where u is an integer, k~[((T)$ '

(i.e., the inverse coherence distance of a superconduct-
ing alloy) and uE/H. &, which is analogous to the ac
Josephson effect.

In Sec. 4, we will discuss various currents in a pure
type-II superconductor in the high-held region.

We do not calculate here the Hall current. and the
Peltier (i.e., longitudinal) heat current. However, we

can show that the contribution to those quantities due

to the motion of the order parameter is at most of

order &v,/T. o (where cd, = eH, 2/m and T,o is the transition
temperature in zero field) compared with the contri-
butions to the longitudinal electric current and the
transverse heat current, respectively. Therefore, in the
pure limit we can neglect completely the contributions
to the Hall and the Peltier currents due to the motion
of the order parameter, which gives rise to a correction
of the order of (]z/t) . In this case the variations of the
Hall angle and the Peltier coeKcient should reQect

simply the variations of the longitudinal resistivity and

of the Ettingshausen coefBcient, respectively. In the
dirty limit, on the other hand, the corrections due to
the motion of the order parameter are of the same

order in t/$0 as those in the normal state. In order to
obtain them, one should improve the accuracy of the

calculations up to order (re) ' (where r is the collision
lifetime of an electron and Ei is the Fermi energy) .

Finally, we assume everywhere that. one can com-

pletely discard the pinning effects on the motion of the
order parameter, which is known from experiments to
be a quite reasonable assumption in the high-field
region (H~H, 2). Furthermore, we assume in all the
calculations that the Fermi surface is spherical, which

may be adequate for relatively pure Nb (say, with a
resistivity ratio ~10000) but may not be valid for
extremely pure Nb.

2. FORMULATION

The purpose of this section is to present a general
formalism which allows us to calculate various physical
quantities in a state where the order parameter varies
in time. Since we are interested here in studying the
resistive state of type-II superconductors in the high-
field region to the lowest order in the order parameter,
it is possible to treat the eGect of the order parameter
as a perturbation (i.e., we consider the normal state
with D(r, t) =0 as the unperturbed ground state).

The time variations of the various physical quantities
(i.e., observables) A(r, t) which are bilinear in the
electron creation and annihilation operators P,i(r) and

f,(r) are ruled by the interaction Hamiltonian

3Ci=e n r, t r, t d'r

+ [d, (r, t)4'(r, t)+6'(r, t)%(r, t)]d'r, (1)

n(r, t) = Q P, ,"(r, t) f,(r, t),

and
(3)

Equations (1) and (3) involve only one assumption,
namely that one can still make, as in the static case,
a generalized time-dependent Hartree —Fock approxi-
mation. This is a very good approximation —at least
in weak-coupling superconductors —since the electron—

electron interaction can be considered as instantaneous
compared with the scale of time variations of the order
parameter (i.e., Mi&))T 0, where a» is the Debye fre-

quency of the material). Here p(r, t) = Ex is the-
scalar potential which describes a constant electric
field in the x direction, while the time-dependent order
parameter A(r, t) has to be determined consistently
from Eq. (3). In the absence of the electric field, Hi
can be treated to lowest order in perturbation with

respect to the state with 6=0 (i.e., normal state).
We know that in this situation the self-consistency

equation, Eq. (3), reduces to a generalized linear
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Ginzburg —Landau equation, whose solution is the
Abrikosov solution.

We will now treat the electric field as a perturbation
acting on this equilibrium state. Since we will see that
it induces a drastic change of the structure (i.e., motion
of the order parameter), we will first write Eq. (3) to
lowest order in 6 but to all orders in the electric field.
This allows us to describe quite generally the motion of
the order parameter. Then we can use this result to
calculate the currents to first order in the electric field.

A. Equation for the Order Parameter

Let us consider the equation which describes the
time variations of 5( r, t) in an electric field E. Equation
(3) is formally rewritten as

+exp

Furthermore, in the dirty limit, the effect of the electric
field can be incorporated simply by replacing ko by
—(8/Bt)+2iep(x). Other terms which come from the
noncommutative nature of operators Q„and i&o =
—(ri/alt)+2iep(x) give rise to terms of higher order in

t/$s (where t is the electron mean free path and $o

the BCS coherence distance) and thus negligible. This
is analogous to the treatment of the magnetic field in
the dirty limit. "As in the case of the calculation of the
upper critical field H, s, we can solve Eq. (6) by con-
sidering the set of equations:

[—(8/Bt)+2ieg(x)+DQ']At(r, t) =spy'(r, t) (7)

alid

We will defer discussion of the above equations until
the next section.

In the pure limit, on the other hand, Eq. (5) is still
an integral equation. In this case, by analogy with the
treatment of the vector potential, "we may introduce
the e6ect of the external electric Geld by means of a
phase factor:

At(r, t) = i
l g—l

dt' dsr' e pxl iS(rt; r t')]

This equation has been obtained previously in the study
of the Ructuations of the order parameter. ' Using these
results, we have in the dirty limit:

where

A = —iro+DQs, D=-', (l„e),

where i([A(t), B(t')])tt(t—t') is the retarded product
and can be obtained by making use of the temperature
Green's function technique. ' We have kept here only
the lowest order term in A(r, t), since we are interested
in the behavior of the order parameter at II,2, which
is adequate for the following calculations. It is im-
portant to notice that we have to take into account
the eGect of the external field to all orders. For this
purpose it is convenient to start with the case of no
electric field (i.e., E=O). Here, the time dependence
of i(f%t(r', t'), 4'(r, t)]) is very simple (i.e., depends
only on the relative time (t' —t)] and Eq. (4) reduces
to+

where

S(rt; r't') =2e y(x")dt", (10)

and ( )a s is the average in the normal state in the
absence of the electric field. In fact, we can show that,
as in the treatment of the vector potential, the above
procedure gives a correct prescription as long as we
neglect the curvature of the electron orbit due to the
static magnetic field. Such an approximation is ade-
quate for the calculations of the longitudinal electric
current and the transverse heat current, but is not for
the calculation of the transverse electric current (Hall
effect) and of the longitudinal heat current (Peltier
effect), since these effects arise from terms of the order
of ro,/T, s. Fortunately, in the discussion of these quan-
tities in the pure limit, we can completely neglect the
corrections to those contributions associated with the
order parameter b.t(r, t), since they are smaller than
the normal-state values by a factor of order ($p/t)'.
Therefore, throughout the following discussions the
electric Geld will always be treated by introducing an
appropriate phase factor in the relevant kernel.

and

Q = (1/i) V+2eA. B. Current Operators

9 See for example: A. A. Abrikosov, L. P. Gor'kov, and I. E.
Dzialoshinski, Methods of Qguntlm Field Theory in Statistical
Physics (Prentice-Hall, Englewood Clips, New Jersey, 1963),
Chap. 7, Sec. 37-2.

"We use the standard notation, i.e., (LA, 8] ),„is the Fourier
transform of the corresponding retarded product (see Ref. 9) .

The currents in the system with a time-dependent
order parameter (and in the electric field) are given

"K.Maki, Physics 1, 21 (1964)."L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 3V, 835 (1959)
/English transl. : Soviet Phys. —JETP 10, 593 (1960)g.
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as

A(r, i) = exp i Xi(ti)dti A(r, t) exp —i Xi(t2) de

where

=A i ( r, i) +A 2( r, i),

and

A, (r, t) = ie— di' d'r' (['A(r, i), n(r', i')])y(r', t'), (12)

A&(r, t) = dpi dt& d'id'm[([[A(r, i), %'(1, ti)], 4'(m, i2) ])
+([[A ( r, t), 4'(m, t2) ],4'(1, ti) ])}6 (1, ti) b, (m, t2) . (13)

Here the terms linear in A(r, i) [or Ai(r, [)] do not
contribute (since they do not conserve the number of
particles). Ai(r, i) is the current in the normal state
in the presence of the electric field, while A2(r, t) is
the lowest-order contribution due to the (moving)
order parameter.

The effect of the electric field in the various retarded
products involving %(r, J) operators is treated as in
Subsec. A. That is, the seals, r potential g(x) can be
considered as a simple shift of frequencies in the dirty
limit, while in the pure limit, it appears through an
appropriate phase factor (see Sec. 4) .

3. DIRTY LIMIT

A. Uniform Motion of the Order Parameter

We will confine ourselves to the dirty limit, where
the electronic mean free path /' is short with respect to
the HCS coherence distance $0 We have s.een that the
time dependence of the order parameter in an electric
field is described by the equation

I (B/Bt) 2iep(r—)+D(V+2ieA)'IA (r,tt) =eoht(r, t),

(14)

where e0=2DeH, ~ is determined by

—ln (T/T. o) =P( ', +op/4~T) —P(-',-)

and P(s) is the di-gamma function.
Here we take P(r) = Ex and A= (0, Hx, 0)—(i.e.,

the magnetic field is along the s axis) . As is well-known,
in the absence of electric field, the equilibrium solution
of Eq. (14) is a linear combination of Abrikosov's
degenerate solutions (H =H„);

6'(r i) =- g C,„*exp(ikny)

&(exp[—eH(x+rtk/2eH) '], (16)

where the constants k and C„are such that 6 corre-

sponds to the usual triangular conhguration.
In the presence of an electric field E, the solution of

Kq. (14) becomes

A~(r, t) = Q C„*exp[ike(y+ut)]

kn iN,
)(exp eH x+— + ~, (17)

2eII 4eHD)

where N=E,~II,2. This solution has been previously
derived by SchmicV' with the help of the time-dependent
Ginzburg —Landau equation, which is valid for T &T',0.

We have neglected here the shift of the upper critical
field in the electric field, since it is of second order in
u—i.e., EI,2 is given now by

H,g(E) =II,p[1 (1/8H, 2) (E—/H, 2D) '].
The modifications of the vortex configuration (i.e.,
changes in the C„'s) due to the electric fieM are always
negligible, since they would introduce only a correction
of higher order in N. We can then take for k and the
C„'s the value for E=O. Equation (17) indicates that
the electric field induces a uniform motion of the
Abrikosov structure in the y direction. The velocity of
this motion is such that in a frame moving with the
order parameter (i.e., with the velocity —u= E/H, 2), —
there is no net Lorentz force. It is sometimes useful to
note that b.(r, t) satisfies the relation

(B/Bt) At(r, t) =N(B/By) At(r, i) (18)

B. Transport Equations in the Resistive State

One of the most fascinating properties of the socalled
resistive state is that a finite electric field can exist in
this state inside the bulk of the type-II superconductor,
giving rise to electric dissipation and thermoelectric
e6ects. This feature is in strong contrast to the behavior
of a type-I superconductor, where the electric held
E~. =O everywhere in the bulk of the specimen, so that
there is no electric dissipation and thermoelectric
effect."Whatever description one gives of the resistive

"A similar solution has also been found by Kulik (see Ref. 7) .
However, his result is not valid, since he starts from a wavelike
equation instead of the appropriate diffusionlike equation.

'4 This obviously does not hold in the intermediate state, where
the normal regions and the E—S boundaries allow a finite average
electric field to exist.
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state, the appearance of a finite voltage always has to
be interpreted in terms of vortex-line motion. '

We are now going to show that the uniformly moving
solution for the order parameter discussed in the pre-
ceding subsection gives rise to 6nite corrections to the
average electric and heat currents with respect to their with

3(r, t) =3i(r, t)+32(r, t), (19)

normal state values. Making use of the formalism de-

veloped in Sec. 2, we can express the electr'ic current
as

)i[r, t} = —
ref

dt' d'r' &[ j[r, t), m[r', I')])g[r', t'), (20)

dt2 d'ld'm j r, t, % I, t&, + m., t2

+&[I j(r, t), %t(m, t2)], %'(1, ti) ])Iht(1, ti) h(m, t2), (21)
where

ie
j( r, t) =—g(V V'—2ie—A(r, t) )p.t(r', t) p.(r, t) I;,.

m tr

(22)

We also have a similar expression for the heat current, where the heat current operator is given by

8 . i, . 8
j"(r, t) = ——p (V ieA) —, i'—)+—(V'+ieA) +ie—p I f,t(r', t')f, (r, t) I.

2 Bt' j Bt j
ji(r, t) and jp(r, t) are the currents in the normal state, and we have

pig(r, t) =o(1+vP) 'F.

j.(r, t) = L~/(1+~') Ã,
and

ji'(r, t) = STji( r, t),

(23)

(24)

(25)

where &r= e'7i,AT/m is the conductivity of the normal metal in zero magnetic field, )t =«,[d, (where cv, = eH, 2/m is
the cyclotron frequency) and 5( =7[2T/3' for a spherical Fermi surface) the thermoelectric power coefficient.
j2(r, t) and j2[~}(r,t) are the contributions due to the motion of the vortex structure (i.e., that of the order pa-
rameter), in which we are interested here. Equat. ion (21) and the corresponding one for the heat current are
treated with the help of the standard-temperature Green's function technique (see Appendix A) and we have,

32(r, t) = (e«.&/4irniT) (qi —q2)0[o(k+p) ~(1)~'(2) I&=&=(,t), (26)
jP(r t) = («&/g~ntT) (qi —q~) (~2—~i) L4'"'(2+P)+2P&"'(-'+P) j~(1)~'(2) Ii=~=(, o (27)

where

qi ——(1/i) Vi —2eA(1),

co[ i (8/Bt, ) —2——ey (1),
Here we have made use of the relation

q2 ——(1/i) V2+2eA(2),

(02 —i (8/Bt2) +2e}t)(2) . (28)

( icoi+Dqim) h(1—) =eotI), (1),
( -i(a~+Dqg) Ai(2) =~0m'(2), (29)

—ep= 2DeH g(T), P= eo/4i[T, and f")(s) is the trigamma function. We note that both expressions (26) and (27)
contain ac contributions oscillating with frequencies &v noku where n is an integer and k is of the order of t(t) '=
L2eH, 2(t) ]'}'.The basic harmonic is in the radio wave region (say 10' cps) . This ac current is associated with the
local variations of the amplitude of A(r, t) due to the uniform motion of the order parameter. An analysis of the
low-frequency noise might reveal this ac e6ect.' Making a space average we finally have

& j2*)= (e«.&/4~~T) (n/D) 0")(4+p) &I ~ I'&

= —Mu/D, (30)

Li) (t) is plotted on Fig. 1.

& j2.) =o,

( j.")=o,
& j2*,")= («.&/2~ntT) L4'"(k—+p) +'2A'"(l+p) j&~ ~ I')«

=~&I2+Lpga'"(2+p)/4"'(2+p) jI =7tf Fln(t). — (31)
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2.0

Lo(t I

l.6

0.4 0.6

t =—T
Too

Pro. 1. LD(t), which appears in the expression of the entropy
carried by the vortices in the dirty limit, is plotted against the
reduced temperature.

Here we have made use of the expression of the
magnetization:

—AM= (erg,N/rNT) (l a l')it«'&(-,'+p). (32)

Furthermore, in the above calculation we neglect
systematically all terms of order of t/(s( =r„T,s) .
Therefore, because of this approximation, we do not
6nd any contribution to the Hall current and to the
Peltier CGect due to the motion of the order parameter.
In the evaluation of these quantities a more accurate
treatment of the various terms would thus be necessary.

We note here that the ratio of the heat and electric
currents is given by

(ja")/(j*)= —ll: o(t) 1~(t)j=—DH.&n(t); (33)

t= T/T, e is the reduced temperature.
The above result suggests that a temperature gradient

(perpendicular to the magnetic field) produces the
reciprocal effect (i.e., a heat current parallel to the
temperature gradient and an electric current perpen-
dicular to it), so that the complete set of transport
equations are

~ (k)

The solution of Eq. (34) is then given by

j,= I &r, +n'/TE, IE.,

(39)

(VT)„=+(n/E, )E,. (41)

Since n is proportional to (l 6 l'), we can neglect the
second term in Eq. (40) in the discussion of the re-
sistivity. Substituting the expressions for 0;, o. and
E, given in Eqs. (35), (36), (38), respectively, we
have

4.ts(0)

E„(2 K(sts)
—1)Pg H.s

' (42)

(VT) i oeDH, s4«t'(0) He=+ 1— I.n t. 43
E e'E, (2sss(t) —1)Pg H,s

cxpl cssion of thc magnetization

—4' = (H,s—He)/(2~st(t) —1)Pg (37)

E, is the thermal conductivity in the mixed state
obtained previously, '5

1 H,s—He P&@(-,'+p)
2e (21& '(t) —1)P f&'& ( 'p-)

We prove in Appendix A that p =n/T„as expected from
the reciprocity principle. Using the above set of equa-
tions, we can discuss various transport properties.

C. Resistivity, Ettingshausen, and Nernst Effects

As an application of the above equations, we consider
the usual situation met in the resistivity measurements
in a type-II superconductor. In this case, the experi-
ments are done with the condition

j.=o,E,+P (V'T) „,
j„'=nE, —E,(V'T) „,

«p(0) Ho
"

(2''(t) —1)Pg H.s

(34)
Ho 8R

Rfi 8Ho
Ot

Ho =Hgg

oes(t) 4«ts(0) BQ
Lg)(t) 1——. (36)

2e' (2«s'(t) —1)Pg II.2
'

ps=1.16, st(0) = ( 'v/21 L$4( )3]'")«=1.20«and o =
e'r„N/m is the conductivity of the normal metal. Since
we do not calculate the superconducting corrections to
the Hall and Peltier currents, we have consistently kept
in Eqs. (34) only the terms of zeroth order in ra&, . In
particular, we have considered the normal value of o.

as negligible. Furthermore, we have made use of the

l'0 02 0.4 0.6 0.8 t.0
Tt=—

T('0

Frc. 2. (Hs/tt„) (8R/BIIO)
~ o, o„ is piotted against the reduced

temperature for a dirty material with gq&&1.

"C. Caroli and M. Cyrot, Physik Kondensienten Materie 4,
285 (1965).
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R„ is the resistivity in the normal state. Equation (42)
has been obtained previously by Schmid' in the Ginz-
burg —Landau region (i.e., T,D

—T«T,O), and he has
shown that in this region of temperature, it is in good
agreement with the existing experimental data. Equa-
tion (42) shows that Ho(8R, /BHO)}Ir~ir, z decreases
monotonically" as temperature decreases. This be-
havior shouM be easily tested experimentally. We
plot in Fig. 2 the temperature dependence of
(Ho/&~) (8~~/8HO) }ao a.&

for a material with a large
Ginzburg —Landau parameter Li.e., 2~22(t) —1—2~22(t) j
without Pauli paramagnetism e6'ect.

Equation (43) might be interpreted by saying that
each vortex line carries an amount of entropy

o DH., 4n xi2(0) I.g) Ho 'I$—
e'T (2~,2(&) —1)P& H„]

This entropy vanishes at HO=H, ~ (as it should be at
a second-order transition). We can also consider the
reciprocal effect (i.e., Nernst effect) . In the situation
where a Gnite temperature gradient is applied along
the y axis, a heat current along the y axis and a Gnite
electric Geld in the x direction are induced. They are

given by

j &"& = {K'+a'/To, }(—&T)

E,.= (u/T~, ) (VT)y. (46)

In Eq. (45) the second term is negligible, since it is
of higher order in 6', even though it gives rise to an
adc4tlonal aIDso tropic contrlbutlon to the heat con-
duction in lower fields. We rewrite Eq. (46) as

E DK(t) 4'(0) Et,

)j
(VT) eT (2a22(t) —1)pg H, 2

'

IV. PURE LIMIT'

A. Motion of the Order Parameter

In the pure limit, Eq. (4), which rules the variations
of the order parameter at H,2, can no longer be reduced
to a simple differential equation as in the dirty case,
but is an intrinsically nonlocal integral equation. We
therefore need here a more elaborate treatment of the
electric Geld than in the dirty limit, where p(x) was
essentially treated as a c number shifting the fre-
quencies. We can rewrite Eqs. (9) and (10) as

6'(r, t) =
I g I

f

Ch' d'r'exp 2ie year(r")jdf' 2ie A(—1) dl Ko(rt; r't')at(r', t'),
gf r~

(4g)

Ko(rt; r't') =i({%t(r,r)', %'(r', t') j)"-s~8(t t')— (49)

is an electron —electron or hole-hole propagator in the pure metal in the absence of any electric or magnetic Geld.
Let us note again that Eq. (48) neglects the curvature of the electron orbit due to the magnetic field.

Ko can be calculated easily (see Appendix 8) with the help of the temperature-dependent Green's functions
technique, and we obtain

IC0(rt; r'f) =n TE(0) 8(f—t') {hat-v(t —t') 1+8++v(t—t') j}Lsinh(2irT} R }/e) $ ', (50)

where Q„stands for the two angles 8 and p defining the direction of the velocity v of a quasiparticle, } v } is always
equal to the Fermi velocity e and R= r—r',

Substituting Eq. (50) into Eq. (48), we can eliminate the variable t and obtain

I'(r, t) =I g I f d'r'z(r, r')tt(~', f)l = (51)

K(r, r') = dQ„j. (x+x') } x—x'
}

exp —i eE — ieH(x' —x") tanp-
4ir I i,

f

2&~& 1 i iq v 1 iq v
-expLiq (r—r') j In —— P —— +f -+, (52)(2m)' mT 2 2 4+T 2 4n-T

V~='U s1118 co@.

"In the so-called. "high field superconductors, " vrhich have a strong Pauli paramagnetic effect, this behavior can be diBerent, due
to the di6erent temperature variation of gg as vrell as to the presence of a paramagnetic contribution to the current.
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In order to analyze Eq. (51), we will first briefly
describe one of the methods which can be used for
solving the static problem (i.e., in the absence of the
electric field E). This method is then easily extended
to the present case. From the study of the linearized
Ginzburg —Landau equation, it is reasonable to expand
At(r) in series of eigenfunctions p„of the operator
arm= ( i V+2—eA)', which are the wave functions of the
harmonic oscillator

g *=(II+)"exp(sky) expL eH—(x+k/2eH) '5

6'(r, r) as"
0'"(r, t) =pa„p „~(r, t).

The a„'s are constants which have to be determined
with the help of Eq. (54). Keeping in mind that in
the limit u=0 (i.e., E=O) (e l E [ I) is diagonal and
At(r, 3) =—$0*(r), we can solve Eq. (54) by iteration.
(The first iteration is sufficient in order to calculate
At(r, t) up to first order in u)

at(r) = g o„4„*, (53)

Here we consider solutions with a given k, since E
does not mix @„functions having different k values and
(uk l

E
l mk) is independent of k. (This remains true

for the moving solution. ) As has been shown by Helfand
and Werthamer, 'r (n l

E
l m) is diagonal and hence

each P„ is a solution of Kq. (26). The physical one,
which describes At(r) at H=H, 2, is po. In the presence
of a uniform electric 6eld, since the equation ruling
the fluctuations is, as mentioned before, essentially of
diffusion type, ' it is quite natural to expand At(r, t)
in series of eigenfunctions of the diffusion operator

((8/Bi) 2it,g)—+S(i 'V+2eA) ',

II„„&*(r,t) = (II+)"expLik(y+u/) 5

zQ
&(exp eH x+ +— , (55)

2eH 4eSII

where uE/ ,HT2hese functions describe the station-

ary state of the system as corresponding to a uniformly
moving-order parameter as in the case of the dirty
limit. The fact that At(r, t) moves with the uniform

velocity —u = —E/H, fo2llows from gauge invariance
and ensures that there is no net electric field in the
frame moving with the order parameter.

At this point, X) is an arbitrary diAusion constant
which we are now going to determine. We expand

where II@=II,+iTI„and k and a„are constants. Sub-
stituting this expression of 6"(r) in Eq. (48) (in the
absence of 8), we can determine a„ from:

QI(u lu)a. —(u [E lm)lo„=O. (54)

We notice that

((2Py1). [E [0„)=O(u)
while

&(2p). lE l 0.)=O( ),
where p is an integer. In the evaluation of the various
linear responses we can thus neglect the contribution
of u=2p (with p&1)

+ 4.3*(r, &)+" (58)
(3. [

E
[
0.)

3 3

Up to this point we are free to choose any value of S.
We can therefore choose it so as to eliminate the contri-
bution of g„P in Eq. (58) . This procedure is analogous
to the usual treatment of the Stark eGect; that is the
true ground state in the presence of the electric Geld

has a finite dipole moment (which is here proportional
to u/K)). This choice of X) is convenient in the calcu-
lation of the various currents, since for this purpose it
is then sufficient to write At(r, t) =C&0 *(r, r), ne-

glecting all the terms p„„*with p& 1. This follows from
the fact that the current operators connect p 0* only
with g„i* (as far as we are concerned with terms of
first order in u only). Because E is diagonal in the
limit u=0, (1~ [

E
[ 0„) does not contain any terms of

zeroth order in N. Keeping only the first-order terms
and using the expression of E given in Kq. (52), we
easily reduce the condition

(1„[E [ 0„)=0 (59)
to

O=T
dQ„exp( —eHP/2 cos'Q) t'

[ l [(1 eHP tan'@)—
df' ——+

i sin8
[

cos@
l

sinh[2vr2'
l f [/v sing

l
cosP [5 2X) v sing [ cos@

l

(60)

' E. Helfand and N. R. Werthamer, Phys. Rev. Letters 13,
686 (1964); Phys. Rev. 147, 288 (1966)."We emphasize here the fact that the choice of functions made
in Eq. (55) is completely general. For example, instead of Kq.
(56), we could consider the most general form

6+(r, t) =Za (t)C„„*(r,t),
where the a„(t) are arbitrary time-dependent functions. We can

show that this leads to

a (t) =e'"'a ,

where the a 's are time-independent constants and 'A is independent
of e, because space and time are essentially separable in Kq. (45).
The stationary solution can further be proved to correspond to
X=O, whereas the other solutions are all decaying in time (i,e.,
Imh&0) .
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Finally, this gives

( ds

82r2' &, (1—s')'"
CO

—1

df f'2 exp( —p2f'2) sinh
(1 s2) 1/2

where

ds —1 —1X~, df f(1—p212) exp( —p2f'2) sinh, (61)
o~—s'o (1 s2) 1/2

p =2/22rT, 2 = 2/[12 eH, 2(T)]'"

From expression (61), the diffusion coefficient is seen
to be positive (as is physically required) and real
(which ensures that the motion of the pairs is a true
diffusion process, and not a wave-like propagation).
Equation (61) shows that S is roughly of the order of

v$&. This means that the density or velocity correlations
of the pairs decay on a distance of the order of $&.

This is to be contrasted to the dirty-limit situation,
where the density and velocity correlations of the pairs
decay on distances of order ($2l)'/' and t, respectively.
The following asymptotic behaviors can be useful:

7f (3) »4f (5) 14' (3)& ,S=
22r 2' 32r2 52r2 9 j

with

p (2:) =exp) —eH(x+iN/4eX)H)'],

where S is given by Eq. (61).
The electric current j(r, t) = j1(r, t)+j2(r, t) is again

obtained from the general expressions Eqs. (20) and
(21). The normal state response j1 is given by Eqs.
(24) and (25) as in the dirty limit. In order to calculate
the superconducting correction j2, as in the case of the
calculation of the order parameter, it is necessary to
study Eq. (21) more carefully in the pure than in the
dirty limit. This can be done by a method analogous
to the one used in the study of the order parameter
(see Appendix 3), and we obtain

p2

I 0.284—0.734p'I
2ÃT

& &&co

N(l&}2) 2 i2 ' ds
(j2.) =~&(0)

p2 2f'(2)S= 1—(12p ) in(2r'yp ) +1+
j (2)

+ f (l) (1-2-"')2

7f' P
T«T,p. (62)

We will see in the following calculations that this
diHusion coefFicient is related to a physical property of
the Abrikosov structure (i.e., its polarizability), which

will appear in the expression of the electric current.

B. Yransyoit Equations in the Resistive State

As we have pointed out in the preceding subsection,
it is sufficient, in the calculation of the currents, to
take for the order parameter the expression

ht(r, t) = p C„*expLikn (y+Nt) ]p„(x+k22/2eH)

(63)

Since there are well-known discrepancies between the
experimental and theoretical temperature variations
of H,&, it is probably better to insert in the formula
for X) the measured value of e=vpeH, 2(T)]'". Using
such a procedure, we And for Nb,

5)z 0 33 cm' sec

$~=0=30.8 cm' sec '.

X
i' exp( —p'f')

sinhD (1—s') '/']

= —MN/n, (64)

(j.,)=0, (65)

where we have made use of the expression of the
magnetization

(j2.)= —M22/n

(H, 2
—H2)

(67)
42r (2x2'(t) —1)p~ H„

should hold for a type-II superconductor with an arbi-
trary electronic mean free path, if one defines appropri-
ately the diffusion constant X). We give the general
proof of this in Appendix A. Equation (67) can be
interpreted simply: The Abrikosov order parameter

—42rM=(62reE/m(22rT)2](( g(r) ~2)g(p),

&' «p( —pV)
2 o (1—s2) '/2 sinhp (1 s2) —1/2]

Therefore, if one measures the magnetization, the tem-
perature dependence of (j2,(r, t)) is completely de-
termined by that of the diffusion constant S. We
notice that the expression Eq. (64) of (j2,) is formally
equivalent to Eq. (30) in the dirty limit. This suggests
that the relation
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moves in a nonuniform magnetic field, the amplitude
of the inhomogeneity being characterized by the mag-
netization. Since the moving-order parameter has a
finite polarizability (proportional to u/S), the motion
involves a dissipation corresponding to the absorption
of energy from the dipolar part of the inhomogeneous
field.

Exactly as in the case of the dirty limit, besides the
average current (j), one should be able to observe an
ac eGect containing the various harmonies of the basic
frequency ~o ——kg where k is of the order of [$(T)] '.
In the case of pure Nb at low temperature, this fre-
quency is of the order of 104 cps.

Similarly, we can calculate the heat current

(j (tu) —0

3' () dk ~2) i dz df"(3$ —2p2f )(j~'"')=— exp( —t V)
4m (2mT)' (1—s')"' sinh[f'(1 —s') 't'] (68)

H, 2
—Hp I.,(t) z,4' (2 ~22 (t) —1)Pg

(69)

(3P—2t'f')

, (1—z')'~', sinh[f'(1 —z') "']

Lp(t) has the following asymptotic forms

268 i (5)l. (t) =3 (1—
35 f(3)

P +'''

dz

(1 z2) ll2

T &T,p

sinh[ (1—z') —'~'] )
'

(70)

1 6f'(2)
Lp(t) = 1+—ln(spy'y) —1— + ~ ~ ~,

3p2 ~2
T&(T,.p, (71)

where 7=1.78 and f'(2) = —0.941. The temperature dependence of Lp(t) is quite different from that of Q—i(T),
which appears in the expression of the current. [That is, Lp(t) is much more strongly temperature dependent,
and decreases monotonically as T decreases. ]One can notice on Eq. (69) that, as in the dirty case, the entropy
carried by each line vanishes at H=H, 2, as it should. The ratio of the heat and electric currents is given by

(j~.'"')/(j~. )= —&.~&L~(t), (72)

where Lr (t) varies with temperature from Li (1) =3 to Li (0) =1, while in the dirty limit the analogous factor
varies from LD(1) =2 to Ln(0) = 1. On the other hand, if one would make a phenomenological extension of the
Ginzburg —Landau equation in the spirit of the two-Quid model, one would get'

jo—— [(1/i) (V—V") —2e*A]pot ( r t') $0( rt) ). . .
2m*

a
jo&"'= (& ie*A) —

, ie*Q—+—(V'+ie*A) +ie*p —pot(r', t')$0(r, t) ~.
8f Bf

(73)

where po is the suitably normalized Ginzburg —Lands, u

wave function, m* and e* are the effective ma, ss and

charge, respectively. From the above expression one

would find

(74)

which describes neither the pure nor the dirty-limit

behavior. We also show in Appendix C that in the

Ginzburg —Landau region the "two-Quid behavior, "Eq.
(74) is obeyed only in the dirty limit and for T=T,O.

Therefore, the two-Quid approach is inconsistent with

the microscopic calculations except at most in the dirty
limit and for T=T,p. This inconsistency seems to
originate from the existence, in a superconductor, of
the two diferent coherence factors. A two-Quid model
ca.nnot describe this internal structure of the condensate
in a superconductor. This is in contrast to the case of
liquid helium n where the condensate, being formed
by real bosons, has no internal structure, which a,llows
for many purposes a two-Quid description.

Making use of the same reciprocity arguments as in
the dirty-limit calculation, we can now write the trans-
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port equations for the resistive state of a pure type-II
material in high Geld.

(j ) =o,E o'E—„+P(VT) +(n/T) (VT)„, (75a)

(j„)=o'E —o,E„+(n/T)(VT) +P(VT)„, (75b)

In this case, the solution is given by

E,= (TP' —o,K,) (Det)-'j„

E„=(a'K, +nP) (Det) 'j„
(VT)„=—(na, +TPo.') (Det)-'j„

(77a)

(77b)

(77c)

(j,&"&)=—TPE, nE„+—K, (—VT)„
(j„&"')=nE, TPE„+—K,( —VT) „, (75d)

where

j,&"'=—(no'K, —K,o;TP+n'P+T'P') (Det) 'j„
(77d)

where

1 1 (1—Hp/H, p)0=8% +
1+rP 4m.S $2~p'(t) —1jPg'

o'=oh"/(1+v') 3,

(H p
—Hp)

CY=Ay— I„(t),
4nL2~P(t). —1jPg

(76)

Det= $(o—, +o' )K,+n'o, /T . o.T—P'+2o'nP$

(77e)

Looking into the relative orders of magnitude of the
diferent terms involved (and noticing for instance
that P, n and o.' are small in the normal state) and
neglecting terms of higher order in (~ 6 P), we can
simplify Eqs. (77) into

C. Electric and Thermoelectric Effects

Equations (75) describe the general transport prop-
erties of the resistive state in a pure type-II super-
conductor in the high-field region. Let us concentrate
now, for example, on the situation where a given electric
current density j is sent in the x direction, with the
conditions

j (h) P j„=0, and (VT) =0.

' K. Maki, Phys. Rev. 158, 397 (1967).

and o=e'r', N/m, q=r&s„P is the coefficient which
appears in the expression of the thermoelectric power
in the normal state, o~ is the Ettingshausen coefficient
in the normal state, and E, is the thermal conductivity
in the mixed state and has been obtained previously. "

It is important to point out that 0.' is the same as
that in the normal state. This follows from the fact
that the superconducting corrections 0-2 and 0.2' to the
longitudinal and Hall conductivities, respectively, are
such that, at most, op' ——0(&p/r ) o'2, where r, =o/co, is
the cyclotron radius for a quasiparticle with the Fermi
velocity. This order of magnitude can be obtained by
dimensional considerations from a more accurate ex-
pression of the current (including the cyclotron motion
of the quasiparticles). This order of magnitude can
also be understood on the basis of the following quali-
tative argument: we have seen from the expression
Eq. (58) of the diBusion constant that, in the pure
limit, $p is the characteristic distance for the decay of
the velocity correlation of the pairs. On this distance,
the angular deviation of a pair is of the order of $p/r„
this implies op' $po p/r o'($p/1)' (where we made use
of op ofp/l). Therefore, this correction to the Hall
conductivity is negligible in all usual experimental
situations related to measurements of the Hall angle,
the variation of which is mainly due to that of the
longitudinal conductivity.

f n2—r, — —a.-'
TK,

(1—Hp/H„)

4vron(2apP(t) —1)Pg
'

@'(=C/E*) = (o'/o. ) —(nP/K. o.—) (79)

The variation of the Hall angle C with the magnetic
field in the superconducting region comes mainly from
the first term (i.e., is essentially the same as that of
the resistivity).

K(VT),/'=TP( '/, ')+( /. ) (g0)

The main variation with the magnetic Geld in the
superconducting region is due to the second term;

(
K.(VT). K.(VT). (H"—Ho)~. (t)8 P 8 P c o

(g1)j. , j, „4moL2~p'(t) —1]P&'

Finally the Peltier coefFicient is given by:

"(=i*'"Vi*)= (—1/~.) L
—TP+«'/~. ] (»)

Here in the superconducting region the main variation
comes from that of the second term (i.e., it is the same
as for the Ettingshausen eGect).

Everywhere in the above calculations we have as-
sumed that the Fermi surface is spherical. This should
not be too serious a limitation to the applicability of
our theory, provided that the measurements are done
in not too extremely pure samples (t &10 ' cm).

5. CONCLUSION

The microscopic study of the resistive state of type-II
superconductors in high field shows that, independently
of the mean free path and temperature:

(1) The order parameter in the presence of an electric
field E moves with the uniform velocity N=E/H in the
direction perpendicular to both the magnetic and elec-
tric Gelds.
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g+
"2 &q2

Frc. 3. Diagram corresponding to the superconducting con-
tribution to the electric current (to lovrest order in 5) .

(2) The motion of the pairs is controlled by a
diffusion equation. The di6'usion cocKcjtent S is inde-
pendent of the temperature in the dirty limit and
slightly dependent of it in the pure limit.

(3) S ' characterizes the polarizability of the
Abrikosov structure. The corresponding correction to
the longitudinal electric current thus obeys the relation

(jg.)= —MN/m,

where M is the magnetization of the sample.
(4) The electric field also gives rise to a transverse

heat current. This can be interpreted as an entropy
current carried by the vortex lines, of the order of
1 'NH, iM'. However, it should be noted that this

energy current has so unusual temperature dependence
that the conventional interpretation in terms of en-

tropy Qow will be unadequate.

(5) Besides these average currents, the inhomoge-

neity of the Abrikosov structure gives rise to ac cur-
rents which shouM bc obscl vablc ln tbc radio-wave

range. These currents can be understood as an intrinsic
ac Josephson effect.

In the pure limit the superconducting corrections to
the Hall conductivity and to the longitudinal heat
current are negligible. Therefore, the changes of the
Hall angle and Peltier coefIieient are essentially due to
the changes of longitudinal conductivity and Ettings-
hauscn cocfllclcnt.

This type of situation with a moving order parameter
is not restricted to type-II superconductors in high

field. It is known that it exists in type-II materials in

low field, ~here it cannot be described by the kind of
approach used in this paper. However, situations very
closely analogous to the one studied here should also
occur in gapless superconductors having a spatially

Fxo. 4. 8-vrave diagram.

varying order parameter along the direction of the
electric field—such as in the surface sheath regime close
to H, 3 or the intermediate state.

For instance, in the case of a dirty supercondueting
film much thicker than the coherence distance $(T)
with an clcctlle 6cld perpendicular to the film surface
we can show that the order parameter is given by

At(r, t) =Cf(y+Nt, x+iu/4ex)H), (83)

where N=E/H, i and f(y, x) is the solution in the
absence of the electric field, which is expressed in terms
of Weber functions. "LFor a thinner film (d &2~(T) ),
Eq. (83) should be slightly modi6ed in order to satisfy

I'IG. 5. I'-wave diagram.

the boundary conditio n.]Using tins sohltlon we find

{J..)=,""",~ (;-+,)(~ ~
~

)"'"
0.59m ~ '»2P(T) IJ„

(84)4~ m 2 d 2x,2(~) —0.334'

&"'(-:+.)+ ~(!+.)-2mr '
2

X(~ ~
~
)0.59.Z

0.59 ~&'» 2~(T) II„
334

where 5(T) = (&.&8~Ks(T) ) '" and d is the thickness
of the film. Ke have here considered the case where
the surface sheath appears symmetrically on both
surfaces of the (thick) film. Equation (84) predicts
that in the surface sheath region the resistivity de-
creases linearly in the field as

— l. 059

5.76~'
X

3 (t) —0.333 H'„)

Furthermore, we have an ac current oscillating with a
frequency (2N/(ir —2) i»)$(T) ', which is in the radio-
wave region. The amplitude of this ac current decreases
exponentially with d/2$(T) Dor d))2((T) j. It couM

'0 D. Saint-James and P. G. de Gennes, Phys. Letters 7', 306
(1963).
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be of interest to detect this intrinsic Josephson effect
in thinner films [d 2 or 3](T)].In the thin film limit
[i.e., d &/(T)], where the order parameter is almost
constant in space, we expect similar but very small
efI'ects. In this limit, due to the absence of zeros of the
order parameter, there is no ac effect [this happens
when d(1.8$(T)].
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APPENDIX A

Electric and Heat Currents in the Dirty Limit

Since in the dirty limit the effect of the electric and magnetic fields can be incorporated by the simple trans-
formation

&a~u+2iep, q—+q~2ieA, (A1)

depending on whether a& and q act on 5 or ht, it is suflicient to calculate formally j(q, ra) and j&"i(q, ~) in the
absence of any field. We then use transformation (A1) and finally let the external frequency and momentum go
to zero (as far as we are concerned only with the average currents).

In order to calculate the retarded product in Eq. (21), we first evaluate the corresponding thermal product

ie, 2e'A( r) +~
j2(r %1+%2) = (V V) T Q d &Pm

ns m ~~cQ

X(G, „(r, l)G„„(m, 1)G „, „„(m, r')),A„,(1)h„,t(m)~. .. (A2)

( ), stands for the average over random impurity configurations,

(o„=(2m+1) irT, (dy =2Ry~T 602= 2N27l T~

where e is any integer and Ni and n2 are positive integers [since the real time-retarded product Eq. (21) is the
analytic continuation of (A2), where frequencies &oi and co& lie in the upper half-plane]. In the momentum repre-
sentation expression (A2) corresponds to the diagram of Fig. 3.

As usual the eGect of impurity scattering is taken into account by means of the following renormalizations:

(1) In each Green's function a& has to be replaced by co=&a[1+(1/2r
~

&o ~)] where r is the collision lifetime of
the electron.

(2) Each vertex (Fig. 4) corresponding to 6(q, Q) or hr(q, Q) (s-wave vertex) introduces a factor

it, o = {1—(1/r
~

2~0 —Q ~) (1——,'(rr~, ) v'q') I if (o)—Q)(o) 0

if (co—Q)(o(0.

v~, is the transport lifetime of the electrons.

(3) In the vertex (Fig. 5) corresponding to the current operator (P-wave vertex) we have to replace (2p+q)
by (2p+nq), where

~= (2P &/3i) (~/I ~ I) (I Q I+De') ' if ~(~+Q) &0

=0 if ~(~+Q) (0,
where po is the Fermi momentum.

I"urthermore, confining ourselves to the case q, ~2&0, since we are interested in the corresponding retarded
product, we have

~2+Dg2 i 2R2+(di+ Dpi(~i+~2+Ai A2 ) 4' 2+ 4' 2+ 6(qia)i) 5t(q,&,), (A3)
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where q=qq+q2. Furthermore, for low frequency arq+cu2(&m. T.O, the above expression reduces to

ed/ j. , 2~2 &, 1, 2cul
j2(q, ~x+~2) = (e—q2) —0' 2+ +u I

—0(2+a) +—0 2+ +I —4 (k+u) ~(qx~x) ~'(q~2),
2tll 2M' 41I T j 2(d1 47I'T

8TE M] G)2

j~(q, ~i+~2) —= (e—q2) 4"'(l+s)+ 4"'(2+~) ~(lb~i) ~'(q~2)
4xmT SmT

where we have made use of the relation

((ag+DqP) 6(1) =noh(1),

((a2+Dqg') 6'(2) =&oh~ (2) (AS)

with e0=2DeH, 2 and p= eo/4n T.
The calculation of the heat current follows exactly the same step. Ke give here the relevant calculation of t.he

thermal product. The heat current is given by

The impurity average can be carried out as before and we haveEr, or2+Dq22, 2M'+(u2+D)2'l co2 Dqg-
+ )=4—(q —q) ~ l+ ~T

—~ l+ 4T ~+4' 4' T 43 T j I], (gn —D gr
—gP

2&z+~2+Dga ~x+DgP ~2+DgP

2~2+~1+Dgl ~ &A+DgP
X f ~+ —P -', + ~ h(qgog) 6'(q2a&2) (A7)

which we can reduce to

j2'"(q, ~~+~2) = P~/8~~T) (qi q2) (~2—~r) I le'(l+I )+kpk&" ( +2p)}a-(qi~i) a&(q,~,)+0(~,+~,). (Ag)

The expressions for j2 and j2& & should be continued analytically for a» ands» to —ko~ and —ica2 then the limit a&~+~, =0
should be taken.

If we are interested in the dc term (i.e., u, +~2—+0) of the above expressions, we can calc„l te th
quantities in expanding in powers of g(r) (the scalar potential) . In this case, we have

j(q) = (L j, N]), ,oy,

j'"'(q) =
&L j'"', ~j),,oy, .

The second-older terms 1I1 6(r) are given 111 terms of square diagrams Similarly in the pre

gradient, we have

(A10)

where 5T' is the shift of local temperature and

(A12)

8
&(r, ~) = (I/2~) g ———,4.t(r, &')p.(r, &) ~, ,

8f R' (A13)

is the local energy operator. From the explicit form of the square diagrams of Eqs. (AM) snd (A11)
immediately see that the reciprocal relation follows.
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APPENDIX 8

605

1. Calculation of Ko(rt; r't') = t([4t(r, t), 4'(r', t') j )"=s~8(t t'—) in the Pure Limit

First let us consider the corresponding thermal product, which is given by

+m dop
Eo(q, oo.) =T Z, G..+- (p+q) G--.(p)

co 27K

dQy 8[07~(Gl~+07p) ]= 2n.TX 0
47I. I 2(0++40, I+tv Q

(Bl)

The retarded product is then obtained by analytical continuation and we find

dQ, (oz), I, iv q i(v — i(u+iv q
(q -) =E(o)

4
' .

2 T
:t«'

I
-:+-4-T +4 —:— ~T (B2)

Doing the Fourier transform, we finally obtain

E,( rt; r t ) =~TN (0)8(t—t )
smh 2s TR o

dQ,'
{8[R—v(t —«') ]+'8[R+v(t—t') ]},4~

(B3)

where R = r —r'. If one integrates over t, one obtains a well-known result;

Eo(R) = E,( rt; r't')

m'T

(2s'R) ' sinh(2m. TR/o)

In the presence of both magnetic and electric fields, we have

E(rt; r t ) =exp[iS(rt; r't')]Eo(rt; r't'),
where

(B4)

S(rt; r't ) =2e g[r(t ')]dt"—2e A(1) dl. (B6)

Using expression (B3) and integrating over t', we reduce Eq. (48) to the form

dQ, Ix—x'I
} x—x'

iAt( r, t) =
[ g f

d'r' exp 2ieE(x+x') — ieH(x+x') —(y —y') Eo(f r r' )) 5t—
]
r', «-

4m Io. I E

(B7)
It is easy to calculate the matrix element which appeared in Eq. (54) .

2. Calculations of jo(r, t) and jo& &(r, t)

Since the procedures used in evaluation of the relevant integral kernels follows exactly the same line, we sketch
them here briefly. We rewrite Eq. (21) as

jo(r, t) =— dt& dto d'td'm exp[iS(mto, 14)]%(rt; lt&, mto) 6 (m, t&) 6(1, t&), (BS)

where E~( ro, to, r~, t&,
'

ro, to) is obtained as

dQ„
%( rotor rx4; roto) = 2xeTX(0) v[8(Ru+v4) +b(Rn —vtu) ]{8(—4o) 8(ho) 8(R&o+vtqo) [sinh(2orT«~o) ) '

4m

8( «20) 8(41)8(R20+v«20) [sinh(2zT«@) ] '}, (B9)
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where R,,= r,—r, and t;, = t, t, —(i,j =0, 1, 2) . After integration over ti, t& and rp we find

dQ, v
( j,) =ieItr (0)2~T(l ~ IP)

41r 1. I 0. I

eE(x' —x") 2rrT I x—x' I))
dx' expL —h. (x, x', v)] cos sinh

A =eII(x'+x") —(iu/2$) (x—x') +ieH tang(x' —x")

A similar calculation gives the expression for the heat current

(810)

(811)

dQ„ v +
( jp&') ) = —iver T1V(0) (I 6 I')

4x v,'
dx' expL —A(x, *', v)]

I *—*'
I cosh(2~T I x—*' I/I 0. I)

Xsin
I
eE (812)

I, 0, sinh'(21rT
I x—x' I/I 1), I)

APPENDIX C

Generalization to the Case of an Arbitrary Electronic Mean Free Path l.

(a) Deterrn&sation of the Diffusion Constant

It is not dificult to generalize the discussion given in the text in Sec. 4A. For this purpose we note that the
eQ'ect of the impurity scattering can be taken into account by renormalization of the frequencies and of the proper
vertices.

0)~pe =0)(1+1/2r I 0) I), &f&p~ppurt 0/0 . 41~$1+ rtru14'1u etc' ' ',
where 4„has been defined already in Eq. (55) . Since we are interested in the corrections of first order in u we
can consider the 1t„;s as independent of u (they do not contain any term of order u). They are given (following
the procedure of Helfand and Werthamer"') by,

)t„.p= 1 —(rp) '
CD pp

—1

dpe " arctan

where

)i„„i—— 1—(rp) '
cx) pp )

dp(2p' 1)e "' a—rctan
l~. I)

(Ci)

0=v(peH, p)')', 00„=0)„(1+1/2r I cu„ I).

Including these modifications, we obtain the diffusion coeKcient as

e' I' 1

I Z rt„„prt.„i ds(1 —s') 't'
87i T (~pp 0

dg' exp[ p g b )(1-z')' —'~ ].)'-'

where

1 CD —1

&&I g )t„„p)t„„, ds(1 —s') " dg(1 —p'p) expI —)0'1' —b„f'(1—s') '"] (c2)
n)0 0 0

0)„=(2n+1) ir T, b„=2n+1+1/2nr T, p = 0/27rT.

In particular in the vicinity of the transition temperature, the above expression reduces to

where

x)=
6rrT „=0 (2n+1)'(2n+1+y)

= (7i (3)0'/6''T, p)X(y),

(2m+1)')

(C3)

CD

x(y) =
7i(3) .)o (»+1)'(2n+1+y)

was first introduced by Gor'kov in the microscopic derivation of the Ginzburg —Landau equations, and y = (2prrT) '.
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(f)) Expressions of the CNrrents

The electric current in this general situation is obtained as

N(lb, l'} t 2

(i2*)=e&(0) I T Z (n-.o)'S (2m'T
de exp —/t)2 f'2 —b„

(1 s2) 1/2

(J2.)=o

M@ 1 H,2
—H0

42m (2//22(t) —1)pg

where we have made use of the expression of the magnetization

3'—42rM=,(l 6 l'} Q (1/„„0)2
2%.mT2 n&0

The heat current is given similarly by

ds

(1 z2) 1/2
dt P exp —p2f'2 —f)„

(] z2) 1/2
(C6)

&F2'"'}=—
n2(22rT)' )2

'
(1—z2) '"

t)/ „O' Byes „0
d f'f'2 —22r T)t„„o exp p2f 2 b„— —

(1 z2) 1/2 "
g~ (1 s2) 1/2

&~ /"')=0

where

Bc2—H0
L, (t) E,

4~(2.22(t) —1)P,
(C7)

4g )/
1

~9t2s 220

2(t) =—
~ g (m+-,') dz/) z )" —d'//' /q„, '(1 E')" 121 . —"exp—[ p'/' .1/() z—') '+]—)—

2r k&0 O D

1 co

&& 2 (~. .)' d (1-")-'" dft'"pl -~'t'-f-t(1-")-"'j . (C9)
n&0 p p

In the dirty and the pure limits, the above expression reduces to Eq. (31) and Eq. (70), respectively.
In particular in the Ginzburg —Landau region (i.e., T &T,2), we obtain from (C9)

I. t= Q„)2l 1/(222+1) (222+1+y) jD 2/222+ 1)+(1 /222+1 +y) j
Q„)2l 1/(222+1)' (222+1+y) j

where y= (22rrT) '. In this limit, L(t) changes smoothly from 3 to 2 as the electronic mean free path decreases.
It may be instructive to express j and j("& in the Ginzburg —Landau region as

j(r, t) =LE/2nt(2nT)')L7f. (3)/8]X(y)2-1(V' —V)zt(r, t)S(r', t) l,. „ (Ci 1)

eX 7f(3), 8 8
j&")(r, t) =

2ns(2m. T) ' 8 at
X1(y) v' —+v —,~(r't')St(rt)l„„, „

where X(y) is given in (C3) and

Oo 2
X1(y) =

7f(3) . (»+1)(2n+1+y) 2n+1 2I+1+y+

ld a/at d
invariant generalized oPerators. The fact that X(y) and X,(y) depend diBerently on y, shows clearly the inade-
quacy"of the two-Quid. approach.


