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"normal" phases, i.e., polymorphic transitions, etc.
This could be done by varying the density of impurities
in doubtful cases and studying changes in the transition
temperature. In the same way, a careful study of
antiferromagnetism in chromium alloys could help to
decide on the applicability of the Lomer two-band
model to chromium. '' Due to the crudeness of the
model in contrast to the real band structure in the latter
case, quantitative estimates might be very dificult,
however.

Though we have investigated the eGect of impurities
on the excitonic phase only in the semimetallic limit, it
is clear that qualitatively the results of this paper
should hold true also in the semiconductor region
(positive or zero band gap in. the underlying two-band

model) .The quantitative description would be different,
however. There are two important differences from the
former situation. First, the modifications of the single-
particle energies due to impurities could not be
neglected; in the semimetallic case we only have a small
negligible shift of the Fermi energies. Secondly, the
collision times r, ,& will become energy- (or tempera-
ture-) dependent. It remains to be seen whether and
how the Abrikosov-Gorkov theory has to be modified
in order to deal with this situation.
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An expression for the dielectric constant of a dense electron gas containing a positive point charge Se
with a neutralizing positive background is obtained by employing the diagram technique of quantum field

theory. The present derivation leads to some more terms in addition to those obtained in the self-consistent-
6eld approximation. Besides, our derivation rigorously takes into account the Pauli exclusion principle.
The simplest evaluation of the dielectric constant is made in the region where collective eft'ect dominates,
and the results are compared with those obtained in the self-consistent-Geld approximation.

1. INTRODUCTIOÃ

INGLE-PARTICLE Green's functions G(x, x') for
a homogeneous system consisting of an interacting

electron gas are widely used to obtain information
regarding its ground-state properties and the nature of
its elementary excitations. But most systems which one

finds in nature are inhomogeneous. An inhomogeneity
in a system arises from any external field acting on it.
The type of inhomogeneity considered here is that due

to a point charge Ze Axed inside an electron gas. This is

of great physical interest for the study of the discrete
single-particle excitation spectrum. Recently, Layzer'
has investigated the quasiparticle excitation of such a
system. He has shown that for a positive point charge,
there exists a discrete spectrum of bound holes, finite
in number, which disappears beyond a certain limiting
value of the electron density. A similar investigation
has been made by Sziklas' on the collective oscillations

of a dense electron gas containing a fixed point charge.
He 6nds two distinct types of collective excitations of
this system. The erst one, called a free plasmon, has
the same excitation spectrum as found for the homoge-

' A. J. Layser, Phys. Rev. 129, 89'I (1963l; 129, 9O8 (1963}.' E. A. Sziklas, Phys. Rev. 138, A1070 (1965).

neous system; and the other, called a bound plasmon,
belongs to a discrete type of spectrum, and has no
counterpart in the homogeneous gas. It exists only if
the impurity charge is negative. Layzer's investigation
of the quasiparticle excitations is based on the one-

particle Green's function G' &(x, x') for the nonuniform
many-fermion systems. Besides Layzer, Sham and
Kohn' have recently studied the inhomogeneous system
consisting of an interacting electron gas using its one-

particle Green's function. In this paper, we shall, how-

ever, use the one-particle Green's function G&"&(x, x')
for the inhomogeneous system to derive an expression
for its dielectric constant.

In Sec. 2, a brief review of the Green's-function

approach to a many-fermion system is presented. A

perturbation expansion is obtained for the one-particle
Green's function of the inhomogeneous system in terms
of the corresponding Green's function of the homoge-
neous case.

In Sec. 3, an expression for the dielectric constant of
the inhomogeneous system is obtained by using the
perturbation expansion of its one-particle Green's

function. It is found that the expression for the dielectric

'L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).
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constant contains some more terms in addition to those
obtained by Sziklas' using the self-consistent-field

(SCF) approximation of Ehrenreich and Cohen. ' Be-
sides, the momentum restrictions present in the various
terms show strict use of the Pauli exclusion principle,
which is clearly absent in the expression for the dielec-
tric constant obtained by the SCF method. This shows
the superiority of the Green's-function approach over
the SCF method. We have evaluated the expression
for the dielectric constant in the simplest case, that is,
in the region where collective effects on an electron
dominate. The results of our calculation are compared
with those of the SCF method.

In Sec. 4, we brieQy discuss the form of the dielectric
constant obtained in this paper, and this is then corn-

pared with the result obtained by the SCF method.
The details of the mathematical steps leading to the
evaluation of the dielectric constant are given in the
Appendix.

2. GENERAL FORMULATION

Define the one-particle Green's function for the in-

homogeneous system by

Gi )(x, x') = —i&~
I
T{g(x)P'(x') } I +), (6)

where T denotes the Kick time-ordering operator,
and I%') is the ground state of the many-fermion

system in the presence of the static external field. The
superscript m on the Green's function refers to the
external field.

To make a perturbation expansion of the Green's
function G& '(x, x') in terms of the Green's function
G(x, x') of the homogeneous system, we use the inter-
action representation defined by arbitrarily breaking

up the Hamiltonian H into unperturbed and interacting
parts Ho and Hg,.

H=Hp+Hi,

where Ho corresponds to the Hamiltonian of the system
in the absence of the external field and Hi(t) is the
interaction Hamiltonian, which is given by

Hi(t) = dxPi(x, t)w(x)f(x, t).

where

fr(x) = exp(iHpt) f(x) exp( —iHpt)

The Hamiltonian of the system consisting of an (g)

interacting electron gas at zero temperature, with a
neutralizing positive background and a fixed positive In the interaction representation, we obtain

point charge Ze, may be written (in units such that
6=1)

= —i&+p I
~{A(x)A'(x') s} I +p)/&+p I

s
I +p), (9)

+-', dx dx'P'(x, t)Pt(x', t)

Xp(x —x')P(x', t)P(x, t)

+ dxgt(x, t)w(x)P(x, t), (1)

p(x —x') =e'/I x—x'
I,

w(x) = —Ze'/I x I.

(3)

(4)

The field operator f(x) obeys the following equation
of motion:

iB&(x)/Bt = [/(x), Hj
=L—V'/2m+w(x) jg(x, t)

+ dx'ft(x', t)p(x —x')P(x', t)P(x, t). (5)

4 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959}.

where P(x) I-x stands for x, t] is the second-quantized
Heisenberg field operator for the electrons, whose
equal-time anticommutator is

L4 (x, t), 4'(x', t) j+——b(x —x'). (2)

p(x —x') is the interparticle potential, and w(x) is the
static external potential due to the fixed point charge.
In this case, e and m have the following forms:

is the field operator in the interaction representation,
and

I
+p) is the ground state of the system in the absence

of the external field. The symbol 5 in (9) refers to the
S matrix

5=7 exp i d—tHi(t)

If we disregard all the disconnected diagrams, the
denominator in Eq. (9) will be suppressed. '

Assuming the external field to be a weak one, we can
ignore terms beyond first order in the external field.
To this approximation, we have from Eq. (9)

G&-)(x, x') = —i&+, I r{y,(x)P,t(x') } I
e,)

+(—i)' d'xiw(xi)

&( &~p I
T{gr(x)pr'(x')Pr'(xi)Pr(xi) } I ~p),

(11)

where the 6rst term of the expansion in Eq. (11)
denotes the one-particle Green's function for the
homogeneous case. Since the homogeneous system is a

'M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951}.
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,

Method of QNantsnn Field Theory in Statistical Physics (Prentice-
Hall, Inc. , Englewood CliGs, New Jersey, 1963}.
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integral equation" for VB can be written as

Vx(1, 2) = U(3, 2) f—d xgd'x&V'x(13) ,Q(34) ,U(4, 2),

where

V(1, 2) =v(X2 —Xp)()(I2—tp). (1&)

I'H;. 1. Diagram representing the expansion of Q(1, 2) .

translationally invariant one, its one-particle Green s
function is written as a function of the diGerence
x—x'. Following the deGnition of the two-particle
Green's function, we obtain from Eq. (11)

G&~(x, x')=G(x, x') fd' w(—x)xG(xx„.x', x }, (22i)

where, in general, ~

Gp(x2, xp, x'2, x'2)

= (—P) '(I &{4(x2)4 (~)4'(x'2) 4'(x'2) I I & (»)

As has been shown by Gellmann and Low' and by
Schwinger, the following integral equation is satisGed

by the two-particle Green's function:

G,(1, 2; 1', 2') =G(1, 1')G(2, 2') —G(1, 2') G(2, 1')

+ ddxpd4xdd4xpddxpG(1, 3)G(2, 4)

By using (15), we have from Eq. (12)

(21)

Q in the above equation represents the polarization
operator which includes the effect of all proper polariza-
tion diagrams; one can write the series expansion~ for Q
as

Q(1, 2) =iG(2, 2) G(2, 1) fd'x d—'x G(13)G(2,, 4)

X Vs (3, 4) G(3, 2)G(4, 1)+ ~ . (1&)

The expansion for Q is represented by diagrams in
Fig. 1. From Eq. (18) it follows that the lowest-order
contribution to Q is

Q.(1, 2) ='G(1, 2)«2, 1)

In the presence of the external Geld one can write a
similar type of expansion for Q(")(1, 2), which in lowest
order can be written as

Qp&")(1, 2) =iG( '(1, 2)G&"'(2, 1). (2O)

If we now substitute Eq. (19) in Eq. (16), we get the

lowest-order contribution to V8 as

V (1 2)=~(1,2)

—i d4*,«*,V, (1,3)G(3, 4) G(4, 3) V(4, 2).

where 1—=x2I2, etc. The symbol W ln (14) represents
the irreducible interaction operator. In the high-
electron-density limit' and in the "shielded-interaction
approximation, ""the two-particle Green's function G~

can be written as

G,(1, 2; 1', 2') =G(1, 1')G(2, 2') —G(1, 2') G(2, 1')

+lfd4xsd'x G(13)G(2, 4),
X Vs(3, 4)G(3, 1')G(4, 2'), (1&)

where V8 is the effective interaction between any two
particles of the medium which takes into account all

possible polarization processes of the medium. The

7T. Kato, T. Kobayashi, and M. Namiki, Progr. Theoret.
Phys. (Kyoto) SuppL 15, 3 (1960).' J. Schwinger, Proc. Natl. Acad, Sci. (U.S.) 37, 452 (1951).

9 H. Kanazavra and M. %'atabe, Progr. Theoret. Phys. (Kyoto)
Z3, 408 (1').

G(")(x, x') =G(x, x')+ ddx2rp (x2) G(x, x2) G(x2, x')

—$ d $]d Ã24 span xy G sq Ã2 G sy~ $3

XVs(xp, x()) G(xp, x') G(xp, x2),

where we have discarded the term corresponding to
the disconnected diagram. If we represent the one-

particle Green's function G( &(x, x') by means of a

I

I 2

Fxo. 2. Graphical representation of the perturbation expansion
of G&~&(x, x').

"G. Baym and. L. P. Kadano8, Phys. Rev. 124, 287 (1961).
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double line going from x' to x, the terms in Eq. (22)
can be graphically represented by the diagrams in
Fig. 2, where the single line represents the one-particle
Green's function G for the homogeneous system, and
the dashed line ending with shaded circle represents
the external source of the potential. The third term in
Eq. (22) corresponds to the screening of the external
potential due to the static point charge, which has
been represented by means of the third diagram in
Fig. 2. By using Eq. (19), one gets from Eq. (22)

G "'(x, x') =G(x, x') + d'xrw(xr) G(x, xr) G(xtp x )

d &zd &2d &3~ xi G +) &2 G &2) &

Following the definition of the dielectric constant,
which for a homogeneous system of electron gas is
given by

8(k, ~) =.(k)/V, (k, ~), (30)

we obtain from Eq. (27)

G&"&(k, k'; «)
= (2z) 'G(k, zoo) b(k —k')

+LG(k, «)G(k', «)w(k —k') ]/8(k —k', 0). (31)

To derive the expression for the dielectric constant for
the inhomogeneous system, we take the Fourier trans-
forms of the terms appearing in Eq. (20), and obtain

Qo" (q q" «)
XQo(xs, xt) VB(xs, xe) . (23) 2i OO

dkdkr deGt"&(k+q, kr+q', e+too)
3. DERIVATION OF THE DIELECTRIC CONSTANT

To work in the momentum representation, we define
the Fourier transform of the Green's function G& & (x, x')
as

Co

G'"&(x, x') =, dkrdks dkopG&"&(kt, ks, «)
(2rr)'

X expLikt x—iks x' —uop(t —t') j. (24)

XG'"&(kr, k; e), (32)

Qo'"&(q, q'; «)

where the factor of 2 in Qp&"& comes from the spin
summation. Using the expression for G&"& from Eq. (31),
one obtains by retaining terms up to the first order in
the external field:

2Zi t&(q —q')=(2 )'Qo(q, «)~(q —q')—
(2rr) ' 8(q —q', 0)

In writing Eq. (24), one should note that in the case
of a time-independent external 6eld, G& '(x, x') is a
function only of the time difference t—t' and is there-
fore diagonal in co space, where co is the energy variable
congugate to time. This means one can write G& & (x, x')
as

X dlr deLG(k+q, e+cop) G(k+q —q', e) G(k, e)

+G(k+q, e+«) G(k+q', e+cop) G(k, e) j, (33)G& '(x, x') =G'"'(x, x'; t—t'). (25)

Since the system of electron gas is translationally
invariant, one can write the Fourier transform of 2i
G(x, x') as Qo q, « =, dk deG k+q, e+«)G k, e .

2lr QQ

1 cc&

G(x, x') =, dk dtooG(k, zoo)
2w co

X expI ik (x—x') i«(t —t')] —(26).
Defining the Fourier transforms of each of the functions
appearing in Eq. (23) in a similar manner, we obtain

G&"&(k k'; (op) = (2rr)'G(k, «) l&(k —k')

+G(k, (op) w (k—k') G(k', «)
—G(k, cop) w(lr —k') G(h', «)
XQo(k —k', 0) Vs(k k' 0) (27)

where

(34)

It is important to note that the one-particle Green's
functions appearing in Eqs. (33) and (34) satisfy the
well-known Dyson" equation

G(p, e) =Gp(p, e) +Gp(p, e) g(p, e) G(p, e) & (35)

where g represents the sum of all proper self-energy
diagrams and the Go is the unperturbed free-particle
Green's function. In momentum space, Go is given by

e(l p I
-&r) tt(tr IpI)-

so+ tb e ep —tb—
w(k —k') = —4&rZe'/(k —k')'= —Zr&(k —k'), (28) where

and e,=p'/2nt,

Vt&(k —k', 0) =t&(k—k')/I 1+v(k—k')Qp(k —k', 0)$. "T. D. Schultz, Qnantnm Field Theory and the Many Body-
Problem (Gordon and Breach Science Publishers, Inc., New York,
t964).
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and ki is the unperturbed Fermi momentum. Neglecting the self-energy contribution, we obtain from Ea. (33)

Q~'"'(a, a'; «)
2Zi v(q —q')=(2 )'Qoo(a, o)&(q-a')-
2qr 'Bq q —q', 0

x dk dql Gq(k+a q+«) Gq(k+a —a q) G (k q) +Gq(k+a q+oiq) Gq(k+q q+«) Gp(k q) ] (37)

where"

2i CO

Qpp(q, «)=, dk dqGp(k+q, q+«) Gp(k, q)
(2qr)'

2
dktI («+qy qp+q+—qb) —(«+qi+q qi qb—) —].

(2qr) l&l&&s', I&+qt&&a

If we now break up Q„' ' in the following manner:

Q«'"'(a, a';«) = (2~)'Qoq(a, «) b(a —a')+n(a, a'; «),
we get from Eq. (37), after performing the integration over q,

g(q, a'; «) = —2Zqt(q —a')/(2qr) 'g, (q —q', 0)

&(4—
I
k I)0(I k+a

I

—4) 0(4—Ik+a —a' I) ~(i k+a'
I

—~ )
dk « qi+q+—qi+zb « qq+q+—qq+q «+18 «—qk+q~+qk+zb

&(Ikl —& )&(& —Ik+a'I) &(&.—Ik+al) «Ik+a' —al —& )

(38)

(39)

« qq+q —+qq qb— «—qp+q+6g —qb «—q~q~+@yq~ q
—zb

~(7~ I
k I)~(l k+—a I

—7~) «~~ —
I

k+a' I) e(l k+a —q'
I

—~ )

« qi+q+qi+&b- qi+q' qi+q+&b &k &kyq —q' pM

«~ —
I
k I) e(l k+a'

I

—~ ) ~(~ —
I k+a I) «I k+a' —q I

—& )

«—
qiyq +qi+ ib k+q qk+q'+&b k k+q' —q+ib

« qq+q+qg $3— —Eg 6Jg+g q&
—M

~(l k
I

—&~) ~(&~—
I
k+a I) e(&~

I
k+a —a' I)— g( Ik+a'

I

—kp)

6Q+q~ 6Q+q M

&(I k
I

—& )8(& —
I

k+a' I) «& —
I

k+a' —a I) ~(l k+a I

—& ) (40)« qk+q~+qq —&b- 6k 6k+~~ g
—ZB +~

—@+~ —zo

Since, for an inhomogeneous system of interacting electron gas, the dielectric constant is defined by the relation'-'

&o(q, a';«) =(2 )'b(a —a')+~(q)Qqq'"'(a, a';«),
one obtains, with the help of Eq. (39),

g (a, a';«) =(2 )'b(q —q')Lj+~(a)Qoo(a, «) j+s(a)n(a, a';«)
= (2qr)'b(q —a')gq(q «) +q'(a)5'(q a"«) (42)

where Gq(q, «) is the dielectric constant of the homogeneous system in the random-phase approximation (RPA) .
The second term in Eq. (42) is the contribution due to the inhomogeneity present in the homogeneous system.
This corresponds to the nondiagonal component of gq(q, q'; «), whereas the diagonal part is represented by the
first term in Eq. (42).

D. F. Dubo~s, A~n. Phys. {N.V.) V, j.74 {&959).
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4. EVALUATION OF THE DIELECTRIC CONSTANT

qi(q, q'; oop) = —2Zp(q —q')/(2qr)'8p(q —q', 0)

1 1
X d& +

(Cgp qk—+qk+q) (Mp —qk+qk+q~) (pop —qkyq+qk) (Glp q~—qq+qk)

&&Ltt(l k
I

k.)e(k—~
I
I+—q I)e(k~ —

I
I +q' I) ~(k~ —

I
1 I)—tt(l k+q I

-k~) ~(l l +q'
I

—k~)]

1 1 1
P

(&0 ok'-q+qk) (&0 ok+ qk+q) (qk+q' qk+q)

xLe(k —
I

& I)e(l &+q I

—k )tt(k —
I
&+q' I) —e(l I

I

—k )&(k —
I &+q I)0(l &+q'

I

—k )]
1 1 1

p
(ppo —ok+ok+, ) (ok+,—ok+, )(ppo —ok+, +ok)

The evaluation of the integrals appearing in Eq. (40) is extremely difficult. As the simplest case, we will re-
strict ourselves to the region where the collective oscillations dominate. This is the region which is defined by cop

greater than both +(qk+q —qk) and +(qk+q —qk). In this region, we will be interested in the limit q, q-+0.
To proceed, let us now make the transformation Ir+q-+ —k in the first, sixth, and ninth terms of Eq. (40).

Similarly, we will be making the transformation k+q'~ —k in the fourth, eighth, and eleventh terms of the
same equation. Thus, we get

X ti(k~ I
k I) ~(l —1 +q'

I
k~) tt(k~ —

I k+q I)
—-e(l 1

I
k~)e(k~ —

I
k+q' l—)e(l k+q I

—k.)

(43)

(44)gq(q, q; Mo) =0.

Here the symbol P denotes the principal value and p& and q2 represent the real and imaginary parts of g. The
fact that the imaginary part q2 vanishes can be shown by utilizing the property of the 8 function. From a detailed
analysis as given in the Appendix, one can see that for the region -', m&n&m

2Zo (q —q') 2qrq'kk cosu sinu
n (q, q';~o) =—. . . 1+, , -o (2~)'go(q —q', 0) ~o'

—sinn(1 —2 cosu) "'—sinu cosu (45)

In the region 0&0.&-,'x, the integral involved in the
expression for g, (q, q'; pop) is complicated in structure,
and can not be evaluated analytically. In this region,
p&(q, q'; coo) is found to be split into two parts, one for
the range 0&n&-', m and the other for the range -', m &
u&-,'m. However, we will be interested in the value of
qn(q, q'; pio) for the region —',qr&u&qr. By means of a
simple analysis it can be seen that the sum of the
contributions from the last three terms in Eq. (45) is
small compared to unity. Hence, one can roughly
assume the 6rst term to be the leading one, even if
there is no justification for neglecting the rest. Denoting
the contribution due to the first term in Eq. (45) by
q~&" we have

e"'(q, q'; ~o)

gp(q, 0) =
I 1+k++'/q'],

q~p

one can write g~(') as

(47)

ni"'(q, q';~o) = q q'
, ZL1 —fgo(q —q' o) f ']

2' Gop

(4g)

Following a similar analysis, it can be shown from
Eq. (38) that in the long-wavelength limit we have

g s 3gvp
goo(q, ohio) = —,1+, +

q~p BRVp SGOp
(49)

homogeneous system which, in the long-wavelength
limit, is given by

o(q-q')—2Z
(2~) '~o(q —q', o)

where

27lg kp coscL

(dp
(46)

where qi=kk'/3qr' denotes the average electron density
in the system of electron gas.

5. DISCUSSION
cosu= q q' q' . If one compares our expression for the dielectric

Using the expression for the dielectric constant for the constant for the inhomogeneous case with that obtained
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in the SCF approximation, one 6nds no discrepancy as
far as the diagonal part. is concerned. This is because
the momentum restriction

I
k+q I)k& in the real part

of Qpo(q, cop) occurring in Eq. (38) can be dropped, on
the ground that if one violates this restriction in the
first integral, the resulting contribution is exactly
cancelled by that obtained on violating the restriction
in the second integral. But this is not so in the case of
the nondiagonal part g(q, q'; cop). The expression for
the nondiagonal part as obtained by us contains more
terms than the corresponding expression in the SCF
method. Besides, the very presence of the extra mo-
mentum restrictions in the integrals of the nondiagonal
part, which are evident in the 0 functions, means that
the present derivation strictly takes into account the
exclusion principle. On evaluating the integrals occuring
in Eq. (43) in the limit q, q'~0, and under the approxi-
mation stated in (A10), one finds that in the region
~m&o. &m, the 6rst term of our expression for the real
part of g(q, q'; cop) has the same form as the one
evaluated by the SCF method, even though an extra

factor of —,
' appears in our case. This justifies the

validity of the approximation (A10), employed
throughout our calculation. It is interesting to note
that in the present case the imaginary part of the
dielectric constant Rp(q, q'; cop) vanishes in the region
where the plasma oscillations dominate. The vanishing
of the imaginary part of the dielectric constant for the
homogeneous case is a well-known fact for small values
of g, i.e., ~here the plasmons are well-de6ned excita-
tions of the system. By analogy, one should expect the
same thing to happen to the imaginary part of the
dielectric constant for the inhomogeneous case in the
limit of small q, q, which is manifested in our calcu-
lations.
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APPENDIX

We wish to evaluate the integrals in Eq. (43) in the limit q, q —+0. Let us now make the binomial expansion
of the term (cpp+po&oo+, ) ' as follows:

(cpowpoapo+p)
—'=I cope(k q/m) a(q'/2m)] '

COp

1+(k q/mcop) + (q'/2mcop) (k q/mcop) P+~ (A1)

Writing the binomial expansion of (cop+ p&+po+o ) ' in a similar fashion and retaining terms up to orders of q', q"
and qq', Eq. (43) can be written as

where
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J et us note that III can be obtained from II by simply replacing q by q'.
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By using the property of the step function 8(ki —
I k+q I) appearing in (A2), one gets

k( {PkP-g sin'8l"' —
q cose{j

cose=lr q/kq.

By virtue of the step function 8(l k! —k~), one finds from (A3) that in the limit q—4, one should have

cos8&0, i.e., -,'m &8&x. (A4)

Maklllg tllc followlllg blllollllal cxpallsioll of tile tcl'Ill (kp —
g slI1 8) i occlllTIIlg 111 tllc I'lgllt-halld SKlc of Eq. (A3):

one obtains

where « is given by «= q'/2k I

Similarly, one can show that
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where in this case we will have cos8&0, i.e., 0&8&~m. In the limit of small q, we can now make Taylor expansions
of the step functions as follows":
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Since one can also evaluate the integrals in I and II by making Taylor expansions of 8(k1 —
I
k+q' I)

and 8(l k+q'
I

—4), the results of the latter calculations are likely to differ from those of the previous ones. In
order to avoid the choice between the two approaches, we will have to assume that in the limit g, q'~0,

In this approximation, the integrals of III in Eq. (A2d) will be exactly identical with those of II in Eq. (A2c)
Keeping terms up to order q' and Iuq ', we obtain from Eq. (A2a), with the help of the Eqs. (AS), (A9), and (A10)
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To evaluate the integrals in (A11) let us choose the polar coordinates with the Z axis along q. If we denote by
8 and 8' the angles between the vectors k and q, q', respectively, and de6ne n to be the angle between g and q',
we can write cos8' as

cose' = cose cosu+ sine sinn cosp,

where @ is the angle between the planes (lr, q) and (q, q'). We write ql as

n (q, q'; ~o) = —2zL~(q —q') /(2~) 'so(q —q', o) jj,

J=I+II+III.
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(A 11) for the region 0obtain fIom Eq.
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