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Recently several papers have discussed the possibility of a new kind of insulating phase in semimetals
or semiconductors with small band gap. This phase can be described as a condensate of electron-hole
pairs (excitons) due to an eftective interaction between valence and conduction electrons. This paper
extends the analysis of the excitonic phase in the semimetallic region in the presence of randomly distributed
normal {i.e., nonmagnetic) impurities. It is shown that the impurities have a pair-breaking effect similar
to the case of magnetic impurities in superconductors. The Abrikosov-Gorkov theory developed for the
latter case is applied with minor modi6cations to the excitonic phase. It is shown that beyond a critical
impurity concentration the excitonic phase cannot exist. Changes in the transition temperature and in the
order parameter are calculated, as well as the density of states. It is found that in a region close to the
critical concentration the excitation spectrum of the system has no energy gap.

I. INTRODUCTION

ECENTLY several papers' ' have discussed the
possibility of a new kind of phase in solids with

small energy-band gaps. The underlying model is the
usual two-band model of valence and conduction
electrons with exchange interaction between the two
bands. In the normal state we consider either the con-
ventional semiconductor (positive band gap) or the
conventional semimetal (negative band gap or over-
lap). It has been realized in both cases that for low
temperatures the normal state under certain circum-
stances becomes unstable against the formation of
electron-hole pairs or excitons on a macroscopic scale,
as there is an effective attractive interaction between
electrons and holes due to the exchange interaction.
The resulting new phase which has been called the
"excitonic insulator'" is stable in the semiconductor
region (positive band gap) as long as the exciton
binding energy is larger than the band gap. In the semi-
metallic region (band overlap) the occurrence of the
excitonic phase is only limited by an anisotropic band
structure. '7 In the case of isotropic bands the new
phase exists for any negative band gap (overlap)
though the transition temperature decreases exponen-
tially for larger overlap due to screening eGects."

* Supported in part by the U.S. OfFice of Naval Research and
the National Science Foundation.
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(1967).
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(1965)j.
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Properties of the phase have been investigated in
several papers. ' s Especially, Jerome, Rice, and Kohns
have discussed the experimental observability in certain
divalent metals and Group V semimetals. Though no
clear experimental evidence has yet been given, recent
measurements of the resistivity in strontium under high
pressure' indicate a transition to an insulating state at
about 35 kbar. This fact might be explained as the
transition to the new excitonic phase, as strontium was
proposed earlier as the most promising material to
observe the new phase. '

The main property of the new phase is its insulating
behavior. On the other hand, Kozlov and Maksimov'
have pointed out that the excitonic phase is an anti-
ferromagnet, if the excitonic pair is in a spin triplet
state. This question is in any particular case decided by
subsidiary interactions which are not responsible for the
condensation process. ' It is interesting to note that in
the case of triplet excitons the above model is similar to
the two-band model proposed by Martin-Fedders' and
I.orner" to explain the itinerant antiferromagnetism in
chromium. In fact, with certain simplifications Martin
and Fedders arrive at essentially the same model. As
pointed out in Ref. 9, this model is much too simple to
apply specifically to a metal like chromium. There are
contributions from other bands to the properties of
chromium; "unpaired" electrons and holes, especially,
lead to metallic conductivity.

In this paper we investigate the eBect of normal, i.e.
nonmagnetic, impurities on the excitonic phase. %e
confine our discussion to the semimetallic region and
assume for simplicity that the valence band has a single
maximum at p= 0 such that the single-particle energy is
given by an isotropic dispersion

"(p) = (po' —p') /2~'
%e also assume a single conduction-band minimum at

D. B.McWhan, Bull. Am. Phys. Soc. 12, 356 (1967).' P. A. Fedders and P. C. Martin, Phys. Rev. 143, 245 (1966).
"W. M. Lorner, Proc. Phys. Soc. (London) 80, 489 (1962).
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p= w such that the band energy is

es(p) = (P' Ps—') /2rps» (2)

where the momentum is measured relative to the
minimum momentum w.~ The chemical potential p is
set equal to zero and the density of (conduction)
electrons and holes (in the valence band) is related in
the usual way to the Fermi momentum ps by

P= Ps'/3~'

The impurities are assumed to be randomly dis-
tributed. If the mean free path / is larger than the
inverse Fermi momentum, i.e., /ps))1, the impurities
will have a negligible eGect on the single-particle
spectrum, but will mainly give rise to hnite lifetimes. "
As the thermodynamic description of the excitonic
phase' —' is very similar to the theory of superconduc-
tivity, we can treat the impurity e6ects in our case
using well-known methods from superconductivity. "
There is one important difference, however. Normal
impurities in a superconductor have no effect on the
superconducting pairs, whereas in the excitonic phase
normal impurities tend to destroy the electron-hole
pairs. "Thus the present case turns out to be similar to
the case of magnetic impurities in superconductors. "
The analogy stems from the fact that in both cases the
impurity potential acts with opposite sign on the two
constituents of the pairs which make up the condensate.
In superconductivity the spin-dependent force of
magnetic impurities acts on a pair of electrons with
opposite spin; in the excitonic phase normal impurities
representing an electric potential act on an electron-hole

pair, i.e., oppositely charged particles.
Therefore it is not surprising that we can apply the

well-known Abrikosov-Gorkov theory" to our problem
with only minor modifications. We shall see that the
impurities tend to destroy the ordered phase of electron-
hole pairs and that there exists a critical concentration
where the transition temperature T, and the order
parameter go to zero. Secondly, there exists a gapless
region close to the transition temperature, i.e., a region
in which the excitation spectrum does not exhibit a gap.
From this, it follows that the transition to the excitonic
state is of second order.

"A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Quantum Field Theory in Statistical Physics (Prentice-Hall, Inc. ,
Englewood Cli8s, New Jersey, 1963). As discussed in Sec. 39
of this book, we have to restrict ourselves to impurities, i.e.,
foreign atoms or other lattice defects, which on the whole would

. have a negligible effect on the electronic spectrum of the substance
in the normal state. This can be roughly expressed by demanding
Itpp&&1. The condition implies both that the concentration of
impurities is not too high and the impurity scattering not too
strong, as in both cases changes in the band structure would have
to be taken into account."Kopaev (Ref. 4) has briefly considered impurity eGects. Due
to several errors in his calculations he derives wrong conclusions
about the infiuence of impurities on the excitonic state.

"A. A. Abrikosov and L. P. Gorkov, Zh. Eksperim. i Teor.
Fis. 39, 1781 (1960) LEnglish transl. : Soviet Phys. —JETP 12,
1243 (1961)g. S. Skalski, O. Betbeder Matibet-and P. IA, . Weiss,
Phys. Rev. 136, A1500 (1964) .

Section II contains the basic formulation in terms of
Greens functions. In Sec. III we consider the transition
temperature T, and the order parameter at abolute
zero. In Sec. IV we investigate the density of states and
the gapless region as well as the order parameter close
to T,. Section V contains a discussion of the results.

II. GREEN'8-FUNCTION FORMULATION OF THE
IMPURITY PROBLEM

We consider the following Hamiltonian for the
electron system'4:

II= ZI e (p) ~'a+es(p) b, 'b.j

The second term in (4) represents the mutual inter-
action with an interaction potential

e(q) = one'/q'e(q), (6)

where e(q) is an effective dielectric constant. ' The last
term in (4) describes the interaction with impurities,
and u(q) is the Fourier transform of

u(r) = Qu(r —r,)

the summation going over all impurities at positions
r, . We further remark that the q= 0 terms in (4) have
been left out. Both are assumed to be incorporated in
the single-particle energies, one representing the
Hartree energy, the other a shift of the chemical
potential due to the averaged impurity potential.

It is convenient to use a two-component Nambu
notation. If we write

the density operator (5) is given by

We define the temperature-dependent matrix Green's

'4 We use units in which A, = f..
"As discussed in Ref, 2, the total density operator contains

some Bloch matrix elements. The operator in Eq. (5) has the
appropriate form, if we approximate the Bloch matrix elements
in the»~it q~0. We also have left out spin indices, as the electron
spin is unimportant in the present problem.

+s Z s(q)1(q)P( q—)+ g u(q) p(q). (4)

Here, we have introduced Qp Gp as annihilation and
creation operators for valence-band electrons with
momentum p, whereas the operators b, and b~t destroy
and create conduction electrons with momentum
p+w s ' The electron density operator is given by"

p(q) = ZLW+. 'a.+fv+. 'b.3
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function:

G(p; &, &') = —(~(yi) +(yi') ).

G~p-q i~~n vl) G(p- q, io]nl

2
U

4(pt) .~(y).
As the Green's function (10) only depends on the time
difference t—t', we introduce the Fourier transform
as usual;

G(p, t t') =P —'QG(p, iso„)expL —ia&„(t—t')),

where T is Wick's time ordering symbol, and the
imaginary times t, t' are con6ned to: 0(t, i'(P. The
brackets ( ~ ~ ~ ) denote a thermal average as well as a
spatial average over the positions of impurities, and
the Heisenberg Geld operators are

'y(pt) 4'(y)
, g

—tH

P~n
(b)

FIG. 1.Lowest-order contributions to the self-energy from (a) the
mutual interaction, and (b} the interaction with impurities.

The diagonal terms left out in (18) are the usual
Hartree-Fock terms which are assumed to be included
in the single-particle energies ~ and eq. Turning now to
the lowest-order contribution from the impurity inter-
action, we first note that (u )a in Fig. 1 is given ex-
plicitly by

(u'),

cp.= (rr/P) (2N+1) (12) fdi eXpL iq (r r )](u(I ) u(1 ) )n&arasa a&ar nnpariQzaa

and the summation runs over all integers m.

The next step is to introduce the self-energy Z
through the Dyson equation

=p- i u(q) I', (20)

where p„is the density of scatterers. Z2 can therefore be
written as

G '(P i -) =Go '(P ~-) —&(y, i~-), (13) & (y, i .)=p QIu(p —p') I'G(y', i .) =—G(i.).
where 60 ' is the Green's function in absence of any
interaction,

p/

(21)

(Gob
' 0 ) /i~„eb'—0

(14)
0 Goa ') E 0 ice„e,)—

%e confine ourselves to the lowest-order contributions
to the self-energy which are represented diagrammati-
cally in Fig. i." The contribution from the mutual
interaction is given by

& (p) = —P-' Z p(q) G(p- q, t -) (»)

Using
(G, P)
EF' G.)'

where Ii and F+ are Gorkov Ii functions

We shall see later on that the Green's function G(y, imp )
is strongly peaked at the Fermi surface. Thus it is
justified to approximate

~ u(p —p') ~s assumed to be
slowly varying by ~

u(8) ~s, where e is the angle be-
tween y and y', both on the Fermi surface. As indicated
in Eq. (21) the resulting 6 therefore depends on t0„
only.

Combining the expressions (13), (14), (18), and
(21) we get the inverse matrix Green's function

( Z(on, b
—eb —An(P) )G-'(p, i~„)= I ~, (22)

(—~-+(p)

where we have introduced the notation

i'„,b ia&„Q,(iCP.)——, —

i (P i—i') = (T4(i)&.(i') )—
F'(p i—i) = —(&a(6&.(i) ), (17)

imp„,.=uo„—G, (up„),

~-(y) = ~(y)+~(~.). (23)

we get, neglecting diagonal terms,

~(y) )
!&i(y) =

I

(6'(p) 0
where the order parameter 6 is dined by

~(y) = -P-' Z s(q) F(y—q, ~-). (19)

From now on we choose the phase of the order param-
eter A(p) equal to zero. Thus 6(p) is real and positive
and the same holds true for 6„.Inverting Eq. (22) we
obtain finally

(&ipnaea ~n, (p)
G(p, i~-) = —

D I ~, (24)
( +n(y) ub aenb)

' The approximation is justified for the mutual interaction,
as we assume the coupling constant to be suSciently weak.
Higher-order contributions from the impurity-interaction also
can be neglected because lpo&)1 {see Ref. 11 for a discussion}.

where the denominator D is given by
FV

~n +~natpnbeaeb+&(e, bbpn, ,a+en~a, b) ~ (25)

Equations (19), (21), and (24) form a closed system of



equations which can be solved for all relevant quanti-
ties involved.

First, we consider (21) for the oif-diagonal com-
ponent F(ia&„):

F(i~.) = —, dII [u(e) P

s=(P' —Pp')/2(m. ms)U2 (—~ &s& e&) (27)

as integration variable we immediately obta, in

F(i .) =--,r~Z„/(-.+~. ) I j. (28)

Here cv„is de6ned as the mass average

~„=(m.(i„.+my, co„,b) /2 (m.mg) ",
6„is the value a,t the Fermi surface, and

(29)

p'dp F(p, ~„).(26)
0

Using (1) and (2) the integral is evaluated at the Fermi
surface. Kith

Abrik, osov and Gorkov in their investigation of the
inQuence of paramagnetic impurities on the super-
conducting state. " The only difference in our case
comes from the fact that two diBerent band masses are
involved which leads to the two relations (35) instead
of one. As mentioned in the Introduction the analogy
stems from the fact that in both cases the impurity
potential acts with opposite sign on the two partners
of the bound pair. In superconductivity the magnetic
interaction acts on a pair of electrons with opposite
spin; in our case the electric potential of normal im-

purities acts on an excitonic pair, i.e., oppositely charged
particles. Ke conclude that the impurities in the
excitonic phase have a pair-breaking eBect, too. This
will be investigated in subsequent sections. It is con-
venient, however, to rewrite the relations (32) and

(35) in somewhat different form. Using (29) and (30)
we derive a relation for Fu„from the two relations (35);

where

r=(r„r,) ~, (30)
co„=-,' (M/P) '"a).+ (M/2P —I) -', r(u. /((a. ' jig') '",

(36)

r ( )
—g

'
dQ [ ~(e) ~2. (31) where M and p are the total mass and the reduced mass,

2m' respectively:

~. and v~ a,re the scattering lifetimes for a and b electrons
at the Fermi surface. " Inserting (28) into (23) we get
the relation

M=m. +my,

Then introducing

p '=m '+m (37)

'r 6 /(co '+8 ')"'- (32) +e=~n/4i)

In the calculation of the diagonal components 6 and

6~ we have to take into account a contribution to the
s-integral from regions far away from the Fermi surface
where the integral behaves like"

one gets by combining (32) and (36)

l(M/ )'"( ./~) = .(1—/(I+&-')'") (39)

—
I ~(p —p') ~'.

~= (M/4~) (r/~) (40)

This gives a small shift 8p of the chemical potential. "
Assuming that this has been included in the single-

particle energies e and @, we can remove the spurious
contribution by a Pauli-Villars renormalization of the
integral. The integral is evaluated with a factor
M'/(M'+s') and the limit M-+m taken afterwards.
A simple calculation leads to

Ke should mention that for equal masses, m, =m~, all
of the above results reduce to the analogous results of
Abrikosov and Gorkov. "
III. TRANSITION TEMPERATURE AND ORDER

PARAMETER

We study the Eq. (19) determining the order param-
eter 6:

G. (i(o ) = i-,'r.(i„/(cu„'+6—,')",
Gg(ice„)= —i-,'rgv /(~ '+D.') '",

4(p) = —P-' g w (p —p') F(p', i~.) . (41)

with r, & given by (31). Inserting (34) into (28) we

have two relations complimentary to the relation (32): ~(a) =4 ~'/(V'+"), (42)

In this equation we use the screened Coulomb potential

a'= (e'/m) poM (43)
(35)

The relations (32) and (35) determine co„,„~„,~,

and 6„in terms of ~„andA. It is remarkable that these
relations are just the same as those obtained by

gives the screening due to both electrons and holes.
The "normal" dielectric constant e(q) = 1+a2/q', used
in (42), is certainly not correct at q= 0 as we no longer
have metallic screening in the excitonic phase. But
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Baklanov and Chaplik have shown in detail6 that in

the semimetallic limit (large pv) the range in which this
formula breaks down is very small, namely

q'& 6'/vr', vr
——p 0/ m, , i (44)

and that this has practically no eBect in the calculation
of the order parameter in Eq. (41). As the integrand
on the right-hand side of (41) is strongly peaked at the
Fermi surface, we can set I

p' [
= po in v(p p—'). The

angular average over v(p —p') then gives an effective

interaction for large Fermi momentum po.

dQ—v(p-p')
4n. Ip'I go

I p.—p l &

otherwise,
where

V= (~e'/po ) ln(4po2+~ )/2. (46)

Using (27) and inserting F from Eq. (24) we simplify
the equation for the order parameter,

Ml'~' C L„/5
u & P „„6„'+u„.~„,b+s'+isI (m./mi, ) i12co. . .(m—i,/m. )"co„,i,] ' (47)

with

C= &poV/~', Ep= pox/(m, mi, ) '"; (48)

(49)

where we have performed the co summation in the
subtracted term on the left-hand side and also the
2 integral on the right-hand side; the latter was extended
to infinity as Pro))1. The left-hand side I. gives the
standard result known from superconductivity"

the factor ppo/v-' in the constant C can be interpreted
as the density of states at the Fermi surface for a
particle with reduced mass p.

A. Transition Temperature Region

In the region T & T, we subtract from both sides of

Eq. (47) the expression corresponding to the right-hand
side in the pure material with 3 =0-. This leads to the
equation

'o ds Im.)'~' mg '~'
1—C — tanh —,'P~ —'~ s + tanh ~P — s

0 hami, j SSQ

2g 2p (d~
(u. '—((a„+1/r) '+ —LP-

„)p M ((u„+1/r)'

(55)

The transition temperature T, is determined by 6=0.
The sum over the erst expression in (55) leads to"

ln T.o/T, =4(,'+P,/2rrr) —4'(—), -(56)
where 0 (x) is the digamma function, 4 (x) =
(d/dx) logF(x). Expanding (56) for large r, i.e., small
impurity density, we get the first-order shift of the
transition temperature

Kii T,=Ks T,p rr/4r. — (57)

On the other hand we find a critical collision time r„:

making use of (38). Near the transition temperature T,
we expand Eq. (53) in terms of the order parameter
h. Expanding Eq. (39) in terms of 6 and defining an
average collision time r from (31),

r '2=(r .+'rb ) '=(s1' +.1'~), (54)

we get after some algebra up to terms of the order 5'

where
r„'=(rr/2y) Kg-T.p, (58)

lny =0.577 (51)

is the Euler-Mascheroni constant. As the right-hand
side of (49) vanishes at the transition temperature T.v
of the pure material (I'=0), T,o is given by equating
(50) to zero:

K'v T,o——(2y/m) t'0 exp( —1/2C), (52)

and we can express the Eq. (49) through the ratio
T/T, o by using (50) and (52). Canceling constants we

get

M ~~2

lnT.O/T= (v/P)P ~
&o. j

' —— — 6 '(1+u„')—'~'
2 p,

(53)

lag = vy7og~ 1.0 cmp (59)

which corresponds to a very low concentration of
impurities.

From this we conclude that the presence of impurities
puts severe limitations on the observability of the
excitonic phase in those materials discussed by Jerome,
Rice, and Kohn. This is especially true in the case of

where the transition temperature vanishes. Therefore,
as in the case of magnetic impurities in superconductors,
a critical impurity concentration destroys the excitonic
phase completely. Assuming T,0 of the order of a few
degrees and an average Fermi velocity of 10' cm/sec,
we can roughly estimate a critical mean free path,
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high-pressure experiments, as it is very doubtful
whether under these experimental conditions one could
control impurity eGects resulting from dislocations. As
mentioned in the Introduction, Martin and Fedders'
have proposed essentially the same two-band model we
have treated here as a possible explanation for the anti-
ferromagnetism in chromium. The application of the

above analysis to their model would likewise predict
drastic changes of the Neel temperature when impuri-
ties are added, though a quantitative analysis might
not be possible due to the crudeness of the model.

The order parameter near T, can be obtained from
Eq. (55) by expanding the left-hand side and the 6rst
term on the right. Collecting terms we get

M 22r2 1—(p,/22rr) g„=p(22+2'+p,/22rr) ' T, T—
/ ~' Z- oL(=~+2)/(~+2+4/2~r)'&

T, &T. (60)

S. Order Parameter at Absolute Zero

At absolute zero we denote the order parameter by

~,=~(r=o, r),
and we replace the co„summation by an integration,

~=~(r=o, r=o),

ckD

2g'

(61)

Subtracting from both sides of Eq. (47) the expression corresponding to the right-hand side with the replace-
ments, 6™~Ap, co, ,~

—+co, we get

1—
(
—)i l: —Phoo+ (M/4/1) oo2]-'/2, (62)

h./ho

(g 2+~2) 1/2

1—2Clnl (
—

)
—'), ep)&Do. (63)

This can be expressed in terms of the order parameter

where we have performed the co integral in the sub-
tracted term on the left-hand. side and also the s integral
on the right-hand side, the latter extended to infinity.
On the left we obtain at once

in the pure material hoo when the right-hand side of
(62) vanishes:

~op= —
[ &o exp( —1/2C) = ——

I

— &//~, o, (64)
pj 72 &~

which aside from the factor 2 (M///)'/2 is the well-

known relation from superconductivity. "
Using (64) in (63) and inserting into (62) we obtain

dp iV '~'
ln —=-,' — dp/ (6 '(1+I ') '"—pA'+(M/4//)/d2j-'/2I

+oo p -co
(65)

m

in —=
~op

where from (39)

dx; I L1+2/2(2;) j-i/2 —(1+22)-1/2I, (66)

Introducing 2:= 21(3II//1) '/2(p&/A), this can be re-

written as

xo= ~go= o,

2:p=0-+2/o= (lx2 —1)'", (68)

Transforming the 2: integration in the first part of (66)
into an integration over I, and choosing the proper
lower limits from (67),

x= 2/t 1—0./(1+u2) '/'j. (67) one gets the Abrikosov-Gorkov result"

lnho/hop ———
42m

1lx arctan(/22 1)—1/2+1~—1(~2 1)1/2 in)~+ (~2 1)1/2]

n&2

n& 2. (69)
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One may check that hp vanishes at the critical collision
time (58), too. Numerical solutions for intermediate
values can bc found in the paper by Skalski, Setbeder-
Matibet, and Weiss."
IV. DENSITY OF STATES AND THE GAPLESS

REGION

As a 6nal application of the Abrikosov-Gorkov
theory to the excitonic insulator we now show that
there is a region just below the critical concentration of
impurities in which the excitation spectrum of the
system does not exhibit a gap.

We consider the density of states delned by

$(o)) = —z-'Q Im Tr G(p, a)+ib). (70)
P

Using (24) and replacing i&» ~/»+ib, iN„~N(/»+ih)

the integrations in (70) are similar to those leading to
the relations (34) . The result is

x(~)/xo= ImLN/(1 —No) i/2j, (71)

where

&o= (Po/s') (m.+mo) (72)

is the density of states of the normal system at the
Fermi surface. N is here determined by the modified
relation (39):

o(~// )'"(~/~) = NL1 —~/(1 —~')"'3, (73)

the radical here and in (71) defined as the analytical
continuation of the positive square root for real e,
~

N
~
(1, into the upper half plane of the complex

variable N. In the pure material (a= I"=0) Eq. (71)
reduces to

X(o», I'=0)
Ãp

0(~(2(p,/m) &/'a

L~o —(4//m) ~o(r=o))~/o
2 (p/M) '/'h((o, (74)

whcI'c thc gap is

cog ——2 — 6 F=O .

In the impure system, the gap erg is given by the highest
value of &» for which the relation (73) exhibits a real
solution for N=N(/») with ( N ) (1. Maximizing the
right-hand side of (73) we find

N = (1—a'/o)'/' a(1, (76)

Mg= 0
2 (p/~) i/2+ (1 ~o/o) o/o

Thus thcx'c is no gap in thc excitation spectrum if
0,+ j.. In thc region A+ j., thc gap is sQlallcI' by thc
factor (1—/xo/')o/o as compared to the pure case LEq.
(75)].Near T. we are always in the gapless region, as
5—+0 and 0.&1. The gapless region extends over all
temperatures, if at T=o we have 0,~1. The corre-
sponding value for ho follows from (69),

ho= exp( —s/4) Boo, (78)

and o.= 1. leads to a scattering time

1/r'= 2 exp( —-'s )r„—' 0.91'„-'. (79)

For concentrations such that 7.„&~&g', the gapless
region extends over all temperatures.

Other thermodynamic quantities such as the free
energy, specilc heat, etc. could be equally well calcu-
lated within the framcm'ork of the Abrikosov-Gorkov

theory. As these quantities would be very similar to
those in superconductivity, '3 we do not go into further
details here. The application of the foregoing analysis to
transport. problems, i.e., electrical and thermal con-
ductivity, is reserved for a later publication.

V. SUMMARY

In this paper, we have discussed the effect of normal
impurities on the excitonic insulator in the semi-
metallic region. Due to the fact that the impurity
potential acts with opposite sign on the constituents of
the excitonic pair, the impurities have a pair-breaking
CGect. We have seen that the situation is very similar
to the case of magnetic impurities in supcrconductors.
Thus the Abrikosov-Gorkov theory" could be taken
over with only minor modifications to describe the
present situation. Several predictions of the Abrikosov-
Gorkov theory, especially, also hold in this ease, as dis-
cussed in the last two sections.

The most important of these predictions is the fact
that there exists a critical concentration of impurities
beyond which the excitonic phase is destroyed at all
temperatures. As the critical density, according to our
estimates, is very low, the presence of impurities puts
severe limitations on the occurrence of the excitonic
phase. Furthermore, as was shown in Ref. 7, an aniso-
tropic band structure also would be unfavorab]c to the
excitonic state in the semimetallic region.

In spite of this, impurities might prove to be a very
useful tool in identifying the transition to the cxcitonic
phase in contrast to transitions to other insulating
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"normal" phases, i.e., polymorphic transitions, etc.
This could be done by varying the density of impurities
in doubtful cases and studying changes in the transition
temperature. In the same way, a careful study of
antiferromagnetism in chromium alloys could help to
decide on the applicability of the Lomer two-band
model to chromium. '' Due to the crudeness of the
model in contrast to the real band structure in the latter
case, quantitative estimates might be very dificult,
however.

Though we have investigated the eGect of impurities
on the excitonic phase only in the semimetallic limit, it
is clear that qualitatively the results of this paper
should hold true also in the semiconductor region
(positive or zero band gap in. the underlying two-band

model) .The quantitative description would be different,
however. There are two important differences from the
former situation. First, the modifications of the single-
particle energies due to impurities could not be
neglected; in the semimetallic case we only have a small
negligible shift of the Fermi energies. Secondly, the
collision times r, ,& will become energy- (or tempera-
ture-) dependent. It remains to be seen whether and
how the Abrikosov-Gorkov theory has to be modified
in order to deal with this situation.
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An expression for the dielectric constant of a dense electron gas containing a positive point charge Se
with a neutralizing positive background is obtained by employing the diagram technique of quantum field

theory. The present derivation leads to some more terms in addition to those obtained in the self-consistent-
6eld approximation. Besides, our derivation rigorously takes into account the Pauli exclusion principle.
The simplest evaluation of the dielectric constant is made in the region where collective eft'ect dominates,
and the results are compared with those obtained in the self-consistent-Geld approximation.

1. INTRODUCTIOÃ

INGLE-PARTICLE Green's functions G(x, x') for
a homogeneous system consisting of an interacting

electron gas are widely used to obtain information
regarding its ground-state properties and the nature of
its elementary excitations. But most systems which one

finds in nature are inhomogeneous. An inhomogeneity
in a system arises from any external field acting on it.
The type of inhomogeneity considered here is that due

to a point charge Ze Axed inside an electron gas. This is

of great physical interest for the study of the discrete
single-particle excitation spectrum. Recently, Layzer'
has investigated the quasiparticle excitation of such a
system. He has shown that for a positive point charge,
there exists a discrete spectrum of bound holes, finite
in number, which disappears beyond a certain limiting
value of the electron density. A similar investigation
has been made by Sziklas' on the collective oscillations

of a dense electron gas containing a fixed point charge.
He 6nds two distinct types of collective excitations of
this system. The erst one, called a free plasmon, has
the same excitation spectrum as found for the homoge-

' A. J. Layser, Phys. Rev. 129, 89'I (1963l; 129, 9O8 (1963}.' E. A. Sziklas, Phys. Rev. 138, A1070 (1965).

neous system; and the other, called a bound plasmon,
belongs to a discrete type of spectrum, and has no
counterpart in the homogeneous gas. It exists only if
the impurity charge is negative. Layzer's investigation
of the quasiparticle excitations is based on the one-

particle Green's function G' &(x, x') for the nonuniform
many-fermion systems. Besides Layzer, Sham and
Kohn' have recently studied the inhomogeneous system
consisting of an interacting electron gas using its one-

particle Green's function. In this paper, we shall, how-

ever, use the one-particle Green's function G&"&(x, x')
for the inhomogeneous system to derive an expression
for its dielectric constant.

In Sec. 2, a brief review of the Green's-function

approach to a many-fermion system is presented. A

perturbation expansion is obtained for the one-particle
Green's function of the inhomogeneous system in terms
of the corresponding Green's function of the homoge-
neous case.

In Sec. 3, an expression for the dielectric constant of
the inhomogeneous system is obtained by using the
perturbation expansion of its one-particle Green's

function. It is found that the expression for the dielectric

'L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).


