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Analog-Computer Studies of Josephson Radiation Effects
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Equations characterizing a Josephson junction coupled to a resonant cavity driven by an rf voltage
have been programmed for an electronic analog computer. Modifications in the dc V-I characteristic of the
junction, for both constant-voltage and constant-current load lines, as well as the power spectrum in the
cavity, were observed as a function of the parameters: resonance frequency and Q of the cavity, frequency
and amplitude of the applied rf voltage, and strength of coupling between junction and cavity. Many of the
nonlinear, parametric eGects observed can also be understood analytically on the basis of the approximation
that the cavity electric field contains only a single frequency component.

I. INTRODUCTION

r lHE ac Josephson effect, ' ' i.e., the existence of..alternating currents between two superconductors
separated by a barrier when a dc voltage is maintained
between them, has been conhrmed in a variety of ways.
Experiments have been carried out in which radiation
from these alternating currents has been directly
observed, ~" in which these currents have been self-
detected via their interaction with resonant modes of
tunnel junctions, "—"and in which these currents have
been detected via their interaction with externally
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applied radiation. "" In each case the observations
have emphasized the strongly nonlinear nature of the
ac Josephson effect, and confirmed the presence of
current at many discrete frequencies simultaneously.
More recently, experiments have demonstrated har-
monic generation from Josephson junctionsss and non-
linear interactions of a paramagnetic type associated
with the ac Josephson effect."ss

The wealth of nonlinear phenomena, involving as
they do the many physical parameters pertaining to
the Josephson effect itself, the coupling to radiation
fields, whether self-generated or applied, and the geo-
metric confJ.guration of the junction, whether self-
resonant or not, makes analysis a formidable task.
Although the problem can be precisely formulated, "
solutions have been obtained only for certain cases
and then only with somewhat restrictive approxima-
tions. """" It is possible, however, as shown in
Sec. II, to reduce the problem to a form that is readily
handled on an analog computer, while retaining much
of the physics and, in particular, the nonlinear coupling
between the junction and the radiation fields. Further-
more, analog simulation of the pertinent equations
permits nearly exact solutions to be displayed and
studied with comparative ease for a wide range of
parameters.

An advantage of the analog computer is that the
relative importance of the many parameters involved
is readily revealed for cases of physical interest. One
consequence has been the discovery of an appropriate
simplifying approximation which has made possible an
extensive analytical treatment. The work as a whole
has led to quantitative predictions, which are subject
to experimental test, about the characteristics of a
junction and its radiation.
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In this paper, we report on our analog computations
as well as the associated analytical work. The following
Sec. II reviews the nonlinear equations describing the
junction and discusses the physical approximations
made in order to reduce these equations to a form suit-
able for the analog computer. Programming techniques
are detailed in Sec. III, and limitations on the accuracy
of the solution are discussed. The solutions themselves
are presented in Sec. IV, and significant features are
pointed out and discussed. Section V shows how a class
of solutions generated by the computer may also be
obtained by an analytical treatment based on an
appropriate approximation. A summary of the paper
forms the final Sec. VI.

II. REVIEW OF EQUATIONS FOR JUNCTION
RADIATlON

The natural mathematical starting point consists
of Maxwell's equations for the electromagnetic fields
generated by current sources, together with the con-
stitutive relations for the current as a functional of
the fields. Because the ac magnetic fields are unimpor-
tant for the constitutive relations, " we write the ac
portion of Maxwell's equations in the form

(
1 8''t 47r 8

V2 — ~E(», t) =——Q(», t). (I)
c28t2j c~ Bt

The static magnetic field staisfies

V'H(») =(4 /c) «&3(» f) ) (2)

where the ( ), denotes time average, and gaussian
units are used, as will be true throughout this paper.

Since these equations are to be solved subject to
boundary conditions, the geometrical configurations
we are considering must be specified. Ke regard the
tunneling current as Rowing between two supercon-
ductors with plane parallel surfaces, i.e., separated by
an insulator of uniform thickness. Each of the super-
conductors we take to be both thick and wide com-
pared to a superconducting penetration depth, and
to avoid unnecessary complication we take the two
superconductors to be identical in composition. V(e
also consider the junction (the two superconductors
and their contact area) to be placed in a metallic
enclosure.

The constitutive relations separate naturally into
two parts, those for the metallic regions and those
for the insulating barrier region. In the metals it suffices
to assume a simple classical skin effect for the ac compo-
nent and London's equation for the dc component,

(47r/c') (8/Bt) Q (», t) = (I/A') E(», t), (3)

(4 /c) & ~ (3(», &) ) = —(I/&')&(»), (4)
with

A '=X '+2ib ',

where P is the penetration depth, and b is the classical
skin depth. In the insulating region, the tunneling

current is given by

(», t) =nIm dt'fK&(t —t') exp(i/2)

OO

4(», i) =— d(n»)n c 'A(»)+
fi

dh'E(», f) .

Here A(r) is the vector potential of the static magnetic
field.

The solution of Maxwell's equations driven by the
sources is a standard, although usually quite involved,
mathematical problem The complete solutions must
be obtained for the insulator, for the surrounding
enclosure, and for the metals separately; then these
solutions must be matched across the surfaces of dis-
continuity. This program has been carried out for
several rather restricted special cases, but never for
the most general situation. Nonetheless, some simple
qualitative statements can be made. First, the com-
bined volume of insulator, enclosure, and metals has a
set of approximate normal modes, approximate in the
sense that they are weakly damped by the metallic
losses. The character of these modes, i.e., the distri-
bution of helds in them, depends on the dimensions
of the three regions relative to each other and to the
wavelength of the radiation involved. The extent to
which each of these modes is excited by the tunneling
current depends on the spatial overlap of the field
and current distributions. The current distribution,
in turn, is affected by the relative strengths of the
various excited normal-mode contributions to the
voltage. The current distribution is also modified by
the net static magnetic field.

Furthermore, the nonlinearity of the constitutive
relation introduces coupling between all normal modes.
Although it is likely (from study of mode competition
in lasers) that only a single mode will be dominantly
excited at any one moment, it is possible for one mode
to excite another with substantial transfer of energy
between the two, depending on the strength of the
nonlinearity. An added complication is the static mag-
netic field, which is also coupled to the ac modes and
whose external variation can "steer" the current from
one to another mode.

The full problem is thus both intricately rich in

physical variety and well beyond the capacity of an
analog computer. Since both partial differential equa-
tions and integro-differential equations are extremely

X [4 (», f.) —4 (», i') j+iEg(t —t')

&( exp(i/2) [4 (r, t)+4'(», t')]j, (6)

where n is the unit normal to the barrier plane. The
kernels EJ and E~ are detailed in Ref. 23. The phase
4 (r, f) is related to the voltage difference between the
two superconductors and to the static magnetic Rux
enclosed by the junction area,
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difBcult to solve on an analog computer, we are forced
to make alterations in both the spatial degrees of free-
dom and the integral kernels of Eq. (6).

Turning first to the kernels, the fact that they are
retarded reflects the voltage dependence of the current
amplitudes. Such a dependence is of course well known
for single-particle tunneling (the term containing Er),
where the current rises sharply toward the normal
resistive characteristic as the voltage is increased
past 2h. For pair tunneling (the term containing Es)
the dependence was not mentioned by Josephson'
and is even now not widely appreciated. These retar-
dation, or voltage-dependent, effects only appear for
voltages and frequencies in the neighborhood of 2A ""
if attention is restricted to frequencies low compared
to 2A, we may make the approximations

so that
E,(t t') =K,—(t t')=j,b—(t —t'), —

~~(t) —jz cosC (t) .

(8)

(9)

The tunneling current amplitude is given by

jz =rr6/2eR, (10)

(P =Qd0t Kti08) (12)

where Qd, is proportional to the applied dc voltage, Qd, =
2eVe,/5, and sd, is proportional to the applied dc mag-
netic field. The Maxwell's equations can then be solved
exactly in terms of the current sources; the boundary
conditions can be matched at the insulator-supercon-
ductor interfaces; and the electric field can be eliminated
in favor of the ac voltage across the junction. The

2' E. Riedel, Z. Naturforsch. 19a, 1634 (1964)."B.D. Josephson, in Quantum Fluids, edited by D. F. Brewer
(North-Holland PubIishing Company, Amsterdam, 1966), p. 174.' R. A. I'errell and R. E, Prange, Phys. Rev. I etters 10, 479
(1963).

r9 J. M. Rowell, Phys. Rev. Letters 11, 200 (1963).

where R is the normal resistivity of the junction. A
related but more convenient quantity is the "Josephson
plasma frequency" or+, defined as"

2cj z/AC = 7rh/A—RC,

where C is the junction capacitance per unit area.
The spatial degrees of freedom in Eqs. (3) and (4)

must also be altered. Nevertheless, the time-dependent
problem that remains intact still contains most of the
interesting physics of the Josephson effect. The alter-
ations we make are motivated from the results pre-
viously obtained" in the particular case of a wide
junction, for which traveling-wave rather than stand-
ing-wave boundary conditions could be used. Along
with the traveling-wave hypothesis, it was also assumed
there that the junction was in a static magnetic 6eld
which was everywhere uniform, meaning that the
self-field. limiting of a wide junction' was ignored.
With these assumptions, the partial differential equa-
tions reduce to ordinary differential equations in the
phase variable

3'(q) = Zt exp(zt y)g„, (13)

e(p) p —j=up ex'(zl, p) z„s„,
R„=(4s./p') (2e/SC) [Qe '—(cse.)s/2A„C)-' (15)

Using Eq. (5) in the limit of penetration depth much
shorter than skin depth, X((b, we obtain

Res„-i=a-~,

ImA '~X/8 ' =2s.kpQg, o/c'

(16)

(17)

where 0 is the normal-metal dc conductivity.
Although these formulas are developed for traveling

waves, the case of standing waves in narrower junc-
tions is more relevant for most experimental situtations.
However, standing waves introduce an intrinsic spatial
dependence which we are here trying to avoid. We
thus simulate the presence of a single standing wave

by making the replacement

(pc~a, ) s/2XC—&a&,
s

in Eqs. (15) and (16), where ru, is now a phenomeno-
logical resonance frequency, and the corresponding
replacement of the damping term,

i (trc~s, )9/25„'C~io),'(X/6„)'=itrQs, y (19.)

We introduce the frequency-independent loss factor

y—=(o,(X/8, ) ',

where b, represents the skin depth at frequency co,.
Thus

R„-+47r(2e/le C) $(kg, ) '—&u
'—ipQg, yj-' (20)

We now ignore static magnetic fields altogether.
Furthermore, we assume that the effect of a surrounding
metallic enclosure can be approximated by altering
the values of &o, and p in Eq. (20), while leaving the
functional form invariant.

When these replacements are made, the resulting
Eqs. (9), (13), (14), and (20) become entirely equiv-
alent to the differential equation

(d' d ) d
i

—+y—+co.s iQ(t) =a&q' —cosC (t), (21)
&dt' dt ) dt

using deanition (11), together with

dC (t) /dt =Q(t) +Qs, . (22a)

With the added possibility of an alternating applied

results of this analysis are that the current density
can be expressed as

3=3(C'(V ) )
where C equals y plus the additional phase induced

by the self-coupling through the metal, and that the
Fourier transform of C(q) —

q is linearly related to
that of Q(q):
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voltage to simulate the effect of an applied rf field,

dC (t)/dt=Q(t)+Qa, +Q, i cos~, it. (22b)

Equations (21) and (22b) are the equations which
we have programmed for the analog computer. [The
phases of the current and the rf voltage have been
fixed by the arbitrary but simple choice of C (0) =0.
This means that the zero-voltage Josephson current
is a maximum.

These equations, however, represent the junction
in the so-called constant-voltage mode. That is, we
have assumed that the external dc voltage source
biasing the junction has a negligible series resistance.
In practice, however, the series resistance is much
larger than the resistance of the junction (unless an
especial effort is made), so that the external source
is actually a constant current source. In this case,
Eq. (22b) is modified to

dC(t)/dt=Q(t)+(Qz, ——,', ( cosC ))+Qpf cos(4l ft) (23)

while Eq. (21) remains the same. The factor iio is a
convenient choice for amplitude scaling. I'he inter-
pretation of Q~, is now that it is proportional to the
direct current Rowing through the junction, while
Qq, ——,', ( cosC )& is the resulting dc voltage. Equation
(23) also implies that a parallel shunt resistor exists
across the junction. This shunt simulates the single-
particle tunneling current actually present in the junc-
tion, and must be taken into account here in order to
prevent gross instability when the dc current is driven
in excess of the maximum Josephson value.

III. PROGRAMMING FOR ANALOG
COMPUTATION

Equations (21), (22b), and (23) were simulat, ed on
a commercial electronic analog computer (the Elec-
tronics Associates, Inc. , model PACE TR48). This
method of solution offers several advantages over the
more usual digital computer procedures. First, since
the nonlinearity involves only a simple trigonometric
function, it is easily patched on the analog. In addition,
the equations contain six adjustable parameters, all
of which have physical significance. Since a solution
is available on the analog within a fraction of a second
for fixed values of these parameters, and since the
parameters can be varied continuously and directly
merely by turning potentiometer dials, the solutions
can be quickly and conveniently mapped out in the
six-parameter space. A further advantage for rapidly
grasping the physical content of the solutions is that
any intermediate variable in the program can be exam-
ined in detail at any desired time. The penalty that is

paid for this convenience is a certain amount of inac-
curacy and a limited capacity for mathematical com-
plexity. For example, Eq. (6) far exceeds the capa-
bilities of an analog of this type. Yet the TR48 possesses
sufFicient capacity to handle most cases of interest.

Forty-eight operational amplifiers grouped so as to
provide Gve quarter-square multipliers and 16 inte-
grators provided us with a high degree of Rexibility.

In general, the method employed in our work was
to run the computer in the so-called "repetitive oper-
ation" (ro) mode. In this mode, after the computation
proceeds for a time selected by the operator, initial
conditions are automatically reset by machine control
circuits and the computation is repeated. The full
time-dependent solution, or, in fact, any variable
represented by an accessible voltage in the machine,
is displayed on an oscilloscope whose time sweep is
synchronized internally to the selected computation
time. When desired, a time-average value was obtained
by filtering procedures, which will be described shortly,
and the resulting solution was plotted on an X-Y
recorder as a function of an appropriate variable.

The computation time, or time of solution, must be
carefully adjusted to minimize solution error. On the
one hand, too short a time of solution will not allow
initial transients to die away sufficiently and thereby
introduce errors in the desired steady-state solution.
On the other hand, too long a time of solution also leads
to inaccuracies, since integrator error increases with
integrating time as a result of finite operational ampli-
fier gain. After. some experimentation a computation
time of 200 msec was selected for our problem on the
TR48 and virtuaBy all subsequent work used that
value. With this value the computation lasted for about
a thousand integrator time constants before resetting
and a good steady-state solution was obtained.

A minor inconvenience in plotting results on the
X-V recorder was occasioned by our choice of 200
msec for the computation time. Every time the machine
reset itself a strong transient was introduced. Despite
the 6ltering circuits through which the recorder was
connected to the computer, these reset transients were
suSciently strong and at a sufficiently slow rate to
cause the recorder pen to jump slightly. The resulting
"jitter" in the recorder traces (visible, e.g., in Fig. 6)
although annoying, was fortunately not severe. Thus
it was decided to tolerate it rather than introduce
further filtering to eliminate it, since additional fil-

tering wouM have meant spending a prohibitively
long time in plotting the data.

In addition to the choice of computation time,
solution accuracy is also affected by the choice of
scaling. The frequencies that appear in the physical
problem must be scaled down so as to fall within that
range where the operational amplifiers have an essen-
tially Rat frequency response. Care in frequency
scaling is especially important for the Josephson prob-
lem since the strong nonlinearity means that the solu-

tions are rich in harmonics. To minimize errors, the
scaled frequencies corresponding to harmonics that
have appreciable amplitude must also fall on the
nearly Rat portion of the amplifier frequency response.
Despite our best efforts some errors resulting from
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amplifier phase shift and from cross talk due to para-
sitic capacitance were unavoidable. In addition to
frequency scaling, amplitude scaling is of importance.
The dynamic range of the transistor amplifier used in
the TR48 is, nominally, +10 V and so care was taken
that at no instant did any voltage in the problem
exceed this range. The machine is equipped with
warning lights that indicate an overload condition
and help the operator prevent errors from poor ampli-
tude scaling.

In general, accuracy of the order of I0% was obtained
in those cases where the analog solution could be
compared with an analytical solution. (see Sec. IV,
case A). When a case was attempted where accuracy
of at least 20% could not be attained because of a
combination of the factors discussed above, no solution
was recorded. Kith some experience in operating the
TR48, and taking full advantage of the ability to
observe any machine voltage as a function of time on
the oscilloscope, the operator could readily identify
such cases.

The patching diagram for the computation is shown
in Fig. I, using standard symbol conventions. (See

CONSTANT VOLTAGE

OUTPUT OF
Box D

CONSTANT CURRENT

FIG, 2. Definition of symbol used in Fig. 1, indicating diGerence
in patching between constant-voltage and constant-current dc
circuits.

for example, Korn and Korn. ") The diagram is divided

by dashed lines into blocks representing the analogs
of various physical components. Block A corresponds
to the electromagnetic resonator; block B represents
the Josephson junction; block C is the analog of the
external circuitry, supplying the dc voltage (or current)
and the rf voltage modulation. The least obvious
parts of the diagram are blocks D and E, which act as
narrow-band filters by making use of a particular
design feature of the analog machine. While the com-
puter is running in the ro mode, a small portion of the
machine can simultaneously be held in continuous,
nonrepetitive operation at a rate 5000 times slower.
We have used this latter portion (indicated in the
diagram by the notation N.O.) as a dc fIlter, with
output traced directly on an X-F recorder versus some
slowly and manually varied parameter. Block D pro-
duces (cosC)„proportional to the dc component of
the tunneling current, while block E produces the
spectral power density at variable frequency cu and
with frequency passband n&(co. That is, if the input
to block E has the Fourier spectral representation

I 8
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cosC (/) = (2') ' da& f(ru) exp(i~(),

then the output from the block is approximately pro-
portional to

~
f(~) ~', provided that n is chosen much

less than any other characteristic frequency in the
equations.

Figure 1 has been drawn to represent both the
constant voltage and constant current situations, the
ambiguity being in the definition of the small oval in
box C. The oval is shown in Fig. 2 to be merely a
straight connection for the constant-voltage circuit,
whereas in the constant-current case the more com-
plicated circuit containing an added operational
amplifier is necessary to represent Eq. (23) .

Although Pig. 1 represents the patching of the prob-
lem constituted by Eqs. (2I), (22b), and (23) in the
form most often used, it is not the only possible patching
nor necessarily the simplest. We make no attempt
here to explain the patching in detail, and so we have
even omitted indicating in Fig. 1 which of the quan-

FrG. 1. Patching diagram for analog simulation of Eqs. (21),
(22b), and (23).

~ G. A. Korn and T. M. Korn, E/ectronic Analog and Hybr&
Computers (McGraw-Hill Book Company, Inc., New York, 1964) .
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plot not only is the standard one experimentally, but
also indicates clearly the amount of power supplied
by the dc battery and converted into ac, available
either in the rf driving field or in the electromagnetic
resonator.

A. Applied rf Voltage without Resonant Cavity

J SL—- The 6rst and simplest situation we consider is the
junction driven by an rf voltage but without any feed-
back via the resonant cavity (&uz=0). It is well known
that this produces simple frequency modulation of the
Josephson current"; the dc characteristic should ana, -

lytically be a sum of delta functions with Bessel-func-
tions coe%cients:

I

0.1

I

0.2
I I

0.3 0.4
VOLTAGE

I

0.5 0.6 0.7
O, f'II

(cos4), =g ( —1)"J —~8(Qq, rue, i—)/8(0).
n=O ~r f)

(24)

tities in Eqs. (21), (22b), and (23) are simulated by
the various ampli6er inputs. Any attempt to do so
would needlessly lengthen this paper and elevate our
particular patching to a position of uniqueness it
does not merit.

IV. RESULTS OF ANALOG COMPUTATION

The equations in which we are interested contain
six independent parameters, posing the problem of
how best to present the solution as a function of this
six-parameter family. We have here selected cases of
most physical interest, representative of typical experi-
mental conditions. We usually plot a dc characteristic
for the junction; that is, the dc current drawn from the
external circuit (relative to the maximum Josephson
current jz) versus the dc bias voltage. This type of

I

0 2
I I I I I I I

6 8 10 12 14 16 18 20
Rp AMPLITUDE, ARP/~RP

FiG. 4, Heights of the peaks in Fig. 3 as a function of normalized
rf amplitude Q,f/Ql f.

FIG, 3. Trace of the dc characteristic of junction, with rf voltage
drive (co,f=0.2) but no resonant cavity (co+=0). Voltage units
are arbitrary.

Figure 3 shows the dc characteristic produced by the

Z

U
Z

Z0

Clz
U
0
W

0
I

2 4 6 8 10 12 14 16 18 20
RP AMPLITUDE, nRp/bJ RP

FIG. 5. Spectral power (arbitrary units) of the Josephson
current, at the second harmonic of the rf frequency, when biased
to a peak in the dc characteristic.

analog, for rf frequency co, f =0.2 and rf amplitude
Q, f =0.25. The curve serves primarily to illustrate the
degree of accuracy that can be expected from the analog
machine. Although the spikes predicted from Eq. (24)
do appear at very nearly the correct position, corre-
sponding to n=0, 1, 2, and 3, the finite frequency
bandwidth of the operational ampli6ers introduces
the added oscillations seen adjacent to the main peaks.
The Rat portions of the curve show some of the "jitter"
mentioned early in the previous section.

The amplitude of the main peaks are also nearly
correct. Figure 4 shows the height of several of these
peaks as a function of the normalized rf amplitude
Q f/(o, i. These curves conform to within 10% of the
functions ( —1)"J'„(Q,i/~, i) expected from Eq. (24).
(The curves were obtained by driving the X axis of
the X-F recorder with a voltage proportional to Q, f,
at fixed Qz, .) The accuracy is limited by the fact that
the positions of the peaks drift slightly with respect
to Q~„ashift which is difficult to compensate for.

In addition to the dc characteristic, the spectral
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h T e hson current at the second harmonicpower in t e Tosep
of the rf frequency was also obtaineu. Figure
the output oof the spectral power analyzer, ox E in
Fi . 1 when the dc bias is at an integral multip e o
the rf frequency. The analyzer is set
n=au/100. The output is in arbitrary units, but is
expected to be proportional to the function

~2-'(fl. i/~. i) +~~-'(fl. i/~. i) +(—1)"+'2~2=(fl.i/~. i)

X J2~ (Q, i/a)„i) cos2((po —N8).

Th
' 't' l phase of the Josephson current, go, and thec lni ia

m at theph. asc of thc applied rf) 8, arc sct in our problem a
values s/2 and 0, respectively; but in an experiment
(po and A —ne would adjust as required by any applied
magnetic e, y6 ld b the current driven through the

ald b Maxwe11's equations. The actua
accuracy is only about 15-20% and there is su s an-

'
il reater distortion at low output levels. Thus

the spectral analyzer circuit is satisfactory in a q
itative way, u is no, b t not good for quantitative detail.

B. Resonant Cavity without Applied rf Voltage

With the capabilities and limitations of the analog
h' s elled out by comparison in the above
t' with solutions known analytica y, we

to a more interesting situation where analysis has
not previously been available. We consider t e junc-

f 1

0.2 0.3
VQLTAGE

l

0.4
1

0.5

Fr . 6. The dc characteristic of the junction coupled to aro. . e
resonant electromagnetic cavity qco,= . , co„y-
cou ling strengths cog, without applied rf voltage yQ, f= . e

~ 0 ~
b%t %t %th do l d f

current,curve. The right-hand asymptote is very nearly the zero of curren,
The voltage units are also arbitrary.

MJ = 0, 15

tion coup e ol d t the resonant electromagnetic cavity
=0 and(cog&0) without any applied rf voltage (Q,i=0), an

lot thc dc characteristic for various coupling strengths
cog. This appears in Fig. 6, where the current axis is in
arbitrary units with zero displaced for each curve.
For clarity in the figure, the low-voltage regions are
not shown. The cavity resonant frequency cv, has been

such that the cavity "Q" is Q=co,/y=7. 5. Althoug
desirable to sharpen detail, significantly higher Q va ues
tend to introduce ampli6er overload and could not be
used. It is important to recognize that the dc current
is nonvanishin (and hence nontrivial) only because theg
cavity damping is diferent from zero. To repeat a point
made earlier, the dc characteristic is a measure of the

0the electromagnetic radiation, and hence is a measure
of the power which can be radiated by the junction.

Several features in Fig. 6 are worth attention. First,
a fundamental absorption peak occurs centered at
Oq, ——e,. Contrary to some earlier statements in the
l " th center of the peak does not shift initerature, e

e. . cu ~0.03),frequency with changing cog. At low s)g (e.g.) s)g~ .
this is the only structure in the curve, and the peak is
reminiscent of a Lorentzian line. As coJ is increased
(up to co~~0.13), the peak grows rapidly in height,
b adens somewhat and distorts from the I orentzianroa ens

F r crshape by becoming cusphke near the center. Fur
increases in cog, up 0 ~ .up to 0.17 produce a diminishing
increase in peak height and width, but a distinct
sharpening of the central cusp.

3' E.E.H. Shin and 3.B.Schwartz, Phys. Rev. 152, 207 (1966}.

VOLTAGE

0Fro. 7. The dc characteristic as in Fig. 6, but for substantially
larger values o cog. of 8 th current and voltage scales are displaced
for each curve.
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Frc. 8. The dc character-
istic of the junction, both
coupled to a resonant elec-
tromagnetic cavity (or.=
0.1, or,/y= 10.0, or g =0.063)
and driven by an rf voltage
(c0,f 0 f 0.35) . Voltage
units are arbitrary.
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Another feature is the presence of a smaller absorp-
tion peak at the first subharmonic of the cavity fre-
quency, 0&,——u, /2, which grows continuously with
increasing co& and displays roughly the same changes
in shape as the fundamental peak. At co~ ——0.17, the
next subharmonic, Q,~, ——~./3, is also clearly observ-
able.

Finally, and in some respects most strikingly, an
absorption peak appears at the second harmonic, Qd, =
2~,. However, this peak does not occur until a finite
threshold in a&~ is reached (just under 0.13), whereupon
it grows very rapidly in height and width with only
small further increases in co~. This second harmonic
peak is very close in shape to a straight-sided triangle
and, as is seen most clearly in the curve coJ =0.14,
joins the background at a sharp corner rather than
with a long sloping tail, as does the fundamental peak. .

The dc characteristic for substantially larger co&

is shown in Fig. 7. Here, for clarity, both the current
and voltage scales are displaced for each curve, because
the low-voltage region is now drawn in. Drastic changes
in the characteristic take place as co~ is increased from
0.15 to 0.40. The few well-defined absorption peaks
present for co~=0.15 decrease in height and broaden
substantially. Also, they are joined by many other
peaks, such as at f4.——3a&,/2 and at Qq. =ra,/e for quite
a few integers rl,. As the peaks overlap each other for

large coJ, the characteristic smooths out on a broad
scale, but shows a very complicated fine structure.
The most important feature is that the current shoots
up as the voltage is increased slightly from zero, and
then very gradually decreases with further increase of
voltage. This behavior is reminiscent of the large
"excess currents" observed experimentally in point-
contact junctions, where the coupling of current to
radiation is believed to be strong. ""The eRect is
due physically to the large number of subharmonics
of co, in the ac-current frequency spectrum which can
radiate into the cavity because of the strong nonline-
arity.

Steps in current resulting from the coupling of a
Josephson junction to modes of an external resonant
cavity have been reported by Dayem and Crimes';
similar steps associated with self-resonances of a junc-
tion have been reported by a number of authors. " "
In all these cases the observations correspond only to
the fundamental peak in the spectrum as shown in
Fig. 6; the remaining lines await observation.

Study of the analog solution showed that, on each
of the lines shown in Figs. 6 and 7, the cavity voltage
wave form contained essentially only a single frequency
equal to the cavity resonant frequency. This obser-

"J. E. Zimmerman and A. H. Silver, Phys. Rev. 141, 36'I
(1966).
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vation formed the basis for the analytical work reported
in Sec. V.

C. Resonant Cavity together with Ayylied rf Voltage

Figure 8 shows the dc characteristic for a junction,
both coupled to a resonant electromagnetic cavity
and driven by an applied rf voltage. The cavity is
choscll wltll a) =0.1 and Q=M, /+=10.0, wllllc tile 1'f

voltage has frequency or, f
——0.35 and amphtude Q,g=

0.35. The coupling of junction to cavity is ~g=0.063.
This particular set of parameters is selected so as to
give clear, mell-developed nonlinear eRects in both the
radiative self-coupling and the rf frequency-modulation
situations separately, and to give a good balance of
the two eRects relative to each other. The dc character-
istic contains a wealth of structure, whose positions
we have identified with sums and di6'erences of mul-
tiples and submultiples of the cavity and rf frequen-
cies. (One or two of the weakest lines, which are vir-
tually imperceptible in the 6gur'e, appear with more
definition in the original recorder tracing. )

Such a, dc characteristic is closely related to the
recent experiment of Silver and Zimmerman, "where
a point contact junction was used to detect the Co"
nuclear resonance in a, nearby sample. In their experi-
ment the junction was driven weakly by an rf voltage
source, and the frequency component of the ac current
Rt Mg f wRs measur ed~ thus yleldlng R cur've approxi-
mating the 6rst derivative of the dc characteristic.

The lines in Fig. 8 fall into several series. The lines
labeled ~,f and 2~, ~ arises solely from the presence of
the applied rf and are similar to those shown in Fig. 3.
The lines labeled ~,/2, &a, and 2ro, arise solely from the
coupling of the junction to the resonant cavity and
are similar to those shown in Fig, 6. The remaining
lines result from the parametric interaction of the

Q ~
I

0
. CURRENT

Frc. 9. The characteristics of the junction with constant-current
external circuit, with and without applied rf voltage.
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FiG. 10. The dc characteristic and spectral power of voltage at
twice the applied. rf frequency, of the junction with constant-
current external circuit and with applied rf voltage.

applied rf, the resonant cavity, and the Josephson ac
determined by the bias voltage. The lines labeled
~rI+g~c& &rI+~c& &rI+2~c&2&rI+~c& and 2~rI+2~c
absorptive in character. For these lines the cavity
serves as idler, the Josephson ac as pump, and the
applied rf as signal in the usual parametric ampli6er
terminology. The lines labeled ~,f—2o)„a),f—(u„a),g—
—',~„2e,~ —2'„and 2', f—cv, are emissive in character.
The cavity is again the idler but now the applied rf
is the pump and the Josephson ac is the amplified
signal. Therefore, since less current is needed from the
dc bias circuitry to maintain the junction voltage,
the current falls which, in the analog, corresponds to
a negative current. Finally there remain the lines
involving half-integral values of the rf. They are dis-
persive in character and although they represent one
of the more striking eRects of the nonlinear interaction
between junction, cavity, and rf, they are not readily
understood in terms of parametric ampli6cation since
the cavity is not driven on resonance.

The positions and shapes of lines such as are shown
in Fig. 8 are taken up in the analytical work of Sec. V,
under the approximation mentioned at the end of
Sec. IVB that the cavity contains essentially a single
frequency.

D. Constant-Current de Circuit

The results presented so far have all been with a
constant-voltage circuit. Results for the dc character-
istic with a constant-current circuit are shown in Figs.
9 and 10. No resonant-cavity coupling is introduced
(coq ——0) . In Fig. 9 the lowest curve is the dc character-
istic in the absence of applied rf voltage, showing a
zero-voltage Josephson current and a switching tran-
sient to a normal shunt resistance. The curve above
I't (with slllftcd ol'lglll), ls sllIjllar but wltll a substag-
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FIG. 11. The dc component of current versus F, for various tan8; m= 1.

tia»pplied rf voltage. Steplike breaks in the character-
istic at dc voltage multiples of the rf frequency are
clearly observed. The curve was traced by running the
current from zero up to its maximum value and then
down to zero again as indicated by the hysteresis in
the step regions. The inset at the top of Fig. 9 shows
one of the steps on an expanded scale. Two curves
differing only in computation time are shown. The
differences are pronounced and serve to illustrate the
difhculty in working in the constant-current mode.
How long the solution remains on a constant-voltage
step and how soon the solution falls onto such a step
depends on a number of factors: how near the current
is to the maximum for the step, how slowly the current
is swept, and how severe are machine transients and
fluctuations. The additional steplike structure visible
in the right-hand curve is a consequence of frequency
scaling. As in a real junction, the frequency of the
Josephson ac in the analog is proportional to the dc
voltage; however, because of frequency scaling, the
Josephson frequency is in the range of tens of cycles.
The beating between the josephson ac and the applied
rf in the analog produces frequencies which are near to,
but not equal to, zero whenever the voltage is near to,
but not on, a constant-voltage step. Whenever such
a difference frequency is equal to the machine repetition
rate or to a multiple of that rate, the resulting syn-
ch«nism leads to a tendency for the solution to lock-

in over a range of current. This manifests itself via the
additional steps in the V-I curve. Such steplike regions
are also present in the left-hand curve of the inset
but are not readily visible because the slower repetition
rate causes them to be much closer together in voltage
and thereby to be obscured by the ever-present solution
noise and recorder pen "jitter."

Except for these steplike regions, which are a con-
comitant of unavoidable frequency scaling in the
problem, the instability problems encountered on the
analog computer in the constant-current mode are
also encountered in experiments employing essentially
constant-current circuitry. Thus our results serve to
emphasize the care with which one must interpret such
experiments, particularly when making use of data on
the maximum amplitude of Josephson current, whether
at zero voltage or in a constant-voltage step. The
limited usefulness of the analog technique in the con-
stant-current mode discouraged us from investigating
in that mode more interesting cases, such as those
involving a cavity.

One additional case, however, was studied in the
constant-current mode and the results are presented in
Fig. 10. The dc V-I characteristic is plotted in the
presence of some rf power at co, ~ =0.15 and, on the same
current scale, the corresponding second harmonic
power in voltage, i.e., with the analyzer set at a fre-

quency of 0,3. In each case the current was swept only
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s)=—Qg./m m = integer. (26)

The approximation is to consider only the single

in one direction, from zero to some maximum positive
value. These results show the extremely complex har-
monic generation patterns encountered with Josephson
junctions and can be compared with recent experi-
ments on this property. " Note in the figure that in
addition to the harmonic power associated with the
Josephson effect, the transient associated with switch-
ing o6 of a step also generates harmonics.

V. APPROXIMATE ANALYTICAL TREATMENT

Use of the analog computer for studying Eqs. (21)
and (22b) has also enabled us to realize that there
exists for them a valid and useful physical approxi-
mation. In examining during the simulation the ac
voltage Q(i) in the resonant cavity, we found that
whenever a signi6cant amount of power was being
drawn from the dc battery and into the cavity, the
predominant frequency component of Q(t) was the
cavity resonant frequency, even though the Josephson
frequency 0&, had a different value. This suggested
to us the approximation that only a single frequency
component close to cv, be allowed for the Q(t) appearing
in the constitutive relation. The approximation then
reduces the nonlinear diGerential equation to an im-
plicit algebraic equation which can be treated in detail.

More precisely, we return to the di6erential equation

d (—+y—+(o,' Q(t) =(og'—cosI Qg.t+ dh'Q(t') I, (25)dt' df di

and we assume that the dc voltage bias is near to an
integer multiple of or. '.

frequency component of Q(t) at. a&,

(27)

d(~t) exp[ —i(a&t+q&) ]cos(nuot+Z cos(rut+a) )

=i F cos8 exp( i8—) ( exp[ im—(y+x/2) ]J q(Z)

+ exp[i~(v+~/2) ]~~~(Z) } (2g)

Again, the J's axe Bessel functions. %e have also
introduced the definition

MJ'/(~, ' —&s'+i rru) —= iF—cos8 exp ( i8)—, (29)

where I' and 0 are real. It is convenient to assume a
narrow resonance, so as to make the replacement
ya&~y~, in Eq. (29) Then inverting the relation,

F =ay'/y(u. ,

or alternatively,

tan8 = (s)' —(o,s) /ya&„ (3o)

(o/(o, =[1+(y/(o, ) tan8]'~'. (31)

Thus F is a dimensionless measure of the strength of
the coupling of the current to the resonance, while
tan8 is a measure of the departure of the dc bias from
a multiple of the resonance frequency. The phase shift
y can be eliminated from Eq. (28) to yield the im-
plicit algebraic equation for Z,

where only the amplitude Z and phase shift y are to
be determined. Equation (25) then reduces to

Z= —2iF cos8 exp( —i8) (2m) '

Z/F=
I [J r(Z)]' —[~ r(Z)]'I ([~--~(Z) —~ ~(Z)]'+[~ -~(Z)+~~i(Z)]'«n'8l "' (32)

=Z'/2mF. (33)

We have solved Eq. (32) graphically, by plotting
the left- and right-hand sides of the equation as func-
tions of Z and reading oB the points of intersection.
This has been carried out for the three values vs=1, 2,
and 3, assuming a resonator Q=7.5 to conform to our
analog work. The results for the dc current are shown
in Figs. 11—15. Figures ii, 13, and 15 show the dc
current as a function of coupling strength I' for various
values of tan8, while Figs. 12 and 14 show the current
as a function of (a&/~, ) —1 for various F, the latter

Furthermore, if Eq. (28) is satisfied, then the dc
component of the Josephson current can be rewritten
in the very simple form

2g

g(t) ),/j~=(2m) ' d(cut) cos[nuA+Zcos(cot+p)]
0

form of plot being closest to the analog-generated dc
characteristics presented in Sec. IVB.

The case of m=1 has already been analyzed in Ref.
23 and in fact Fig. 11 is taken directly from that paper.
(With the exception that a factor-of-2 error in the
ordinate has been corrected here. ) The rearrangement
of the results into the "line-shape" plot of Fig. 12 has
not been carried out before, however. The fact that the
line shapes agree qualitatively and semiquantitatively
(discrepancies are of order 10-15%) indicate that our
approximation (27) is a satisfactory one.

Figures 13 and 14 give the same plots for nz=2.
Here there is no dc current unless F is greater than a
finite value and the dc current rises steeply for F in-
creased slightly above threshold, two features also
found in the analog solutions. The line shapes are
again similar to those seen in the analog solutions.

Figure 15 shows the current versus F plot for m=3.
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the dc bias voltage derivative of the dc component, a
result already understood by those authors.

VI. SUMMARY

We have demonstrated that equations character-
izing a Josephson junction coupled to a resonant cavity
and driven by an applied rf field are amenable to so-
lution on an analog computer. The computer results
have been contrasted with those of pertinent experi-
ments and have indicated where further experimen-
tation is desirable. The results have demonstrated a
number of the nonlinear and parametric effects possible
in the Josephson effect. With the approximation that

only the resonance frequency can assume appreciable
amplitude in the cavity —an approximation shown to
be suitable by the analog work —analytical expressions
have been derived for line shapes in a number of cases
of interest. Finally we should note that the cases
calculated here by no means exhaust those to which
the analog technique can be applied.
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Flux-Flow Resistivity in a Superconducting Disk
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The Qux-Qow resistivity of a type-II superconductor in the mixed state was studied by passing a sym-
metric radial current through a superconducting disk. The experiment verified that current-induced Qux
Qow does not require a gradient in the density of Qux lines in the direction of flux motion.

r 1HZ motion of quantized magnetic fiux lines (vor-.. tices) and associated flux-fiow resistivity in type-II
superconductors has been studied in detail during the
past few years. In most experiments, current was passed
down the length of a thin superconducting strip in a
magnetic GeM applied perpendicular to its surface. '
Current-induced magnetic GeMs gave rise to a gradient
in the density of Qux lines in the direction of Qux motion.
Since there was some confusion as to the role that this
gradient plays in Qux Qow, ' we looked for Qux-Qow

resistivity in a geometry in which there are no Qux-line

gradients in the direction of Qux motion. This was
accomplished by passing a symmetric radial current
through a superconducting disk in a homogeneous mag-
netic field. When sufficient current was passed through
the disk. a radial potential gradient was observed. As-

' See, for example: Y. B. Kim, C. F. Hempstead, and A. R.
Strnad, Phys. Rev. 139A, 1163 (1965);J.Volger, F.A. Staas, and
A. G. van Vijfeijken, Phys. Letters 9, 303 (1964); W. F. Druy-
vesteyn and J. Volger, Philips Res. Repts. 19, 359 (1964); P. H.
Borcherds, C. E. Gough, W. F. Vinen, and A. C. Warren, Phil.
Mag. 10, 349 (1964). For experimental verification of the Qux Qow
hypothesis, see: I. Giaever, Phys. Rev. Letters 15, 825 (1965); P.
R. Solomon, ibid. 16, 50 (1966).

2 The force on a vortex in a current carrying strip derived by
Y. B. Kim et al. (Ref. 1) is directly proportional to the Qux-line
gradient. M. Tinkham /Phys. Rev. Letters 13, 804 (1964)],
however, pointed out that for a Qat strip the driving force comes
from the tension in the bent field lines and not from a Qux-line
gradient. A recent calculation of the force on a vortex by J. E.
Evetts and A. M. Campbell fin ProceeCzzzgs of the Terzth Irzterrza
tiozzat Confererzce ozz Low Teznperatzcre Physics, Mos-cow, 1966(Proi
zvodstrenno-Izdatal'skii Kombinat VINITI, Moscow, USSR,
1967)g is in agreement with Tinkham's interpretation.

suming that the potential gradient arises from Qux
motion, the experiment proves that a gradient in the
density of Qux lines in the direction of motion is not
required for Qux Qow.

The experimental arrangement is shown in Fig. 1..
A superconducting disk had current leads attached at
the center and at the perimeter so that current Qowed
radially. A perpendicular magnetic field was applied.
The Geld lines shown in Fig. 1 represent the sum of the
externally applied Geld and the Geld produced by the
current in the sample. If Qux lines Qow in this geometry,
symmetry requires that they describe circles concen-
tric with the disk since steady-state motion could not
be sustained if Qux lines move radially. Leads were
attached for measuring the potential gradient which
should be observable along the radius.

Figure 2 shows the arrangement used to ensure
cylindrical symmetry of the sample and leads. A current
lead is connected to the center of a heavy copper
disc which is soldered to the end of a heavy copper
pipe about 6 in. long. The other end of the pipe is attached
to the perimeter of the disk. An indium gasket squashed
between the disk and the copper pipe ensures good
electrical contact. The other current lead, which passes
through a hole drilled in the copper disk, is screw
clamped to the center of the sample. If the disk and
copper pipe are homogeneous, this geometry ensures a
symmetric current in the superconductor and hence
circular Qux orbits. If there are inhomogeneities in
the disk, the Qux orbits would still remain roughly


