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A nonlinear mechanism for exciting electron-phonon density fluctuation by means of a long-wavelength
radiation field is discussed as a realistic model for doped semidonductors. Calculation of the threshold field
for this phenomenon are presented, for optical as well as acoustical phonons in the infrared- and microwave-

frequency regions.

I. INTRODUCTION

ITH the development of high-intensity radiation
sources in the microwave, infrared, and optical
spectrum the study of the nonlinear interaction of
electromagnetic radiation with matter stimulates con-
siderable theoretical and experimental interest.! One
area of interest is the nonlinear coupling of radiation
with an electron gas. Here study of light-by-light
scattering and optical mixing has been performed, as-
suming, however, that the electron gas can be treated
as a linear system having a linearly excited mode—the
plasma.2 However, it was soon realized that for realistic
plasmas or semiconductors, for example, the “linear
approximation” assumption can not always be justified.
For systems of charged particles of two species, we have
two linear modes which could be coupled and excited
nonlinearly via the electromagnetic field.>
In this paper we consider a system of interacting
electrons and phonons and study, within the frame-
work of the random-phase approximation, the excita-
tion of resonant density fluctuations of this system; i.e.,
we look for excitation of plasmons and phonons driven
by long-wavelength electromagnetic radiation. To see
how this excitation is possible we will simply assume
that the radiation field can be represented by an oscil-
latory homogentous electric field. In the linear approxi-
mation the field will cause the electrons to oscillate
uniformly relatively to the ions in the crystal, ie.,
we impose on the electrons a uniform oscillatory ve-
locity field. (Here we neglect the motion of the ions in
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the lattice, because of their large mass relatively to that
of the electrons.) In the linear approximation the pho-
non coordinate of frequency w couples to electron den-
sity fluctuation at the same frequency, w. However,
under the influence of a strong external field we also
obtain nonlinear coupling to electron density fluctua-
tions of frequencies w+nwy, #===1, 4=2, +++, wy being
the frequency of the oscillating external field. Similarly,
the electron density fluctuation couples, in turn, to the
phonon coordinate at frequency w (linear effect) as
well as to phonon coordinates of frequency w-#'wp;
n'==41, &2, ---. If, for simplicity, we assume that
our system supports only two modes, the phonon mode
at » and a plasma mode at w—wy, we obtain a coupling
mechanism in which the plasma mode at w—wy is
driven by the phonon (at frequency w) and the field
at frequency wg, while the phonon mode (at frequency
w) is in turn driven by the plasma mode (at frequency
w—wy) and the field (at frequency ). Under these
conditions the two modes will simultaneously be
excited by the energy supplied by the external electric
field. This can occur when tht rate of growth deter-
mined from the nonlinear mechanism overcomes the
rate of loss by collisions in the system (which we take
here as a macroscopic parameter).

In Sec. IT we develop the general formalism of our
theory, and in Sec. IIT we solve for realistic semicon-
ductor the condition for parametric excitation.

II. GENERAL FORMALISM

Our model for a semiconductor is appropriately
described by an interacting electron phonon system,
whose Hamiltonian is given by

110=H6+Hee+Hp+IJe‘P: (la)
H,= Zepap 1’(1]), (1b)
I3
H,=% Z Crlpir Qs "0y, (1c)
pp'k
H, =1 (P P20, (1d)
k
Hoyp= 2 0:0c ) apii'a,. (le)
3 P

Here a,, a,' are respectively the electron destruction
and creation operators obeying the ‘“Fermion” commu-
518



164 DENSITY FLUCTUATIONS IN
tation relations, e,=p%/2m is the kinetic energy of
the electron of momentum p, ¢ =4we?/k? represent the
electron-electron interaction, Qi and P are respectively
the phonon coordinate and its conjugate momentum
obeying the boson commutation relations, and
represents the electron-phonon interaction. The re-
sponse of our electron-phonon system to a homogeneous
oscillatory electric field is obtained in the usual way
by rewriting Eq. (1b) as

oy @ OADY

2m

Here A(?) is defined from the relation
E=—(1/c) (0A/07),

where E is the electric field vector. We note that p in
Eq. (1) and Eq. (2) is the canonical momentum.
There are two terms in Eq. (2) which are field-de-
pendent; the term proportional to 4%(¢) couples to the
electrons via 20pta,=mny, the average electron
density and therefore does not contribute to density
fluctuation of our system, and we shall disregard it.
We have therefore arrived at the field-dependent
Hamiltonian which is given by

H=Hy+ (e/mw) Y (p-Eo(?) )a, a,, (3)

with
Eo(t) ‘=E0 coswot, (4)

and the Hamiltonian H, as defined in Eq. (1), where p
is assumed to be the canonical momentum.

We next calculate the equation of motion for the
one-particle density matrix which determines the cou-
pling of the external electric field to possible density
fluctuations in our electron-phonon system. We define

F(p+q, p, 1) =(a," () apia(t) ), (5)

where ( ) means the usual thermodynamics average
over all electron coordinates and

a,(t) =exp(iHt) a, exp(—iHI),

etc. Using the Heisenberg picture the change in time of
the operator a,(f) is given by

(9/01) a,(1) =exp(iH{)[H, a,] exp(—iH?), (6)

etc., and we therefore arrive at the following equation
of motion for the one-particle density matrix:

1(9/0) F(p+q, p, 1)+ (ep—epig) F(ptq, 9, 1)
- ;(‘PnNk(t) +kak(t) )

XLP(p+g—k, p, D —F(p+g, p+E, 1]
+ (e/mw,) q+Eg coswot F (p+gq, p, £) =0.

No(t)=2_F(p+q, p, 1)

(7)
(8)

Here
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and the equation of motion for the phonon coordinates is
8%Qy(4) /3840 Qq=—v*N,(1). 9)

In arriving at Eq. (7) we have used the following
approximations: First, electron—electron correlations
(collision) have been neglected, however the self-
consistent field of the charged electrons has been taken
into account. Second we consider the electron-phonon
interaction only within the framework of the random-
phase approximation, i.e., we neglect electron—phonon
collisions and retain their interaction via the self-
consistent field only. (In the language of Feynman
diagrams, we allow phonons to create or destroy elec-
tron pairs only, which represent renormalization of the
polarizability due to phonons.)

We solve for F(p-+q, p, t), using a perturbation tech-
nique, however retaining E, to all orders. We write

F(p+q, p, 1)
=f0(P) 6‘1»0+f1(177 t) 6‘1-0+f(P+q: P’ t) )

where fo(p), our zeroth-order solution, is the Fermi
distribution function. In the first approximation, which
is the linear response to the external field, the density
matrix as well as the electric field is spatially inde-
pendent and we obtain

of(p, )/0t=0;  fi(p, 1) =/o(p). (11)

The interpretation of Eq. (11) is that the first-order
density matrix in terms of the canonical momentum
takes the form of the Fermi distribution, and is time
independent. We would like to note here that the ve-
locity distribution of the electrons is affected by the
field since

(10)

mvV=p+ (e/w) Ey coswyt.

This result is physically clear, since in the linear
approximation a homogeneous field can only produce a
velocity field but not density fluctuations. We next use
fi as a source for f together with the field term [in
Eq. (7)] which is not assumed to be small. We obtain
to this order the closed set of equations:

[i(8/00) +ep—epro Jf (P+4, P, 1)
+ (@qnq+1,0,) { fo(D)—fo(p+9) }

+(6/mw0)Q'Eo Coswotf(p-{—q, P: t) =O,' (12)
ng=2_f(p+q, p, ), (13)
0%Qq/084Q Q= —1v,*ny(1) . (14)

Only in the second-order approximation do we find a
coupling to density fluctuation, which exhibits itself
in the nonvanishing of #, and the phonon coordinates
Q- We also point out that our linearization procedure
is equivalent to the random-phase approximation
which one could adopt from the start. This approxima-
tion is sufficient to describe the excitation in our elec-
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tron-phonon system since we are looking only for the
set of eigenmodes of the system in the presence of a
strong oscillatory homogeneous electric field.

In order to solve Egs. (12)-(14) we first use a
transformation which eliminates the field from our
equations. Define

f(P+g’ ?, t) =f~(P+9: ?, t) eXP(i)\ sinwot),
with

(15)

N=eq-Eo/mwy?,
we obtain a kinetic equation for f to be
[i(3/00) +es—eprol (p+¢, £, 0)
+ed fo(p) —fo(p+q) Joo(1)
ol fo(p) —fo(p+¢) JQq exp(— ik sinwot) =0. (16)

Similarly the phonon coordinates obey

0°Q4/08+Q20,= —1,¥p,(¢) exp(4\ sinwgt), (17)
where .
po(t) =2 J(p+q, 1, 1). (18)

The physical mechanism for density excitation via the
field is borne out by looking at Eq. (16). It is the differ-
ence between the oscillatory motions of the electrons
and the ions (phonons) in applied fields which couples
electron density fluctuations at any frequency w with
phonon coordinates at frequencies w-+swy, s=0 =1,
+2, etc. (and conversely). This mode coupling is
responsible for the excitation of our system. It is also
clear [see Eq. (17)] that without the retardation of
the phonons no mode coupling will be possible and
density fluctuation would not be exited by the field.

The solution of Egs. (16-(18) is given in terms of
the Fourier spectra of f and p where

J(t) =f(w) exp(—iwi+nt), etc.

We also use the relation

(19)

exp(— 4\ sinwgt) = Jrzm: Ju(N) exp(—inewt), (20)

n {oe}

where J, are the Bessel functions of the first kind. We
next define

__:EfO(P‘[‘q) —fo(p)

Py(w) - (21)
p Eptg T Ep WU

Eq(w) = 1"‘@1})4(‘*’): (22)

Dy(w) =[(w+in)* =0T, (23)

where P, is the electronic polarizability, €, the elec-
tronic dielectric function, and Dy, is the phonon propa-

Leg(@) = (TN + T2 (M) ) (| 2 [*/0q) (1—€q(w) ) Dy(w) ]
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gator. Solving for p, in Eq. (16), we obtain
eq(4swy) pg(w+swo) =v,Py(w+swp)
X 20T 1s(\) Qulwtlun) . (24)
D

For the phonon coordinate Q, we solve Eq. (17) and
obtain in terms of p,

Qa(F-s60) =0,*Dy(w+s50) 22T 1-o(—N) pg(wF-len).
1

(25)

Using Egs. (24) and (25) we obtain after some algebra
the infinite set of coupled equations;

eq(@+5wo) pg(w+swn) = | 24 [2Py(w+swo)
X D Tns(N) Jion(—N) Dy(w+ma0) pg (@), (26)
n,l

which determine the eigenvalues and possible growth
rates for the electron phonon system driven by the
external oscillatory electric field.

Toward the end of this section we would like to
check the limit E,=0, i.e., A=0. In this case it is clear
that only s=0 component is relevant and we obtain
immediately using Jo(0)=1, J,(0)=0; n#0 that

Leg(w) — I Vg lqu(w) Py(w) Jpg(w) =0. (27)

We therefore obtain [Eq. (27)] the dispersion rela-
tion for longitudinal oscillation for the electron phonon
system in the absence of the external electric field,
as expected.

III. NONLINEAR OPTICAL PROPERTIES OF THE
ELECTRON-PHONON SYSTEM

In order to extract more useful information we con-
sider the two-mode approximation. Here we discuss
the situation in which the external field E, excites the
two linear modes, the plasmon and phonon. Let us
solve Eq. (26) for the case that w and w—awy are respec-
tively in the vicinity of the phonon and plasma fre-
quencies. We obtain the coupled equations

() pg(w)
= ] Vg !2Pq(w)( =OZ_1) (l___OZ_I)Jn()‘) Jia(—=N)
X Dyg(w+nw) pg(w+lan), (28)
€q(w—wp) pg(w—wo)
= |0 [PPo(w—w) 25 25 Jun(N)
(n=0,—1) (1=0,—1)
X J1n(—N) Dy(w+nwo) pg(wtls).  (29)

The solution of the coupled equations (28) and (29),
for nonvanishing density fluctuations p(w) and p(w—wy)
is given after much algebra by the dispersion relation

X [eg(w—w0) = (Jo*(N\) +T2*(N) ) (| vq [*/0) (1—€q(w0—0) ) Dy(w0—0) ]

+ ]12()‘) (i Vg [2/‘Pq) (Gq(“‘"“*’O) _eq(‘*’) )(DQ(“’) _Dq(“’_'"’o) )=0~

(30)
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For zero external field each of the brackets [+--],
when set to be equal to zero gives respectively the dis-
persion relations for a plasmon or a phonon. Our solu-
tion for the nonlinear dispersion relation, Eq. (30), is
correct for all systems which could be approximately
described by interacting electrons and phonons, and
with relaxation times small enough to preserve the
identity of the linear oscillatory solutions (phonons
and plasmons). However, in order to solve quantita-
tively Eq. (30), we should specify our physical system.
Let us choose a degenerate semiconductor in the quan-
tum limit (ez>%T), to avoid contributions of electron—
phonon collisions to the inverse relaxation time. The
plasma frequency w, and the Fermi velocity vr are

wp= (4mwe®n/e.m*) 12, vp=(h/m*) (6rn)3, (31)

where m* is the effective mass of the electron. The
Fermi-Thomas wave number grr=w,/vr which deter-
mines the limit for long-wavelength phenomena is
proportional to '/, Therefore, by changing the elec-
tron concentration by an order of magnitude we hardly
effect the value of gpr.

We consider semiconductors® such as InSb, InP,
GaP, etc. which are ionic to a small degree and there-
fore provide a coupling between the longitudinal optical
phonon branch and longitudinal plasma excitations.
The optical phonons have a dispersion relation w; (k)=
w;(0) =w; and their coupling to the electron gas is
given in our formalism by

I Yq ]2‘_"§0qwl2<1_5cn/60)) (32)
with

(33)

Here e, is the dielectric constant of the lattice at fre-
quency w—o and ¢ is defined from wle=w?e,, w;
being the frequency of the transverse optical mode, at
long wavelengths. In the zero-wavelength case we ob-
tain from e,—o(w) =0 the relation

1= (/) = (@’/0) (0P/0’ — wi*) (1—€u/e0) =0, (34)

which determines respectively the renormalized plasma,
frequency w; and phonon frequency w, given by

@1,2°(0) =3 (wp' o) £5(w)’ — o)
X {1+[4o0r/ (0 —wf)](1—ex/e0) }12 - (35)

as expected. We next solve Eq. (30) for finite and large
g to emphasize our effect, however, in the regime ¢<gpr
and w/qur> 1, and neglect the small shift in the phonon
and plasmon frequency due to the external field E,.
Using Egs. (21), (22), and (23) in the high-frequency,
long-wavelength limit stated above, Eq. (30) reads
after some algebra

(=) (e [ (w—an)*— ot (= n) =]

= J#(N) (1= eo/e0) wrlwy (wn’— wi?) =0,

P=4mé/ e’

(36)

®N. B. Hannay, Semiconductors (Reinhold Publishing Cor-
poration, New York, 1959); J. M. Ziman, Electrons and Phonons
(Clarendon Press, Oxford, England, 1960).
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where we have neglected terms of order vpk/wi, vrk/w,
and already substituted in the right-hand side of Eq.
(36) the linear solution, i.e., w=w;, and | w—wy | =w.
Here w; and w, are respectively the low- and high-
frequencies eigenvalues of the linear dispersion equa-
tion given by

(@P—w) (== §(o?/a?) o)
oot (1=e./a) =0. (37)

We next solve for the growth rate by retaining in the
left-hand side of Eq. (36) only those terms which
diverge if we substitute w=w;. We therefore obtain by
substituting w=w;+7v and assuming w;>+v the result

72[2601‘1"7] =—J 12( 1— ém/ €) (wl2wp2/ sz) ’ (38)
which reduces for the case 2w >+ to the growth rate
|7 | =71\ (1= eu/e0) [wrwp/2(wren) V2. (39)

In order to estimate the effect we use for w; and w,
the solution for infinite wavelength given by Eq.
(35). We therefore obtain for the growth rate

Iy |~ 1 (1_ em> eqEy Wiy
YA @) () Pm* (ort-wn)? (o)

The excitation of the density fluctuations becomes
macroscopically observable when the growth rate v
exceeds the effective collision frequency of the system
(vw2) Y2, where vy, vy are, respectively, the collision fre-
quency of the two linear modes. This occurs when the
radiation field strength is larger than a threshold value
(Ey)wn given by

1( _ se_o) eq(Eolen _ wwp
4 €y (em)‘“m* (w1w2)2 Wiwe

(40

= [(wln) 12 (szz) U 2]_1-

(41)

Therefore, radiation at frequency wy=w;+w» and field
Ey> (E ) will exhibit an absorption. For a typical
sample of InSb we obtain w108, w,~2.108, ¢ /¢y=13,
(o) 12=3, m*=100"'m, ¢=5X10°<gpr and find
w25 X108, wyr0.25X 108, which we substitute in
Eq. (41) to obtain

( Eo) th V/cmNS 105(0)17'1) —1/2((.021'2) =12, (42)

For the plasma oscillation wrx210-+20. We have less
accurate information about the life time of the optical
phonon, and can only estimate that wyry;R210-+100.
We could therefore expect an absorption line at fre-
quency wy=wi+ws, for fields of the order of 10* V/cm.
It is also clear that the additional absorption of the
radiation and the excitation of plasma and optical-
phonon fluctuations is an on-off phenomenon; no exci-
tations are possible below ()4 and strong excitation
exist for EyZ (Eo)wm. Therefore an experimental deter-
mination of (Ep) s, allows us to determine the lifetime of
the phonon provided the plasmon lifetime is known.
It also should be clear that in the framework of our
theory there is no way to estimate the additional
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absorption, i.e., the losses due to the electron-phonon
density excitation. However, by performing the experi-
ment in thin films one should be able to detect the
reradiation from the density fluctuation at the plasma
and phonon lines, as experimental verification for their
excitation.

We next calculate the threshold field for degenerate
or intrinsic semiconductors in which their conduction
electrons interact with the phonons via the deformation
potential. The electron-phonon interaction v, is inde-
pendent of ¢ and the parameter A2= |1, [>/¢, is
given by

Al =(E@K*/pw) (¢/4me?).
Here Ej is the phenomenological deformation-potential
energy, K is the reciprocal lattice vector and p,, is the

mass density of the crystal. The dispersion relation for
long-wavelength density fluctuation is given by

€q(@) =1— (0}/0?) — (wp/0?) Jven?g?
— A2 (0 ?) (P —w,) =0, (44)

In Eq. (44) we have taken the classical limit for the
dielectric function, which holds for microwave regions
even for temperatures of 10°K. The solution of Eq.
(30) for our system is given by

(wP—an?) (P —awe?) [ (0—wp)?—w* ][ (w—wp)?—wp’]

= J2(N) A (o —wy?) 2 =0,

(43)

(45)
where w; and wp are the roots of Eq. (44) and are
given by
w127 =3 (wg w2+ 3vm’g?)

S [H (o — e —30ag?) ™+ A T2 (46)

For the case A2<wg?, w,? and AZ2< (wp,—wy)?, we ob-
tain the approximate solutions
w=w, v+ 40w,/ (w0 — ),
@?2w 22— 4A 2wt (w2 —w?) .

(47

The threshold field is calculated as in the previous case,
given by Eqgs. (38)-(42), and we obtain

1 eq(Eo) tn Adw,’
4 (em) 1/2m*(w;+w2)2 wWiwe

For Ge we have Ey=x/18 eV, Kx10*® cm™, p,,=5.33
g/em3, w107 w210 with v,~23X10° cm/sec.
We obtain using Egs. (43), (47), and (48) for ¢=
5.10*<gp a threshold field

(Eo)thmlosl:(wﬂﬂ llz(szz) ”2:] (V/cm) (49)

This relatively large threshold field at microwave

=[(wrm) *(wars) I (48)

TZOAR

164

frequencies is due to the poor coupling between electron
and acoustical phonons for small wave numbers. For
realistic case (Fy)w is of the order of 10* V/cm which
can be obtained using pulse techniques.

In conclusion, we have calculated the density excita-
tion of electron-phonon system via radiation as a
realistic model for semiconductors and found the thresh-
old field to be of the order of 10* V/cm in the infrared
and microwave regions.

APPENDIX

The feasibility of the particular experiments dis-
cussed in this work depends strongly on the lifetimes of
the excited modes. We would like to point out the basis
for our choices of these lifetimes.

For the optical-phonon lifetime we have used Ref.
10. Here the width of the phonon line is determined
from the frequency-dependent reflectivity. The results
for InSh, GaAs, etc., are, w140 at liquid-helium
temperature.

Our estimate of the plasma lifetime is obtained by
taking twice the single-electron lifetime 7, (Ref. 11)
which is in turn obtained from mobility measurements
(at 77°K) and the relation 7,=um*/e. For InAs
(u=6X10° cgs, m*~0.03m, w,2X10"¥ sec™) and
for InSb (u=6X10"7 cgs, m*~X0.016m, w2X10¥
sec™d). Hence 7,~3X 107 sec and w,r,~212. Measure-
ments of the plasma lifetime for InAs has been carried
recently® (similar to our conditions) and give the
results: »,~100 cm™ Ap~7 cm™. Thus, w,r,~14, in
agreement with our estimates. We therefore conclude
that our choice of wri=~10-+-20 and weryxx10-+100 for
the coupled electron—phonon system is realistic. Similar
considerations for Ge with low-impurity concentration
(w,2~10%1) also show w10 and wyre=10-+100 to
be a realistic choice. We would like finally to point out
that our general eigenvalue equation (26) indicates a
possible density fluctuation not only at w; and wi=
wy—we but also at w)’=wy+ws. However, as one can
easily check, the mode at w,’ can only exist if the mode
at w; is excited. Therefore, the mode at w,” can only in-
crease the threshold field. In order to eliminate the
mode at wy’, we need a resonant mode at w; such that
27w, 2> 1, condition that where met in our work. For
the case of 27 w, <1 the real threshold would be some-
what higher than the one calculated here. However
our result will not be applicable for 2r w1, and we
have to extend, in this case, our analysis to include
all three modes.
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