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Nonlinear Excitation of Density Fluctuations in
Electron-Phonon Systems
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A nonlinear mechanism for exciting electron-phonon density fluctuation by means of a long-wavelength
radiation Geld is discussed as a realistic model for doped semidonductors. Calculation of the threshold held
for this phenomenon are presented, for optical as well as acoustical phonons in the infrared- and microwave-
frequency regions.

I. INTRODUCTION

l ITH the development of high-intensity radiation
sources in the microwave, infrared, and optical

spectrum the study of the nonlinear interaction of
electromagnetic radiation with matter stimulates con-
siderable theoretical and experimental interest. ' One
area of interest is the nonlinear coupling of radiation
with an electron gas. Here study of light-by-light
scattering and optical mixing has been performed, as-

suming, however, that the electron gas can be treated
as a linear system having a linearly excited mode —the
plasma. ' However, it was soon realized that for realistic
plasmas or semiconductors, for example, the "linear
approximation" assumption can not always be justified.
For systems of charged particles of two species, we have
two linear modes which could be coupled and excited
nonlinearly via the electromagnetic field, ' '

In this paper we consider a system of interacting
electrons and phonons and study, within the frame-
work of the random-phase approximation, the excita-
tion of resonant density fluctuations of this system; i.e.,
we look for excitation of plasmons and phonons driven

by long-wavelength electromagnetic radiation. To see
how this excitation is possible we will simply assume
that the radiation field can be represented by an oscil-

latory homogentous electric held. In the linear approxi-
mation the field will cause the electrons to oscillate
uniformly relatively to the ions in the crystal, i.e.,
we impose on the electrons a uniform oscillatory ve-

locity field. (Here we neglect the motion of the ions in
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the lattice, because of their large mass relatively to that
of the electrons. ) In the linear approximation the pho-
non coordinate of frequency co couples to electron den-

sity fluctuation at the same frequency, co. However,
under the influence of a strong external field we also
obtain nonlinear coupling to electron density Quctua-
tions of frequencies ed+so)p, M=&1, +2, ' ' ' top being
the frequency of the oscillating external field. Similarly,
the electron density fluctuation couples, in turn, to the
phonon coordinate at frequency ce (linear effect) as
well as to phonon coordinates of frequency M+A'e~p,

n'=~1, +2, ~ ~ ~ . If, for simplicity, we assume that
our system supports only two modes, the phonon mode
at co and a plasma mode at ~—coo, we obtain a coupling
mechanism in which the plasma mode at co—coo is
driven by the phonon (at frequency a&) and the field
at frequency &ee, while the phonon mode (at frequency
a&) is in turn driven by the plasma mode (at frequency
u&
—

&os) and the field (at frequency te). Under these
conditions the two modes will simultaneously be
excited by the energy supplied by the external electric
6eld. This can occur when tht rate of growth deter-
mined from the nonlinear mechanism overcomes the
rate of loss by collisions in the system (which we take
here as a macroscopic parameter).

In Sec. II we develop the general formalism of our

theory, and in Sec. III we solve for realistic semicon-
ductor the condition for parametric excitation.

II. GENERAL FORMALISM

IIe H,+H.,+Hp+II——,p,

H~= ~6pQ~ C~)
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Her = g&tQsg&~i o~. (1e)

Here a~, c„~ are respectively the electron destruction
and creation operators obeying the "Fermion" commu-
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Our model for a semiconductor is appropriately
described by an interacting electron phonon system,
whose Hamiltonian is given by
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with
Ep(t) =Ep cospppt, (4)

and the Hamiltonian Hp as defined in Eq. (1), where p
is assumed to be the canonical momentum.

We next calculate the equation of motion for the
one-particle density matrix which determines the cou-
pling of the external electric field to possible density
Quctuations in our electron-phonon system. We define

F(p+q, p, t) = (a„(t)a~p(t) ), (5)

where ( ) means the usual thermodynamics average
over all electron coordinates and

a„(t) =exp(iHt) a„exp( —iHt),

etc. Using the Heisenberg picture the change in time of
the operator a„(t) is given by

i(B/Bt) a~(t) =exp(iHt) [H, a~] exp( —iHt), (6)

etc., and we therefore arrive at the following equation
of motion for the one-particle density matrix. '

'(B/Bt)F(p+q, p, t)+(p„p~p)F(p+q, p, t)—
—g(pp Nk(t)+&iQp(t) )

X[F(p+ q k, p, t) F(p+ q—, p+ k, —t') j
+ (e/mcop) q Ep c op spi(tpF+q, p, t) =0.

Here
N, (t) =QF(p+q, p, t)

tation relations, p„=p/2m is the kinetic energy of
the electron of momentum p, a d=4m. e'/k' represent the
electron-electron interaction, Q& and F& are respectively
the phonon coordinate and its conjugate momentum
obeying the boson commutation relations, and
represents the electron-phonon interaction. The re-
sponse of our electron-phonon system to a homogeneous
oscillatory electric field is obtained in the usual way
by rewriting Eq. (1b) as

~ (p —(e/c)A(t) )'
H, =~

2m
p u

Here A(t) is defined from the relation

E= —(1/c) (BA/Bt),

where E is the electric field vector. We note that p in
Eq. (1) and Eq. (2) is the canonical momentum.
There are two terms in Eq. (2) which are field-de-
pendent; the term proportional to A'(t) couples to the
electrons via P„a„ta„=np, the average electron
density and therefore does not contribute to density
Quctuation of our system, and we shall disregard it.
We have therefore arrived at the field-dependent
Hamiltonian which is given by

H=Hp+ (e/mppp) Q(p Ep(t) )a„ta„(3)

and the equation of motion for the phonon coordinates is

BPQ (t)/BP+QqPQp ep+Np(t) (9)

In arriving at Eq. (7) we have used the following
approximations: First, electron —electron correlations
(collision) have been neglected, however the self-
consistent field of the charged electrons has been taken
into account. Second we consider the electron-phonon
interaction only within the framework of the random-
phase approximation, i.e., we neglect electron —phonon
collisions and retain their interaction via the self-
consistent field only. (In the language of Feynman
diagrams, we allow phonons to create or destroy elec-
tron pairs only, which represent renormalization of the
polarizability due to phonons. )

We solve for F(p+q, p, t), using a perturbation tech-
nique, however retaining Eo to all orders. We write

F(p+q p t)

=fp(p) &, ,p+fi(p, t) &, ,p+f(p+q, p, t), (10)

where fp(p), our zeroth-order solution, is the Fermi
distribution function. In the first approximation, which
is the linear response to the external field, the density
matrix as well as the electric field is spatially inde-
pendent and we obtain

Bfi(P t)/Bt=o fi(P t) =fo(P) (11)

The interpretation of Eq. (11) is that the first-order
density matrix in terms of the canonical momentum
takes the form of the Fermi distribution, and is time
independent. We would like to note here that the ve-
locity distribution of the electrons is affected by the
field since

mv =p+ (e/(dp) Ep cospppt.

This result is physically clear, since in the linear
approximation a homogeneous field can only produce a
velocity field but not density fluctuations. We next use
fi as a source for f together with the field term [in
Eq. (7)$ which is not assumed to be small. We obtain
to this order the closed set of equations:

[i(BIBt)+" .Iy(p+q, P, t—)

+(v p&p+&pQp) I fo(P) fo(P+q) I—
+ (e/m~pp) q Ep cospppt f(p+q, p, t) =0, (12)

n, = pf(p+q, p, t), (13)

B'Q,/BP+0, 'Q, = —p,*ii,(t) . (14)

Only in the second-order approximation do we find a
coupling to density fluctuation, which exhibits itself
in the nonvanishing of e~ and the phonon coordinates
Q,. We also point out that our linearization procedure
is equivalent to the random-phase approximation
which one could adopt from the start. This approxima-
tion is sufhcient to describe the excitation in our elec-



X. YZOAR

tron-phonon system since we are looking only for the
set of eigenmodes of the system in the presence of a
strong oscillatory homogeneous electric 6eld.

In order to solve Eqs. (12)—(14) we 6rst use a
transformation which eliminates the held from our
equations. Define

f(p+0, p, t) =f(p+V, p, t) exp(iX sinoiot), (15)

X=8q'Eo/Bkoo

we obtain a kinetic equation for f to be

fi(a/at)+o, q~q—]f(p+q, p, t)

+~»Efo(p) fo(p+—q}]p.(t)

+"Lfo(p) —fo(p+V) ]Q. exp( —+»n~ t) =0 (16)

Similarly the phonon coordinates obey

O'Q»/Btq+Qq'Q»= —vq*pq(t) exp(ili sinooot), (17)

(18)

The physical mechanism for density excitation via the
field is borne out by looking at Eq. (16). It is the differ-
ence between the oscillatory motions of the electrons
and the ions (phonons) in applied fields which couples
electron density fluctuations at any frequency ao with
phonon coordinates at frequencies oi+soio, s=0 +1,
&2, etc. (and conversely). This mode coupling is
responsible for the excitation of our system. It is also
clear Lsee Eq. (17)] that without the retardation of
the phonons no mode coupling will be possible and
density Quctuation would not be exited by the field.

The solution of Eqs. (16—(18) is given in terms of
the Fourier spectra of f and p where

f(t) =f(oi) exp( io&t+qtt), etc—. (19)

We also use the relation

exp( —A sin&oot) = Q J„(X) exp( —iqqoiot), (20)

where J„are the Bessel functions of the first kind. We
next de6ne

gator. Solving for p» in Eq. (16), we obtain

qq(oi+$&o) pq(&+soio) =&»P»(oi+so&o)

&Z J~.()i)Q.(~+&o) (24)

For the phonon coordinate Q, we solve Eq. (17) and
obtain in terms of p~

Q, (~+ s~o) =v, *D,(o +sooo) QJi, (—)~)p, (oi+»o)

(25)

Using Eqs. (24) and (25) we obtain after some algebra
the infinite set of coupled equations;

qq(oo+SMo) pq(oo+soio) =
I

'oq
I Pq(oi+sooo)

)& QJ„,(X) Ji „(—X}D»(oi+qqo~o) p»(oi+l&oo), (26)
~, t

which determine the eigenvalues and possible growth
rates for the electron phonon system driven by the
external oscillatory electric 6eld.

Toward the end of this section we would like to
check the limit E0=0, i.e., X =0. In this case it is clear
that only s=o component is relevant and we obtain
immediately using Jo(0) = 1, J„(0}=0; n40 that

Loq(~) —
I oq I'Dq(~) Pq(~)]pq(~) =o (2&)

We therefore obtain
I Eq. (27)] the dispersion rela-

tion for longitudinal oscillation for the electron phonon
system in the absence of the external electric 6eld,
as expected.

III. NONLINEAR OPTICAL PROPERTIES OF THE
EI ECTROÃ-PHONON SYSTEM

In order to extract more useful information we con-
sider the two-mode approximation. Here we discuss
the situation in which the external field E0 excites the
two linear modes, the plasmon and phonon. Let us
solve Eq. (26) for the case that o& and oi—&uo are respec-
tively in the vicinity of the phonon and plasma fre-
quencies. Ke obtain the coupled equations

q»(~) p»(~)

=
I ~q I'Pq(~) Z Z J-(»Ji--(—»

(n=0,—1) (1,=0,—1)

XD»(oi+ruoo) pq(oo+tooo), (28)

~fo(p+V} —fo(p)

p o~q op M zest

oq (M} = 1 p»P»(oi) q (22)

qq(oi oio) pq(oi oio)

=
I &» I'Pq(~ ~o) 2 Z— J-+i(»

(n=O, —~) (&=0,—C)

XJr( »D-( o+—oqqoi)op, (~+&o) (29)
Dq(oi) =D(o+iqt)' 0'7 '— (23)

where P,„ is the electronic polarizability, ~,„ the elec-
tronic dielectric function, and B~„is the phonon propa-

The solution of the coupled equations (28') and (29),
for nonvanishing density fluctuations p (co) and p (&o

—
ohio)

is given after much algebra by the dispersion relation

Loq(~) —(Jo'(~)+ Ji'(») (I &» I'/o. ) (1—q. (~) )D.(~)]
xI:.,( —o) —(Jo'(&)+J'(»)(I, I'/», ) (1—,( —o) )D,( —o)]

+Ji'(» (I &q I'/v"} (o»(~—~o) —q»(~& ) (D»(~) —D»(~—~o&) =o. (3o)



op, =4pre'/o„q'. (33)

Here e is the dielectric constant of the lattice at fre-
quency ~~~ and eo is dined from co&'eo=eu&'e„, co&

being the frequency of the transverse optical mode, at
long wavelengths. In the zero-vravelength case vre ob-
tain from op o(Id) =0 the relation

1—(~'/~') —(~'/~') (~P/~' —«') (1—o /«) =0, (34)

which determines respectively the renormalized plasma
frequency Mj and phonon frcqucQcy 402 given by

~i,s'(0) = s (~'+~P) + s (~'—«')
X f1+34 '~P/(~' —~P)'j(1—e-/«) I'" (35)

as expected. We next solve Eq. (30) for 6nite and large
q to emphasize our CGcct, however, in the regime q&qpT
and pp/qe~& 1, and neglect the small shift in the phonon
and plasrnon frequency due to the external 6cld Eo.
Using Eqs. (21), (22), and (23) in the high-frequency,
long-wavelength limit stated above, Eq. (30) reads
after some algebra

(~'—~i') (~'—~o') L(~—~p)' —«'X(~—~o) '—~o'3

—JP(X) (1—o„/«) pdPpp„'(o)P —&dP)'=0, (36)

3. Ha, nnRQ~ SeSMCotAENCIOfS (RC1nhoM PllM18hjng Cor-
poration, New York, 1959);J. M. Ziman. , E/eclroes end I'honors
(Clarendon Press, Oxford, England, 196Q).

For zero external field each of the brackets I
~ ~j

vhen set to be equal to zero gives respectively the dis-
persion relations for a plasmon or a phonon. Our solu-
tion for the nonlinear dispersion relation, Eq. (30), is
correct for aB systems vrhich could be approximately
described by interacting electrons and phonons, and
vrith relaxation times sma11 enough to preserve the
identity of the linear oscillatory solutions (phonons
and plasmons). However, in order to solve quantita-
tively Eq. (30), we shouM specify our physical system.
Let us choose a degenerate semiconductor in the quan-
tum limit (oi:)kT), to avoid contributions of electron-
phonon colllslons to thc IQvcrsc rclaxatlon time. Thc
plasma frequency ~„and the Fermi velocity e+ are

pd, = (4re'e/o„m*) II', or (k/I——ri*) (6irn) IIs, (31)

vrhere m* is the CGcctive mass of the electron. The
Fermi —Thomas wave number qpT ——o&„/oo which deter-
mines the limit for long-vravelength phenomena is
proportional to n'~6. Therefore, by changing the elec-
tron concentration by an order of magnitude vre hardly
eGcct the value of qFT.

We consider semiconductors' such as InSb, InP,
GaP, etc. vrhich are ionic to a smaB degree and there-
fore provide a coupling between the longitudinal optical
phonon branch and longitudinal plasma excitations.
The optical phonons have a dispersion relation «(k)
pdi(0) =pdI and their coupling to the electron gas is
given in our formalism by

I n. I'=~o«'(1 o /«)— (32)

wllcI'e wc llavc neglected terms of order spk/rdI, so'k/oI~

and already substituted in the right-hand side of Kq.
(36) the linear solution, i.e., pd=pdi, and

I
pd —pdo

I
=pds.

Here co& and ~2 are respectively the lovr- and high-
frequencies eigenvalues of the linear dispersion equa-
tion given by

(pp' —(op) (oI'—Id„'—-,'(Id„'/Idr) ep'q'}

—pd„'pdP(1 —o„/«) =0. (37)

We next solve for the growth rate by retaining in the
left-hand side of Eq. (36) only those terms which
divclgc lf wc substitute Ã=col. Wc thcrcforc obtain by
Subatituting pp=pdi+y and aSSuming ~o&y the reSult

r L2(0/ 1r) =—JP( 1—o„/«) (pdPpd~'/2pps), (38)

vrhich reduces for the case 2(oI&y to the grovrth rate

I v I
= ~I(li) (1—o /«) L«~n/2(~i~) '"l. (39)

In order to estimate the CGect vre use for col and ~~
the solution for inhnite vavelength given by Kq.
(35).Wc therefore obtain for the growth rate

4 ( «(o~) I St*(&dr+No) (Myppp) l

The excitation of the density fluctuations becomes
macroscopically observable when the growth rate y
exceeds the CQ'ective collision frequency of the system
(I II s) '", where vi, I s are, respectively, the collision fre-
quency of the tv o linear modes. This occurs vrhen the
radiation 6eld strength is larger than a threshold value
(Ep) ph givcll 13y

&q(Eo) t,—
I

1——
I

"=[{cdr )Iis(ppv )I'og I
4 ( «3 (o ) ~ rs (pdicdo) (dypdo

(41)
Therefore, radiation at frequency &op ——rdi+pdp and field
Eo) (E )is will cxlilbit RI1 R13801'pt1011. Fol R typicR1
Sample Of InSb We Obtain ppI 10",pd„2.10IP, o /«= s,
(e„)"'=3, rip*=100 Irw, q=SX10P&qFT and find
coI~SX10", a)g 0.25X10", vrhich we substitute in
Eq. (41) to obtain

(Eo&tI, V/cm~310P(«ri) IIr(Idsrs) IIP. (42)

For the plasma osclllatlon ~gl~~10 —:20.We have less
accurate information about the life time of the optical
phonon, and can only estimate that co2v2 j.0—:100.
We could therefore expect an absorption line at fre-
quency cop ——ppi+cuo, for fields of the order of 104 V/cm.
It is also clear that the additional absorption of the
radiation and the excitation of plasma and optical-
phonon Quctuations is an on-o8 phenomenon; no exci-
tations are possible below (Ep) ~h and strong excitation
exist for Ep& (Ep) ph. Therefore an experimental deter-
mination of (Eo) ph allows us to determine the lifetime of
the phonon provided the plasmon lifetime is known.
It also should be clear that in the framevrork of our
theory there is no way to estimate the additional
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In Eq. (44) we have taken the classical limit for the
dielectric function, which holds for microwave regions
even for temperatures of 10'K. The solution of Eq.
(30) for our system is given by

(~'—»') (~ —» ) 5(&—») —» jL(~—») —» ~

—J'(X)5 '40 '(40' —u& ')'=0 (4"))

where» and» are the roots of Eq. (44) and are
glvcn by

»,2 =2(4d4+404 +3&4h g )

+L-'(40 '—&o
'—3v 'q')'+d 'rv 'J" (46)

For the case A4'&o)42, +„2 and b,~&{(o„)~4,we o—b-
tain the approximate solutions

~ 2~40 2+3' 2q2+4+ 2~ 9/(~ 2 ~ 2)

(a '~(a '—4A 'a) '/(a& '—(o ') (47)

The threshoM 6cld is calculated as in the previous case,
given by Eqs. (38)—(42), and we obtain

4 (f~) I % (»+») (dy»

For Ge wc have Aq~18 CV, E~10+ cm ', p =5.33
g/cm', 40„' 10", 404' 10" with v4h 3X10' cm/sec.
We obtain using Eqs. (43), (47) and (48) for g

=
5.10'&qg) R threshoM 6ekl

(Eo) 10'L( )"'(,) '"] (V/cm) . {49)

This relatively large threshoM Geld at microwave

absorption, l.c., thc losses duc to thc electron-phonon
density excitation. However, by performing the experi-
mcDt ln thin 6)ms onc shouM bc able to dctcct thc
reradiation from the density Quctuation at the plasma
and phonon Iines, as experimental veri6cation for their
excitation.

%'e next calculate the threshold 6CM for degenerate
ol lntI'lDslc semiconductors 1Q which thcll conduction
electrons interact with the phonons via the deformation
potential. The electron —phonon interaction v~ is inde-
pendent of q and the parameter d4'=

~
n4 ~'/q, is

given by
6,'= (EI,2E'/p ) (q'/4s e') . (43)

Here E&q is the phenomenoIogical deformation-potential
cQcrgy, K ls thc reciprocal lattice vcctoI' Rnd p ls thc
mass density of the crystal. The dispersion relation for
long-wavelength density Ructuatlon ls given by

44(rv) = 1—(40~'/oP) —((e,'/o)4) 3sgPq'

frequencies is due to the poor coupling between electron
and acoustical phonons for small wave numbers. For
reahstlc case (Eo)4h ls of the order of 10 V/cm which
can bc obtRlncd Using pulse techniques.

In conclusion, we have calculated the density excita-
tion of clcctI'on —phonon systcIQ vlR 1RdlRtlon Rs R

realistic model for semiconductors and found the thresh-
old 6eld to be of the order of 10' V/cm in the infrared
RDd mlcrowavc I'cglons.

APPENDIX

The feasibility of the particular experiments dis-
cussed in this work depends strongly on the lifetimes of
the excited modes. %C would like to point out the basis
for ouI choices of these lifetimes.

For the optical-phonon lifetime wc have used Ref.
IO. Here the width of the phonon hne is determined
from the frequcncy-dependent reRectivity. The results
for InSb„GaAs, etc. , are, (e)7.) 140 at liquid-helium

temperature.
Our estimate of the plasma lifetime is obtained by

taking twice the single-electron lifetime r, (Ref. 11)
which is in turn obtained from mobility measurements
(at 77'K) and the relation r, =pm*/e For In. As
(p=6X10' cgs, m*~0.03m, (u„~2X10" sec ') and
for InSb (p=6X10' cgs, m* 0.016m, M„2X10"
sec '). Hence 7,, 3X10 " sec and ~~~~~12. Measure-
IIMnts of thc plRsnla lifetime foI' IQAS has becQ CRlI'lcd

recen. tly" (similar to our conditions) and give the
results: v„100 cm ' hv 7 cm '. Thus, 40~v~ 14, in

agreemcnt with our estimates. Kc therefore conclude
that our choice of m~7.~~10—:20and ~27-2 10—:100for
the coupled electron —phonon system is realistic. Similar
conslderatlons for Gc with h)w-lmpurlty concentration
(o) ' 10") also show 40grg 10 and»72 ——10—:100to
be a reahstic choice. %C would hkc 6naHy to point out
that our general eigenvalue equation (26) indicates a
possible dcDslty AuctuatloQ Dot, oDly R't %2 Rnd

&o~
—» but also a,t 40'' ——»+». However, as one can

easily check, the mode at ~I' can only exist if the mode
at or~ is excited. Therefore, the mode at ~~' can only in-

cl cRsc thc thI'cshoM 6cM. ID order to clllTllnRtc thc
mode at col', we need a resonant mode at ~g such that
2vqm2+1, condltlon thRt whclc met ln our work. For
the case of 2v ~2 &1 the real threshoM wouM be some-

what higher than the one calculated here. However
our result will not bc applicable for 2r o)g&&i, Rnd we

have to extend, in this case, our analysis to include
all three modes.
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