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We present a theory of current-reducing fluctuations in narrow superconducting channels. The theory
is based on the Ginzburg-Landau equation, and is constructed in analogy with the droplet model of the
condensation of a supersaturated vapor. Our theory suggests that large and improbable fluctuations are
important, and cause measurable departures from the mean-field critical current. The calculation leads
to a concrete result for the intrinsic resistive transition. This transition is predicted to occur at a temperature
slightly lower than the bulk transition temperature,and to have a width which is observable but smaller than

those measured in recent experiments.

1. INTRODUCTION

SUPERCONDUCTING channel can be driven

into a resistive state by applying a suitably large
current. Recent experiments? on strips of very small
cross section have suggested measurable departures
from the simplest mean-field theory of the maximum
supercurrent.® These experiments also suggest that the
resistive transition has a finite width, even under ideal
conditions. It seems clear that fluctuations of some kind
must be responsible for these phenomena. There is a
well-known procedure for analyzing fluctuations in
statistical systems, and our purpose in what follows
is to bring this procedure to bear on the problem of
critical supercurrents.

Basically, we assert that any state of nonzero super-
current is metastable in the sense that there is a topo-
logically accessible fluctuation which leads to a state
of lower current and, therefore, lower free energy. This
conception of metastability owes much to the droplet
model of the condensation of a supersaturated vapor.*
In the droplet model, the metastable vapor phase per-
sists until, because of a very unlikely statistical fluctu-
ation, a liquid droplet large enough to nucleate the
condensation occurs. A simple calculation of the free-
energy barrier opposing the formation of the critical
droplet provides a rough understanding of experimental
evidence. Very recently, Langer and Fisher proposed
an analog of the droplet model for calculating the rate
of current-decreasing fluctuations in superfluid helium
very near the X\ point.> The following analysis for
the superconductor has been developed in parallel with
the work on liquid helium.

* Supported in part by the Office of Naval Research under
Contract No. NONR-401(38), Technical Report No. 20.
1 On leave of absence from the Department of Physics, Carnegie
Institute of Technology, Pittsburgh, Pennsylvania.
1R. D. Parks and R. P. Groff, Phys. Rev. Letters 18, 342
(1967).
( 2'1:7.)1{. Hunt and J. E. Mercereau, Phys. Rev. Letters 18, 551
1967).
3 J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).
47. Frenkel, Kinetic Theory of Liquids (Dover Publications,
Inc., New York, 1955), Chap. 7.
§J. S. Langer and M. E, Fisher, Phys. Rev, Letters 19, 560
(1967).,
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Two main ideas underlie our calculation. The first
gives meaning to the (only superficially paradoxical)
concept of the intrinsic resistance of a superconductor,
and also justifies the use of a simple model. In essence,
the idea is as follows. Consider two points in a piece of
superconductor. A voltage can be maintained between
them only if the corresponding difference in the phase
of the order parameter increases steadily with time.S
In general, this implies a continually increasing current.
A steady current is possible, however, if fluctuations
in the interior of the superconductor reduce the phase
difference at the same average rate as the voltage in-
creases it. We calculate the resistance by equating
these two rates.

One important consequence of this method of cal-
culation is, as will be shown, that observable resistivities
are produced by fluctuations whose free energies are
an order of magnitude larger than the characteristic
thermal energy, k7. A knowledge of the detailed form
of the fluctuations is not needed for this conclusion
which shows that, just as in the droplet model, the rel-
evant fluctuations are extremely improbable and play
no role in determining the bulk thermodynamic prop-
erties of the system. Because of their large energies,
these fluctuations have a spatial extent much larger
than the range of nonlocality associated with the paired
state of the superconductor. They, therefore, should
be adequately described by a phenomenological mean-
field theory, i.e., the Ginzburg-Landau equation.

Our second idea permits a detailed study of the
fluctuations discussed above. We assume that the
relevant states of the system can be described by a
complex-valued order parameter y(r), and that the
a priori probability that the system will be found in the
state described by (1) is proportional to the Boltzmann
factor, exp(—F/ksT), where F, the Ginzburg-Landau
free energy, is a functional of ¢ (r). The statistical fluc-
tuations of the system, caused by interactions with
a constant-temperature bath, may be visualized as a
continuous random motion of the system point ¢ in a
function space of continuous functions ¥(r) satisfying

6B. D. Josephson, Advan. Phys. 14, 419 (1965); P. W,
Anderson, Rev. Mod. Phys. 38, 298 (1966).
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appropriate boundary conditions.” The neighborhood
of each point in this function space is visited with a
frequency proportional to the stated Boltzmann factor;
thus the various stable and metastable (current carry-
ing) states of the superconductor must correspond to
local minima of the functional F{y(r)}. That is, these
states are solutions of the Ginzburg-Landau equation:

(8/a¢ (r) JF =0.

Consider now a system in a state very near some ¥
which locates a minimum, but not the absolute mini-
mum of F. In order to pass from ¥ to a neighboring
minimum, say ¥/, of lower free energy, the system point
must move through regions of higher free energy and
thus lower statistical weight. In terms of the topography
of F{y}, it is clear that the most probable (least im-
probable) fluctuation which can carry the system from
¥ to ¢/ corresponds to the lowest saddle point, say
¥ (r), between these two minima. The height of the
free-energy barrier at ¢, relative to the minimum at ¢,
determines the rate at which the transition from ¢ to
¥/ can take place.

The point we wish to emphasize is that ¢ (r), being
a stationary point of F, must also satisfy the Ginzburg-
Landau equation (1.1). This criterion for the transition-
nucleating fluctuation has been discussed in more detail
in an earlier paper on the droplet model® and was very
useful in the recent work on critical velocities in helium.?
For the helium problem, it was argued that ¢ (r) must
describe a vortex ring of a size determined by the initial
state of superfluid flow. In a superconductor, however,
it turns out that homogeneous nucleation of resistive
transitions by vortex rings will be appreciable only at
temperatures unobservably close to the critical point
T..° On the other hand, because of the large correlation
lengths which occur in superconductors, it is feasible to
construct superconducting samples which are so narrow
that the linear dimensions of the cross section are small
compared to the (temperature-dependent) correlation
length and the penetration depth. In this case, the
variation of the order parameter ¢ is effectively re-
stricted to one dimension. The saddle-point fluctuation
¥, being confined to a narrow channel, has a smaller
free energy than a bulk fluctuation, and hence gives
rise to an observable resistivity at temperatures ap-
preciably lower than 7. A final advantage of the one-
dimensional geometry is that the Ginzburg-Landau
equation is exactly soluble. We shall therefore confine

(1.1)

7 A similar picture has been discussed by W. A. Little, Phys.
Rev. 156, 396 (1967). Little’s work is very similar in spirit to
ours but differs in several important respects. Specifically, we
differ with regard to the mechanism relating fluctuations to re-
sistivity. We also differ in our descriptions of the detailed nature
of the fluctuations.

8 J. S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967).

? The relevant calculation has been performed by J. W. Wilkins
(unpublished).
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our attention throughout the rest of this paper to this
effectively one-dimensional situation.!

In outline, the program of this paper is as follows.
In the next section we establish the connection between
the steady-state voltage and the rate of fluctuation.
In Sec. 3 we calculate the height of the free-energy
barrier for one-dimensional fluctuations. Some features
of the arguments contained in these two sections are
expanded in three appendices.

Section 4 is devoted to a summary of the quantita-
tive predictions of the theory and a comparison with
existing experiments. The agreement with current ex-
perimental information is not spectacular, the main
discrepancy being that the theory predicts sharper
resistive transitions than have been reported. Ours
is, however, a theory of the homogeneous nucleation
of a resistive transition. The presence of special sites
favoring the nucleation would of course broaden the
transition. This may have been the case in some experi-
mental specimens. We do not, however, discuss in-
homogeneous nucleation in this paper because special
(and less than unique) assumptions about the nature
of the nucleating sites would be needed.

2. FLUCTUATIONS AND RESISTANCE

In this section we shall discuss the character of the
fluctuations required to nucleate resistive transitions
in a superconductor, and establish a relation between
the free energy of these fluctuations and the measured
resistivity.

Our analysis will be based on a Ginzburg-Landau
free-energy functional of the form!

)= [ LW P-aly P+819 1, 21)

which implies a choice of normalization and units for
the order parameter . Since we shall be concerned only
with superconducting samples narrow compared to
the penetration depth and carrying small currents,
the magnetic field generated by the currents is of no
importance and has been omitted in (2.1).22 The

0Tt should be noted that there is a very serious problem of
principle concerning the self-consistency of our phenomenological
treatment in the one-dimensional Jimit. We refer to the papers of
T. M. Rice [Phys. Rev. 140, A1889 (1965)] and P. Hohenberg
[Phys. Rev. 158, 383 (1967)7], where it is shown that the conven-
tional sort of long-range order cannot occur in one or two-dimen-
sional superfluids. It may be argued that our present theory is
consistent with this theorem because it predicts only a smooth
transition in which the resistivity never goes exactly to zero.
We do require, however, that it be possible to define a locally
meaningful order parameter ¢ (r), perhaps analogous to the local
(vector) magnetization in a one-dimensional Heisenberg model.
Wedo not claim tosee any rigorous justification of thisassumption.

11 For a review of the Ginzburg-Landau theory, see P. G. de
Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin,
Inc., New York, 1966), Chaps. 6 and 7.

12In the main body of this paper we work in the gauge in which
no magnetic field is described by no vector potential, as is possible
for the simply connected pieces of superconductor we are con-
sAidering. The neglect of the magnetic field is justified in Appendix
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stationarity condition, Eq. (1.1), may be written
—VY—ap+8 | ¥ [¥=0, (2.2)

as long as the boundary conditions imposed upon ¢
are such that the usual surface integrals vanish. By
making the transformation

V—V —(ie*/fic) A

in (2.1), and looking at the term linear in A, we see
that (for small A) the electrical current density is

g=(e*/it) W*Vy—y V)= (2¢*/f)J.  (2.3)

Here ¢* is the charge of a pair (e¥=2e¢).
The usual uniform constant-current solution of
(2.2) is

Ye=fi exp(ikx),  fi'=(a—F")/8,  (24)

where « is measured in the direction of the current and
k is an allowed wave vector subject to, say, periodic
boundary conditions in the x direction. The current
density (in reduced units) associated with ¥ is

T=kf2=k(a—k)/B. (2.5)

This current has its maximum value at k=k,= (a/3)2,
which yields the well-known mean-field critical current:

Jo=2032/3V3B < (T,—T)%". (2.6)

It is a simple matter to show that, for £<k,, each of
the ¥4’s given by (2.4) locate an isolated minimum of
F{y} in the space of functions ¢ (). That is, the system
must overcome some sort of free-energy barrier in
order to pass continuously from one y; to another.!®
One very general property of the fluctuation in ¢ as it
passes this barrier has been emphasized by Little.
The situation is best illustrated by a picture of the
complex quantity ¢ as a function of «. In particular,
the Y5 given in Eq. (2.4) may be represented by the
helix shown in Fig. 1. The picture has been drawn for
the case ¢(—3L) =¢(%L), where L is the length of the
sample in the direction of the current. The important
point is that, if ¢ is to lose a wavelength—if the helix
is to lose a loop while its ends are held fixed—then the
amplitude of ¥(x) must pass through zero at at least
one place along the x axis. Unlike Little, we shall dis-

18 For k>k, this barrier disappears. A demonstration of this
fact is presented at the beginning of Appendix C.
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cover that the top of the free-energy barrier does not
occur at a ¥(x) which actually vanishes somewhere.
But we shall find it very useful to visualize the current-
changing fluctuations of ¢ as those which annihilate
or create loops in Fig. 1.

It is also useful to visualize the effect of an applied
voltage in terms of the helix in Fig. 1. The order pa-
rameter ¥ must have a time dependence exp(—2iuf),
where u is the chemical potential.® A small voltage
across the sample means that the local chemical po-
tential has a spatially varying part. One thus has the
relation

(2¢/1) AV =(8/0t) A(argy), (2.7)

where AV is the potential difference between two points,
and A(argy) is the corresponding difference in the
phase of ¢. It follows that a constant voltage implies
a steady increase with time of this relative phase. In
Fig. 1, the helix tightens uniformly, and the current
grows.

As is discussed in Sec. 1, a steady state of the super-
conductor should be achieved when the tightening of
the helix due to the applied voltage is balanced, on
the average, by the random loss of loops due to fluctu-
ations. It remains for us to calculate the rate of these
fluctuations. Although we shall not complete this cal-
culation until we have investigated the fluctuations
in detail in Sec. 3, we can learn a great deal from the
following general arguments.

Let us assume that the free-energy barrier opposing
transitions between states Y5 and ¥y_sr/z has a height
8Fy(k). Note, however, that the transition k—k—2x/L
is more probable than the reverse because it is a transi-
tion to a state of lower free energy. Specifically, the free
energy for uniform states is

F{} = L[ (B*—a) fi*+3Bfi'],

where o is the cross-sectional area of the sample.
Because F is already stationary with respect to varia-
tions of f, we have

dF/dk=0F Jok=20Lkfi2=20LJ, (2.9)

so that the difference in free energy between neighbor-
ing states is

8Fy=(dF/dk) (2x/L) =4mal. (2.10)

We can then write the transition rates in the form

Rat <k“’k 21r) aln ( oF, L 8F1>
ate — = )=—exp| —7

L) P\ e 2k
where 7! is some characteristic rate for microscopic
processes and # is the density of conduction electrons.
The prefactor on the right-hand side of (2.11) is sup-
posed to be a rough estimate of the basic rate at which
the system point ¢ moves through its function space,
driven in some unspecified manner by interactions with

(2.8)

(2.11)
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a constant-temperature bath. As we shall see, our final
results will depend only logarithmically on, and thus
be happily insensitive to, the value chosen for this
microscopic rate.

For present purposes, it will be sufficient simply to
take the difference between the two rates given by Eq.
(2.11) in order to obtain an estimate of the rate at which
A(argy) decreases due to fluctuations.* Using Eq.
(2.7), we obtain

%  dwnol | (am) ( 5F0>
Zav= h o),
7 7 O\t TP\ T

From (2.12) we deduce a superconducting resistivity:

AV }mal,h(g‘)e ( BFO)

s=—=—"—sinh [— ) exp | ——).
P19 o g 297 TP\ kT

Here we have introduced a quantity with the dimen-

sions of a current density:

91=2¢ekpT/h,

(2.12)

(2.13)

(2.14)

in order to exhibit explicitly the g dependence of §F,
as given by Eq. (2.10).

One natural, but hardly compulsory, choice for the
characteristic time 7 is the relaxation time which de-
termines the resistivity in the normal state:

pn=m/ner, (2.15)
where m is the mass of the electron. Using (2.15), we
rewrite (2.13) in the form

ps hnleo ( g ) ( oF, )

—= sinh {—)exp | ——=).

o mg 291 ksT
Equation (2.16) is the central result of our theory.

Of special interest is the resistive transition in the
limit of zero current, that is, the g—0 limit of (2.16).

. [ ps WPn20? ( 8F, (5=0))
lim (2) = 270 o (LS I=0) )
by <p> amkaT = kT (2.17)

For tin microstrips of the sort used in the experiments
of Parks and Groff! (=35 X 102 cm™3, ¢22101 cm?,
T.=3.7°K), the prefactor on the right-hand side of
(2.17) is of the order 10", This means that fluctuations
with 8F as large as 40 kp should give rise to observable
resistivities. As mentioned in Sec. 1, the fact that the
resistivity is governed by very large and improbable
fluctuations is an important justification of our use of
a phenomenological model.

(2.16)

3. THE FREE-ENERGY BARRIER

We turn now to a detailed calculation of the saddle-
point fluctuation ¢ («) and its associated free energy.

14 See Appendix B for a more systematic statistical analysis
of the way in which the current decays due to fluctuations.
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Our problem is to find a function y/(x) which solves
the Ginzburg-Landau equation (2.2) and satisfies the
following two criteria:

(1) ¢(x) must be “close to” ¥;(x), as given by Eq.
(2.4), in the sense that F{J} must differ from F{ys}
by only an amount independent of L, the length of the
system.

(2) ¥(x) must locate a saddle point of F(y}, such
that F{y} is nondecreasing as one moves away from
¥ in all but one direction in the function space.

The first criterion assures us that we shall be calcu-
lating intrinsic properties of the system, i.e., that the
free-energy barrier will not become prohibitively large
in the limit of a very long channel. The second criterion
requires that we choose at least the locally optimum
path across the barrier.'®

In general, solutions of the one-dimensional version
of (2.2) can be written in the form

¥(x) =f(x) explip(x) ],

where f and ¢ are real functions of . Substituting (3.1)
into (2.2) and taking real and imaginary parts of the
resulting equation, we obtain

(3.1)

@*f/dx?—f(d$/dx)*+af —Bf*=0, (3.2)
and
dJ/dx=0, (3.3)
where, as in (2.3),
T =f(dp/dx). (34)

The qualitative behavior of the solutions of (3.2-3.4),
and indeed the method of quantitative solution, is sug-
gested by the following analogy with the classical mo-
tion of a particle in a central force field. Let f and ¢ be,
respectively, the radial and angular coordinates of the
position of a particle of unit mass; and let x be the time.
Then the first two terms in (3.2) are the radial accelera-
tion of the particle; and (3.3) is equivalent to the
statement of conservation of angular momentum. In
fact, after using (3.4) to eliminate d¢/dx in favor of J,
Eq. (3.2) can be put in the form

2y =~/ LT+ ke~ 18]
= —(d/df) Uets(f). (3.5)

Here the quantity in square brackets plays the role of
an effective radial potential and includes a centrifugal
barrier. The shape of Ues( f) for J<J, is illustrated
in Fig. 2.

For J<J,, Ue(f) has two stationary points, de-
noted by fo and f in the figure. (For J>J,, these
points merge and then disappear.) In the mechanical

15 We shall not claim to provide a mathematically rigorous
proof that our ¥ is actually the lowest maximum point on all
possible paths joining the initial and final states. As shown in
Sec. 3 and Appendix C, our i seems to be sensible from a physical
point of view; and this leads us to believe that it may satisfy
the much more stringent mathematical requirement.
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analog, circular orbits are possible at the two radii f, and
fo'. These are the two solutions of constant amplitude,
and phase increasing linearly with x, that we find when
we solve Eqs. (2.4) and (2.5) for f;, and % at fixed J.
It is a simple matter to check that it is the mechanically
unstable orbit at fo, rather than the stable one at fy,
which has a lower free energy F, and must therefore
describe the thermodynamically metastable current-
carrying state of the superconductor.

The mechanical analogy at once suggests a non-
uniform solution f(x) which satisfies the first criterion
stated above in that it differs from the uniform solution
foonly within a finite region along the length L. Imagine
a particle performing circular motion in the potential
well of Fig. 2 with an initial radius infinitesimally less
than but arbitrarily close to fo. The particle will spend
most of its time near fo, but, in the course of an arbi-
trarily long interval of time, it will spiral in once to the
point labeled f; and then return to f.

To obtain this solution, we use the conservation of
“energy,” namely that:

d/dx3(df/dx)*+Use( f) J=dE/dx=0.  (3.6)
From the constancy of E we get
_[ &

SN = T

We have required that f=f; at x=0, so that the fluctu-
ation is centered at the origin of coordinates. The value
of E that interests us is

E=Uet:( fo) =Uest( f1). (3.8)

Substituting for Ues from (3.5) and introducing di-
mensionless units according to

fr=(a/B)u,  E=(a?/28)¢,
J=5J.= (4a3/276%) V2], (3.9)
we find

u du

w [ —2u2+2eu— (8/27) 722"

From the remarks of the last paragraph and Fig. 2,
it follows that the cubic in the denominator of (3.10)

(200) V2=

(3.10)

AND V.
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vanishes linearly at #=u=8f1*/a and quadratically at
u=uy=0fe?/c. Thus the denominator in (3.10) is

[ (u—1) (so—) 2 ]2,

Comparing this form with (3.10), one obtains three
equations,

2%0+u1=2, M02+2M0u1=2€, u1u02= (8/27)]2,

(3.11)

which determine the three quantities u, #;, and e in
terms of j=J/7,.

Once the denominator in (3.10) is expressed in terms
of uo and u; as just described, the integral is elementary
and leads to the result

u(x) = (B/a) f*(x) =uo—A sech?[ x(FaA)2], (3.12)
where A=uy—u, and satisfies
(244)2(1—A4) =47, (3.13)

as may be deduced from Egs. (3.11). Equation (3.12)
describes a solution which is identical to the uniform
solution #, over almost all of the sample and which
carries the identical current. In a region near x=0 the
amplitude diminishes and, by virtue of Eq. (3.4), the
phase varies more rapidly with position. It is plausible
that, from this state of locally diminished amplitude,
the system will run downhill in free energy through
a configuration in which the amplitude vanishes some-
where, and finally will achieve the configuration in
which one less loop in ¢ occurs across the length L.

A more detailed picture of how the transition occurs
at the saddle point may be obtained by examining
F(¢} in the neighborhood of . Such an analysis is in
fact necessary in order to verify that (3.12) satisfies
the second criterion stated at the beginning of this
section. Because the mathematics is lengthy and only
indirectly relevant to our final results, this analysis
has been relegated to Appendix C. It turns out—not
unexpectedly—that the saddle point will satisfy the
second criterion as long as the width of the channel is
less than the temperature-dependent correlation length.

Before inserting (3.12) into (2.1) to compute a free
energy, we must pay some attention to the question
of boundary conditions. If the fluctuation-induced re-
sistivity is indeed an intrinsic property of the system,
then the boundary conditions imposed on ¢¥(x) should
have little effect on the physical predictions of the
theory.® We shall assume that the fluctuation rate
which interests us is the same as that which determines
the spontaneous decay of current in a very large super-
conducting ring, and shall therefore apply periodic
boundary conditions. We believe that this assumption
is justifiable in situations where a voltage is imposed
across the superconducting sample by external (normal)

s However, experimentalists should be wary of boundary effects

such as nucleation of current-reducing fluctuations at a normal-
to-superconducting interface.
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circuitry. According to the discussion in the last section.
the phase difference across the sample is determined
as a function of time by the applied voltage. The
time in which a fluctuation occurs, being an atomic
time, is much smaller than the interval between fluc-
tuations, which is related to the voltage as in Eq. (2.16).
Thus it seems reasonable to assume that the phases at
the end points of the sample remain fixed for the dura-
tion of a fluctuation.

Because the phase increases more rapidly as the
amplitude decreases, the A¢ associated with the lo-
calized amplitude fluctuation, Eq. (3.12), will not be
the same as that which would occur for the uniform
state with the same current. This total phase difference
may be computed by writing

L/2 L/2
Ab= f da(do/dx) =T f Q2  (3.14)
—L/[2 —L/[2

where we have used (3.4). It is convenient to express
this integral in terms of the variables introduced in
(3.9) and to write it in the following form:

273 [H2dx JBL 2JB (L2
pg= 28 [P BT TP
a 0 u auy 04 0

(w1—ugt) dx

_L,EI_‘ ' 2JB /’"0 du

aup Tuooz(20z)”2 w u(u—u)'?

JL _
=f0—2+2 tan™! [

Here we have used Eq. (3.10) to transform the variable
of integration from x to #. The quantity A appearing
in this formula is to be obtained from Eq. (3.13).
Equations (3.11) have been used in deriving the final
form of this result.

The first term in (3.15) is the phase change that
would occur if the uniform portion of ¢(x) far from the
amplitude fluctuation extended over the whole length
of the sample. The second term is the phase change
associated with the region of fluctuation. Note that
this second term is positive and, according to (3.13),
varies between = and zero as J goes from zero to J,.
If we wish to compare this J(x) to a uniform state
with the same Ag, i.e., the same number of loops in the
helix, then it follows that ¢(x) must have a slightly
smaller current J than this uniform state in order to
compensate for the increased phase change in (3.15).

To be specific, let %; be the wave number of the uni-
form state with current J; and the same A¢ as ¢; that
is, Ap=Fk;L. Also identify ky=J/fs? as the wave number
appropriate to the uniform part of . Then, equating
A¢ for the two states, we have

1/2
2(1—A)] . (3.15)

h=Fki—hko=(2/L) tan~! [ ]m, (3.16)

2(1—4)
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which, in turn, determines a current decrement 8=
Ji—J. We conclude that the current-reducing fluctua-
tion starts with the uniform state k;, passes through ¢
with a partially reduced current, and finally reaches
ki—(2w/L) after ¢ has passed through zero some-
where. The energetically most economical current-
increasing fluctuation travels the same route in reverse.

We may now compute the free-energy barrier for the
transition k;—k;— (2w/L). Since both the initial uni-
form state and ¢ are solutions of the Ginzburg-Landau
equation, we may use (2.2) to simplify the integrand
in (2.1). This yields, quite generally,

F=—3(80) f daf. (3.17)

The height of the barrier is therefore

8F = —1(80) f da[ fi(x, J) —f#(J5)], (3.18)

where f; is the constant amplitude f; at k=%, as given
by Eq. (2.4). Because 6% is of order L1, we need keep
only terms linear in §k. We make the expansion

f&(Ts) =ft(T) 4 (8fo*/Oko) Sk + -
From Egs. (2.4) and (2.5), we have
Of/0ko= (d/dko)[ (a—ke?) /81 =—4T /B, (3.20)

so that 6F takes the form

(3.19)

5F =1 (B0) f ol fA ) —f4(x, T) ]

1/2
—Uotan‘l[ ] . (3.21)

Here we have used the explicit expression for 8k given
in (3.16). Finally, we may substitute (3.12) to evaluate
the integral in (3.21). The integration is straight-
forward, and after a few manipulations involving Egs.
(3.11), we obtain

0F = (8v2/3) (a?/28) (o/v/@) {v/A—(v/3) (T /)
X tan~[3A/2(1—A) T2},

2(1—A)

(3.22)

A useful way of expressing the prefactor in (3.22)
in terms of interesting experimental quantities is to
note that the advantage in free energy per unit volume
enjoyed by the superconducting state (when there is
no current) relative to the normal state, g,—g,, is
(a?/2B). Also, in our units the temperature-dependent
coherence length £(T) is a~1/2. Thus

0F = (8v2/3) (gn—g,) o£(T)

X{vAa=(VHU/Jo) tan'[34/2(1—A) 2}, (3.23)
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This expression shows that the volume of the fluctuating
region is the product of the cross-sectional area and the
coherence length. Within this region the system ap-
proaches the normal state, in agreement with Little’s
conjecture.’

In order to complete the derivation of Eq. (2.16),
we must consider the current-increasing transition,
ki— (2m/L)—k;. The free-energy barrier to this transi-
tion, say 6F’, must be larger than 6F by just the amount
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calculated in Eq. (2.10):
OF' =8F 4o
=0F+ (16w /3V3) (02/28)a2(J /T.), (3.24)

where we have used Eq. (2.6) for J, in order to bring
this expression into a form comparable to (3.22). Then,
comparing (3.22) and (3.24) to the exponent in (2.11),
we have

0Fo= (8v2/3) (a?/28) (o/~/e) {v/A+~/(3) (J/T.) (3r—tan—1[3A/2(1—A) J42) }

= (8v2/3) (g2 —80) o£(T) {v/A+/(3) (§/Je) (3r—tan'[3A/2(1—A) J2) }.

Equation (3.25) and Eq. (3.13) for A, and Egs. (2.14)
and (2.16) constitute a complete summary of our
theoretical results.

4. INTERPRETATION

As a first step in the interpretation of this theory,
we examine the resistive transition in the limit of zero
current. From Eqs. (2.17) and (3.25) we have

ps(§—0)/pn=exp[y—(8v2/3kT)(gn—g:)ot(T)], (4.1)

where

v= In(i*n2e?/AmksT) (4.2)

is the number which we estimated in Sec. 2 to be about
40 for typical experimental microstrips. We define
T.—AT, to be the temperature at which p,=<p,. The
quantity AT, always will be very much smaller than T,
so that we may replace the explicit T in (4.1) by T..
The remaining temperature dependence comes from

(gn—8:) E(T) = (AT)*2, (4.3)
where AT=T,—T. Thus we can write

ps(0)/pn==2 exp{v[1—(AT/AT.)*"]}.

The total resistivity of the system should be obtained
from (4.4) by considering the superconducting electrons
and normal electrons (excitation gas) as if they were
connected in parallel. For AT> AT, the superfluid very
nearly shorts out the circuit, and p=2p,. For AT<AT,,
on the other hand, p,>>p, and p=Zp,.

The explicit formula for AT, can be obtained from!

gn—gs=[47%/7¢(3) IN (0) ks*(AT)?
=4.7N (0)kp?(AT)?, (4.5)

where V(0) is the density of states at the Fermi surface.
To evaluate N(0), one uses the coefficient of T in
the normal specific heat, 27%kz2N (0). The correlation

(4.4)

7 For example, see A. A. Abrikosov, L. P. Gorkov, and I. E.
Dzyaloshinski, Methods of Quantum Field Theory in Statistical
Physics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1963), p. 306, Eq. (36.9). The formula quoted by de Gennes
[Ref 11, p. 173, Egs. (6.3) and (6.5)] seems to be in error by
a factor of ¢ (3).

(3.25)

length is given by

E(T) =0.85(&To/AT) ", (4.6)

appropriate in the case of short mean free path . The
temperature-independent coherence length is

Eo=0.18(ﬁ'l)p/kBTc), (47)

where r is the velocity of electrons at the Fermi sur-
face. Finally, we have

(AT/T.)¥?=0.437y[372N (0) k2] [kp/o (&) V2T, ].
(4.8)

To compare these predictions with the results of
Parks and Groff,! we choose / to be the thickness of the
film, 580 A. For tin, £222.3X 10~ cm, and the specific-
heat coefficient is 1080 erg/deg? cm?. Using y=240, we
obtain AT.=24.3°X10~% °K, which is to be compared
with the experimental result of AT, between 15 and
20X10~% °K. According to Eq. (4.4), our theoretical
transition should have a width of about 2AT,/3y=2
10 °K, whereas the experimentally observed transi-
tions are roughly 50 times broader than this.

The discrepancy in the value of AT is actually more
serious than it looks. It cannot be ascribed to uncer-
tainty in the fundamental fluctuation rate discussed

AT
AT¢

Fi1c. 3. Qualitative curves of constant ps/p, in the
current-temperature plane.

18 P. G. de Gennes, Ref. 11, p. 225, Table 7-1.
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F16. 4. Graph of j=J/J.
as a function of AT/AT, ®
for ps=pn and y=40.

j2u/

following Eq. (2.11). In order to increase AT, by the
required factor of about 4, we should have to in-
crease v from 40 to 320, which means increasing exp(y)
from about 107 to 10, It seems most likely to us,
therefore, that the observed resistivities may be gov-
erned by inhomogeneities that nucleate fluctuations
at relatively low activation energies. Such inhomo-
geneities also might tend to broaden the transitions.

The complete information contained in Eq. (2.16)
is best displayed as a series of contours for constant
ps/ o plotted in the g-versus-T plane. Qualitative fea-
tures of such a plot are shown in Fig. 3. Note that, for
all values of p;/p,, J(T) approaches g.(T) « (AT)3?
as AT becomes large compared to AT,. The curves for
observable values of p,/p, all lie within a very narrow
region, reflecting the fact that the resistive transition
is relatively sharp. In fact, one can choose one of these
curves, say ps=ps, to represent the critical current as
a function of temperature, with the understanding that
the transition is actually slightly smeared out in the
immediate neighborhood of this curve.

In constructing contours of constant p,/py, it is con-
venient to introduce a dimensionless variable related
to the temperature:

y=(AT/AT,)%2, (4.9)

In terms of y and the quantity j=¢/g. introduced
earlier, the combination of Egs. (2.16) and (3.25)
becomes

ps/pn=(\/6/wYyj) sinh(wyyj/+/6) exp(y—b6Fo/ksT),

(4.10)
where

8Fo/kT.=vyv/ A+ (1vyj/A/6)

X {1—(2/7) tan~1[3A/2(1—A) 2}, (4.11)

NARROW SUPERCONDUCTING CHANNELS 505
1 4 1 L 1 1 | 2 |
2 4 6 8 10

AT/ATg —

and A is a function of j alone. Taking the logarithm of
both sides and rearranging terms, we obtain

yG( .7) —1=v ln(\/ﬁpn/zﬂpsfy)

4yt In[1—exp(—2myjy/+/6)], (4.12)

where
G(j) =vA—(2j/+/6) tan[3A/2(1—A) 2. (4.13)

Equation (4.12) has been written in a form which sug-
gests a suitable iterative method of solution. As a first
approximation, the entire right-hand side may be set to
zero; and the results will be accurate to about 59,
throughout the range of interesting values of y and j.
More accurate solutions may be obtained by iterations
including only the first term on the right-hand side.
The last term is negligible except in the region j Zy 12
21072, which is probably too small to be seen experi-
mentally and does not show up on the graph of our nu-
merical solution. (In fact, j vanishes with infinite slope
in this region.) The graph of j versus AT/AT, for
pn=ps and =40 is shown in Fig. 4.
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APPENDIX A: THE MAGNETIC FIELD

Magnetic fields have been ignored in the main body
of this paper. Their neglect is justified here. We show
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that the magnetic field generated by a supercurrent
flowing in a channel narrow compared to the penetra-
tion depth modifies the order parameter insignificantly.
We also establish the perhaps less obvious proposition
that the magnetic-field energy makes a negligible con-
tribution to the free-energy barrier opposing the nu-
cleation of a state of lower current.

The free-energy functional (2.1) is modified by the
inclusion of a magnetic field H, described by a vector
potential A(V x A=H), and acquires the form

F0), A0} = [ dil | (9= (ie/m0) A I

|y 438 ¥ [T (50 [ ar(vxA) (A1)

The requirement of stationarity with respect to
variations of ¢ and A leads to well-known equations

(v — (e*/fio) AV —op+B | ¥ [2Y=0, | (A2)

Vx (VxA)=4n/c) (2¢*/)J, (A3)
where the current density J is given by
=3[V vy —yvy*— (2e*i/fic) A [ ¥ 1. (A4)

We note in passing that the current J is only con-
served at the stationary points of (A1). [V+]J=0 only
by virtue of (A3,.] Since our analysis requires the cal-
culation of F only at stationary points, the nonconser-
vation of J away from these points does not trouble us.

We shall establish the unimportance of the mag-
netic field for the case of interest by making an iterative
solution of (A2-A4) about the solution (2.5) used in
the text. In order to keep geometrical complications to
a minimum we shall consider an infinite plate of thick-
ness 2d<<\(T), £(T). We take the y axis to be normal
to the plate, which fills the region —d<y<d, and
imagine that the current flows in the x direction, i.e.,
J=J(y). The magnetic field is then in the z direction,
H=H_,(y). We choose the vector potential to have
only an x component, A=A4,(y). The zeroth-order
solution of (A2-A4) is

A©=0; yYO=fexp(tkx), [fi’=(a—F)/B];
JO =Ff,2, (A3)

In next order we substitute J© into (A3), which equa-
tion reduces to

(d24/dy?) = — (47 /c) (2e*/h)T©@
and has the solution
AW = (4me*/hc) T Oy (A7)

We substitute (A7) into (A2) and linearize about
Y=y¢©. Writing ¢ =¢®(14-¢) we obtain

— (d%/dy?) +2(a—k?)e= (4ek/hc) AW
— (41 LAV F=h(y),

(A6)

(A8)
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where we have been free to chose e real and a function
only of y. The boundary condition™ to be satisfied by
€ls

de/dy |y—1a=0.

A complete set of states obeying this boundary condi-
tion is made up of

(A9)

e (y) =cos(nrx/d), n=0,1,2,---. (A10)

Making an expansion of the form e(y) =D ,Cuen(),
we get
d

Co= (24Ey) 1 [ W)y

d
Com@EN [ costumy/hs)dy,  n=1,2, -,
—d

(Al11)
where %(y) is the inhomogeneous part of (A8) and

En=wr/@)+2(a—F), n=0,1,2,---. (A12)

Now, we are interested in k2 Se/3=(3£2(T) ). Con-
sideration of (A11) shows that for d<¢(T), Cp is the
largest coefficient, because | Ci/Co |« (d/£)2 This ex-
presses the obvious fact that a variation of the mag-
nitude of the order parameter cannot take place in a
distance small compared to £(7"). The term in (AS8)
linear in the vector potential may also be seen to make
the largest contribution to Co. One then finds

Cox (/M2 E(T) d2T©. (A13)

The criterion for the smallness of the correction [Co<k1]
is thus
JOL (B2 /e*?) [£(T) d* ]

Introducing the mean-field maximum current given
by (2.6) and the penetration depth, which in the units
we are using is given by

(A14)

A= (8we*2a/h2c*B) 12, (A15)
one finds that (A14) may be expressed as
JOL(N/d),. (A16)

For d<, (A16) is always satisfied, showing that the
correction to (AS5) is negligible.

Finally, we examine the contribution of the field
energy to the height of the barrier discussed in Sec.
3. The inductance of a thin wire per unit length is
(2¢»)7(14K), where K is a factor which depends
weakly ' (logarithmically) on the dimensions of the
specimen. The field energy associated with a current
density = (2¢*J /%) is then

Fy=3L[(1+K) /20126 /)% (ALD)

Here L is the length of the sample, and ¢ is the cross-
sectional area. At the midpoint of the fluctuation J is
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decreased by 87, where from (2.5), (3.16), and (3.11),
LT =L(3J/ok) k= (a/B) (3uo—2) Lok
= (2a/B) A tan™1[34/2(1—A) ]2,

The change in field energy may be expressed in terms
of the penetration depth (A16) and the quantities dis-
cussed above (3.23) as follows:

(14+K) o*

J
—_— — —_— — —1
S N (gn—gs)E(T) JcA tan [

(A18)

34 ]w
21-8)] -
(A19)

0Fy=

This expression is to be compared with (3.23). In the
region where fluctuations are important, J<J. and
A—1. The quantity (A19) is then seen to be smaller
than (3.23) by a factor (¢/A?)(J/J.). Since by hy-
pothesis the cross-sectional area o is smaller than \?
(A19) represents a small correction to (3.23).

APPENDIX B: DERIVATION OF EQ. (2.12)

Equation (2.12) may be derived more systematically
than in the text by setting up and solving a master
equation for the time rate of change of A(argy)=~L.
To couch the argument in statistical terms, define
P(k, t) to be the probability that the system is in state
¥, at time £. Let T'(k—*k') represent the rate at which a
system in state ¥, makes transitions to y;.. Then the
master equation is

(ANTILP(k, t4-AL) —P(k, 1)]
=T (k+2x/L—k)P(k+27/L, t)
+T(k—2w/L—k) P(k—27/L, )
—~T(k—k+27/L)P(k, t)
—T(k—k—2w/L)P(k, 1). (B1)
Here we have assumed that only the transitions

k—k==(2w/L) are allowed.
From Eq. (2.11), we have

T(ke2b—2r/L) = (oLn/7) exp(—06F/ksT+5F/2ksT).
(B2)

It is important to note that the exponent in (B2) is
a slowly varying function of % in the sense that it does
not change appreciably over intervals of order L.

At this point we must make some ansatz for P(k, ¢).
In thermal equilibrium the states of the statistical
ensemble are distributed with probability

Poexp[—F(k)/kpT],

where the free energy F(k) is proportional to L.
Because the distributions of interest in our nonequilib-
rium problem should be qualitatively similar to the
equilibrium distribution, we write

P(k, t) =exp[ Ls(k, t)]. (B3)
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The function s(k, ) is assumed to be slowly varying;
but note that P may vary rapidly because of the ex-
plicit L in the exponent.

Inserting (B2) and (B3) into (B1), and dropping
terms of order L in the exponents, we obtain

(LAY {exp[ Ls(k, t+At) —Ls(k, £) ]—1}
= (on/7) exp(—0F/kpT){exp(6F1/2ksT)
X [exp(2w(ds/dk) ) —1]+exp(—8F1/2ksT)
X[exp(—2w(ds/dk))—17}. (B4)

In the limit Ai—0, the left-hand side of (B4) becomes
simply ds/df. To make a similar simplification of the
right-hand_side, note that the most probable value
of &, say k, occurs at ds/dk=0. Restricting ourselves
to values of & near k, we may linearize the right-hand
side. The resulting equation is

3s/0t=T'(k)ds/ok, (BS)

where
T(k) = (4won/7) exp(—0F/kpT) sinh (8F/2ksT).
(B6)

The maximum of s(k) at &, of course, locates a very
sharp peak in P(%, t). Equation (BS) can now be used
to determine how this peak moves as a function of time.
Suppose that the peak moves from & to £ +Ak in a
time At. The criterion ds/dk=0 at % implies

A(8s/dk) = (9%s/0k?) A+ (9%s/0kot) At=0.  (B7)
But, from (BS) we find that
9% /0kat=T'(k)d%/ k2, (B8)
(again using ds/0k=0 at k), so that
(dk/dl) sruos. = —T (k). (B9)
In these terms, Eq. (2.7) is
(2e/R)AV = — L(dk/dt) s1uet.= LT (), ~ (B10)

which is the same as Eq. (2.12).

APPENDIX C: PROPERTIES OF THE
STATIONARY POINTS OF F{y(r)}

Several of the arguments in the main text of this
paper depend on mathematical properties of the func-
tional F{y(r)} in the neighborhood of its stationary
points in the function space. This Appendix is devoted
to an investigation of these properties.

We consider first the neighborhood of the uniform
stationary points, ¥, described by Eq. (2.4). Let the
function »(r) represent a deviation from the point
Yi(r). That is,

(1) =fi exp(ik-1)+»(r). (C1)
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Then expand F{y} out to terms quadratic in »(r):
Fiy(r)} =F Y} +Qfv(r)}+---, (C2)

where
00} = [ dr(| Vo t=k | P (a—F)

X[v exp(—ik-r)+v* exp(ik-1) P}. (C3)

Q{»} is a quadratic form in »(r) whose eigenvalues are
the characteristic curvatures of F{y} at the point
Yi. In order for F to have a local minimum at ¥, all
of these eigenvalues must be positive.

The relevant eigenvalue equation is

—V2y— k2 (a—F) [v+v* exp(2dk-1) ]=Ns,

\ being the desired eigenvalue. This equation is simpli-
fied by writing
y=exp (k1) [u(r) +ius(r) ], (C5)

where %, and u, are both real functions. Taking the
real and imaginary parts of (C4), we obtain

— V232K Vie+2 (o — k%) 11 =Ny,
—V2uy— 2K+ Vg =Nua.

(C4)

(C6)

These coupled equations have plane-wave solutions
of the form

m=Re[a; exp(ip-1)],  ue=Re[as exp(ip-1)],

(C7)

and the resulting secular equation yields the eigen-
values

A= pta—Bt[(a—k) +4(k-p)P]2. (C8)

It is a simple matter to check that A, is non-negative
for all p unless #2>3a. Thus the stability condition is
identical to the criterion for the Ginzburg-Landau
critical current.

We now must perform a similar analysis in the neigh-
borhood of the stationary point ¢ (x) discussed in Sec. 3.
In analogy with (C1), we write

Y(r) =9 (x) (1), (C9)

where x measures distance in the direction of the cur-
rent. We shall consider the full three-dimensional vari-
ation of ¥ in order to test our assumptions concerning
one-dimensional variation of the saddle-point fluctu-
ation ¥ (x).

Just as in Egs. (C2) and (C3) above, we insert (C9)
into F{y} and examine the terms quadratic in »(r).
The eigenvalue equation analogous to (C4) is

—V2—ar+28 | ¥ |2 v+BPF =Ny,

Because ¢ is a function of x only, Eq. (C10) will have
solutions of the form

(C10)

v(r) =7(x) cos(gy) cos(g:2), (C11)
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where ¢, and ¢, are components of a transverse wave
vector q whose allowed values are determined by the
boundary conditions imposed at the sides of the
sample. Inserting (C11) into (C10), we have

—d%/d?—ap+28 | § |2 5+BY* =es, (C12)
where
A=e+¢. (C13)
The first step in solving (C12) is to write
7 (x) = (x)w(x), (C14)

so that the eigenvalue equation becomes

—dw/dx?—2(d/dx Ing)dw/dx+B | § |2 (wt+w*) =ew.

(C15)
From Egs. (3.1) and (3.4), we have
[ ¥ [P=1*(x) (C16)
and
d/dx Inf=f(df/dx)+i(J/f*(x)).  (C17)
Then, writing
0 =W+ 1we, (C18)

with w; and w, both real, Eq. (C15) becomes two
coupled equations in real variables:

dwy 2 df dun 2J dw.
—_— L 1) T =
— +fdx dx+ Bj“’wri—f2 T = (C19)
and
w2 df dwe 2T d
T Ldfdwe 2dwm_ o)

dx®  fdx dx  f? dx
The function f(x) to be used in these equations is that
given in Eq. (3.12).

We have not succeeded in solving Egs. (C19) and
(C20), although an analytic solution may very well be
possible. We are able, however, to find exact solutions
in the limit J—0. Remember that the fluctuation
¥(x) extends over a coherence length §(7T) a2
independent of the current J. Thus the limit J—0 is
appropriate whenever £(7°) is much smaller than the
wavelength of the current-carrying state ;. In this
case we have

f(x) = (a/B)"2 | tanh(}a) "2 |.
Equations (C19) and (C20) become
— d20y/d?— (4/sinh2¢) (dwy/dS) +4(tanh?) w =€y,

(C21)

(C22)
and
—d%wy/di2— (4/sinh2{) (dws/dE) =€'ws,  (C23)
where the new independent variable is
§=(ge) 2, (C24)
and
€=2¢/a. (C25)

The most important simplification is that (C22) and
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(C23) are no longer coupled and may be treated sepa-
rately.

The simpler and, in fact, more interesting of the
equations is (C23). To solve this, we make the trans-
formation

{= sinh¢, (C26)

so that (C23) becomes
(142) (dPws/d2) + (142/8) (dws/dt) +€we=0.  (C27)

The solutions of (C27) are finite polynomials in £,
multiplied by either £ or #. The only two acceptable
solutions are

wp,_1=1"1= (sinh{) 1, €=—1, (C28)
and
0g,0= CONS, e€=0.

(C29)

All other solutions contain higher powers of #, and,
therefore, do not belong to the function space because
the corresponding »(r) is not normalizable. The eigen-
state wso given in Eq. (C29) is also not a localized
function but is normalizable because, like the plane
waves in Eq. (C7), it remains finite at infinity. Clearly
(C29) locates the bottom of a continuum of stable
deviations # with eigenvalues starting at e=0.
Equation (C28) exhibits the only eigenstate of Eq.
(C12) which has a negative eigenvalue. The corre-
sponding unstable deviation from ¢ has the form

#(x) < if(x) csch(3a)l/2x, (C30)

which must describe the path followed by ¥/(r) in pass-
ing over the peak of the free-energy barrier at §. To
understand the implications of (C30), note first that
7 is localized in the region of the fluctuation and,
within that region, is everywhere ninety degrees out
of phase with . Also note that . changes sign at the
center of the fluctuation, x=0, and that 7 remains
finite there only because ¥ vanishes. Finally, note that
¥ changes phase by = across the fluctuation, as deter-
mined by Eq. (3.15).

The above observations enable us to draw a sequence
of functions ¢ illustrating the steps in the transition
between uniform states at, say, k=2x/L and k=0.
In Fig. 5 we show real and imaginary parts of ¢ for
five different stages in the transition. In accord with
the arguments in Sec. 3, we have drawn ¢ with a wave
number ky=w/L everywhere except in the region of
the fluctuation, labeled £(7T"), where the phase change
of m takes place. The functions labeled J=-» represent
¥, respectively, just after and just before it passes over
the saddle point at . Within £(7°), we have, to a good
approximation,

¥(x) = (a/B)'? tanh (o) V2x, (C31)
and

#(x) < 1 sech(3a) V2, (C32)

so that 7 has exactly the desired effect of bringing ¢
through the « axis.
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F16. 5. Successive steps in the continuous deformation of ¢
as it makes the transition from the uniform state with k=2x/L,
through J, to the state with 2=0.

We return now to Eq. (C22), which determines the
eigenstates of (C15) (for J=0) which are in phase
with . To solve (C22), we write

wy=sech{v(¢), t=sinh{. (C33)
Then (C22) becomes
(1+2)(d/de)— (t—2/8)(dv/db)+ (€ —3)v=0.  (C34)

The solutions of (C34) are similar to those of (C27),
but there are now three acceptable solutions:

w1,0= (cosh{ sinh{)—1, ¢=0; (C35)
wy,3= (cosh{)1, €=3; (C36)
and
wi,e= (cosh{)7![ (sinh{)~'—2sinh¢7],  &=4. (C37)

Equation (C35) is of some interest because it ex-
presses the translational symmetry of the problem. The
fluctuation ¥ can be placed anywhere along the # axis
with no change in energy; thus deviations of the form
Axd/dx must be—and are—exact eigenstates of (C12)
with e=0. Equation (C35) is just a special case of this
general observation.

Equation (C36) describes a stable localized distortion
of ¢ which is of no special concern to us. The deviation
described by (C37) is not localized, however, and must
represent the bottom of a second continuum of stable,
plane-wave-like fluctuations. Note that the two con-
tinua, starting at e=0 [Eq. (C29)] and e=2a [Eq.
(C37)] correspond exactly to the two continua of
states determined by Eq. (C8) with 2=0.

Finally, we must consider the transverse fluctuations
described by Eq. (C11). Since only w3, in Eq. (C28)
has a negative eigenvalue, it is the only state that need
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be considered in looking for unstable transverse devia-
tions from ¢. Thus we have, in Eq. (C13),

N (C38)

Let dmax be the largest linear dimension of the sample
perpendicular to the direction of the current. The
Ginzburg-Landau boundary condition is that ¢ have
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zero gradient normal to a surface through which no
supercurrent flows. Thus the smallest allowed ¢ other
than zero is 7/dmax, and this mode will be unstable if

Amax>m(2/0) 2=7V2E(T). (C39)

Equation (C39) is our criterion for a superconducting
channel to be effectively one-dimensional.
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Results of electron-tunneling measurements on evaporated films of fcc lanthanum and dhcp lanthanum-
lutetium alloys are presented. The ratio of the zero-temperature energy gap to the temperature at which the
energy gap vanishes for both the pure lanthanum and lanthanum-lutetium alloy samples varied from
3.41 to 3.58. If one fits the lowest-temperature data for the energy gap with a curve of the BCS temperature
dependence, the values at intermediate temperatures fall below the weak-coupling BCS prediction. The
conductance maxima for the (pure La)-Al,Os-Al diodes are larger than predicted by the weak-coupling
BCS theory. The conductance maxima for the lutetium alloy samples are more nearly equal to the weak-
coupling BCS values than are those of the pure samples. They were not significantly altered by the presence
of small zero-voltage anomalies. Hence zero-voltage anomalies are not enhanced at temperatures below
the superconducting transition temperature. No change in conductance as large as 0.19, was observed
which could be associated with the second energy gap predicted by the multiband-superconductor theory
of Kuper, Jensen, and Hamilton. Kondo’s multiband-superconductor theory is consistent with the experi-
mental results. It is shown that if the f band in Kondo’s theory is approximately 20 meV or more higher
than the Fermi level, then Kondo’s theory reduces to a single-parameter theory having a gap equation
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identical in form to the BCS gap equation.

I. INTRODUCTION

HERE has been considerable speculation concern-

ing the mechanism for superconductivity in lan-
thanum.'—2 Similar elements such as scandium, yttrium,
and lutetium are not superconducting down to 0.2°K
while lanthanum is superconducting at around 6°K.
It has been suggested that the Cooper pairs can make
transitions to nearby f states and that these transitions
are responsible for lanthanum’s relatively high transi-
tion temperature.

Electron-tunneling measurements can provide infor-
mation to test these theories. Previous measurements?
gave an anomalously low ratio of the zero temperature
energy gap 2A(0) to transition temperature k7, of
1.6540.15. The measurements on face-centered cubic
(fcc) lanthanum films and double hexagonal close-

1]. Kondo, Progr. Theoret. Phys. (Kyoto) 29, 1 (1963).

2 C. G. Kuper, M. Anthony Jensen, and D. C. Hamilton, Phys.
Rev. 134, A15 (1964).

3D. C. Hamilton and M. Anthony Jensen, Phys. Rev. Letters
11, 205 (1963).

1A, S. Edelstein and A. M. Toxen, Phys. Rev. Letters 17, 196
(1966).

packed (dhcp) lanthanum-lutetium alloy films reported
here give values for this ratio varying from 3.41 to
3.58. This value is in the range expected on the basis
of BCS theory. The difference between the two results
is due to sample preparation and will be discussed
in Sec. II. Hauser’s measurements® on evaporated
lanthanum films are in reasonable agreement with
those reported here, but the values he has obtained
for the energy gap are smaller. Recently, Levinstein
el al.b have performed measurements on bulk samples
using the technique of point tunneling. Their aver-
age value of 2A(0)/kT, was 3.7, though they meas-
ured values for the ratio as low as 3.3. Section II
describes the method of sample preparation and meas-
uring technique, and gives the experimental results.
Section III discusses the results in terms of the multi-
band-superconductor theories. In particular, it is shown
that Kondo’s theory reduces to a single-parameter the-
ory (like the BCS theory) if the f band is not too close
to the Fermi level.
5 J. J. Hauser, Phys. Rev. Letters 17, 921 (1966).

¢ H. J. Levinstein, V. G. Chirba, and J. E. Kunzler, Phys.
Letters 24A, 362 (1967).



