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Conditions for Bound States in a Superconductor with a
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Using analytic continuation techniques recently developed for the normal-metal Kondo eGect, we examine
the structure of Suhl's scattering amplitudes in a superconductor. It is found that there are no bound states
(poles in the energy gap) unless the Kondo coupling is stronger than the Cooper pairing force, i.e., T~& T,&.

The positions of the bound-state poles are given as a function of coupling strength and temperature. The
poles always stay on the real axis.

I. INTRODUCTION
" T is well known that a magnetic impurity in a normal
- - metal causes resonant spin-dependent scattering
of conduction electrons at low temperatures. ' The
resulting localized variation in spin density lowers
the ground-state energy of the system. This phenom-
enon is often referred to as a bound state, ' although
scattering-matrix theorists prefer to reserve that term
for single-particle states corresponding to a real energy
not lying in a continuum. ' In the following, we use the
words "bound state" in the latter sense only. Recent
theoretical work on magnetic impurities in superconduc-
tors45 suggests that here the situation is clear cut-
switching on the interaction potential can cause the
scattering matrix to have a pole in the energy gap.
This is a bona 6de bound state from any point of view,
analogous, for example, to that associated with a single
acceptor impurity in a semiconductor.

Recently, one of us has generalized Suhl's equations
to the superconducting case, ' and from an examination
of the singularities of the scattering amplitudes certain
conclusions about the existence of bound states were
drawn. Unfortunately, same points concerning the
analytic structure of the amplitudes involved were
treated wrongly, 6 and the corrected treatment given
below yields quite different criteria for the existence of
bound states. The methods used in the present paper
were first developed by one of us' to deal with Suhl's
equations in a normal metal, but formally the solution
for a superconductor is almost identical. The sheet
structure of the singularities diQers in an interesting
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way from the normal case, as explained in Sec. 2;
however, it goes over smoothly to the normal configura-
tion as the gap becomes zero.

Physically, the conclusions reached are that there
is no bound state until the Rondo temperature T~
(T~=(2y/s)De 'I&~, y=i.78, a measure of the im-

purity binding strength] reaches T,o, the superconduct-
ing transition temperature. As TE. increases through
T,o, two poles enter the physical sheet symmetrically at
opposite ends of the gap and move into the gap. This
seems physically reasonable because the magnetic pair-
ing force is, loosely speaking, competing with the Cooper
pairing forces.8

One amusing feature is that as T~ is further increased,
the poles move towards the center of the gap and then,
for zero temperature, remain coincident there over a
6nite range of T~. This is a reQection of the Fermi func-
tion, and except for a single value of Tx [i.e., T»=
T,oexp(-,'~43)] raising the temperature causes the
poles to separate, the separation being linear in T for
small T.

For very high values of Tz, the poles move asymp-
totically towards the ends of the gap, each pole ap-
proaching the end at which the other pole originated.
For no values of T~ do the poles move off the real axis.
However, if the BCS density of states is "rounded
oG" as it would be in a real alloy with magnetic im-

purities, for sufficiently high TE., the bound-state poles
go beyond the end of the gap onto the unphysical sheet,
causing resonance scattering in the continuum. The
precise form of the solution in this case depends strongly
on the detailed shape of the assumed density of states,
and we have so far been unable to extend our analysis to
this case in a satisfactory fashion.

2. SOLUTION OF DISPERSION EQUATIONS FOR
A SUPERCONDUCTOR

There are four possible scattering modes in this
system, corresponding to spin-Qip and non-spin-Aip
scattering, bearing in mind that a particle can scatter
into a particle as well as into a hole. One of us' has
derived scattering equations for the amplitudes con-

We should perhaps point out that the bound state described
recently by Hone and by Soda et al. (Ref. 5) is not simply related
to the above bound state. In our terminology, they have calculated
the ground-state energy of the total system in the presence of a
single magnetic impurity, while we are interested in the single-
particle energy spectrum of the system.
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cerned under the usual assumption that only single-

particle intermediate states are considered. The result
is fEq. 2(a) of Ref. 4$

ds
(I 4 I'+(3/16) I r~ I') (g+f)

+Z, +' (21)

&& I r+ I') (g+/)+2 '
(2 2)

Here D is a cutoff energy of order «, p is a cons~ant,

g(s) =«
I
s/(s' —~') '"

I f(s) =«
I
~/(s' —~') '"

I,

2A being the BCS energy gap as usual; for the precise
definitions of t+, v+, see Ref. 4. The diGerence between
(2.1), (2.2), and SuhVs equations for a normal metal
is that Suhl's parabolic density of states is replaced by
a BCS density p(g&f). (Also, there is a factor of 4
difference in the definition of r.)

Since p(g&f) is identically zero in the gap (—6, 6),
it is clear by inspection of (2.1), (2.2) that f, r have
cuts along the real axis from —D to —6 and from 6 to
D, and no other singularities on the physical sheet, apart
from the pole terms for vrhich u+, , b+, are real and the
s; are real with

I s; I&A. These terms were missing in
the original equations, but are necessary to describe
the bound state in a consistent way.

The pole terms represent possible bound states having
energies in the gap. These should have been included
in Eq. (29) of Ref. 4. They arise because if the full
Hamiltonian has eigenstates with energies in (—6, 6),
clearly the set

I I) fRef. 4, Eq. (20}j of eigenstates of
the full Hamiltonian having energies outside ( —6, 6)
can. no longer be a complete set, and inclusion of the
bound eigenstates in the set gives the pole terms.

For definiteness, consider the coupled equation for
f+(s) and r+(s). We introduce two analytic functions
fi(s) and fs(s) falso ri(s) and r, (s)1 equal to f~(s)
on the first sheet (that is, the physical sheet) and the
second sheet, respectively. As ft(sl has a discontinuity
along the real axis for f D, —6j and for fh, D—j, ts(s)
is the analytic continuation of fi(s) onto the second
sheet through this discontinuity. Hence for real x

limfs(z+ie) =limti(x ie') for D—& I x I)h. (2.3)

Furthermore, since the discontinuity across the real
axis is pure imaginary, it follows that fi(x) =fs*(x)
for real x, and

I f+ Is in (2.1) can be written as ft(a) fs (z) .
Hence

I f+ Is can be analytically continued. into the
complex plane in the form fi(s)fs(s). It is interesting
to notice that ft(s) fs(s) is analytic in the whole complex
plane except for possible poles, whereas fi(s) and fs(z)

(f)
PIG. I(a). Countour of integration and singularities of the

integrand for G(s) (2.7).The pole E is at x=s. Analytic continua-
tion in s is given snnply by moving the pole P around. If I' goes
through the cut onto the second sheet to a point E', the contour
is dragged along (C' in 6gure) .If E remains on the physical sheet,
it is unnecessary to deform C. (b) Singularities of G(e) for 3 on the
physical sheet. (c) Singularities of G(s) on the unphysical sheet.
If I' moves in the a-plane towards the pole of tanh Px/2 the con-
tour C is trapped, giving rise to a pole in G(s) at this point. (d)
Singularity structure of Ga(sl in the normal case. (e) Singularity
structure of Gg(s) in the normal case.

have the cuts mentioned above. This is a consequence
of the fact that the BCS density of states gives rise to
cuts of square root type so that only two sheets are
involved.

Writing S(a)=1+2&spf(x+6)/(x —6)Jjsfi(x), it is
easy to derive unitarity equations analogous to (4.3) and
(4.4) of Ref. 'I.

Si(z)Ss(a)+-„'n'psf(a+5)/(z —h)jrr(x)rs(x) =1, (2.4}
ri(a) Ss(z) rs(z) St(x)—
= —ws, f(~+~)/(*—~}gi&s tanh(P~/2). ,(*);(~). (Z.S)
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Fia. 2(a). Positions of poles of the scattering amplitudes t+, ~+ plotted against the Kondo temperature for T=O. (b) Positions of
poles when T=O, jh. (c) Position of pole for T&A. For 0.96(T&h deviations from this curve are too small (~1%) to be plotted
on this scale.

Defining G(x) =S(x)/r(x) gives

Gq(x) —Gl(x) = —xipt (x+6) /(x —b) ]»' tanh(px/2) .
(2.6)

On the physical sheet, G has cuts from —D to —6
and from 6 to D. At infinity, S=1 and v =J from in-

spection of (2.1), (2.2) so G=1/J. Hence

G(s) =~ ' —— (s—*) 'pL(x+A)i(x —~)3»o tanh(Px/2).
2 ~

(2 &)

For computational purposes, the integration can be
taken along the real axis from —D to —6 and 6 to D.
To get a picture of the analytic structure of G, we take
the contour around the two cuts as in Fig. 1(a). On

the physical sheet, the only singularities of G are the

real axis cuts LFig. 1(b)]. Continuing onto the un-

physical sheet in s LFig. 1(c)] the contour of integra-

tion is dragged along and there is a singularity whenever

it is "pinched" against a pole of tanh Px/2. Hence on

the unphysical sheet G has the real axis cuts, plus the

singularities of tanhPx/2. This is of course clear from

(2.6) . It is instructive to compare this singularity struc-

ture with that of Gs(s), G~(s) in the normal case

LFigs. 1(d), 1(e)g. How does one go to the other as 5
goes to zero? The answer is that for ANO the "natural"
continuation of G(z) from the upper into the lower

half plane is across the real axis through the gap. For
A zero, one is forced in continuing G(z) into the lower

half plane to go through the cut onto the second sheet.

In other words, at 6=0, both sheets of G(s) have been

cut in two along the real axis and the top half of one

sheet now continues into the bottom half of the other,

giving the familiar digamma structure. (It should be

mentioned that we never consider continuation across

the real axis beyond D. This can be done, but adds
nothing new and is a less "natural" de6nition of a
single sheet, because the interesting analytic struc-
ture is much closer to the origin. ) Terms such as
(D+x/D x)"' have als—o been omitted from (2.6)
because they are practically unity in the region of
interest.

Solving (2.4) and (2.5) using (2.6) gives

rl(X) ro(X) =— —, — -, (2.8)=G (*)G.( )+-.'- p L(*+~)/(.-~)j '

Sl(x) Si(x) =— — — (2 9)
Gl(x)Go(x)

=G.( )G.( )+-:-p «*+A)/(*-A)~
From (2.8) and (2.9) it follows that poles of r+,

S~ are given by

Gl(*)Gz(x) +-oropoL(x+6) /(x —5)(=0. (2.10)

Writing X=lnT~/To [where Tx= (2y/rr)De 'o/ and
T,o is the critical temperature of the superconductorj
y=x/6, n=A/T, this condition (for spin S) is easily
seen to be

[X+/l+(y)l [&+~+(y)—~[.(1+y)/(1 —y)j"'
)(tanh[(n/2)y]] —S(S+1)m L(1+y)/(1 —y)/=0, (2.11)

where

QO tanh(-', nx)
Ap(y) =y(y+1) dx/(x' —1)»' ' . (2.12)x' —y'

'this integral can be evaluated explicitly for T&&4 and
T))h (this is done in the Appendix).

Hence we can plot now the position of poles of the
scattering amplitude behaves as a function of X. X is
just a measure of the strength of the Kondo binding
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relative to the Cooper binding, i.e.,
X=in( Tir/T, p) =in(D/(pi)) +p-'(~ g ~-' —J—'),

where &pr) is the Debye cutoff frequency and
~ g ~

is the
pairing interaction strength. Figure 2 graphs the y —X
dependence for various temperatures.

From an examination of Fig. 2, we can determine
when the poles are on the physical sheet. Consider, for
example, Fig. 2(b) and suppose the strength is given

by the line X=X». Then there are three poles of r
on the real axis at the points y», y2, y3. If the Kondo
coupling is weakened, the line X=X» moves down-

wards, and the poles y», y2 come together and then go
into the complex plane symmetrically. For an arbi-
trarily weak Kondo coupling, y» and y2 will be in the
complex plane. This is physically unreasonable unless

y», y2 are on the unphysical sheet for otherwise an ar-
bitrarily weak interaction will. cause a breakdown of
causality. Hence we take it that for X=X», y», y2 are
on the unphysical sheet, (i.e., on the second sheet).
Now increasing the strength X, y2, y3 become coincident
and then complex. This can only happen if they are
on the same sheets so the conclusion is that for X=X»
all three poles are on the unphysical sheet. If X is
increased to zero, the pole y» moves to the end of the
gap and comes through the cut onto the physical sheet.
It then represents a zero energy bound state. At this
point T~ ——T,p. Further increase in T~ causes the
bound state pole to traverse the gap, as is easily seen
in Fig. 2. The complex poles y2, ya can never get onto the
physical sheet because to do so they would have to
go through the cuts, and hence become real again.
However, the curves in Fig. 2 give all possible real
values of pole position. For high temperatures T & T p,

no horizontal line cuts the curve at three points. How-
ever, it is clear that the bound state poles are in the
physical sheet for Tz)T, p since the system varies
smoothly with increase of temperature from TQ(T p

to T &T,p.

The poles of the amplitudes t, r defined by Maki
are given by curves identical with those of Fig. 2 but
with the sign changed along the horizontal axis. Thus
when the y» of t+ enters the physical sheet at —6, a
pole y»'= —

y» of t enters at A. The full non-spin-Qip
amplitude t=t++t defined by Maki thus has its real
poles always symmetrically placed about the center
of the gap.

3. CONCLUSION

By using analytic continuation techniques, we have
solved the dispersion equation of the scattering matrix
for a quasiparticle in a superconductor interacting with
a magnetic impurity. We find that (a) if Trr(Tp, the,
pole appears only in the second sheet (i.e., no bound
state in the energy gap); (b) if T&&T,p the bound-
state pole appears in the erst sheet in the energy gap
(i.e. a quasiparticle is trapped around the impurity
atom) . This general feature is independent of the tem-

perature (as long as T(T.p) or of the magnitude of

spin S of the localized moment, although the position
of the pole wanders around as the temperature in-

creases. Note that this pole appears both in the spin-

Qip and in the non-spin-Qip scattering amplitudes. In
order to discuss the feasibility of experimentally ob-

serving this bound state, it is necessary to generalize
the present analysis to the case of finite impurity con-

centration. The formal procedures used in Ref. 4 have
to be followed. The most important eGect of a finite
concentration of magnetic impurities is that the density
of states Li.e., g(x) and f(x)] is drastically modified.

Hence in order to reach a definite conclusion, more de-

tailed analysis is required. However, we may expect
that in the situation T~)&T,p, there will be additional
structure in the density of states at the energy of the
bound state, which may a6ect various transport prop-
erties of the system. These problems will be left for a
future study.

APPENDIX

Ke present here the calculations involved in de-

termining the location of the bound-state poles. The
impurity spin is taken to be 5 throughout. The posi-
tions of the poles in p.((s) rp(s) are given by

tt)+sl'" s
((Jp) ' —A~(z))((Jp) ' —A+(2)+i I

~

t8nh—
&4—s) 2T

where

s—xP5(5+1) =0, (A1)6—s

X~ = lnTrr/T, p,

&+(y) =(1+y)y

y=s/t)„ An/T,

„ tanh (-',nx)
dx x' —1 '"

x' —y'

where we have made use of the relation

2D
A+(y) = ln—

cc) tanh(s/2T)+s(s+6l dx/(x' —6') '/' (A6)
» X2—S2

Here X+ and X correspond to the two roots of (A1) .

A+(z) =— (tanh —
) Re ( ) . (A2)

Equation (A1' can be rewritten

t] +y 1/2

X,=-,'~
/ I L45(5+1)+ tanh'(-'ny) ](/P
kI —y

+ tanh(-';ny) I
—8+(y), (A3)

] +y 1/2

X I [45(5+1)+ tanh(-, ', y) j /

1 —y
—tanh Pny) I

—ft+(y), (A4)
where
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(a) T=O: In 8+(y) we first take T=O'K. In this
case (A5) reduces to

&+(y) = (1+y)y n*/(*' —1)'"(x'—y') '

we transform the second term in (A10) as

f(nx)
nx/(x' —1) '~'—

1 S'—y'

nx/(x' —1) '"

X[(x—y) ' —(x+y) '] exp( —nx)

=(2y) '&o(n)[(1—y)
' —(1+y) '7.

(A11)

respectively, which are plotted in Fig. 2(a).
(b) T«T,p. In this limit 8+(y) is given by

1—2f(nx)
dx/(x' —1)"'

1 S'—y'
8+(y) =[(1+y)/(1—y)]' ' arcsiny —0[exp( —6/Tl].
On the other hand, if n(1 —

I y I)«1, a detailed treat-
ment gives

8+(y) =pier(2/1 —y)'I'[1 —2 exp( —6/T)]. (A13)

Substituting the above expressions for 8+(y) in (A3)
and (A4), we see that signi6cant changes in the location
of the poles occur only for poles close to s=o. Approxi-
mate expressions for X+ and X are now given by

&+(y) = (1+y)y

(1+y 1/2

arcslny
k& —y

—2y(1+y) dx/(x' —1)"'—,(A10)
00 f(nx)

1 S2~ y2

where f(E) =(1+es/T) '. Assuming a(1—
I y I)))1,

X+=por[(1+y)/(1 —y)]'"{[4S(S+1)+tanh'( —',ny) ]"'+tanh (—,ny) —(2/or) arcsiny}+0[exp( —5/T)], (A14)

=[(1+y)/(1 —y) ]'"arcsiny. (A7)
1

Substituting this expression in (A3) and (A4) we have

X+=[(1+y)/(1 —y) 7'"{ (S+1)+(y/I y I) ~ o y},
(AS)

X = —[(1+y)/(1 —y)]'"{ir(S+1)—(y/I y I) arcosy}, Combining this we have

(») &+(y) =[(1+y)/(1—y) 7'"

X[arcsiny —(2y/(1 —
y ) ~ )Eo(&/T) ] (A12)

X = ——,'7r[(1+y)/(1 —y)]'I'{[4S(S+1)+tanh'(—,'ny)7'~' —tanh(xony)+(2/or) arcsiny}+0[exp( —6/T)7. (A15)

(c) T T,p. In the high-temperature region we have

00 00 AS
Bp(x) = (1+y)y dx/(x' —1)'" (x' —y') ' Q

1 „)p x'(e+-,') '+ (-', nx) '

=n Z (1+y)y
nyO

=n Z (1+y)y
n&0

dx/(x' 1) '~' [or—'(I+-') '+ (-'nx) '7 '
1 S'—y'

dt
[~'(~+o) '+ (ln) '(&'+1)7 '

)2+ 1 y2

=ny(1+y) Z [x'(rr+ pl'+(pay)'7 '
n)0

CO (pn)'
dt (0+1—y')-'—

0 m'(I+-', ) '+ (-', n) '(8+1)

= y( +y)-' Z [ '(~+-')'+(-' y)'7 '{( —y') "'—(-' ) I
~'( +-')'+(-' )'7 '"}

n)0

= —,'m (1+y) {tanh-,'ny/(1 —y') "'—-', n'y Q [or'(n+-', ) '+ (-,'ny) '7 ' [m-'(rr+-', ) '+ (-'n) '] "'}
n)0

—ipor[(1+y) /(1 —y) y& {tanhiony —ion'y (I—y') 'a[7I'(3) /pro] —[31$(5) /pro] (ion)
o (yo+ ip ) }.

Finally, the positions of the pole are given by

X+=
p ~[(1+y)/(1 —y) 7"{L4S(S+1)+«nh'(ony) 7'"+y(1—y') "'[7l(3)/2x']n'+0(n') }

(A1ti)

X = ——'or[(1+y)/(1 —y)]'"{[4S(S+1)+tanh'(pny)7"' —y(1 —y')"'[7l'(3)/2or']n'+0(a'I }. (A17)


